mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-19 04:32:19 +00:00
c2b840cb7c
When loading immediates into a GR32, the port prefered LHI, followed by LLILH or LLILL, followed by IILF. LHI and IILF are natural 32-bit operations, but LLILH and LLILL also clear the upper 32 bits of the register. This was represented as taking a 32-bit subreg of a 64-bit assignment. Using subregs for something as simple as a move immediate was probably a bad idea. Also, I have patches to add support for the high-word facility, and we don't want something like LLILH and LLILL to stop the high word of the same GPR from being used. This patch therefore uses LHI and IILF to begin with and adds a late machine-specific pass to use LLILH and LLILL if the other half of the register is not live. The high-word patches extend this behavior to IIHF, LLIHL and LLIHH. No behavioral change intended. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191363 91177308-0d34-0410-b5e6-96231b3b80d8
109 lines
4.3 KiB
C++
109 lines
4.3 KiB
C++
//===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SystemZTargetMachine.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
|
|
using namespace llvm;
|
|
|
|
extern "C" void LLVMInitializeSystemZTarget() {
|
|
// Register the target.
|
|
RegisterTargetMachine<SystemZTargetMachine> X(TheSystemZTarget);
|
|
}
|
|
|
|
SystemZTargetMachine::SystemZTargetMachine(const Target &T, StringRef TT,
|
|
StringRef CPU, StringRef FS,
|
|
const TargetOptions &Options,
|
|
Reloc::Model RM,
|
|
CodeModel::Model CM,
|
|
CodeGenOpt::Level OL)
|
|
: LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
|
|
Subtarget(TT, CPU, FS),
|
|
// Make sure that global data has at least 16 bits of alignment by default,
|
|
// so that we can refer to it using LARL. We don't have any special
|
|
// requirements for stack variables though.
|
|
DL("E-p:64:64:64-i1:8:16-i8:8:16-i16:16-i32:32-i64:64"
|
|
"-f32:32-f64:64-f128:64-a0:8:16-n32:64"),
|
|
InstrInfo(*this), TLInfo(*this), TSInfo(*this),
|
|
FrameLowering(*this, Subtarget) {
|
|
initAsmInfo();
|
|
}
|
|
|
|
namespace {
|
|
/// SystemZ Code Generator Pass Configuration Options.
|
|
class SystemZPassConfig : public TargetPassConfig {
|
|
public:
|
|
SystemZPassConfig(SystemZTargetMachine *TM, PassManagerBase &PM)
|
|
: TargetPassConfig(TM, PM) {}
|
|
|
|
SystemZTargetMachine &getSystemZTargetMachine() const {
|
|
return getTM<SystemZTargetMachine>();
|
|
}
|
|
|
|
virtual void addIRPasses() LLVM_OVERRIDE;
|
|
virtual bool addInstSelector() LLVM_OVERRIDE;
|
|
virtual bool addPreSched2() LLVM_OVERRIDE;
|
|
virtual bool addPreEmitPass() LLVM_OVERRIDE;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
void SystemZPassConfig::addIRPasses() {
|
|
TargetPassConfig::addIRPasses();
|
|
addPass(createPartiallyInlineLibCallsPass());
|
|
}
|
|
|
|
bool SystemZPassConfig::addInstSelector() {
|
|
addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel()));
|
|
return false;
|
|
}
|
|
|
|
bool SystemZPassConfig::addPreSched2() {
|
|
if (getSystemZTargetMachine().getSubtargetImpl()->hasLoadStoreOnCond())
|
|
addPass(&IfConverterID);
|
|
return true;
|
|
}
|
|
|
|
bool SystemZPassConfig::addPreEmitPass() {
|
|
// We eliminate comparisons here rather than earlier because some
|
|
// transformations can change the set of available CC values and we
|
|
// generally want those transformations to have priority. This is
|
|
// especially true in the commonest case where the result of the comparison
|
|
// is used by a single in-range branch instruction, since we will then
|
|
// be able to fuse the compare and the branch instead.
|
|
//
|
|
// For example, two-address NILF can sometimes be converted into
|
|
// three-address RISBLG. NILF produces a CC value that indicates whether
|
|
// the low word is zero, but RISBLG does not modify CC at all. On the
|
|
// other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG.
|
|
// The CC value produced by NILL isn't useful for our purposes, but the
|
|
// value produced by RISBG can be used for any comparison with zero
|
|
// (not just equality). So there are some transformations that lose
|
|
// CC values (while still being worthwhile) and others that happen to make
|
|
// the CC result more useful than it was originally.
|
|
//
|
|
// Another reason is that we only want to use BRANCH ON COUNT in cases
|
|
// where we know that the count register is not going to be spilled.
|
|
//
|
|
// Doing it so late makes it more likely that a register will be reused
|
|
// between the comparison and the branch, but it isn't clear whether
|
|
// preventing that would be a win or not.
|
|
if (getOptLevel() != CodeGenOpt::None)
|
|
addPass(createSystemZElimComparePass(getSystemZTargetMachine()));
|
|
if (getOptLevel() != CodeGenOpt::None)
|
|
addPass(createSystemZShortenInstPass(getSystemZTargetMachine()));
|
|
addPass(createSystemZLongBranchPass(getSystemZTargetMachine()));
|
|
return true;
|
|
}
|
|
|
|
TargetPassConfig *SystemZTargetMachine::createPassConfig(PassManagerBase &PM) {
|
|
return new SystemZPassConfig(this, PM);
|
|
}
|