mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149967 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1436 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1436 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines routines for folding instructions into constants.
 | |
| //
 | |
| // Also, to supplement the basic VMCore ConstantExpr simplifications,
 | |
| // this file defines some additional folding routines that can make use of
 | |
| // TargetData information. These functions cannot go in VMCore due to library
 | |
| // dependency issues.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/Operator.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetLibraryInfo.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringMap.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/FEnv.h"
 | |
| #include <cerrno>
 | |
| #include <cmath>
 | |
| using namespace llvm;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Constant Folding internal helper functions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// FoldBitCast - Constant fold bitcast, symbolically evaluating it with 
 | |
| /// TargetData.  This always returns a non-null constant, but it may be a
 | |
| /// ConstantExpr if unfoldable.
 | |
| static Constant *FoldBitCast(Constant *C, Type *DestTy,
 | |
|                              const TargetData &TD) {
 | |
|   // Catch the obvious splat cases.
 | |
|   if (C->isNullValue() && !DestTy->isX86_MMXTy())
 | |
|     return Constant::getNullValue(DestTy);
 | |
|   if (C->isAllOnesValue() && !DestTy->isX86_MMXTy())
 | |
|     return Constant::getAllOnesValue(DestTy);
 | |
| 
 | |
|   // Handle a vector->integer cast.
 | |
|   if (IntegerType *IT = dyn_cast<IntegerType>(DestTy)) {
 | |
|     ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
 | |
|     if (CDV == 0)
 | |
|       return ConstantExpr::getBitCast(C, DestTy);
 | |
| 
 | |
|     unsigned NumSrcElts = CDV->getType()->getNumElements();
 | |
|     
 | |
|     Type *SrcEltTy = CDV->getType()->getElementType();
 | |
|     
 | |
|     // If the vector is a vector of floating point, convert it to vector of int
 | |
|     // to simplify things.
 | |
|     if (SrcEltTy->isFloatingPointTy()) {
 | |
|       unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
 | |
|       Type *SrcIVTy =
 | |
|         VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
 | |
|       // Ask VMCore to do the conversion now that #elts line up.
 | |
|       C = ConstantExpr::getBitCast(C, SrcIVTy);
 | |
|       CDV = cast<ConstantDataVector>(C);
 | |
|     }
 | |
|     
 | |
|     // Now that we know that the input value is a vector of integers, just shift
 | |
|     // and insert them into our result.
 | |
|     unsigned BitShift = TD.getTypeAllocSizeInBits(SrcEltTy);
 | |
|     APInt Result(IT->getBitWidth(), 0);
 | |
|     for (unsigned i = 0; i != NumSrcElts; ++i) {
 | |
|       Result <<= BitShift;
 | |
|       if (TD.isLittleEndian())
 | |
|         Result |= CDV->getElementAsInteger(NumSrcElts-i-1);
 | |
|       else
 | |
|         Result |= CDV->getElementAsInteger(i);
 | |
|     }
 | |
|    
 | |
|     return ConstantInt::get(IT, Result);
 | |
|   }
 | |
|   
 | |
|   // The code below only handles casts to vectors currently.
 | |
|   VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
 | |
|   if (DestVTy == 0)
 | |
|     return ConstantExpr::getBitCast(C, DestTy);
 | |
|   
 | |
|   // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
 | |
|   // vector so the code below can handle it uniformly.
 | |
|   if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
 | |
|     Constant *Ops = C; // don't take the address of C!
 | |
|     return FoldBitCast(ConstantVector::get(Ops), DestTy, TD);
 | |
|   }
 | |
|   
 | |
|   // If this is a bitcast from constant vector -> vector, fold it.
 | |
|   if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
 | |
|     return ConstantExpr::getBitCast(C, DestTy);
 | |
|   
 | |
|   // If the element types match, VMCore can fold it.
 | |
|   unsigned NumDstElt = DestVTy->getNumElements();
 | |
|   unsigned NumSrcElt = C->getType()->getVectorNumElements();
 | |
|   if (NumDstElt == NumSrcElt)
 | |
|     return ConstantExpr::getBitCast(C, DestTy);
 | |
|   
 | |
|   Type *SrcEltTy = C->getType()->getVectorElementType();
 | |
|   Type *DstEltTy = DestVTy->getElementType();
 | |
|   
 | |
|   // Otherwise, we're changing the number of elements in a vector, which 
 | |
|   // requires endianness information to do the right thing.  For example,
 | |
|   //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
 | |
|   // folds to (little endian):
 | |
|   //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
 | |
|   // and to (big endian):
 | |
|   //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
 | |
|   
 | |
|   // First thing is first.  We only want to think about integer here, so if
 | |
|   // we have something in FP form, recast it as integer.
 | |
|   if (DstEltTy->isFloatingPointTy()) {
 | |
|     // Fold to an vector of integers with same size as our FP type.
 | |
|     unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
 | |
|     Type *DestIVTy =
 | |
|       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
 | |
|     // Recursively handle this integer conversion, if possible.
 | |
|     C = FoldBitCast(C, DestIVTy, TD);
 | |
|     
 | |
|     // Finally, VMCore can handle this now that #elts line up.
 | |
|     return ConstantExpr::getBitCast(C, DestTy);
 | |
|   }
 | |
|   
 | |
|   // Okay, we know the destination is integer, if the input is FP, convert
 | |
|   // it to integer first.
 | |
|   if (SrcEltTy->isFloatingPointTy()) {
 | |
|     unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
 | |
|     Type *SrcIVTy =
 | |
|       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
 | |
|     // Ask VMCore to do the conversion now that #elts line up.
 | |
|     C = ConstantExpr::getBitCast(C, SrcIVTy);
 | |
|     // If VMCore wasn't able to fold it, bail out.
