mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	* Use StringRef instead of std::string& * Return a std::unique_ptr<Module> instead of taking an optional module to write to (was not really used). * Use current comment style. * Use current naming convention. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215989 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			719 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			719 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- LazyCallGraphTest.cpp - Unit tests for the lazy CG analysis --------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/LazyCallGraph.h"
 | |
| #include "llvm/AsmParser/Parser.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/SourceMgr.h"
 | |
| #include "gtest/gtest.h"
 | |
| #include <memory>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| std::unique_ptr<Module> parseAssembly(const char *Assembly) {
 | |
|   SMDiagnostic Error;
 | |
|   std::unique_ptr<Module> M =
 | |
|       parseAssemblyString(Assembly, Error, getGlobalContext());
 | |
| 
 | |
|   std::string ErrMsg;
 | |
|   raw_string_ostream OS(ErrMsg);
 | |
|   Error.print("", OS);
 | |
| 
 | |
|   // A failure here means that the test itself is buggy.
 | |
|   if (!M)
 | |
|     report_fatal_error(OS.str().c_str());
 | |
| 
 | |
|   return M;
 | |
| }
 | |
| 
 | |
| // IR forming a call graph with a diamond of triangle-shaped SCCs:
 | |
| //
 | |
| //         d1
 | |
| //        /  \
 | |
| //       d3--d2
 | |
| //      /     \
 | |
| //     b1     c1
 | |
| //   /  \    /  \
 | |
| //  b3--b2  c3--c2
 | |
| //       \  /
 | |
| //        a1
 | |
| //       /  \
 | |
| //      a3--a2
 | |
| //
 | |
| // All call edges go up between SCCs, and clockwise around the SCC.
 | |
| static const char DiamondOfTriangles[] =
 | |
|      "define void @a1() {\n"
 | |
|      "entry:\n"
 | |
|      "  call void @a2()\n"
 | |
|      "  call void @b2()\n"
 | |
|      "  call void @c3()\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @a2() {\n"
 | |
|      "entry:\n"
 | |
|      "  call void @a3()\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @a3() {\n"
 | |
|      "entry:\n"
 | |
|      "  call void @a1()\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @b1() {\n"
 | |
|      "entry:\n"
 | |
|      "  call void @b2()\n"
 | |
|      "  call void @d3()\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @b2() {\n"
 | |
|      "entry:\n"
 | |
|      "  call void @b3()\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @b3() {\n"
 | |
|      "entry:\n"
 | |
|      "  call void @b1()\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @c1() {\n"
 | |
|      "entry:\n"
 | |
|      "  call void @c2()\n"
 | |
|      "  call void @d2()\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @c2() {\n"
 | |
|      "entry:\n"
 | |
|      "  call void @c3()\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @c3() {\n"
 | |
|      "entry:\n"
 | |
|      "  call void @c1()\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @d1() {\n"
 | |
|      "entry:\n"
 | |
|      "  call void @d2()\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @d2() {\n"
 | |
|      "entry:\n"
 | |
|      "  call void @d3()\n"
 | |
|      "  ret void\n"
 | |
|      "}\n"
 | |
|      "define void @d3() {\n"
 | |
|      "entry:\n"
 | |
|      "  call void @d1()\n"
 | |
|      "  ret void\n"
 | |
|      "}\n";
 | |
| 
 | |
| TEST(LazyCallGraphTest, BasicGraphFormation) {
 | |
|   std::unique_ptr<Module> M = parseAssembly(DiamondOfTriangles);
 | |
|   LazyCallGraph CG(*M);
 | |
| 
 | |
|   // The order of the entry nodes should be stable w.r.t. the source order of
 | |
|   // the IR, and everything in our module is an entry node, so just directly
 | |
|   // build variables for each node.
 | |
|   auto I = CG.begin();
 | |
|   LazyCallGraph::Node &A1 = *I++;
 | |
|   EXPECT_EQ("a1", A1.getFunction().getName());
 | |
|   LazyCallGraph::Node &A2 = *I++;
 | |
|   EXPECT_EQ("a2", A2.getFunction().getName());
 | |
|   LazyCallGraph::Node &A3 = *I++;
 | |
|   EXPECT_EQ("a3", A3.getFunction().getName());
 | |
|   LazyCallGraph::Node &B1 = *I++;
 | |
|   EXPECT_EQ("b1", B1.getFunction().getName());
 | |
|   LazyCallGraph::Node &B2 = *I++;
 | |
|   EXPECT_EQ("b2", B2.getFunction().getName());
 | |
|   LazyCallGraph::Node &B3 = *I++;
 | |
|   EXPECT_EQ("b3", B3.getFunction().getName());
 | |
|   LazyCallGraph::Node &C1 = *I++;
 | |
|   EXPECT_EQ("c1", C1.getFunction().getName());
 | |
|   LazyCallGraph::Node &C2 = *I++;
 | |
|   EXPECT_EQ("c2", C2.getFunction().getName());
 | |
|   LazyCallGraph::Node &C3 = *I++;
 | |
|   EXPECT_EQ("c3", C3.getFunction().getName());
 | |
|   LazyCallGraph::Node &D1 = *I++;
 | |
|   EXPECT_EQ("d1", D1.getFunction().getName());
 | |
|   LazyCallGraph::Node &D2 = *I++;
 | |
|   EXPECT_EQ("d2", D2.getFunction().getName());
 | |
|   LazyCallGraph::Node &D3 = *I++;
 | |
|   EXPECT_EQ("d3", D3.getFunction().getName());
 | |
|   EXPECT_EQ(CG.end(), I);
 | |
| 
 | |
|   // Build vectors and sort them for the rest of the assertions to make them
 | |
|   // independent of order.
