llvm-6502/lib/MC/MCModuleYAML.cpp
Rafael Espindola 4e2b922131 Remove 'using std::errro_code' from lib.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210871 91177308-0d34-0410-b5e6-96231b3b80d8
2014-06-13 02:24:39 +00:00

465 lines
15 KiB
C++

//===- MCModuleYAML.cpp - MCModule YAMLIO implementation ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines classes for handling the YAML representation of MCModule.
//
//===----------------------------------------------------------------------===//
#include "llvm/MC/MCModuleYAML.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/MC/MCAtom.h"
#include "llvm/MC/MCFunction.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Object/YAML.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/YAMLTraits.h"
#include <vector>
namespace llvm {
namespace {
// This class is used to map opcode and register names to enum values.
//
// There are at least 3 obvious ways to do this:
// 1- Generate an MII/MRI method using a tablegen StringMatcher
// 2- Write an MII/MRI method using std::lower_bound and the assumption that
// the enums are sorted (starting at a fixed value).
// 3- Do the matching manually as is done here.
//
// Why 3?
// 1- A StringMatcher function for thousands of entries would incur
// a non-negligible binary size overhead.
// 2- The lower_bound comparators would be somewhat involved and aren't
// obviously reusable (see LessRecordRegister in llvm/TableGen/Record.h)
// 3- This isn't actually something useful outside tests (but the same argument
// can be made against having {MII,MRI}::getName).
//
// If this becomes useful outside this specific situation, feel free to do
// the Right Thing (tm) and move the functionality to MII/MRI.
//
class InstrRegInfoHolder {
typedef StringMap<unsigned, BumpPtrAllocator> EnumValByNameTy;
EnumValByNameTy InstEnumValueByName;
EnumValByNameTy RegEnumValueByName;
public:
const MCInstrInfo &MII;
const MCRegisterInfo &MRI;
InstrRegInfoHolder(const MCInstrInfo &MII, const MCRegisterInfo &MRI)
: InstEnumValueByName(NextPowerOf2(MII.getNumOpcodes())),
RegEnumValueByName(NextPowerOf2(MRI.getNumRegs())), MII(MII), MRI(MRI) {
for (int i = 0, e = MII.getNumOpcodes(); i != e; ++i)
InstEnumValueByName[MII.getName(i)] = i;
for (int i = 0, e = MRI.getNumRegs(); i != e; ++i)
RegEnumValueByName[MRI.getName(i)] = i;
}
bool matchRegister(StringRef Name, unsigned &Reg) {
EnumValByNameTy::const_iterator It = RegEnumValueByName.find(Name);
if (It == RegEnumValueByName.end())
return false;
Reg = It->getValue();
return true;
}
bool matchOpcode(StringRef Name, unsigned &Opc) {
EnumValByNameTy::const_iterator It = InstEnumValueByName.find(Name);
if (It == InstEnumValueByName.end())
return false;
Opc = It->getValue();
return true;
}
};
} // end unnamed namespace
namespace MCModuleYAML {
LLVM_YAML_STRONG_TYPEDEF(unsigned, OpcodeEnum)
struct Operand {
MCOperand MCOp;
};
struct Inst {
OpcodeEnum Opcode;
std::vector<Operand> Operands;
uint64_t Size;
};
struct Atom {
MCAtom::AtomKind Type;
yaml::Hex64 StartAddress;
uint64_t Size;
std::vector<Inst> Insts;
object::yaml::BinaryRef Data;
};
struct BasicBlock {
yaml::Hex64 Address;
std::vector<yaml::Hex64> Preds;
std::vector<yaml::Hex64> Succs;
};
struct Function {
StringRef Name;
std::vector<BasicBlock> BasicBlocks;
};
struct Module {
std::vector<Atom> Atoms;