 | |
|     if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
 | |
|         !isa<ConstantDataVector>(C))
 | |
|       return C;
 | |
|   }
 | |
|   
 | |
|   // Now we know that the input and output vectors are both integer vectors
 | |
|   // of the same size, and that their #elements is not the same.  Do the
 | |
|   // conversion here, which depends on whether the input or output has
 | |
|   // more elements.
 | |
|   bool isLittleEndian = TD.isLittleEndian();
 | |
|   
 | |
|   SmallVector<Constant*, 32> Result;
 | |
|   if (NumDstElt < NumSrcElt) {
 | |
|     // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
 | |
|     Constant *Zero = Constant::getNullValue(DstEltTy);
 | |
|     unsigned Ratio = NumSrcElt/NumDstElt;
 | |
|     unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
 | |
|     unsigned SrcElt = 0;
 | |
|     for (unsigned i = 0; i != NumDstElt; ++i) {
 | |
|       // Build each element of the result.
 | |
|       Constant *Elt = Zero;
 | |
|       unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
 | |
|       for (unsigned j = 0; j != Ratio; ++j) {
 | |
|         Constant *Src =dyn_cast<ConstantInt>(C->getAggregateElement(SrcElt++));
 | |
|         if (!Src)  // Reject constantexpr elements.
 | |
|           return ConstantExpr::getBitCast(C, DestTy);
 | |
|         
 | |
|         // Zero extend the element to the right size.
 | |
|         Src = ConstantExpr::getZExt(Src, Elt->getType());
 | |
|         
 | |
|         // Shift it to the right place, depending on endianness.
 | |
|         Src = ConstantExpr::getShl(Src, 
 | |
|                                    ConstantInt::get(Src->getType(), ShiftAmt));
 | |
|         ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
 | |
|         
 | |
|         // Mix it in.
 | |
|         Elt = ConstantExpr::getOr(Elt, Src);
 | |
|       }
 | |
|       Result.push_back(Elt);
 | |
|     }
 | |
|     return ConstantVector::get(Result);
 | |
|   }
 | |
|   
 | |
|   // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
 | |
|   unsigned Ratio = NumDstElt/NumSrcElt;
 | |
|   unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
 | |
|   
 | |
|   // Loop over each source value, expanding into multiple results.
 | |
|   for (unsigned i = 0; i != NumSrcElt; ++i) {
 | |
|     Constant *Src = dyn_cast<ConstantInt>(C->getAggregateElement(i));
 | |
|     if (!Src)  // Reject constantexpr elements.
 | |
|       return ConstantExpr::getBitCast(C, DestTy);
 | |
|     
 | |
|     unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
 | |
|     for (unsigned j = 0; j != Ratio; ++j) {
 | |
|       // Shift the piece of the value into the right place, depending on
 | |
|       // endianness.
 | |
|       Constant *Elt = ConstantExpr::getLShr(Src, 
 | |
|                                   ConstantInt::get(Src->getType(), ShiftAmt));
 | |
|       ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
 | |
|       
 | |
|       // Truncate and remember this piece.
 | |
|       Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return ConstantVector::get(Result);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
 | |
| /// from a global, return the global and the constant.  Because of
 | |
| /// constantexprs, this function is recursive.
 | |
| static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
 | |
|                                        int64_t &Offset, const TargetData &TD) {
 | |
|   // Trivial case, constant is the global.
 | |
|   if ((GV = dyn_cast<GlobalValue>(C))) {
 | |
|     Offset = 0;
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   // Otherwise, if this isn't a constant expr, bail out.
 | |
|   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
 | |
|   if (!CE) return false;
 | |
|   
 | |
|   // Look through ptr->int and ptr->ptr casts.
 | |
|   if (CE->getOpcode() == Instruction::PtrToInt ||
 | |
|       CE->getOpcode() == Instruction::BitCast)
 | |
|     return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
 | |
|   
 | |
|   // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)    
 | |
|   if (CE->getOpcode() == Instruction::GetElementPtr) {
 | |
|     // Cannot compute this if the element type of the pointer is missing size
 | |
|     // info.
 | |
|     if (!cast<PointerType>(CE->getOperand(0)->getType())
 | |
|                  ->getElementType()->isSized())
 | |
|       return false;
 | |
|     
 | |
|     // If the base isn't a global+constant, we aren't either.
 | |
|     if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
 | |
|       return false;
 | |
|     
 | |
|     // Otherwise, add any offset that our operands provide.
 | |
|     gep_type_iterator GTI = gep_type_begin(CE);
 | |
|     for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
 | |
|          i != e; ++i, ++GTI) {
 | |
|       ConstantInt *CI = dyn_cast<ConstantInt>(*i);
 | |
|       if (!CI) return false;  // Index isn't a simple constant?
 | |
|       if (CI->isZero()) continue;  // Not adding anything.
 | |
|       
 | |
|       if (StructType *ST = dyn_cast<StructType>(*GTI)) {
 | |
|         // N = N + Offset
 | |
|         Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
 | |
|       } else {
 | |
|         SequentialType *SQT = cast<SequentialType>(*GTI);
 | |
|         Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue();
 | |
|       }
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ReadDataFromGlobal - Recursive helper to read bits out of global.  C is the
 | |
| /// constant being copied out of. ByteOffset is an offset into C.  CurPtr is the
 | |
| /// pointer to copy results into and BytesLeft is the number of bytes left in
 | |
| /// the CurPtr buffer.  TD is the target data.
 | |
| static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
 | |
|                                unsigned char *CurPtr, unsigned BytesLeft,
 | |
|                                const TargetData &TD) {
 | |
|   assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
 | |
|          "Out of range access");
 | |
|   
 | |
|   // If this element is zero or undefined, we can just return since *CurPtr is
 | |
|   // zero initialized.