 | |
|   std::vector<std::string> Nodes;
 | |
| 
 | |
|   for (LazyCallGraph::Node &N : A1)
 | |
|     Nodes.push_back(N.getFunction().getName());
 | |
|   std::sort(Nodes.begin(), Nodes.end());
 | |
|   EXPECT_EQ("a2", Nodes[0]);
 | |
|   EXPECT_EQ("b2", Nodes[1]);
 | |
|   EXPECT_EQ("c3", Nodes[2]);
 | |
|   Nodes.clear();
 | |
| 
 | |
|   EXPECT_EQ(A2.end(), std::next(A2.begin()));
 | |
|   EXPECT_EQ("a3", A2.begin()->getFunction().getName());
 | |
|   EXPECT_EQ(A3.end(), std::next(A3.begin()));
 | |
|   EXPECT_EQ("a1", A3.begin()->getFunction().getName());
 | |
| 
 | |
|   for (LazyCallGraph::Node &N : B1)
 | |
|     Nodes.push_back(N.getFunction().getName());
 | |
|   std::sort(Nodes.begin(), Nodes.end());
 | |
|   EXPECT_EQ("b2", Nodes[0]);
 | |
|   EXPECT_EQ("d3", Nodes[1]);
 | |
|   Nodes.clear();
 | |
| 
 | |
|   EXPECT_EQ(B2.end(), std::next(B2.begin()));
 | |
|   EXPECT_EQ("b3", B2.begin()->getFunction().getName());
 | |
|   EXPECT_EQ(B3.end(), std::next(B3.begin()));
 | |
|   EXPECT_EQ("b1", B3.begin()->getFunction().getName());
 | |
| 
 | |
|   for (LazyCallGraph::Node &N : C1)
 | |
|     Nodes.push_back(N.getFunction().getName());
 | |
|   std::sort(Nodes.begin(), Nodes.end());
 | |
|   EXPECT_EQ("c2", Nodes[0]);
 | |
|   EXPECT_EQ("d2", Nodes[1]);
 | |
|   Nodes.clear();
 | |
| 
 | |
|   EXPECT_EQ(C2.end(), std::next(C2.begin()));
 | |
|   EXPECT_EQ("c3", C2.begin()->getFunction().getName());
 | |
|   EXPECT_EQ(C3.end(), std::next(C3.begin()));
 | |
|   EXPECT_EQ("c1", C3.begin()->getFunction().getName());
 | |
| 
 | |
|   EXPECT_EQ(D1.end(), std::next(D1.begin()));
 | |
|   EXPECT_EQ("d2", D1.begin()->getFunction().getName());
 | |
|   EXPECT_EQ(D2.end(), std::next(D2.begin()));
 | |
|   EXPECT_EQ("d3", D2.begin()->getFunction().getName());
 | |
|   EXPECT_EQ(D3.end(), std::next(D3.begin()));
 | |
|   EXPECT_EQ("d1", D3.begin()->getFunction().getName());
 | |
| 
 | |
|   // Now lets look at the SCCs.
