mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	No functionality change intended. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239687 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			499 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			499 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- ExternalFunctions.cpp - Implement External Functions --------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file contains both code to deal with invoking "external" functions, but
 | |
| //  also contains code that implements "exported" external functions.
 | |
| //
 | |
| //  There are currently two mechanisms for handling external functions in the
 | |
| //  Interpreter.  The first is to implement lle_* wrapper functions that are
 | |
| //  specific to well-known library functions which manually translate the
 | |
| //  arguments from GenericValues and make the call.  If such a wrapper does
 | |
| //  not exist, and libffi is available, then the Interpreter will attempt to
 | |
| //  invoke the function using libffi, after finding its address.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "Interpreter.h"
 | |
| #include "llvm/Config/config.h"     // Detect libffi
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Support/DynamicLibrary.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/ManagedStatic.h"
 | |
| #include "llvm/Support/Mutex.h"
 | |
| #include "llvm/Support/UniqueLock.h"
 | |
| #include <cmath>
 | |
| #include <csignal>
 | |
| #include <cstdio>
 | |
| #include <cstring>
 | |
| #include <map>
 | |
| 
 | |
| #ifdef HAVE_FFI_CALL
 | |
| #ifdef HAVE_FFI_H
 | |
| #include <ffi.h>
 | |
| #define USE_LIBFFI
 | |
| #elif HAVE_FFI_FFI_H
 | |
| #include <ffi/ffi.h>
 | |
| #define USE_LIBFFI
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static ManagedStatic<sys::Mutex> FunctionsLock;
 | |
| 
 | |
| typedef GenericValue (*ExFunc)(FunctionType *, ArrayRef<GenericValue>);
 | |
| static ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions;
 | |
| static ManagedStatic<std::map<std::string, ExFunc> > FuncNames;
 | |
| 
 | |
| #ifdef USE_LIBFFI
 | |
| typedef void (*RawFunc)();
 | |
| static ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions;
 | |
| #endif
 | |
| 
 | |
| static Interpreter *TheInterpreter;
 | |
| 
 | |
| static char getTypeID(Type *Ty) {
 | |
|   switch (Ty->getTypeID()) {
 | |
|   case Type::VoidTyID:    return 'V';
 | |
|   case Type::IntegerTyID:
 | |
|     switch (cast<IntegerType>(Ty)->getBitWidth()) {
 | |
|       case 1:  return 'o';
 | |
|       case 8:  return 'B';
 | |
|       case 16: return 'S';
 | |
|       case 32: return 'I';
 | |
|       case 64: return 'L';
 | |
|       default: return 'N';
 | |
|     }
 | |
|   case Type::FloatTyID:   return 'F';
 | |
|   case Type::DoubleTyID:  return 'D';
 | |
|   case Type::PointerTyID: return 'P';
 | |
|   case Type::FunctionTyID:return 'M';
 | |
|   case Type::StructTyID:  return 'T';
 | |
|   case Type::ArrayTyID:   return 'A';
 | |
|   default: return 'U';
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Try to find address of external function given a Function object.
 | |
| // Please note, that interpreter doesn't know how to assemble a
 | |
| // real call in general case (this is JIT job), that's why it assumes,
 | |
| // that all external functions has the same (and pretty "general") signature.
 | |
| // The typical example of such functions are "lle_X_" ones.
 | |
| static ExFunc lookupFunction(const Function *F) {
 | |
|   // Function not found, look it up... start by figuring out what the
 | |
|   // composite function name should be.
 | |
|   std::string ExtName = "lle_";
 | |
|   FunctionType *FT = F->getFunctionType();
 | |
|   for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i)
 | |
|     ExtName += getTypeID(FT->getContainedType(i));
 | |
|   ExtName += ("_" + F->getName()).str();
 | |
| 
 | |
|   sys::ScopedLock Writer(*FunctionsLock);
 | |
|   ExFunc FnPtr = (*FuncNames)[ExtName];
 | |
|   if (!FnPtr)
 | |
|     FnPtr = (*FuncNames)[("lle_X_" + F->getName()).str()];
 | |
|   if (!FnPtr)  // Try calling a generic function... if it exists...