 | |
|   if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
 | |
|     return true;
 | |
|   
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
 | |
|     if (CI->getBitWidth() > 64 ||
 | |
|         (CI->getBitWidth() & 7) != 0)
 | |
|       return false;
 | |
|     
 | |
|     uint64_t Val = CI->getZExtValue();
 | |
|     unsigned IntBytes = unsigned(CI->getBitWidth()/8);
 | |
|     
 | |
|     for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
 | |
|       CurPtr[i] = (unsigned char)(Val >> (ByteOffset * 8));
 | |
|       ++ByteOffset;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
 | |
|     if (CFP->getType()->isDoubleTy()) {
 | |
|       C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), TD);
 | |
|       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
 | |
|     }
 | |
|     if (CFP->getType()->isFloatTy()){
 | |
|       C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), TD);
 | |
|       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
 | |
|     const StructLayout *SL = TD.getStructLayout(CS->getType());
 | |
|     unsigned Index = SL->getElementContainingOffset(ByteOffset);
 | |
|     uint64_t CurEltOffset = SL->getElementOffset(Index);
 | |
|     ByteOffset -= CurEltOffset;
 | |
|     
 | |
|     while (1) {
 | |
|       // If the element access is to the element itself and not to tail padding,
 | |
|       // read the bytes from the element.
 | |
|       uint64_t EltSize = TD.getTypeAllocSize(CS->getOperand(Index)->getType());
 | |
| 
 | |
|       if (ByteOffset < EltSize &&
 | |
|           !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
 | |
|                               BytesLeft, TD))
 | |
|         return false;
 | |
|       
 | |
|       ++Index;
 | |
|       
 | |
|       // Check to see if we read from the last struct element, if so we're done.
 | |
|       if (Index == CS->getType()->getNumElements())
 | |
|         return true;
 | |
| 
 | |
|       // If we read all of the bytes we needed from this element we're done.
 | |
|       uint64_t NextEltOffset = SL->getElementOffset(Index);
 | |
| 
 | |
|       if (BytesLeft <= NextEltOffset-CurEltOffset-ByteOffset)
 | |
|         return true;
 | |
| 
 | |
|       // Move to the next element of the struct.
 | |
|       CurPtr += NextEltOffset-CurEltOffset-ByteOffset;
 | |
|       BytesLeft -= NextEltOffset-CurEltOffset-ByteOffset;
 | |
|       ByteOffset = 0;
 | |
|       CurEltOffset = NextEltOffset;
 | |
|     }
 | |
|     // not reached.
 | |
|   }
 | |
| 
 | |
|   if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
 | |
|       isa<ConstantDataSequential>(C)) {
 | |
|     Type *EltTy = cast<SequentialType>(C->getType())->getElementType();
 | |
|     uint64_t EltSize = TD.getTypeAllocSize(EltTy);
 | |
|     uint64_t Index = ByteOffset / EltSize;
 | |
|     uint64_t Offset = ByteOffset - Index * EltSize;
 | |
|     uint64_t NumElts;
 | |
|     if (ArrayType *AT = dyn_cast<ArrayType>(C->getType()))
 | |
|       NumElts = AT->getNumElements();
 | |
|     else
 | |
|       NumElts = cast<VectorType>(C->getType())->getNumElements();
 | |
|     
 | |
|     for (; Index != NumElts; ++Index) {
 | |
|       if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
 | |
|                               BytesLeft, TD))
 | |
|         return false;
 | |
|       if (EltSize >= BytesLeft)
 | |
|         return true;
 | |
|       
 | |
|       Offset = 0;
 | |
|       BytesLeft -= EltSize;
 | |
|       CurPtr += EltSize;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|       
 | |
|   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | |
|     if (CE->getOpcode() == Instruction::IntToPtr &&
 | |
|         CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getContext())) 
 | |
|       return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr, 
 | |
|                                 BytesLeft, TD);
 | |
|   }
 | |
| 
 | |
|   // Otherwise, unknown initializer type.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
 | |
|                                                  const TargetData &TD) {
 | |
|   Type *LoadTy = cast<PointerType>(C->getType())->getElementType();
 | |
|   IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
 | |
|   
 | |
|   // If this isn't an integer load we can't fold it directly.
 | |
|   if (!IntType) {
 | |
|     // If this is a float/double load, we can try folding it as an int32/64 load
 | |
|     // and then bitcast the result.  This can be useful for union cases.  Note
 | |
|     // that address spaces don't matter here since we're not going to result in
 | |
|     // an actual new load.
 | |
|     Type *MapTy;
 | |
|     if (LoadTy->isFloatTy())
 | |
|       MapTy = Type::getInt32PtrTy(C->getContext());
 | |
|     else if (LoadTy->isDoubleTy())
 | |
|       MapTy = Type::getInt64PtrTy(C->getContext());
 | |
|     else if (LoadTy->isVectorTy()) {
 | |
|       MapTy = IntegerType::get(C->getContext(),
 | |
|                                TD.getTypeAllocSizeInBits(LoadTy));
 | |
|       MapTy = PointerType::getUnqual(MapTy);
 | |
|     } else
 | |
|       return 0;
 | |
| 
 | |
|     C = FoldBitCast(C, MapTy, TD);
 | |
|     if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD))
 | |
|       return FoldBitCast(Res, LoadTy, TD);
 | |
|     return 0;
 | |
|   }
 | |
|   
 | |
|   unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
 | |
|   if (BytesLoaded > 32 || BytesLoaded == 0) return 0;
 | |
|   
 | |
|   GlobalValue *GVal;
 | |
|   int64_t Offset;
 | |
|   if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
 | |
|     return 0;
 | |
|   
 | |
|   GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
 | |
|   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
 | |
|       !GV->getInitializer()->getType()->isSized())
 | |
|     return 0;
 | |
| 
 | |
|   // If we're loading off the beginning of the global, some bytes may be valid,
 | |
|   // but we don't try to handle this.