 | |
|   auto SCCI = CG.postorder_scc_begin();
 | |
| 
 | |
|   LazyCallGraph::SCC &D = *SCCI++;
 | |
|   for (LazyCallGraph::Node *N : D)
 | |
|     Nodes.push_back(N->getFunction().getName());
 | |
|   std::sort(Nodes.begin(), Nodes.end());
 | |
|   EXPECT_EQ(3u, Nodes.size());
 | |
|   EXPECT_EQ("d1", Nodes[0]);
 | |
|   EXPECT_EQ("d2", Nodes[1]);
 | |
|   EXPECT_EQ("d3", Nodes[2]);
 | |
|   Nodes.clear();
 | |
|   EXPECT_FALSE(D.isParentOf(D));
 | |
|   EXPECT_FALSE(D.isChildOf(D));
 | |
|   EXPECT_FALSE(D.isAncestorOf(D));
 | |
|   EXPECT_FALSE(D.isDescendantOf(D));
 | |
| 
 | |
|   LazyCallGraph::SCC &C = *SCCI++;
 | |
|   for (LazyCallGraph::Node *N : C)
 | |
|     Nodes.push_back(N->getFunction().getName());
 | |
|   std::sort(Nodes.begin(), Nodes.end());
 | |
|   EXPECT_EQ(3u, Nodes.size());
 | |
|   EXPECT_EQ("c1", Nodes[0]);
 | |
|   EXPECT_EQ("c2", Nodes[1]);
 | |
|   EXPECT_EQ("c3", Nodes[2]);
 | |
|   Nodes.clear();
 | |
|   EXPECT_TRUE(C.isParentOf(D));
 | |
|   EXPECT_FALSE(C.isChildOf(D));
 | |
|   EXPECT_TRUE(C.isAncestorOf(D));
 | |
|   EXPECT_FALSE(C.isDescendantOf(D));
 | |
| 
 | |
|   LazyCallGraph::SCC &B = *SCCI++;
 | |
|   for (LazyCallGraph::Node *N : B)
 | |
|     Nodes.push_back(N->getFunction().getName());
 | |
|   std::sort(Nodes.begin(), Nodes.end());
 | |
|   EXPECT_EQ(3u, Nodes.size());
 | |
|   EXPECT_EQ("b1", Nodes[0]);
 | |
|   EXPECT_EQ("b2", Nodes[1]);
 | |
|   EXPECT_EQ("b3", Nodes[2]);
 | |
|   Nodes.clear();
 | |
|   EXPECT_TRUE(B.isParentOf(D));
 | |
|   EXPECT_FALSE(B.isChildOf(D));
 | |
|   EXPECT_TRUE(B.isAncestorOf(D));
 | |
|   EXPECT_FALSE(B.isDescendantOf(D));
 | |
|   EXPECT_FALSE(B.isAncestorOf(C));
 | |
|   EXPECT_FALSE(C.isAncestorOf(B));
 | |
| 
 | |
|   LazyCallGraph::SCC &A = *SCCI++;
 | |
|   for (LazyCallGraph::Node *N : A)
 | |
|     Nodes.push_back(N->getFunction().getName());
 | |
|   std::sort(Nodes.begin(), Nodes.end());
 | |
|   EXPECT_EQ(3u, Nodes.size());
 | |
|   EXPECT_EQ("a1", Nodes[0]);
 | |
|   EXPECT_EQ("a2", Nodes[1]);
 | |
|   EXPECT_EQ("a3", Nodes[2]);
 | |
|   Nodes.clear();
 | |
|   EXPECT_TRUE(A.isParentOf(B));
 | |
|   EXPECT_TRUE(A.isParentOf(C));
 | |
|   EXPECT_FALSE(A.isParentOf(D));
 | |
|   EXPECT_TRUE(A.isAncestorOf(B));
 | |
|   EXPECT_TRUE(A.isAncestorOf(C));
 | |
|   EXPECT_TRUE(A.isAncestorOf(D));
 | |
| 
 | |
|   EXPECT_EQ(CG.postorder_scc_end(), SCCI);
 | |
| }
 | |
| 
 | |
| static Function &lookupFunction(Module &M, StringRef Name) {
 | |
|   for (Function &F : M)
 | |
|     if (F.getName() == Name)
 | |
|       return F;
 | |
|   report_fatal_error("Couldn't find function!");
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, BasicGraphMutation) {
 | |
|   std::unique_ptr<Module> M = parseAssembly(
 | |
|       "define void @a() {\n"
 | |
|       "entry:\n"
 | |
|       "  call void @b()\n"
 | |
|       "  call void @c()\n"
 | |
|       "  ret void\n"
 | |
|       "}\n"
 | |
|       "define void @b() {\n"
 | |
|       "entry:\n"
 | |
|       "  ret void\n"
 | |
|       "}\n"
 | |
|       "define void @c() {\n"
 | |
|       "entry:\n"
 | |
|       "  ret void\n"
 | |
|       "}\n");
 | |
|   LazyCallGraph CG(*M);
 | |
| 
 | |
|   LazyCallGraph::Node &A = CG.get(lookupFunction(*M, "a"));
 | |
|   LazyCallGraph::Node &B = CG.get(lookupFunction(*M, "b"));
 | |
|   EXPECT_EQ(2, std::distance(A.begin(), A.end()));
 | |
|   EXPECT_EQ(0, std::distance(B.begin(), B.end()));
 | |
| 
 | |
|   CG.insertEdge(B, lookupFunction(*M, "c"));
 | |
|   EXPECT_EQ(1, std::distance(B.begin(), B.end()));
 | |
|   LazyCallGraph::Node &C = *B.begin();
 | |
|   EXPECT_EQ(0, std::distance(C.begin(), C.end()));
 | |
| 
 | |
|   CG.insertEdge(C, B.getFunction());
 | |
|   EXPECT_EQ(1, std::distance(C.begin(), C.end()));
 | |
|   EXPECT_EQ(&B, &*C.begin());
 | |
| 
 | |
|   CG.insertEdge(C, C.getFunction());
 | |
|   EXPECT_EQ(2, std::distance(C.begin(), C.end()));
 | |
|   EXPECT_EQ(&B, &*C.begin());
 | |
|   EXPECT_EQ(&C, &*std::next(C.begin()));
 | |
| 
 | |
|   CG.removeEdge(C, B.getFunction());
 | |
|   EXPECT_EQ(1, std::distance(C.begin(), C.end()));
 | |
|   EXPECT_EQ(&C, &*C.begin());
 | |
| 
 | |
|   CG.removeEdge(C, C.getFunction());
 | |
|   EXPECT_EQ(0, std::distance(C.begin(), C.end()));
 | |
| 
 | |
|   CG.removeEdge(B, C.getFunction());
 | |
|   EXPECT_EQ(0, std::distance(B.begin(), B.end()));
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, MultiArmSCC) {
 | |
|   // Two interlocking cycles. The really useful thing about this SCC is that it
 | |
|   // will require Tarjan's DFS to backtrack and finish processing all of the
 | |
|   // children of each node in the SCC.