 | |
|     FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol(
 | |
|         ("lle_X_" + F->getName()).str());
 | |
|   if (FnPtr)
 | |
|     ExportedFunctions->insert(std::make_pair(F, FnPtr));  // Cache for later
 | |
|   return FnPtr;
 | |
| }
 | |
| 
 | |
| #ifdef USE_LIBFFI
 | |
| static ffi_type *ffiTypeFor(Type *Ty) {
 | |
|   switch (Ty->getTypeID()) {
 | |
|     case Type::VoidTyID: return &ffi_type_void;
 | |
|     case Type::IntegerTyID:
 | |
|       switch (cast<IntegerType>(Ty)->getBitWidth()) {
 | |
|         case 8:  return &ffi_type_sint8;
 | |
|         case 16: return &ffi_type_sint16;
 | |
|         case 32: return &ffi_type_sint32;
 | |
|         case 64: return &ffi_type_sint64;
 | |
|       }
 | |
|     case Type::FloatTyID:   return &ffi_type_float;
 | |
|     case Type::DoubleTyID:  return &ffi_type_double;
 | |
|     case Type::PointerTyID: return &ffi_type_pointer;
 | |
|     default: break;
 | |
|   }
 | |
|   // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
 | |
|   report_fatal_error("Type could not be mapped for use with libffi.");
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| static void *ffiValueFor(Type *Ty, const GenericValue &AV,
 | |
|                          void *ArgDataPtr) {
 | |
|   switch (Ty->getTypeID()) {
 | |
|     case Type::IntegerTyID:
 | |
|       switch (cast<IntegerType>(Ty)->getBitWidth()) {
 | |
|         case 8: {
 | |
|           int8_t *I8Ptr = (int8_t *) ArgDataPtr;
 | |
|           *I8Ptr = (int8_t) AV.IntVal.getZExtValue();
 | |
|           return ArgDataPtr;
 | |
|         }
 | |
|         case 16: {
 | |
|           int16_t *I16Ptr = (int16_t *) ArgDataPtr;
 | |
|           *I16Ptr = (int16_t) AV.IntVal.getZExtValue();
 | |
|           return ArgDataPtr;
 | |
|         }
 | |
|         case 32: {
 | |
|           int32_t *I32Ptr = (int32_t *) ArgDataPtr;
 | |
|           *I32Ptr = (int32_t) AV.IntVal.getZExtValue();
 | |
|           return ArgDataPtr;
 | |
|         }
 | |
|         case 64: {
 | |
|           int64_t *I64Ptr = (int64_t *) ArgDataPtr;
 | |
|           *I64Ptr = (int64_t) AV.IntVal.getZExtValue();
 | |
|           return ArgDataPtr;
 | |
|         }
 | |
|       }
 | |
|     case Type::FloatTyID: {
 | |
|       float *FloatPtr = (float *) ArgDataPtr;
 | |
|       *FloatPtr = AV.FloatVal;
 | |
|       return ArgDataPtr;
 | |
|     }
 | |
|     case Type::DoubleTyID: {
 | |
|       double *DoublePtr = (double *) ArgDataPtr;
 | |
|       *DoublePtr = AV.DoubleVal;
 | |
|       return ArgDataPtr;
 | |
|     }
 | |
|     case Type::PointerTyID: {
 | |
|       void **PtrPtr = (void **) ArgDataPtr;
 | |
|       *PtrPtr = GVTOP(AV);
 | |
|       return ArgDataPtr;
 | |
|     }
 | |
|     default: break;
 | |
|   }
 | |
|   // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
 | |
|   report_fatal_error("Type value could not be mapped for use with libffi.");
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| static bool ffiInvoke(RawFunc Fn, Function *F, ArrayRef<GenericValue> ArgVals,
 | |
|                       const DataLayout *TD, GenericValue &Result) {
 | |
|   ffi_cif cif;
 | |
|   FunctionType *FTy = F->getFunctionType();
 | |
|   const unsigned NumArgs = F->arg_size();
 | |
| 
 | |
|   // TODO: We don't have type information about the remaining arguments, because
 | |
|   // this information is never passed into ExecutionEngine::runFunction().