 | |
|   if (Offset < 0) return 0;
 | |
|   
 | |
|   // If we're not accessing anything in this constant, the result is undefined.
 | |
|   if (uint64_t(Offset) >= TD.getTypeAllocSize(GV->getInitializer()->getType()))
 | |
|     return UndefValue::get(IntType);
 | |
|   
 | |
|   unsigned char RawBytes[32] = {0};
 | |
|   if (!ReadDataFromGlobal(GV->getInitializer(), Offset, RawBytes,
 | |
|                           BytesLoaded, TD))
 | |
|     return 0;
 | |
| 
 | |
|   APInt ResultVal = APInt(IntType->getBitWidth(), RawBytes[BytesLoaded-1]);
 | |
|   for (unsigned i = 1; i != BytesLoaded; ++i) {
 | |
|     ResultVal <<= 8;
 | |
|     ResultVal |= RawBytes[BytesLoaded-1-i];
 | |
|   }
 | |
| 
 | |
|   return ConstantInt::get(IntType->getContext(), ResultVal);
 | |
| }
 | |
| 
 | |
| /// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
 | |
| /// produce if it is constant and determinable.  If this is not determinable,
 | |
| /// return null.
 | |
| Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
 | |
|                                              const TargetData *TD) {
 | |
|   // First, try the easy cases:
 | |
|   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
 | |
|     if (GV->isConstant() && GV->hasDefinitiveInitializer())
 | |
|       return GV->getInitializer();
 | |
| 
 | |
|   // If the loaded value isn't a constant expr, we can't handle it.
 | |
|   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
 | |
|   if (!CE) return 0;
 | |
|   
 | |
|   if (CE->getOpcode() == Instruction::GetElementPtr) {
 | |
|     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
 | |
|       if (GV->isConstant() && GV->hasDefinitiveInitializer())
 | |
|         if (Constant *V = 
 | |
|              ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
 | |
|           return V;
 | |
|   }
 | |
|   
 | |
|   // Instead of loading constant c string, use corresponding integer value
 | |
|   // directly if string length is small enough.
 | |
|   StringRef Str;
 | |
|   if (TD && getConstantStringInfo(CE, Str) && !Str.empty()) {
 | |
|     unsigned StrLen = Str.size();
 | |
|     Type *Ty = cast<PointerType>(CE->getType())->getElementType();
 | |
|     unsigned NumBits = Ty->getPrimitiveSizeInBits();
 | |
|     // Replace load with immediate integer if the result is an integer or fp
 | |
|     // value.
 | |
|     if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
 | |
|         (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
 | |
|       APInt StrVal(NumBits, 0);
 | |
|       APInt SingleChar(NumBits, 0);
 | |
|       if (TD->isLittleEndian()) {
 | |
|         for (signed i = StrLen-1; i >= 0; i--) {
 | |
|           SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
 | |
|           StrVal = (StrVal << 8) | SingleChar;
 | |
|         }
 | |
|       } else {
 | |
|         for (unsigned i = 0; i < StrLen; i++) {
 | |
|           SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
 | |
|           StrVal = (StrVal << 8) | SingleChar;
 | |
|         }
 | |
|         // Append NULL at the end.
 | |
|         SingleChar = 0;
 | |
|         StrVal = (StrVal << 8) | SingleChar;
 | |
|       }
 | |
|       
 | |
|       Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
 | |
|       if (Ty->isFloatingPointTy())
 | |
|         Res = ConstantExpr::getBitCast(Res, Ty);
 | |
|       return Res;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If this load comes from anywhere in a constant global, and if the global
 | |
|   // is all undef or zero, we know what it loads.
 | |
|   if (GlobalVariable *GV =
 | |
|         dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, TD))) {
 | |
|     if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
 | |
|       Type *ResTy = cast<PointerType>(C->getType())->getElementType();
 | |
|       if (GV->getInitializer()->isNullValue())
 | |
|         return Constant::getNullValue(ResTy);
 | |
|       if (isa<UndefValue>(GV->getInitializer()))
 | |
|         return UndefValue::get(ResTy);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Try hard to fold loads from bitcasted strange and non-type-safe things.  We
 | |
|   // currently don't do any of this for big endian systems.  It can be
 | |
|   // generalized in the future if someone is interested.
 | |
|   if (TD && TD->isLittleEndian())
 | |
|     return FoldReinterpretLoadFromConstPtr(CE, *TD);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| static Constant *ConstantFoldLoadInst(const LoadInst *LI, const TargetData *TD){
 | |
|   if (LI->isVolatile()) return 0;
 | |
|   
 | |
|   if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
 | |
|     return ConstantFoldLoadFromConstPtr(C, TD);
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
 | |
| /// Attempt to symbolically evaluate the result of a binary operator merging
 | |
| /// these together.  If target data info is available, it is provided as TD, 
 | |
| /// otherwise TD is null.
 | |
| static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
 | |
|                                            Constant *Op1, const TargetData *TD){
 | |
|   // SROA
 | |
|   
 | |
|   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
 | |
|   // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
 | |
|   // bits.
 | |
|   
 | |
|   
 | |
|   // If the constant expr is something like &A[123] - &A[4].f, fold this into a
 | |
|   // constant.  This happens frequently when iterating over a global array.
 | |
|   if (Opc == Instruction::Sub && TD) {
 | |
|     GlobalValue *GV1, *GV2;
 | |
|     int64_t Offs1, Offs2;
 | |
|     
 | |
|     if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
 | |
|       if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
 | |
|           GV1 == GV2) {
 | |
|         // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
 | |
|         return ConstantInt::get(Op0->getType(), Offs1-Offs2);
 | |
|       }
 | |
|   }
 | |
|     
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// CastGEPIndices - If array indices are not pointer-sized integers,
 | |
| /// explicitly cast them so that they aren't implicitly casted by the
 | |
| /// getelementptr.