 | |
|   std::unique_ptr<Module> M = parseAssembly(
 | |
|       "define void @a() {\n"
 | |
|       "entry:\n"
 | |
|       "  call void @b()\n"
 | |
|       "  call void @d()\n"
 | |
|       "  ret void\n"
 | |
|       "}\n"
 | |
|       "define void @b() {\n"
 | |
|       "entry:\n"
 | |
|       "  call void @c()\n"
 | |
|       "  ret void\n"
 | |
|       "}\n"
 | |
|       "define void @c() {\n"
 | |
|       "entry:\n"
 | |
|       "  call void @a()\n"
 | |
|       "  ret void\n"
 | |
|       "}\n"
 | |
|       "define void @d() {\n"
 | |
|       "entry:\n"
 | |
|       "  call void @e()\n"
 | |
|       "  ret void\n"
 | |
|       "}\n"
 | |
|       "define void @e() {\n"
 | |
|       "entry:\n"
 | |
|       "  call void @a()\n"
 | |
|       "  ret void\n"
 | |
|       "}\n");
 | |
|   LazyCallGraph CG(*M);
 | |
| 
 | |
|   // Force the graph to be fully expanded.
 | |
|   auto SCCI = CG.postorder_scc_begin();
 | |
|   LazyCallGraph::SCC &SCC = *SCCI++;
 | |
|   EXPECT_EQ(CG.postorder_scc_end(), SCCI);
 | |
| 
 | |
|   LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a"));
 | |
|   LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b"));
 | |
|   LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c"));
 | |
|   LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d"));
 | |
|   LazyCallGraph::Node &E = *CG.lookup(lookupFunction(*M, "e"));
 | |
|   EXPECT_EQ(&SCC, CG.lookupSCC(A));
 | |
|   EXPECT_EQ(&SCC, CG.lookupSCC(B));
 | |
|   EXPECT_EQ(&SCC, CG.lookupSCC(C));
 | |
|   EXPECT_EQ(&SCC, CG.lookupSCC(D));
 | |
|   EXPECT_EQ(&SCC, CG.lookupSCC(E));
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, OutgoingSCCEdgeInsertion) {
 | |
|   std::unique_ptr<Module> M = parseAssembly(
 | |
|       "define void @a() {\n"
 | |
|       "entry:\n"
 | |
|       "  call void @b()\n"
 | |
|       "  call void @c()\n"
 | |
|       "  ret void\n"
 | |
|       "}\n"
 | |
|       "define void @b() {\n"
 | |
|       "entry:\n"
 | |
|       "  call void @d()\n"
 | |
|       "  ret void\n"
 | |
|       "}\n"
 | |
|       "define void @c() {\n"
 | |
|       "entry:\n"
 | |
|       "  call void @d()\n"
 | |
|       "  ret void\n"
 | |
|       "}\n"
 | |
|       "define void @d() {\n"
 | |
|       "entry:\n"
 | |
|       "  ret void\n"
 | |
|       "}\n");
 | |
|   LazyCallGraph CG(*M);
 | |
| 
 | |
|   // Force the graph to be fully expanded.
