mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@8144 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			262 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			262 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- InlineFunction.cpp - Code to perform function inlining -------------===//
 | |
| //
 | |
| // This file implements inlining of a function into a call site, resolving
 | |
| // parameters and the return value as appropriate.
 | |
| //
 | |
| // FIXME: This pass should transform alloca instructions in the called function
 | |
| //        into malloc/free pairs!  Or perhaps it should refuse to inline them!
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Utils/Cloning.h"
 | |
| #include "llvm/Constant.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/Support/CallSite.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| 
 | |
| bool InlineFunction(CallInst *CI) { return InlineFunction(CallSite(CI)); }
 | |
| bool InlineFunction(InvokeInst *II) { return InlineFunction(CallSite(II)); }
 | |
| 
 | |
| // InlineFunction - This function inlines the called function into the basic
 | |
| // block of the caller.  This returns false if it is not possible to inline this
 | |
| // call.  The program is still in a well defined state if this occurs though.
 | |
| //
 | |
| // Note that this only does one level of inlining.  For example, if the 
 | |
| // instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 
 | |
| // exists in the instruction stream.  Similiarly this will inline a recursive
 | |
| // function by one level.
 | |
| //
 | |
| bool InlineFunction(CallSite CS) {
 | |
|   Instruction *TheCall = CS.getInstruction();
 | |
|   assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
 | |
|          "Instruction not in function!");
 | |
| 
 | |
|   const Function *CalledFunc = CS.getCalledFunction();
 | |
|   if (CalledFunc == 0 ||          // Can't inline external function or indirect
 | |
|       CalledFunc->isExternal() || // call, or call to a vararg function!
 | |
|       CalledFunc->getFunctionType()->isVarArg()) return false;
 | |
| 
 | |
|   BasicBlock *OrigBB = TheCall->getParent();
 | |
|   Function *Caller = OrigBB->getParent();
 | |
| 
 | |
|   // We want to clone the entire callee function into the whole between the
 | |
|   // "starter" and "ender" blocks.  How we accomplish this depends on whether
 | |
|   // this is an invoke instruction or a call instruction.
 | |
| 
 | |
|   BasicBlock *InvokeDest = 0;     // Exception handling destination
 | |
|   BasicBlock *AfterCallBB;
 | |
|   if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
 | |
|     AfterCallBB = II->getNormalDest();
 | |
|     InvokeDest = II->getExceptionalDest();
 | |
| 
 | |
|     // Add an unconditional branch to make this look like the CallInst case...
 | |
|     new BranchInst(AfterCallBB, TheCall);
 | |
| 
 | |
|     // Remove (unlink) the InvokeInst from the function...
 | |
|     OrigBB->getInstList().remove(TheCall);
 | |
|   } else {  // It's a call
 | |
|     // If this is a call instruction, we need to split the basic block that the
 | |
|     // call lives in.
 | |
|     //
 | |
|     AfterCallBB = OrigBB->splitBasicBlock(TheCall,
 | |
|                                           CalledFunc->getName()+".entry");
 | |
|     // Remove (unlink) the CallInst from the function...
 | |
|     AfterCallBB->getInstList().remove(TheCall);
 | |
|   }
 | |
| 
 | |
|   // If we have a return value generated by this call, convert it into a PHI 
 | |
|   // node that gets values from each of the old RET instructions in the original
 | |
|   // function.
 | |
|   //
 | |
|   PHINode *PHI = 0;
 | |
|   if (!TheCall->use_empty()) {
 | |
|     // The PHI node should go at the front of the new basic block to merge all 
 | |
|     // possible incoming values.
 | |
|     //
 | |
|     PHI = new PHINode(CalledFunc->getReturnType(), TheCall->getName(),
 | |
|                       AfterCallBB->begin());
 | |
| 
 | |
|     // Anything that used the result of the function call should now use the PHI
 | |
|     // node as their operand.
 | |
|     //
 | |
|     TheCall->replaceAllUsesWith(PHI);
 | |
|   }
 | |
| 
 | |
|   // Get an iterator to the last basic block in the function, which will have
 | |
|   // the new function inlined after it.