std::vector<Function> Functions;
};
} // end namespace MCModuleYAML
} // end namespace llvm
LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(llvm::yaml::Hex64)
LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(llvm::MCModuleYAML::Operand)
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::MCModuleYAML::Inst)
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::MCModuleYAML::Atom)
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::MCModuleYAML::BasicBlock)
LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::MCModuleYAML::Function)
namespace llvm {
namespace yaml {
template <> struct ScalarEnumerationTraits<MCAtom::AtomKind> {
static void enumeration(IO &IO, MCAtom::AtomKind &Kind);
};
template <> struct MappingTraits<MCModuleYAML::Atom> {
static void mapping(IO &IO, MCModuleYAML::Atom &A);
};
template <> struct MappingTraits<MCModuleYAML::Inst> {
static void mapping(IO &IO, MCModuleYAML::Inst &I);
};
template <> struct MappingTraits<MCModuleYAML::BasicBlock> {
static void mapping(IO &IO, MCModuleYAML::BasicBlock &BB);
};
template <> struct MappingTraits<MCModuleYAML::Function> {
static void mapping(IO &IO, MCModuleYAML::Function &Fn);
};
template <> struct MappingTraits<MCModuleYAML::Module> {
static void mapping(IO &IO, MCModuleYAML::Module &M);
};
template <> struct ScalarTraits<MCModuleYAML::Operand> {
static void output(const MCModuleYAML::Operand &, void *,
llvm::raw_ostream &);
static StringRef input(StringRef, void *, MCModuleYAML::Operand &);
static bool mustQuote(StringRef) { return false; }
};
template <> struct ScalarTraits<MCModuleYAML::OpcodeEnum> {
static void output(const MCModuleYAML::OpcodeEnum &, void *,
llvm::raw_ostream &);
static StringRef input(StringRef, void *, MCModuleYAML::OpcodeEnum &);
static bool mustQuote(StringRef) { return false; }
};
void ScalarEnumerationTraits<MCAtom::AtomKind>::enumeration(
IO &IO, MCAtom::AtomKind &Value) {
IO.enumCase(Value, "Text", MCAtom::TextAtom);
IO.enumCase(Value, "Data", MCAtom::DataAtom);
}
void MappingTraits<MCModuleYAML::Atom>::mapping(IO &IO, MCModuleYAML::Atom &A) {
IO.mapRequired("StartAddress", A.StartAddress);
IO.mapRequired("Size", A.Size);
IO.mapRequired("Type", A.Type);
if (A.Type == MCAtom::TextAtom)
IO.mapRequired("Content", A.Insts);
else if (A.Type == MCAtom::DataAtom)
IO.mapRequired("Content", A.Data);
}
void MappingTraits<MCModuleYAML::Inst>::mapping(IO &IO, MCModuleYAML::Inst &I) {
IO.mapRequired("Inst", I.Opcode);
IO.mapRequired("Size", I.Size);
IO.mapRequired("Ops", I.Operands);
}
void
MappingTraits<MCModuleYAML::BasicBlock>::mapping(IO &IO,
MCModuleYAML::BasicBlock &BB) {
IO.mapRequired("Address", BB.Address);
IO.mapRequired("Preds", BB.Preds);
IO.mapRequired("Succs", BB.Succs);
}
void MappingTraits<MCModuleYAML::Function>::mapping(IO &IO,
MCModuleYAML::Function &F) {
IO.mapRequired("Name", F.Name);
IO.mapRequired("BasicBlocks", F.BasicBlocks);
}
void MappingTraits<MCModuleYAML::Module>::mapping(IO &IO,
MCModuleYAML::Module &M) {
IO.mapRequired("Atoms", M.Atoms);
IO.mapOptional("Functions", M.Functions);
}
void
ScalarTraits<MCModuleYAML::Operand>::output(const MCModuleYAML::Operand &Val,
void *Ctx, raw_ostream &Out) {
InstrRegInfoHolder *IRI = (InstrRegInfoHolder *)Ctx;
// FIXME: Doesn't support FPImm and expr/inst, but do these make sense?