 | |
|   for (LazyCallGraph::SCC &C : CG.postorder_sccs())
 | |
|     (void)C;
 | |
| 
 | |
|   LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a"));
 | |
|   LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b"));
 | |
|   LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c"));
 | |
|   LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d"));
 | |
|   LazyCallGraph::SCC &AC = *CG.lookupSCC(A);
 | |
|   LazyCallGraph::SCC &BC = *CG.lookupSCC(B);
 | |
|   LazyCallGraph::SCC &CC = *CG.lookupSCC(C);
 | |
|   LazyCallGraph::SCC &DC = *CG.lookupSCC(D);
 | |
|   EXPECT_TRUE(AC.isAncestorOf(BC));
 | |
|   EXPECT_TRUE(AC.isAncestorOf(CC));
 | |
|   EXPECT_TRUE(AC.isAncestorOf(DC));
 | |
|   EXPECT_TRUE(DC.isDescendantOf(AC));
 | |
|   EXPECT_TRUE(DC.isDescendantOf(BC));
 | |
|   EXPECT_TRUE(DC.isDescendantOf(CC));
 | |
| 
 | |
|   EXPECT_EQ(2, std::distance(A.begin(), A.end()));
 | |
|   AC.insertOutgoingEdge(A, D);
 | |
|   EXPECT_EQ(3, std::distance(A.begin(), A.end()));
 | |
|   EXPECT_TRUE(AC.isParentOf(DC));
 | |
|   EXPECT_EQ(&AC, CG.lookupSCC(A));
 | |
|   EXPECT_EQ(&BC, CG.lookupSCC(B));
 | |
|   EXPECT_EQ(&CC, CG.lookupSCC(C));
 | |
|   EXPECT_EQ(&DC, CG.lookupSCC(D));
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, IncomingSCCEdgeInsertion) {
 | |
|   // We want to ensure we can add edges even across complex diamond graphs, so
 | |
|   // we use the diamond of triangles graph defined above. The ascii diagram is
 | |
|   // repeated here for easy reference.
 | |
|   //
 | |
|   //         d1       |
 | |
|   //        /  \      |
 | |
|   //       d3--d2     |
 | |
|   //      /     \     |
 | |
|   //     b1     c1    |
 | |
|   //   /  \    /  \   |
 | |
|   //  b3--b2  c3--c2  |
 | |
|   //       \  /       |
 | |
|   //        a1        |
 | |
|   //       /  \       |
 | |
|   //      a3--a2      |
 | |
|   //
 | |
|   std::unique_ptr<Module> M = parseAssembly(DiamondOfTriangles);
 | |
|   LazyCallGraph CG(*M);
 | |
| 
 | |
|   // Force the graph to be fully expanded.
 | |
|   for (LazyCallGraph::SCC &C : CG.postorder_sccs())
 | |
|     (void)C;
 | |
| 
 | |
|   LazyCallGraph::Node &A1 = *CG.lookup(lookupFunction(*M, "a1"));
 | |
|   LazyCallGraph::Node &A2 = *CG.lookup(lookupFunction(*M, "a2"));
 | |
|   LazyCallGraph::Node &A3 = *CG.lookup(lookupFunction(*M, "a3"));
 | |
|   LazyCallGraph::Node &B1 = *CG.lookup(lookupFunction(*M, "b1"));
 | |
|   LazyCallGraph::Node &B2 = *CG.lookup(lookupFunction(*M, "b2"));
 | |
|   LazyCallGraph::Node &B3 = *CG.lookup(lookupFunction(*M, "b3"));
 | |
|   LazyCallGraph::Node &C1 = *CG.lookup(lookupFunction(*M, "c1"));
 | |
|   LazyCallGraph::Node &C2 = *CG.lookup(lookupFunction(*M, "c2"));
 | |
|   LazyCallGraph::Node &C3 = *CG.lookup(lookupFunction(*M, "c3"));
 | |
|   LazyCallGraph::Node &D1 = *CG.lookup(lookupFunction(*M, "d1"));
 | |
|   LazyCallGraph::Node &D2 = *CG.lookup(lookupFunction(*M, "d2"));
 | |
|   LazyCallGraph::Node &D3 = *CG.lookup(lookupFunction(*M, "d3"));
 | |
|   LazyCallGraph::SCC &AC = *CG.lookupSCC(A1);
 | |
|   LazyCallGraph::SCC &BC = *CG.lookupSCC(B1);
 | |
|   LazyCallGraph::SCC &CC = *CG.lookupSCC(C1);
 | |
|   LazyCallGraph::SCC &DC = *CG.lookupSCC(D1);
 | |
|   ASSERT_EQ(&AC, CG.lookupSCC(A2));
 | |
|   ASSERT_EQ(&AC, CG.lookupSCC(A3));
 | |
|   ASSERT_EQ(&BC, CG.lookupSCC(B2));
 | |
|   ASSERT_EQ(&BC, CG.lookupSCC(B3));
 | |
|   ASSERT_EQ(&CC, CG.lookupSCC(C2));
 | |
|   ASSERT_EQ(&CC, CG.lookupSCC(C3));
 | |
|   ASSERT_EQ(&DC, CG.lookupSCC(D2));
 | |
|   ASSERT_EQ(&DC, CG.lookupSCC(D3));
 | |
|   ASSERT_EQ(1, std::distance(D2.begin(), D2.end()));
 | |
| 
 | |
|   // Add an edge to make the graph:
 | |
|   //
 | |
|   //         d1         |
 | |
|   //        /  \        |
 | |
|   //       d3--d2---.   |
 | |
|   //      /     \    |  |
 | |
|   //     b1     c1   |  |
 | |
|   //   /  \    /  \ /   |
 | |
|   //  b3--b2  c3--c2    |
 | |
|   //       \  /         |
 | |
|   //        a1          |
 | |
|   //       /  \         |
 | |
|   //      a3--a2        |
 | |
|   CC.insertIncomingEdge(D2, C2);
 | |
|   // Make sure we connected the nodes.