 | |
|   if (ArgVals.size() > NumArgs && F->isVarArg()) {
 | |
|     report_fatal_error("Calling external var arg function '" + F->getName()
 | |
|                       + "' is not supported by the Interpreter.");
 | |
|   }
 | |
| 
 | |
|   unsigned ArgBytes = 0;
 | |
| 
 | |
|   std::vector<ffi_type*> args(NumArgs);
 | |
|   for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
 | |
|        A != E; ++A) {
 | |
|     const unsigned ArgNo = A->getArgNo();
 | |
|     Type *ArgTy = FTy->getParamType(ArgNo);
 | |
|     args[ArgNo] = ffiTypeFor(ArgTy);
 | |
|     ArgBytes += TD->getTypeStoreSize(ArgTy);
 | |
|   }
 | |
| 
 | |
|   SmallVector<uint8_t, 128> ArgData;
 | |
|   ArgData.resize(ArgBytes);
 | |
|   uint8_t *ArgDataPtr = ArgData.data();
 | |
|   SmallVector<void*, 16> values(NumArgs);
 | |
|   for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
 | |
|        A != E; ++A) {
 | |
|     const unsigned ArgNo = A->getArgNo();
 | |
|     Type *ArgTy = FTy->getParamType(ArgNo);
 | |
|     values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr);
 | |
|     ArgDataPtr += TD->getTypeStoreSize(ArgTy);
 | |
|   }
 | |
| 
 | |
|   Type *RetTy = FTy->getReturnType();
 | |
|   ffi_type *rtype = ffiTypeFor(RetTy);
 | |
| 
 | |
|   if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, &args[0]) == FFI_OK) {
 | |
|     SmallVector<uint8_t, 128> ret;
 | |
|     if (RetTy->getTypeID() != Type::VoidTyID)
 | |
|       ret.resize(TD->getTypeStoreSize(RetTy));
 | |
|     ffi_call(&cif, Fn, ret.data(), values.data());
 | |
|     switch (RetTy->getTypeID()) {
 | |
|       case Type::IntegerTyID:
 | |
|         switch (cast<IntegerType>(RetTy)->getBitWidth()) {
 | |
|           case 8:  Result.IntVal = APInt(8 , *(int8_t *) ret.data()); break;
 | |
|           case 16: Result.IntVal = APInt(16, *(int16_t*) ret.data()); break;
 | |
|           case 32: Result.IntVal = APInt(32, *(int32_t*) ret.data()); break;
 | |
|           case 64: Result.IntVal = APInt(64, *(int64_t*) ret.data()); break;
 | |
|         }
 | |
|         break;
 | |
|       case Type::FloatTyID:   Result.FloatVal   = *(float *) ret.data(); break;
 | |
|       case Type::DoubleTyID:  Result.DoubleVal  = *(double*) ret.data(); break;
 | |
|       case Type::PointerTyID: Result.PointerVal = *(void **) ret.data(); break;
 | |
|       default: break;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| #endif // USE_LIBFFI
 | |
| 
 | |
| GenericValue Interpreter::callExternalFunction(Function *F,
 | |
|                                                ArrayRef<GenericValue> ArgVals) {
 | |
|   TheInterpreter = this;
 | |
| 
 | |
|   unique_lock<sys::Mutex> Guard(*FunctionsLock);
 | |
| 
 | |
|   // Do a lookup to see if the function is in our cache... this should just be a
 | |
|   // deferred annotation!
 | |
|   std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F);
 | |
|   if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F)
 | |
|                                                    : FI->second) {
 | |
|     Guard.unlock();
 | |
|     return Fn(F->getFunctionType(), ArgVals);
 | |
|   }
 | |
| 
 | |
| #ifdef USE_LIBFFI
 | |
|   std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F);
 | |
|   RawFunc RawFn;
 | |
|   if (RF == RawFunctions->end()) {
 | |
|     RawFn = (RawFunc)(intptr_t)
 | |
|       sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName());
 | |
|     if (!RawFn)
 | |
|       RawFn = (RawFunc)(intptr_t)getPointerToGlobalIfAvailable(F);
 | |
|     if (RawFn != 0)
 | |
|       RawFunctions->insert(std::make_pair(F, RawFn));  // Cache for later
 | |
|   } else {
 | |
|     RawFn = RF->second;
 | |
|   }
 | |
| 
 | |
|   Guard.unlock();
 | |
| 
 | |
|   GenericValue Result;
 | |
|   if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getDataLayout(), Result))
 | |
|     return Result;
 | |
| #endif // USE_LIBFFI
 | |
| 
 | |
|   if (F->getName() == "__main")
 | |
|     errs() << "Tried to execute an unknown external function: "
 | |
|       << *F->getType() << " __main\n";
 | |
|   else
 | |
|     report_fatal_error("Tried to execute an unknown external function: " +
 | |
|                        F->getName());
 | |
| #ifndef USE_LIBFFI
 | |
|   errs() << "Recompiling LLVM with --enable-libffi might help.\n";
 | |
| #endif
 | |
|   return GenericValue();
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Functions "exported" to the running application...