if (Val.MCOp.isImm())
Out << "I" << Val.MCOp.getImm();
else if (Val.MCOp.isReg())
Out << "R" << IRI->MRI.getName(Val.MCOp.getReg());
else
llvm_unreachable("Trying to output invalid MCOperand!");
}
StringRef
ScalarTraits<MCModuleYAML::Operand>::input(StringRef Scalar, void *Ctx,
MCModuleYAML::Operand &Val) {
InstrRegInfoHolder *IRI = (InstrRegInfoHolder *)Ctx;
char Type = 0;
if (Scalar.size() >= 1)
Type = Scalar.front();
if (Type != 'R' && Type != 'I')
return "Operand must start with 'R' (register) or 'I' (immediate).";
if (Type == 'R') {
unsigned Reg;
if (!IRI->matchRegister(Scalar.substr(1), Reg))
return "Invalid register name.";
Val.MCOp = MCOperand::CreateReg(Reg);
} else if (Type == 'I') {
int64_t RIVal;
if (Scalar.substr(1).getAsInteger(10, RIVal))
return "Invalid immediate value.";
Val.MCOp = MCOperand::CreateImm(RIVal);
} else {
Val.MCOp = MCOperand();
}
return StringRef();
}
void ScalarTraits<MCModuleYAML::OpcodeEnum>::output(
const MCModuleYAML::OpcodeEnum &Val, void *Ctx, raw_ostream &Out) {
InstrRegInfoHolder *IRI = (InstrRegInfoHolder *)Ctx;
Out << IRI->MII.getName(Val);
}
StringRef
ScalarTraits<MCModuleYAML::OpcodeEnum>::input(StringRef Scalar, void *Ctx,
MCModuleYAML::OpcodeEnum &Val) {
InstrRegInfoHolder *IRI = (InstrRegInfoHolder *)Ctx;
unsigned Opc;
if (!IRI->matchOpcode(Scalar, Opc))
return "Invalid instruction opcode.";
Val = Opc;
return "";
}
} // end namespace yaml
namespace {
class MCModule2YAML {
const MCModule &MCM;
MCModuleYAML::Module YAMLModule;
void dumpAtom(const MCAtom *MCA);
void dumpFunction(const MCFunction &MCF);
void dumpBasicBlock(const MCBasicBlock *MCBB);
public:
MCModule2YAML(const MCModule &MCM);
MCModuleYAML::Module &getYAMLModule();
};
class YAML2MCModule {
MCModule &MCM;
public:
YAML2MCModule(MCModule &MCM);
StringRef parse(const MCModuleYAML::Module &YAMLModule);
};
} // end unnamed namespace
MCModule2YAML::MCModule2YAML(const MCModule &MCM) : MCM(MCM), YAMLModule() {
for (MCModule::const_atom_iterator AI = MCM.atom_begin(), AE = MCM.atom_end();
AI != AE; ++AI)
dumpAtom(*AI);
for (MCModule::const_func_iterator FI = MCM.func_begin(), FE = MCM.func_end();
FI != FE; ++FI)
dumpFunction(**FI);
}
void MCModule2YAML::dumpAtom(const MCAtom *MCA) {
YAMLModule.Atoms.resize(YAMLModule.Atoms.size() + 1);
MCModuleYAML::Atom &A = YAMLModule.Atoms.back();
A.Type = MCA->getKind();
A.StartAddress = MCA->getBeginAddr();
A.Size = MCA->getEndAddr() - MCA->getBeginAddr() + 1;
if (const MCTextAtom *TA = dyn_cast<MCTextAtom>(MCA)) {
const size_t InstCount = TA->size();
A.Insts.resize(InstCount);
for (size_t i = 0; i != InstCount; ++i) {
const MCDecodedInst &MCDI = TA->at(i);
A.Insts[i].Opcode = MCDI.Inst.getOpcode();
A.Insts[i].Size = MCDI.Size;
const unsigned OpCount = MCDI.Inst.getNumOperands();
A.Insts[i].Operands.resize(OpCount);
for (unsigned oi = 0; oi != OpCount; ++oi)
A.Insts[i].Operands[oi].MCOp = MCDI.Inst.getOperand(oi);
}
} else if (const MCDataAtom *DA = dyn_cast<MCDataAtom>(MCA)) {
A.Data = DA->getData();
} else {
llvm_unreachable("Unknown atom type.");
}
}
void MCModule2YAML::dumpFunction(const MCFunction &MCF) {
YAMLModule.Functions.resize(YAMLModule.Functions.size() + 1);
MCModuleYAML::Function &F = YAMLModule.Functions.back();
F.Name = MCF.getName();
for (MCFunction::const_iterator BBI = MCF.begin(), BBE = MCF.end();
BBI != BBE; ++BBI) {
const MCBasicBlock &MCBB = **BBI;
F.BasicBlocks.resize(F.BasicBlocks.size() + 1);
MCModuleYAML::BasicBlock &BB = F.BasicBlocks.back();
BB.Address = MCBB.getInsts()->getBeginAddr();
for (MCBasicBlock::pred_const_iterator PI = MCBB.pred_begin(),
PE = MCBB.pred_end();