 | |
|   EXPECT_EQ(2, std::distance(D2.begin(), D2.end()));
 | |
| 
 | |
|   // Make sure we have the correct nodes in the SCC sets.
 | |
|   EXPECT_EQ(&AC, CG.lookupSCC(A1));
 | |
|   EXPECT_EQ(&AC, CG.lookupSCC(A2));
 | |
|   EXPECT_EQ(&AC, CG.lookupSCC(A3));
 | |
|   EXPECT_EQ(&BC, CG.lookupSCC(B1));
 | |
|   EXPECT_EQ(&BC, CG.lookupSCC(B2));
 | |
|   EXPECT_EQ(&BC, CG.lookupSCC(B3));
 | |
|   EXPECT_EQ(&CC, CG.lookupSCC(C1));
 | |
|   EXPECT_EQ(&CC, CG.lookupSCC(C2));
 | |
|   EXPECT_EQ(&CC, CG.lookupSCC(C3));
 | |
|   EXPECT_EQ(&CC, CG.lookupSCC(D1));
 | |
|   EXPECT_EQ(&CC, CG.lookupSCC(D2));
 | |
|   EXPECT_EQ(&CC, CG.lookupSCC(D3));
 | |
| 
 | |
|   // And that ancestry tests have been updated.
 | |
|   EXPECT_TRUE(AC.isParentOf(BC));
 | |
|   EXPECT_TRUE(AC.isParentOf(CC));
 | |
|   EXPECT_FALSE(AC.isAncestorOf(DC));
 | |
|   EXPECT_FALSE(BC.isAncestorOf(DC));
 | |
|   EXPECT_FALSE(CC.isAncestorOf(DC));
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, IncomingSCCEdgeInsertionMidTraversal) {
 | |
|   // This is the same fundamental test as the previous, but we perform it
 | |
|   // having only partially walked the SCCs of the graph.
 | |
|   std::unique_ptr<Module> M = parseAssembly(DiamondOfTriangles);
 | |
|   LazyCallGraph CG(*M);
 | |
| 
 | |
|   // Walk the SCCs until we find the one containing 'c1'.
 | |
|   auto SCCI = CG.postorder_scc_begin(), SCCE = CG.postorder_scc_end();
 | |
|   ASSERT_NE(SCCI, SCCE);
 | |
|   LazyCallGraph::SCC &DC = *SCCI;
 | |
|   ASSERT_NE(&DC, nullptr);
 | |
|   ++SCCI;
 | |
|   ASSERT_NE(SCCI, SCCE);
 | |
|   LazyCallGraph::SCC &CC = *SCCI;
 | |
|   ASSERT_NE(&CC, nullptr);
 | |
| 
 | |
|   ASSERT_EQ(nullptr, CG.lookup(lookupFunction(*M, "a1")));
 | |
|   ASSERT_EQ(nullptr, CG.lookup(lookupFunction(*M, "a2")));
 | |
|   ASSERT_EQ(nullptr, CG.lookup(lookupFunction(*M, "a3")));
 | |
|   ASSERT_EQ(nullptr, CG.lookup(lookupFunction(*M, "b1")));
 | |
|   ASSERT_EQ(nullptr, CG.lookup(lookupFunction(*M, "b2")));
 | |
|   ASSERT_EQ(nullptr, CG.lookup(lookupFunction(*M, "b3")));
 | |
|   LazyCallGraph::Node &C1 = *CG.lookup(lookupFunction(*M, "c1"));
 | |
|   LazyCallGraph::Node &C2 = *CG.lookup(lookupFunction(*M, "c2"));
 | |
|   LazyCallGraph::Node &C3 = *CG.lookup(lookupFunction(*M, "c3"));
 | |
|   LazyCallGraph::Node &D1 = *CG.lookup(lookupFunction(*M, "d1"));
 | |
|   LazyCallGraph::Node &D2 = *CG.lookup(lookupFunction(*M, "d2"));
 | |
|   LazyCallGraph::Node &D3 = *CG.lookup(lookupFunction(*M, "d3"));
 | |
|   ASSERT_EQ(&CC, CG.lookupSCC(C1));
 | |
|   ASSERT_EQ(&CC, CG.lookupSCC(C2));
 | |
|   ASSERT_EQ(&CC, CG.lookupSCC(C3));
 | |
|   ASSERT_EQ(&DC, CG.lookupSCC(D1));
 | |
|   ASSERT_EQ(&DC, CG.lookupSCC(D2));
 | |
|   ASSERT_EQ(&DC, CG.lookupSCC(D3));
 | |
|   ASSERT_EQ(1, std::distance(D2.begin(), D2.end()));
 | |
| 
 | |
|   CC.insertIncomingEdge(D2, C2);
 | |
|   EXPECT_EQ(2, std::distance(D2.begin(), D2.end()));
 | |
| 
 | |
|   // Make sure we have the correct nodes in the SCC sets.