 | |
| static Constant *CastGEPIndices(ArrayRef<Constant *> Ops,
 | |
|                                 Type *ResultTy, const TargetData *TD,
 | |
|                                 const TargetLibraryInfo *TLI) {
 | |
|   if (!TD) return 0;
 | |
|   Type *IntPtrTy = TD->getIntPtrType(ResultTy->getContext());
 | |
| 
 | |
|   bool Any = false;
 | |
|   SmallVector<Constant*, 32> NewIdxs;
 | |
|   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
 | |
|     if ((i == 1 ||
 | |
|          !isa<StructType>(GetElementPtrInst::getIndexedType(Ops[0]->getType(),
 | |
|                                                         Ops.slice(1, i-1)))) &&
 | |
|         Ops[i]->getType() != IntPtrTy) {
 | |
|       Any = true;
 | |
|       NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
 | |
|                                                                       true,
 | |
|                                                                       IntPtrTy,
 | |
|                                                                       true),
 | |
|                                               Ops[i], IntPtrTy));
 | |
|     } else
 | |
|       NewIdxs.push_back(Ops[i]);
 | |
|   }
 | |
|   if (!Any) return 0;
 | |
| 
 | |
|   Constant *C =
 | |
|     ConstantExpr::getGetElementPtr(Ops[0], NewIdxs);
 | |
|   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
 | |
|     if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
 | |
|       C = Folded;
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| /// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
 | |
| /// constant expression, do so.
 | |
| static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
 | |
|                                          Type *ResultTy, const TargetData *TD,
 | |
|                                          const TargetLibraryInfo *TLI) {
 | |
|   Constant *Ptr = Ops[0];
 | |
|   if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized() ||
 | |
|       !Ptr->getType()->isPointerTy())
 | |
|     return 0;
 | |
|   
 | |
|   Type *IntPtrTy = TD->getIntPtrType(Ptr->getContext());
 | |
| 
 | |
|   // If this is a constant expr gep that is effectively computing an
 | |
|   // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
 | |
|   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
 | |
|     if (!isa<ConstantInt>(Ops[i])) {
 | |
|       
 | |
|       // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
 | |
|       // "inttoptr (sub (ptrtoint Ptr), V)"
 | |
|       if (Ops.size() == 2 &&
 | |
|           cast<PointerType>(ResultTy)->getElementType()->isIntegerTy(8)) {
 | |
|         ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
 | |
|         assert((CE == 0 || CE->getType() == IntPtrTy) &&
 | |
|                "CastGEPIndices didn't canonicalize index types!");
 | |
|         if (CE && CE->getOpcode() == Instruction::Sub &&
 | |
|             CE->getOperand(0)->isNullValue()) {
 | |
|           Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
 | |
|           Res = ConstantExpr::getSub(Res, CE->getOperand(1));
 | |
|           Res = ConstantExpr::getIntToPtr(Res, ResultTy);
 | |
|           if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
 | |
|             Res = ConstantFoldConstantExpression(ResCE, TD, TLI);
 | |
|           return Res;
 | |
|         }
 | |
|       }
 | |
|       return 0;
 | |
|     }
 | |
|   
 | |
|   unsigned BitWidth = TD->getTypeSizeInBits(IntPtrTy);
 | |
|   APInt Offset =
 | |
|     APInt(BitWidth, TD->getIndexedOffset(Ptr->getType(),
 | |
|                                          makeArrayRef((Value **)Ops.data() + 1,
 | |
|                                                       Ops.size() - 1)));
 | |
|   Ptr = cast<Constant>(Ptr->stripPointerCasts());
 | |
| 
 | |
|   // If this is a GEP of a GEP, fold it all into a single GEP.
 | |
|   while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
 | |
|     SmallVector<Value *, 4> NestedOps(GEP->op_begin()+1, GEP->op_end());
 | |
| 
 | |
|     // Do not try the incorporate the sub-GEP if some index is not a number.
 | |
|     bool AllConstantInt = true;
 | |
|     for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
 | |
|       if (!isa<ConstantInt>(NestedOps[i])) {
 | |
|         AllConstantInt = false;
 | |
|         break;
 | |
|       }
 | |
|     if (!AllConstantInt)
 | |
|       break;
 | |
| 
 | |
|     Ptr = cast<Constant>(GEP->getOperand(0));
 | |
|     Offset += APInt(BitWidth,
 | |
|                     TD->getIndexedOffset(Ptr->getType(), NestedOps));
 | |
|     Ptr = cast<Constant>(Ptr->stripPointerCasts());
 | |
|   }
 | |
| 
 | |
|   // If the base value for this address is a literal integer value, fold the
 | |
|   // getelementptr to the resulting integer value casted to the pointer type.
 | |
|   APInt BasePtr(BitWidth, 0);
 | |
|   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
 | |
|     if (CE->getOpcode() == Instruction::IntToPtr)
 | |
|       if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
 | |
|         BasePtr = Base->getValue().zextOrTrunc(BitWidth);
 | |
|   if (Ptr->isNullValue() || BasePtr != 0) {
 | |
|     Constant *C = ConstantInt::get(Ptr->getContext(), Offset+BasePtr);
 | |
|     return ConstantExpr::getIntToPtr(C, ResultTy);
 | |
|   }
 | |
| 
 | |
|   // Otherwise form a regular getelementptr. Recompute the indices so that
 | |
|   // we eliminate over-indexing of the notional static type array bounds.
 | |
|   // This makes it easy to determine if the getelementptr is "inbounds".
 | |
|   // Also, this helps GlobalOpt do SROA on GlobalVariables.
 | |
|   Type *Ty = Ptr->getType();
 | |
|   SmallVector<Constant*, 32> NewIdxs;
 | |
|   do {
 | |
|     if (SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
 | |
|       if (ATy->isPointerTy()) {
 | |
|         // The only pointer indexing we'll do is on the first index of the GEP.