PI != PE; ++PI)
BB.Preds.push_back((*PI)->getInsts()->getBeginAddr());
for (MCBasicBlock::succ_const_iterator SI = MCBB.succ_begin(),
SE = MCBB.succ_end();
SI != SE; ++SI)
BB.Succs.push_back((*SI)->getInsts()->getBeginAddr());
}
}
MCModuleYAML::Module &MCModule2YAML::getYAMLModule() { return YAMLModule; }
YAML2MCModule::YAML2MCModule(MCModule &MCM) : MCM(MCM) {}
StringRef YAML2MCModule::parse(const MCModuleYAML::Module &YAMLModule) {
typedef std::vector<MCModuleYAML::Atom>::const_iterator AtomIt;
typedef std::vector<MCModuleYAML::Inst>::const_iterator InstIt;
typedef std::vector<MCModuleYAML::Operand>::const_iterator OpIt;
typedef DenseMap<uint64_t, MCTextAtom *> AddrToTextAtomTy;
AddrToTextAtomTy TAByAddr;
for (AtomIt AI = YAMLModule.Atoms.begin(), AE = YAMLModule.Atoms.end();
AI != AE; ++AI) {
uint64_t StartAddress = AI->StartAddress;
if (AI->Size == 0)
return "Atoms can't be empty!";
uint64_t EndAddress = StartAddress + AI->Size - 1;
switch (AI->Type) {
case MCAtom::TextAtom: {
MCTextAtom *TA = MCM.createTextAtom(StartAddress, EndAddress);
TAByAddr[StartAddress] = TA;
for (InstIt II = AI->Insts.begin(), IE = AI->Insts.end(); II != IE;
++II) {
MCInst MI;
MI.setOpcode(II->Opcode);
for (OpIt OI = II->Operands.begin(), OE = II->Operands.end(); OI != OE;
++OI)
MI.addOperand(OI->MCOp);
TA->addInst(MI, II->Size);
}
break;
}
case MCAtom::DataAtom: {
MCDataAtom *DA = MCM.createDataAtom(StartAddress, EndAddress);
SmallVector<char, 64> Data;
raw_svector_ostream OS(Data);
AI->Data.writeAsBinary(OS);
OS.flush();
for (size_t i = 0, e = Data.size(); i != e; ++i)
DA->addData((uint8_t)Data[i]);
break;
}
}
}
typedef std::vector<MCModuleYAML::Function>::const_iterator FuncIt;
typedef std::vector<MCModuleYAML::BasicBlock>::const_iterator BBIt;
typedef std::vector<yaml::Hex64>::const_iterator AddrIt;
for (FuncIt FI = YAMLModule.Functions.begin(),
FE = YAMLModule.Functions.end();
FI != FE; ++FI) {
MCFunction *MCFN = MCM.createFunction(FI->Name);
for (BBIt BBI = FI->BasicBlocks.begin(), BBE = FI->BasicBlocks.end();
BBI != BBE; ++BBI) {
AddrToTextAtomTy::const_iterator It = TAByAddr.find(BBI->Address);
if (It == TAByAddr.end())
return "Basic block start address doesn't match any text atom!";
MCFN->createBlock(*It->second);
}
for (BBIt BBI = FI->BasicBlocks.begin(), BBE = FI->BasicBlocks.end();
BBI != BBE; ++BBI) {
MCBasicBlock *MCBB = MCFN->find(BBI->Address);
if (!MCBB)
return "Couldn't find matching basic block in function.";
for (AddrIt PI = BBI->Preds.begin(), PE = BBI->Preds.end(); PI != PE;
++PI) {
MCBasicBlock *Pred = MCFN->find(*PI);
if (!Pred)
return "Couldn't find predecessor basic block.";
MCBB->addPredecessor(Pred);
}
for (AddrIt SI = BBI->Succs.begin(), SE = BBI->Succs.end(); SI != SE;
++SI) {
MCBasicBlock *Succ = MCFN->find(*SI);
if (!Succ)
return "Couldn't find predecessor basic block.";
MCBB->addSuccessor(Succ);
}
}
}
return "";
}
StringRef mcmodule2yaml(raw_ostream &OS, const MCModule &MCM,
const MCInstrInfo &MII, const MCRegisterInfo &MRI) {
MCModule2YAML Dumper(MCM);
InstrRegInfoHolder IRI(MII, MRI);
yaml::Output YOut(OS, (void *)&IRI);
YOut << Dumper.getYAMLModule();
return "";
}
StringRef yaml2mcmodule(std::unique_ptr<MCModule> &MCM, StringRef YamlContent,
const MCInstrInfo &MII, const MCRegisterInfo &MRI) {
MCM.reset(new MCModule);
YAML2MCModule Parser(*MCM);
MCModuleYAML::Module YAMLModule;
InstrRegInfoHolder IRI(MII, MRI);
yaml::Input YIn(YamlContent, (void *)&IRI);
YIn >> YAMLModule;
if (std::error_code ec = YIn.error())
return ec.message();
StringRef err = Parser.parse(YAMLModule);
if (!err.empty())
return err;
return "";
}
} // end namespace llvm