 | |
|   EXPECT_EQ(&CC, CG.lookupSCC(C1));
 | |
|   EXPECT_EQ(&CC, CG.lookupSCC(C2));
 | |
|   EXPECT_EQ(&CC, CG.lookupSCC(C3));
 | |
|   EXPECT_EQ(&CC, CG.lookupSCC(D1));
 | |
|   EXPECT_EQ(&CC, CG.lookupSCC(D2));
 | |
|   EXPECT_EQ(&CC, CG.lookupSCC(D3));
 | |
| 
 | |
|   // Check that we can form the last two SCCs now in a coherent way.
 | |
|   ++SCCI;
 | |
|   EXPECT_NE(SCCI, SCCE);
 | |
|   LazyCallGraph::SCC &BC = *SCCI;
 | |
|   EXPECT_NE(&BC, nullptr);
 | |
|   EXPECT_EQ(&BC, CG.lookupSCC(*CG.lookup(lookupFunction(*M, "b1"))));
 | |
|   EXPECT_EQ(&BC, CG.lookupSCC(*CG.lookup(lookupFunction(*M, "b2"))));
 | |
|   EXPECT_EQ(&BC, CG.lookupSCC(*CG.lookup(lookupFunction(*M, "b3"))));
 | |
|   ++SCCI;
 | |
|   EXPECT_NE(SCCI, SCCE);
 | |
|   LazyCallGraph::SCC &AC = *SCCI;
 | |
|   EXPECT_NE(&AC, nullptr);
 | |
|   EXPECT_EQ(&AC, CG.lookupSCC(*CG.lookup(lookupFunction(*M, "a1"))));
 | |
|   EXPECT_EQ(&AC, CG.lookupSCC(*CG.lookup(lookupFunction(*M, "a2"))));
 | |
|   EXPECT_EQ(&AC, CG.lookupSCC(*CG.lookup(lookupFunction(*M, "a3"))));
 | |
|   ++SCCI;
 | |
|   EXPECT_EQ(SCCI, SCCE);
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, InterSCCEdgeRemoval) {
 | |
|   std::unique_ptr<Module> M = parseAssembly(
 | |
|       "define void @a() {\n"
 | |
|       "entry:\n"
 | |
|       "  call void @b()\n"
 | |
|       "  ret void\n"
 | |
|       "}\n"
 | |
|       "define void @b() {\n"
 | |
|       "entry:\n"
 | |
|       "  ret void\n"
 | |
|       "}\n");
 | |
|   LazyCallGraph CG(*M);
 | |
| 
 | |
|   // Force the graph to be fully expanded.
 | |
|   for (LazyCallGraph::SCC &C : CG.postorder_sccs())
 | |
|     (void)C;
 | |
| 
 | |
|   LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a"));
 | |
|   LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b"));
 | |
|   LazyCallGraph::SCC &AC = *CG.lookupSCC(A);
 | |
|   LazyCallGraph::SCC &BC = *CG.lookupSCC(B);
 | |
| 
 | |
|   EXPECT_EQ("b", A.begin()->getFunction().getName());
 | |
|   EXPECT_EQ(B.end(), B.begin());
 | |
|   EXPECT_EQ(&AC, &*BC.parent_begin());
 | |
| 
 | |
|   AC.removeInterSCCEdge(A, B);
 | |
| 
 | |
|   EXPECT_EQ(A.end(), A.begin());
 | |
|   EXPECT_EQ(B.end(), B.begin());
 | |
|   EXPECT_EQ(BC.parent_end(), BC.parent_begin());
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, IntraSCCEdgeInsertion) {
 | |
|   std::unique_ptr<Module> M1 = parseAssembly(
 | |
|       "define void @a() {\n"
 | |
|       "entry:\n"
 | |
|       "  call void @b()\n"
 | |
|       "  ret void\n"
 | |
|       "}\n"
 | |
|       "define void @b() {\n"
 | |
|       "entry:\n"
 | |
|       "  call void @c()\n"
 | |
|       "  ret void\n"
 | |
|       "}\n"
 | |
|       "define void @c() {\n"
 | |
|       "entry:\n"
 | |
|       "  call void @a()\n"
 | |
|       "  ret void\n"
 | |
|       "}\n");
 | |
|   LazyCallGraph CG1(*M1);
 | |
| 
 | |
|   // Force the graph to be fully expanded.
 | |
|   auto SCCI = CG1.postorder_scc_begin();
 | |
|   LazyCallGraph::SCC &SCC = *SCCI++;
 | |
|   EXPECT_EQ(CG1.postorder_scc_end(), SCCI);
 | |
| 
 | |
|   LazyCallGraph::Node &A = *CG1.lookup(lookupFunction(*M1, "a"));
 | |
|   LazyCallGraph::Node &B = *CG1.lookup(lookupFunction(*M1, "b"));
 | |
|   LazyCallGraph::Node &C = *CG1.lookup(lookupFunction(*M1, "c"));
 | |
|   EXPECT_EQ(&SCC, CG1.lookupSCC(A));
 | |
|   EXPECT_EQ(&SCC, CG1.lookupSCC(B));
 | |
|   EXPECT_EQ(&SCC, CG1.lookupSCC(C));
 | |
| 
 | |
|   // Insert an edge from 'a' to 'c'. Nothing changes about the SCCs.