 | |
|         if (!NewIdxs.empty())
 | |
|           break;
 | |
|        
 | |
|         // Only handle pointers to sized types, not pointers to functions.
 | |
|         if (!ATy->getElementType()->isSized())
 | |
|           return 0;
 | |
|       }
 | |
|         
 | |
|       // Determine which element of the array the offset points into.
 | |
|       APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
 | |
|       IntegerType *IntPtrTy = TD->getIntPtrType(Ty->getContext());
 | |
|       if (ElemSize == 0)
 | |
|         // The element size is 0. This may be [0 x Ty]*, so just use a zero
 | |
|         // index for this level and proceed to the next level to see if it can
 | |
|         // accommodate the offset.
 | |
|         NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
 | |
|       else {
 | |
|         // The element size is non-zero divide the offset by the element
 | |
|         // size (rounding down), to compute the index at this level.
 | |
|         APInt NewIdx = Offset.udiv(ElemSize);
 | |
|         Offset -= NewIdx * ElemSize;
 | |
|         NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
 | |
|       }
 | |
|       Ty = ATy->getElementType();
 | |
|     } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
 | |
|       // Determine which field of the struct the offset points into. The
 | |
|       // getZExtValue is at least as safe as the StructLayout API because we
 | |
|       // know the offset is within the struct at this point.
 | |
|       const StructLayout &SL = *TD->getStructLayout(STy);
 | |
|       unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
 | |
|       NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
 | |
|                                          ElIdx));
 | |
|       Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
 | |
|       Ty = STy->getTypeAtIndex(ElIdx);
 | |
|     } else {
 | |
|       // We've reached some non-indexable type.
 | |
|       break;
 | |
|     }
 | |
|   } while (Ty != cast<PointerType>(ResultTy)->getElementType());
 | |
| 
 | |
|   // If we haven't used up the entire offset by descending the static
 | |
|   // type, then the offset is pointing into the middle of an indivisible
 | |
|   // member, so we can't simplify it.
 | |
|   if (Offset != 0)
 | |
|     return 0;
 | |
| 
 | |
|   // Create a GEP.
 | |
|   Constant *C =
 | |
|     ConstantExpr::getGetElementPtr(Ptr, NewIdxs);
 | |
|   assert(cast<PointerType>(C->getType())->getElementType() == Ty &&
 | |
|          "Computed GetElementPtr has unexpected type!");
 | |
| 
 | |
|   // If we ended up indexing a member with a type that doesn't match
 | |
|   // the type of what the original indices indexed, add a cast.
 | |
|   if (Ty != cast<PointerType>(ResultTy)->getElementType())
 | |
|     C = FoldBitCast(C, ResultTy, *TD);
 | |
| 
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Constant Folding public APIs
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// ConstantFoldInstruction - Try to constant fold the specified instruction.
 | |
| /// If successful, the constant result is returned, if not, null is returned.
 | |
| /// Note that this fails if not all of the operands are constant.  Otherwise,
 | |
| /// this function can only fail when attempting to fold instructions like loads
 | |
| /// and stores, which have no constant expression form.
 | |
| Constant *llvm::ConstantFoldInstruction(Instruction *I,
 | |
|                                         const TargetData *TD,
 | |
|                                         const TargetLibraryInfo *TLI) {
 | |
|   // Handle PHI nodes quickly here...
 | |
|   if (PHINode *PN = dyn_cast<PHINode>(I)) {
 | |
|     Constant *CommonValue = 0;
 | |
| 
 | |
|     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|       Value *Incoming = PN->getIncomingValue(i);
 | |
|       // If the incoming value is undef then skip it.  Note that while we could
 | |
|       // skip the value if it is equal to the phi node itself we choose not to
 | |
|       // because that would break the rule that constant folding only applies if
 | |
|       // all operands are constants.
 | |
|       if (isa<UndefValue>(Incoming))
 | |
|         continue;
 | |
|       // If the incoming value is not a constant, or is a different constant to
 | |
|       // the one we saw previously, then give up.
 | |
|       Constant *C = dyn_cast<Constant>(Incoming);
 | |
|       if (!C || (CommonValue && C != CommonValue))
 | |
|         return 0;
 | |
|       CommonValue = C;
 | |
|     }
 | |
| 
 | |
|     // If we reach here, all incoming values are the same constant or undef.
 | |
|     return CommonValue ? CommonValue : UndefValue::get(PN->getType());
 | |
|   }
 | |
| 
 | |
|   // Scan the operand list, checking to see if they are all constants, if so,
 | |
|   // hand off to ConstantFoldInstOperands.
 | |
|   SmallVector<Constant*, 8> Ops;
 | |
|   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
 | |
|     if (Constant *Op = dyn_cast<Constant>(*i))
 | |
|       Ops.push_back(Op);
 | |
|     else
 | |
|       return 0;  // All operands not constant!
 | |
| 
 | |
|   if (const CmpInst *CI = dyn_cast<CmpInst>(I))
 | |
|     return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
 | |
|                                            TD, TLI);
 | |
|   
 | |
|   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
 | |
|     return ConstantFoldLoadInst(LI, TD);
 | |
| 
 | |
|   if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I))
 | |
|     return ConstantExpr::getInsertValue(
 | |
|                                 cast<Constant>(IVI->getAggregateOperand()),
 | |
|                                 cast<Constant>(IVI->getInsertedValueOperand()),
 | |
|                                 IVI->getIndices());
 | |
| 
 | |
|   if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I))
 | |
|     return ConstantExpr::getExtractValue(
 | |
|                                     cast<Constant>(EVI->getAggregateOperand()),
 | |
|                                     EVI->getIndices());
 | |
| 
 | |
|   return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, TD, TLI);
 | |
| }
 | |
| 
 | |
| /// ConstantFoldConstantExpression - Attempt to fold the constant expression
 | |
| /// using the specified TargetData.  If successful, the constant result is
 | |
| /// result is returned, if not, null is returned.