 | |
|   //
 | |
|   Function::iterator LastBlock = &Caller->back();
 | |
| 
 | |
|   // Calculate the vector of arguments to pass into the function cloner...
 | |
|   std::map<const Value*, Value*> ValueMap;
 | |
|   assert(std::distance(CalledFunc->abegin(), CalledFunc->aend()) == 
 | |
|          std::distance(CS.arg_begin(), CS.arg_end()) &&
 | |
|          "No varargs calls can be inlined!");
 | |
| 
 | |
|   CallSite::arg_iterator AI = CS.arg_begin();
 | |
|   for (Function::const_aiterator I = CalledFunc->abegin(), E=CalledFunc->aend();
 | |
|        I != E; ++I, ++AI)
 | |
|     ValueMap[I] = *AI;
 | |
| 
 | |
|   // Since we are now done with the Call/Invoke, we can delete it.
 | |
|   delete TheCall;
 | |
| 
 | |
|   // Make a vector to capture the return instructions in the cloned function...
 | |
|   std::vector<ReturnInst*> Returns;
 | |
| 
 | |
|   // Populate the value map with all of the globals in the program.
 | |
|   // FIXME: This should be the default for CloneFunctionInto!
 | |
|   Module &M = *Caller->getParent();
 | |
|   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
 | |
|     ValueMap[I] = I;
 | |
|   for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
 | |
|     ValueMap[I] = I;
 | |
| 
 | |
|   // Do all of the hard part of cloning the callee into the caller...
 | |
|   CloneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i");
 | |
| 
 | |
|   // Loop over all of the return instructions, turning them into unconditional
 | |
|   // branches to the merge point now...
 | |
|   for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
 | |
|     ReturnInst *RI = Returns[i];
 | |
|     BasicBlock *BB = RI->getParent();
 | |
| 
 | |
|     // Add a branch to the merge point where the PHI node lives if it exists.
 | |
|     new BranchInst(AfterCallBB, RI);
 | |
| 
 | |
|     if (PHI) {   // The PHI node should include this value!
 | |
|       assert(RI->getReturnValue() && "Ret should have value!");
 | |
|       assert(RI->getReturnValue()->getType() == PHI->getType() && 
 | |
|              "Ret value not consistent in function!");
 | |
|       PHI->addIncoming(RI->getReturnValue(), BB);
 | |
|     }
 | |
| 
 | |
|     // Delete the return instruction now
 | |
|     BB->getInstList().erase(RI);
 | |
|   }
 | |
| 
 | |
|   // Check to see if the PHI node only has one argument.  This is a common
 | |
|   // case resulting from there only being a single return instruction in the
 | |
|   // function call.  Because this is so common, eliminate the PHI node.
 | |
|   //
 | |
|   if (PHI && PHI->getNumIncomingValues() == 1) {
 | |
|     PHI->replaceAllUsesWith(PHI->getIncomingValue(0));
 | |
|     PHI->getParent()->getInstList().erase(PHI);
 | |
|   }
 | |
| 
 | |
|   // Change the branch that used to go to AfterCallBB to branch to the first
 | |
|   // basic block of the inlined function.
 | |
|   //
 | |
|   TerminatorInst *Br = OrigBB->getTerminator();
 | |
|   assert(Br && Br->getOpcode() == Instruction::Br && 
 | |
| 	 "splitBasicBlock broken!");
 | |
|   Br->setOperand(0, ++LastBlock);
 | |
| 
 | |
|   // If there are any alloca instructions in the block that used to be the entry
 | |
|   // block for the callee, move them to the entry block of the caller.  First
 | |
|   // calculate which instruction they should be inserted before.  We insert the
 | |
|   // instructions at the end of the current alloca list.
 | |
|   //
 | |
|   if (isa<AllocaInst>(LastBlock->begin())) {
 | |
|     BasicBlock::iterator InsertPoint = Caller->begin()->begin();
 | |
|     while (isa<AllocaInst>(InsertPoint)) ++InsertPoint;
 | |
|     
 | |
|     for (BasicBlock::iterator I = LastBlock->begin(), E = LastBlock->end();
 | |
|          I != E; )
 | |
|       if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
 | |
|         ++I;  // Move to the next instruction
 | |
|         LastBlock->getInstList().remove(AI);
 | |
|         Caller->front().getInstList().insert(InsertPoint, AI);      
 | |
|       } else {
 | |
|         ++I;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // If we just inlined a call due to an invoke instruction, scan the inlined
 | |
|   // function checking for function calls that should now be made into invoke
 | |
|   // instructions, and for llvm.exc.rethrow()'s which should be turned into
 | |
|   // branches.