 | |
| //
 | |
| 
 | |
| // void atexit(Function*)
 | |
| static GenericValue lle_X_atexit(FunctionType *FT,
 | |
|                                  ArrayRef<GenericValue> Args) {
 | |
|   assert(Args.size() == 1);
 | |
|   TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0]));
 | |
|   GenericValue GV;
 | |
|   GV.IntVal = 0;
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // void exit(int)
 | |
| static GenericValue lle_X_exit(FunctionType *FT, ArrayRef<GenericValue> Args) {
 | |
|   TheInterpreter->exitCalled(Args[0]);
 | |
|   return GenericValue();
 | |
| }
 | |
| 
 | |
| // void abort(void)
 | |
| static GenericValue lle_X_abort(FunctionType *FT, ArrayRef<GenericValue> Args) {
 | |
|   //FIXME: should we report or raise here?
 | |
|   //report_fatal_error("Interpreted program raised SIGABRT");
 | |
|   raise (SIGABRT);
 | |
|   return GenericValue();
 | |
| }
 | |
| 
 | |
| // int sprintf(char *, const char *, ...) - a very rough implementation to make
 | |
| // output useful.
 | |
| static GenericValue lle_X_sprintf(FunctionType *FT,
 | |
|                                   ArrayRef<GenericValue> Args) {
 | |
|   char *OutputBuffer = (char *)GVTOP(Args[0]);
 | |
|   const char *FmtStr = (const char *)GVTOP(Args[1]);
 | |
|   unsigned ArgNo = 2;
 | |
| 
 | |
|   // printf should return # chars printed.  This is completely incorrect, but
 | |
|   // close enough for now.
 | |
|   GenericValue GV;
 | |
|   GV.IntVal = APInt(32, strlen(FmtStr));
 | |
|   while (1) {
 | |
|     switch (*FmtStr) {
 | |
|     case 0: return GV;             // Null terminator...
 | |
|     default:                       // Normal nonspecial character
 | |
|       sprintf(OutputBuffer++, "%c", *FmtStr++);
 | |
|       break;
 | |
|     case '\\': {                   // Handle escape codes
 | |
|       sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1));
 | |
|       FmtStr += 2; OutputBuffer += 2;
 | |
|       break;
 | |
|     }
 | |
|     case '%': {                    // Handle format specifiers
 | |
|       char FmtBuf[100] = "", Buffer[1000] = "";
 | |
|       char *FB = FmtBuf;
 | |
|       *FB++ = *FmtStr++;
 | |
|       char Last = *FB++ = *FmtStr++;
 | |
|       unsigned HowLong = 0;
 | |
|       while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' &&
 | |
|              Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' &&
 | |
|              Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' &&
 | |
|              Last != 'p' && Last != 's' && Last != '%') {
 | |
|         if (Last == 'l' || Last == 'L') HowLong++;  // Keep track of l's
 | |
|         Last = *FB++ = *FmtStr++;
 | |
|       }
 | |
|       *FB = 0;
 | |
| 
 | |
|       switch (Last) {
 | |
|       case '%':
 | |
|         memcpy(Buffer, "%", 2); break;
 | |
|       case 'c':
 | |
|         sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
 | |
|         break;
 | |
|       case 'd': case 'i':
 | |
|       case 'u': case 'o':
 | |
|       case 'x': case 'X':
 | |
|         if (HowLong >= 1) {
 | |
|           if (HowLong == 1 &&
 | |
|               TheInterpreter->getDataLayout()->getPointerSizeInBits() == 64 &&
 | |
|               sizeof(long) < sizeof(int64_t)) {
 | |
|             // Make sure we use %lld with a 64 bit argument because we might be
 | |
|             // compiling LLI on a 32 bit compiler.
 | |
|             unsigned Size = strlen(FmtBuf);
 | |
|             FmtBuf[Size] = FmtBuf[Size-1];
 | |
|             FmtBuf[Size+1] = 0;
 | |
|             FmtBuf[Size-1] = 'l';
 | |
|           }
 | |
|           sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue());
 | |
|         } else
 | |
|           sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
 | |
|         break;
 | |
|       case 'e': case 'E': case 'g': case 'G': case 'f':
 | |
|         sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break;
 | |
|       case 'p':
 | |
|         sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break;
 | |
|       case 's':
 | |
|         sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break;
 | |
|       default:
 | |
|         errs() << "<unknown printf code '" << *FmtStr << "'!>";
 | |
|         ArgNo++; break;
 | |
|       }
 | |
|       size_t Len = strlen(Buffer);
 | |
|       memcpy(OutputBuffer, Buffer, Len + 1);
 | |
|       OutputBuffer += Len;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // int printf(const char *, ...) - a very rough implementation to make output
 | |
| // useful.