 | |
| Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
 | |
|                                                const TargetData *TD,
 | |
|                                                const TargetLibraryInfo *TLI) {
 | |
|   SmallVector<Constant*, 8> Ops;
 | |
|   for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end();
 | |
|        i != e; ++i) {
 | |
|     Constant *NewC = cast<Constant>(*i);
 | |
|     // Recursively fold the ConstantExpr's operands.
 | |
|     if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC))
 | |
|       NewC = ConstantFoldConstantExpression(NewCE, TD, TLI);
 | |
|     Ops.push_back(NewC);
 | |
|   }
 | |
| 
 | |
|   if (CE->isCompare())
 | |
|     return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
 | |
|                                            TD, TLI);
 | |
|   return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), Ops, TD, TLI);
 | |
| }
 | |
| 
 | |
| /// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
 | |
| /// specified opcode and operands.  If successful, the constant result is
 | |
| /// returned, if not, null is returned.  Note that this function can fail when
 | |
| /// attempting to fold instructions like loads and stores, which have no
 | |
| /// constant expression form.
 | |
| ///
 | |
| /// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
 | |
| /// information, due to only being passed an opcode and operands. Constant
 | |
| /// folding using this function strips this information.
 | |
| ///
 | |
| Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy, 
 | |
|                                          ArrayRef<Constant *> Ops,
 | |
|                                          const TargetData *TD,
 | |
|                                          const TargetLibraryInfo *TLI) {                                         
 | |
|   // Handle easy binops first.
 | |
|   if (Instruction::isBinaryOp(Opcode)) {
 | |
|     if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
 | |
|       if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
 | |
|         return C;
 | |
|     
 | |
|     return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
 | |
|   }
 | |
|   
 | |
|   switch (Opcode) {
 | |
|   default: return 0;
 | |
|   case Instruction::ICmp:
 | |
|   case Instruction::FCmp: llvm_unreachable("Invalid for compares");
 | |
|   case Instruction::Call:
 | |
|     if (Function *F = dyn_cast<Function>(Ops.back()))
 | |
|       if (canConstantFoldCallTo(F))
 | |
|         return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1), TLI);
 | |
|     return 0;
 | |
|   case Instruction::PtrToInt:
 | |
|     // If the input is a inttoptr, eliminate the pair.  This requires knowing
 | |
|     // the width of a pointer, so it can't be done in ConstantExpr::getCast.
 | |
|     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
 | |
|       if (TD && CE->getOpcode() == Instruction::IntToPtr) {
 | |
|         Constant *Input = CE->getOperand(0);
 | |
|         unsigned InWidth = Input->getType()->getScalarSizeInBits();
 | |
|         if (TD->getPointerSizeInBits() < InWidth) {
 | |
|           Constant *Mask = 
 | |
|             ConstantInt::get(CE->getContext(), APInt::getLowBitsSet(InWidth,
 | |
|                                                   TD->getPointerSizeInBits()));
 | |
|           Input = ConstantExpr::getAnd(Input, Mask);
 | |
|         }
 | |
|         // Do a zext or trunc to get to the dest size.
 | |
|         return ConstantExpr::getIntegerCast(Input, DestTy, false);
 | |
|       }
 | |
|     }
 | |
|     return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
 | |
|   case Instruction::IntToPtr:
 | |
|     // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
 | |
|     // the int size is >= the ptr size.  This requires knowing the width of a
 | |
|     // pointer, so it can't be done in ConstantExpr::getCast.
 | |
|     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
 | |
|       if (TD &&
 | |
|           TD->getPointerSizeInBits() <= CE->getType()->getScalarSizeInBits() &&
 | |
|           CE->getOpcode() == Instruction::PtrToInt)
 | |
|         return FoldBitCast(CE->getOperand(0), DestTy, *TD);
 | |
| 
 | |
|     return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
 | |
|   case Instruction::Trunc:
 | |
|   case Instruction::ZExt:
 | |
|   case Instruction::SExt:
 | |
|   case Instruction::FPTrunc:
 | |
|   case Instruction::FPExt:
 | |
|   case Instruction::UIToFP:
 | |
|   case Instruction::SIToFP:
 | |
|   case Instruction::FPToUI:
 | |
|   case Instruction::FPToSI:
 | |
|       return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
 | |
|   case Instruction::BitCast:
 | |
|     if (TD)
 | |
|       return FoldBitCast(Ops[0], DestTy, *TD);
 | |
|     return ConstantExpr::getBitCast(Ops[0], DestTy);
 | |
|   case Instruction::Select:
 | |
|     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
 | |
|   case Instruction::ExtractElement:
 | |
|     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
 | |
|   case Instruction::InsertElement:
 | |
|     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
 | |
|   case Instruction::ShuffleVector:
 | |
|     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
 | |
|   case Instruction::GetElementPtr:
 | |
|     if (Constant *C = CastGEPIndices(Ops, DestTy, TD, TLI))
 | |
|       return C;
 | |
|     if (Constant *C = SymbolicallyEvaluateGEP(Ops, DestTy, TD, TLI))
 | |
|       return C;
 | |
|     
 | |
|     return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
 | |
| /// instruction (icmp/fcmp) with the specified operands.  If it fails, it
 | |
| /// returns a constant expression of the specified operands.
 | |
| ///
 | |
| Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
 | |
|                                                 Constant *Ops0, Constant *Ops1, 
 | |
|                                                 const TargetData *TD,
 | |
|                                                 const TargetLibraryInfo *TLI) {
 | |
|   // fold: icmp (inttoptr x), null         -> icmp x, 0
 | |
|   // fold: icmp (ptrtoint x), 0            -> icmp x, null
 | |
|   // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
 | |
|   // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
 | |
|   //
 | |
|   // ConstantExpr::getCompare cannot do this, because it doesn't have TD
 | |
|   // around to know if bit truncation is happening.