 | |
|   if (InvokeDest)
 | |
|     for (Function::iterator BB = LastBlock, E = Caller->end(); BB != E; ++BB)
 | |
|       for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
 | |
|         // We only need to check for function calls: inlined invoke instructions
 | |
|         // require no special handling...
 | |
|         if (CallInst *CI = dyn_cast<CallInst>(I)) {
 | |
|           // FIXME: this should use annotations of the LLVM functions themselves
 | |
|           // to determine whether or not the function can throw.
 | |
|           bool ShouldInvokify = true;
 | |
|           
 | |
|           if (Function *F = CI->getCalledFunction())
 | |
|             if (unsigned ID = F->getIntrinsicID())
 | |
|               if (ID == LLVMIntrinsic::unwind) {
 | |
|                 // llvm.unwind requires special handling when it gets inlined
 | |
|                 // into an invoke site.  Once this happens, we know that the
 | |
|                 // unwind would cause a control transfer to the invoke exception
 | |
|                 // destination, so we can transform it into a direct branch to
 | |
|                 // the exception destination.
 | |
|                 BranchInst *BI = new BranchInst(InvokeDest, CI);
 | |
| 
 | |
|                 // Note that since any instructions after the rethrow/branch are
 | |
|                 // dead, we must delete them now (otherwise the terminator we
 | |
|                 // just inserted wouldn't be at the end of the basic block!)
 | |
|                 BasicBlock *CurBB = BB;
 | |
|                 while (&CurBB->back() != BI) {
 | |
|                   Instruction *I = &CurBB->back();
 | |
|                   if (!I->use_empty())
 | |
|                     I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
 | |
|                   CurBB->getInstList().pop_back();
 | |
|                 }
 | |
| 
 | |
|                 break;  // Done with this basic block!
 | |
|               }
 | |
|           
 | |
|           // If we should convert this function into an invoke instruction, do
 | |
|           // so now.
 | |
|           if (ShouldInvokify) {
 | |
|             // First, split the basic block...
 | |
|             BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
 | |
|             
 | |
|             // Next, create the new invoke instruction, inserting it at the end
 | |
|             // of the old basic block.
 | |
|             new InvokeInst(CI->getCalledValue(), Split, InvokeDest, 
 | |
|                            std::vector<Value*>(CI->op_begin()+1, CI->op_end()),
 | |
|                            CI->getName(), BB->getTerminator());
 | |
| 
 | |
|             // Delete the unconditional branch inserted by splitBasicBlock
 | |
|             BB->getInstList().pop_back();
 | |
|             Split->getInstList().pop_front();  // Delete the original call
 | |
|             
 | |
|             // This basic block is now complete, start scanning the next one.
 | |
|             break;
 | |
|           } else {
 | |
|             ++I;
 | |
|           }
 | |
|         } else {
 | |
|           ++I;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|   // Now that the function is correct, make it a little bit nicer.  In
 | |
|   // particular, move the basic blocks inserted from the end of the function
 | |
|   // into the space made by splitting the source basic block.
 | |
|   //
 | |
|   Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(), 
 | |
|                                      LastBlock, Caller->end());
 | |
| 
 | |
|   // We should always be able to fold the entry block of the function into the
 | |
|   // single predecessor of the block...
 | |
|   assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
 | |
|   BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
 | |
|   SimplifyCFG(CalleeEntry);
 | |
|   
 | |
|   // Okay, continue the CFG cleanup.  It's often the case that there is only a
 | |
|   // single return instruction in the callee function.  If this is the case,
 | |
|   // then we have an unconditional branch from the return block to the
 | |
|   // 'AfterCallBB'.  Check for this case, and eliminate the branch is possible.
 | |
|   SimplifyCFG(AfterCallBB);
 | |
|   return true;
 | |
| }
 |