 | |
|   SCC.insertIntraSCCEdge(A, C);
 | |
|   EXPECT_EQ(2, std::distance(A.begin(), A.end()));
 | |
|   EXPECT_EQ(&SCC, CG1.lookupSCC(A));
 | |
|   EXPECT_EQ(&SCC, CG1.lookupSCC(B));
 | |
|   EXPECT_EQ(&SCC, CG1.lookupSCC(C));
 | |
| 
 | |
|   // Insert a self edge from 'a' back to 'a'.
 | |
|   SCC.insertIntraSCCEdge(A, A);
 | |
|   EXPECT_EQ(3, std::distance(A.begin(), A.end()));
 | |
|   EXPECT_EQ(&SCC, CG1.lookupSCC(A));
 | |
|   EXPECT_EQ(&SCC, CG1.lookupSCC(B));
 | |
|   EXPECT_EQ(&SCC, CG1.lookupSCC(C));
 | |
| }
 | |
| 
 | |
| TEST(LazyCallGraphTest, IntraSCCEdgeRemoval) {
 | |
|   // A nice fully connected (including self-edges) SCC.
 | |
|   std::unique_ptr<Module> M1 = parseAssembly(
 | |
|       "define void @a() {\n"
 | |
|       "entry:\n"
 | |
|       "  call void @a()\n"
 | |
|       "  call void @b()\n"
 | |
|       "  call void @c()\n"
 | |
|       "  ret void\n"
 | |
|       "}\n"
 | |
|       "define void @b() {\n"
 | |
|       "entry:\n"
 | |
|       "  call void @a()\n"
 | |
|       "  call void @b()\n"
 | |
|       "  call void @c()\n"
 | |
|       "  ret void\n"
 | |
|       "}\n"
 | |
|       "define void @c() {\n"
 | |
|       "entry:\n"
 | |
|       "  call void @a()\n"
 | |
|       "  call void @b()\n"
 | |
|       "  call void @c()\n"
 | |
|       "  ret void\n"
 | |
|       "}\n");
 | |
|   LazyCallGraph CG1(*M1);
 | |
| 
 | |
|   // Force the graph to be fully expanded.
 | |
|   auto SCCI = CG1.postorder_scc_begin();
 | |
|   LazyCallGraph::SCC &SCC = *SCCI++;
 | |
|   EXPECT_EQ(CG1.postorder_scc_end(), SCCI);
 | |
| 
 | |
|   LazyCallGraph::Node &A = *CG1.lookup(lookupFunction(*M1, "a"));
 | |
|   LazyCallGraph::Node &B = *CG1.lookup(lookupFunction(*M1, "b"));
 | |
|   LazyCallGraph::Node &C = *CG1.lookup(lookupFunction(*M1, "c"));
 | |
|   EXPECT_EQ(&SCC, CG1.lookupSCC(A));
 | |
|   EXPECT_EQ(&SCC, CG1.lookupSCC(B));
 | |
|   EXPECT_EQ(&SCC, CG1.lookupSCC(C));
 | |
| 
 | |
|   // Remove the edge from b -> a, which should leave the 3 functions still in
 | |
|   // a single connected component because of a -> b -> c -> a.
 | |
|   SmallVector<LazyCallGraph::SCC *, 1> NewSCCs = SCC.removeIntraSCCEdge(B, A);
 | |
|   EXPECT_EQ(0u, NewSCCs.size());
 | |
|   EXPECT_EQ(&SCC, CG1.lookupSCC(A));
 | |
|   EXPECT_EQ(&SCC, CG1.lookupSCC(B));
 | |
|   EXPECT_EQ(&SCC, CG1.lookupSCC(C));
 | |
| 
 | |
|   // Remove the edge from c -> a, which should leave 'a' in the original SCC
 | |
|   // and form a new SCC for 'b' and 'c'.
 | |
|   NewSCCs = SCC.removeIntraSCCEdge(C, A);
 | |
|   EXPECT_EQ(1u, NewSCCs.size());
 | |
|   EXPECT_EQ(&SCC, CG1.lookupSCC(A));
 | |
|   EXPECT_EQ(1, std::distance(SCC.begin(), SCC.end()));
 | |
|   LazyCallGraph::SCC *SCC2 = CG1.lookupSCC(B);
 | |
|   EXPECT_EQ(SCC2, CG1.lookupSCC(C));
 | |
|   EXPECT_EQ(SCC2, NewSCCs[0]);
 | |
| }
 | |
| 
 | |
| }
 |