 | |
| static GenericValue lle_X_printf(FunctionType *FT,
 | |
|                                  ArrayRef<GenericValue> Args) {
 | |
|   char Buffer[10000];
 | |
|   std::vector<GenericValue> NewArgs;
 | |
|   NewArgs.push_back(PTOGV((void*)&Buffer[0]));
 | |
|   NewArgs.insert(NewArgs.end(), Args.begin(), Args.end());
 | |
|   GenericValue GV = lle_X_sprintf(FT, NewArgs);
 | |
|   outs() << Buffer;
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // int sscanf(const char *format, ...);
 | |
| static GenericValue lle_X_sscanf(FunctionType *FT,
 | |
|                                  ArrayRef<GenericValue> args) {
 | |
|   assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");
 | |
| 
 | |
|   char *Args[10];
 | |
|   for (unsigned i = 0; i < args.size(); ++i)
 | |
|     Args[i] = (char*)GVTOP(args[i]);
 | |
| 
 | |
|   GenericValue GV;
 | |
|   GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4],
 | |
|                     Args[5], Args[6], Args[7], Args[8], Args[9]));
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // int scanf(const char *format, ...);
 | |
| static GenericValue lle_X_scanf(FunctionType *FT, ArrayRef<GenericValue> args) {
 | |
|   assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!");
 | |
| 
 | |
|   char *Args[10];
 | |
|   for (unsigned i = 0; i < args.size(); ++i)
 | |
|     Args[i] = (char*)GVTOP(args[i]);
 | |
| 
 | |
|   GenericValue GV;
 | |
|   GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4],
 | |
|                     Args[5], Args[6], Args[7], Args[8], Args[9]));
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| // int fprintf(FILE *, const char *, ...) - a very rough implementation to make
 | |
| // output useful.
 | |
| static GenericValue lle_X_fprintf(FunctionType *FT,
 | |
|                                   ArrayRef<GenericValue> Args) {
 | |
|   assert(Args.size() >= 2);
 | |
|   char Buffer[10000];
 | |
|   std::vector<GenericValue> NewArgs;
 | |
|   NewArgs.push_back(PTOGV(Buffer));
 | |
|   NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
 | |
|   GenericValue GV = lle_X_sprintf(FT, NewArgs);
 | |
| 
 | |
|   fputs(Buffer, (FILE *) GVTOP(Args[0]));
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| static GenericValue lle_X_memset(FunctionType *FT,
 | |
|                                  ArrayRef<GenericValue> Args) {
 | |
|   int val = (int)Args[1].IntVal.getSExtValue();
 | |
|   size_t len = (size_t)Args[2].IntVal.getZExtValue();
 | |
|   memset((void *)GVTOP(Args[0]), val, len);
 | |
|   // llvm.memset.* returns void, lle_X_* returns GenericValue,
 | |
|   // so here we return GenericValue with IntVal set to zero
 | |
|   GenericValue GV;
 | |
|   GV.IntVal = 0;
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| static GenericValue lle_X_memcpy(FunctionType *FT,
 | |
|                                  ArrayRef<GenericValue> Args) {
 | |
|   memcpy(GVTOP(Args[0]), GVTOP(Args[1]),
 | |
|          (size_t)(Args[2].IntVal.getLimitedValue()));
 | |
| 
 | |
|   // llvm.memcpy* returns void, lle_X_* returns GenericValue,
 | |
|   // so here we return GenericValue with IntVal set to zero
 | |
|   GenericValue GV;
 | |
|   GV.IntVal = 0;
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| void Interpreter::initializeExternalFunctions() {
 | |
|   sys::ScopedLock Writer(*FunctionsLock);
 | |
|   (*FuncNames)["lle_X_atexit"]       = lle_X_atexit;
 | |
|   (*FuncNames)["lle_X_exit"]         = lle_X_exit;
 | |
|   (*FuncNames)["lle_X_abort"]        = lle_X_abort;
 | |
| 
 | |
|   (*FuncNames)["lle_X_printf"]       = lle_X_printf;
 | |
|   (*FuncNames)["lle_X_sprintf"]      = lle_X_sprintf;
 | |
|   (*FuncNames)["lle_X_sscanf"]       = lle_X_sscanf;
 | |
|   (*FuncNames)["lle_X_scanf"]        = lle_X_scanf;
 | |
|   (*FuncNames)["lle_X_fprintf"]      = lle_X_fprintf;
 | |
|   (*FuncNames)["lle_X_memset"]       = lle_X_memset;
 | |
|   (*FuncNames)["lle_X_memcpy"]       = lle_X_memcpy;
 | |
| }
 |