llvm-6502/lib/Transforms/Scalar/DecomposeMultiDimRefs.cpp
2002-04-28 19:55:58 +00:00

184 lines
6.4 KiB
C++

//===- llvm/Transforms/DecomposeMultiDimRefs.cpp - Lower array refs to 1D ---=//
//
// DecomposeMultiDimRefs -
// Convert multi-dimensional references consisting of any combination
// of 2 or more array and structure indices into a sequence of
// instructions (using getelementpr and cast) so that each instruction
// has at most one index (except structure references,
// which need an extra leading index of [0]).
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/DecomposeMultiDimRefs.h"
#include "llvm/Constants.h"
#include "llvm/iMemory.h"
#include "llvm/iOther.h"
#include "llvm/BasicBlock.h"
#include "llvm/Function.h"
#include "llvm/Pass.h"
//
// For any combination of 2 or more array and structure indices,
// this function repeats the foll. until we have a one-dim. reference: {
// ptr1 = getElementPtr [CompositeType-N] * lastPtr, uint firstIndex
// ptr2 = cast [CompositeType-N] * ptr1 to [CompositeType-N] *
// }
// Then it replaces the original instruction with an equivalent one that
// uses the last ptr2 generated in the loop and a single index.
// If any index is (uint) 0, we omit the getElementPtr instruction.
//
static BasicBlock::iterator
decomposeArrayRef(BasicBlock::iterator& BBI)
{
MemAccessInst *memI = cast<MemAccessInst>(*BBI);
BasicBlock* BB = memI->getParent();
Value* lastPtr = memI->getPointerOperand();
vector<Instruction*> newIvec;
// Process each index except the last one.
//
MemAccessInst::const_op_iterator OI = memI->idx_begin();
MemAccessInst::const_op_iterator OE = memI->idx_end();
for ( ; OI != OE; ++OI)
{
assert(isa<PointerType>(lastPtr->getType()));
if (OI+1 == OE) // stop before the last operand
break;
// Check for a zero index. This will need a cast instead of
// a getElementPtr, or it may need neither.
bool indexIsZero = bool(isa<ConstantUInt>(*OI) &&
cast<ConstantUInt>(*OI)->getValue() == 0);
// Extract the first index. If the ptr is a pointer to a structure
// and the next index is a structure offset (i.e., not an array offset),
// we need to include an initial [0] to index into the pointer.
vector<Value*> idxVec(1, *OI);
PointerType* ptrType = cast<PointerType>(lastPtr->getType());
if (isa<StructType>(ptrType->getElementType())
&& ! ptrType->indexValid(*OI))
idxVec.insert(idxVec.begin(), ConstantUInt::get(Type::UIntTy, 0));
// Get the type obtained by applying the first index.
// It must be a structure or array.
const Type* nextType = MemAccessInst::getIndexedType(lastPtr->getType(),
idxVec, true);
assert(isa<StructType>(nextType) || isa<ArrayType>(nextType));
// Get a pointer to the structure or to the elements of the array.
const Type* nextPtrType =
PointerType::get(isa<StructType>(nextType)? nextType
: cast<ArrayType>(nextType)->getElementType());
// Instruction 1: nextPtr1 = GetElementPtr lastPtr, idxVec
// This is not needed if the index is zero.
Value* gepValue;
if (indexIsZero)
gepValue = lastPtr;
else
{
gepValue = new GetElementPtrInst(lastPtr, idxVec,"ptr1");
newIvec.push_back(cast<Instruction>(gepValue));
}
// Instruction 2: nextPtr2 = cast nextPtr1 to nextPtrType
// This is not needed if the two types are identical.
Value* castInst;
if (gepValue->getType() == nextPtrType)
castInst = gepValue;
else
{
castInst = new CastInst(gepValue, nextPtrType, "ptr2");
newIvec.push_back(cast<Instruction>(castInst));
}
lastPtr = castInst;
}
//
// Now create a new instruction to replace the original one
//
PointerType* ptrType = cast<PointerType>(lastPtr->getType());
assert(ptrType);
// First, get the final index vector. As above, we may need an initial [0].
vector<Value*> idxVec(1, *OI);
if (isa<StructType>(ptrType->getElementType())
&& ! ptrType->indexValid(*OI))
idxVec.insert(idxVec.begin(), ConstantUInt::get(Type::UIntTy, 0));
const std::string newInstName = memI->hasName()? memI->getName()
: string("finalRef");
Instruction* newInst = NULL;
switch(memI->getOpcode())
{
case Instruction::Load:
newInst = new LoadInst(lastPtr, idxVec /*, newInstName */); break;
case Instruction::Store:
newInst = new StoreInst(memI->getOperand(0),
lastPtr, idxVec /*, newInstName */); break;
break;
case Instruction::GetElementPtr:
newInst = new GetElementPtrInst(lastPtr, idxVec /*, newInstName */); break;
default:
assert(0 && "Unrecognized memory access instruction"); break;
}
newIvec.push_back(newInst);
// Replace all uses of the old instruction with the new
memI->replaceAllUsesWith(newInst);
BasicBlock::iterator newI = BBI;;
for (int i = newIvec.size()-1; i >= 0; i--)
newI = BB->getInstList().insert(newI, newIvec[i]);
// Now delete the old instruction and return a pointer to the last new one
BB->getInstList().remove(memI);
delete memI;
return newI + newIvec.size() - 1; // pointer to last new instr
}
//---------------------------------------------------------------------------
// Entry point for array or structure references with multiple indices.
//---------------------------------------------------------------------------
static bool
doDecomposeMultiDimRefs(Function *F)
{
bool changed = false;
for (Function::iterator BI = F->begin(), BE = F->end(); BI != BE; ++BI)
for (BasicBlock::iterator newI, II = (*BI)->begin();
II != (*BI)->end(); II = ++newI)
{
newI = II;
if (MemAccessInst *memI = dyn_cast<MemAccessInst>(*II))
if (memI->getNumOperands() > 1 + memI->getFirstIndexOperandNumber())
{
newI = decomposeArrayRef(II);
changed = true;
}
}
return changed;
}
namespace {
struct DecomposeMultiDimRefsPass : public FunctionPass {
virtual bool runOnFunction(Function *F) {
return doDecomposeMultiDimRefs(F);
}
};
}
Pass *createDecomposeMultiDimRefsPass() {
return new DecomposeMultiDimRefsPass();
}