 | |
|   if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
 | |
|     if (TD && Ops1->isNullValue()) {
 | |
|       Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
 | |
|       if (CE0->getOpcode() == Instruction::IntToPtr) {
 | |
|         // Convert the integer value to the right size to ensure we get the
 | |
|         // proper extension or truncation.
 | |
|         Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
 | |
|                                                    IntPtrTy, false);
 | |
|         Constant *Null = Constant::getNullValue(C->getType());
 | |
|         return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
 | |
|       }
 | |
|       
 | |
|       // Only do this transformation if the int is intptrty in size, otherwise
 | |
|       // there is a truncation or extension that we aren't modeling.
 | |
|       if (CE0->getOpcode() == Instruction::PtrToInt && 
 | |
|           CE0->getType() == IntPtrTy) {
 | |
|         Constant *C = CE0->getOperand(0);
 | |
|         Constant *Null = Constant::getNullValue(C->getType());
 | |
|         return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
 | |
|       if (TD && CE0->getOpcode() == CE1->getOpcode()) {
 | |
|         Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
 | |
| 
 | |
|         if (CE0->getOpcode() == Instruction::IntToPtr) {
 | |
|           // Convert the integer value to the right size to ensure we get the
 | |
|           // proper extension or truncation.
 | |
|           Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
 | |
|                                                       IntPtrTy, false);
 | |
|           Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
 | |
|                                                       IntPtrTy, false);
 | |
|           return ConstantFoldCompareInstOperands(Predicate, C0, C1, TD, TLI);
 | |
|         }
 | |
| 
 | |
|         // Only do this transformation if the int is intptrty in size, otherwise
 | |
|         // there is a truncation or extension that we aren't modeling.
 | |
|         if ((CE0->getOpcode() == Instruction::PtrToInt &&
 | |
|              CE0->getType() == IntPtrTy &&
 | |
|              CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()))
 | |
|           return ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0),
 | |
|                                                  CE1->getOperand(0), TD, TLI);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
 | |
|     // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
 | |
|     if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
 | |
|         CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
 | |
|       Constant *LHS = 
 | |
|         ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,
 | |
|                                         TD, TLI);
 | |
|       Constant *RHS = 
 | |
|         ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,
 | |
|                                         TD, TLI);
 | |
|       unsigned OpC = 
 | |
|         Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
 | |
|       Constant *Ops[] = { LHS, RHS };
 | |
|       return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, TD, TLI);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
 | |
| /// getelementptr constantexpr, return the constant value being addressed by the
 | |
| /// constant expression, or null if something is funny and we can't decide.
 | |
| Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C, 
 | |
|                                                        ConstantExpr *CE) {
 | |
|   if (!CE->getOperand(1)->isNullValue())
 | |
|     return 0;  // Do not allow stepping over the value!
 | |
| 
 | |
|   // Loop over all of the operands, tracking down which value we are
 | |
|   // addressing.
 | |
|   for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
 | |
|     C = C->getAggregateElement(CE->getOperand(i));
 | |
|     if (C == 0) return 0;
 | |
|   }
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| /// ConstantFoldLoadThroughGEPIndices - Given a constant and getelementptr
 | |
| /// indices (with an *implied* zero pointer index that is not in the list),
 | |
| /// return the constant value being addressed by a virtual load, or null if
 | |
| /// something is funny and we can't decide.
 | |
| Constant *llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
 | |
|                                                   ArrayRef<Constant*> Indices) {
 | |
|   // Loop over all of the operands, tracking down which value we are
 | |
|   // addressing.
 | |
|   for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
 | |
|     C = C->getAggregateElement(Indices[i]);
 | |
|     if (C == 0) return 0;
 | |
|   }
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Constant Folding for Calls
 | |
| //
 | |
| 
 | |
| /// canConstantFoldCallTo - Return true if its even possible to fold a call to
 | |
| /// the specified function.
 | |
| bool
 | |
| llvm::canConstantFoldCallTo(const Function *F) {
 | |
|   switch (F->getIntrinsicID()) {
 | |
|   case Intrinsic::sqrt:
 | |
|   case Intrinsic::pow:
 | |
|   case Intrinsic::powi:
 | |
|   case Intrinsic::bswap:
 | |
|   case Intrinsic::ctpop:
 | |
|   case Intrinsic::ctlz:
 | |
|   case Intrinsic::cttz:
 | |
|   case Intrinsic::sadd_with_overflow:
 | |
|   case Intrinsic::uadd_with_overflow:
 | |
|   case Intrinsic::ssub_with_overflow:
 | |
|   case Intrinsic::usub_with_overflow:
 | |
|   case Intrinsic::smul_with_overflow:
 | |
|   case Intrinsic::umul_with_overflow:
 | |
|   case Intrinsic::convert_from_fp16:
 | |
|   case Intrinsic::convert_to_fp16:
 | |
|   case Intrinsic::x86_sse_cvtss2si:
 | |
|   case Intrinsic::x86_sse_cvtss2si64:
 | |
|   case Intrinsic::x86_sse_cvttss2si:
 | |
|   case Intrinsic::x86_sse_cvttss2si64:
 | |
|   case Intrinsic::x86_sse2_cvtsd2si:
 | |
|   case Intrinsic::x86_sse2_cvtsd2si64:
 | |
|   case Intrinsic::x86_sse2_cvttsd2si:
 | |
|   case Intrinsic::x86_sse2_cvttsd2si64:
 | |
|     return true;
 | |
|   default:
 | |
|     return false;
 | |
|   case 0: break;
 | |
|   }
 | |
| 
 | |
|   if (!F->hasName()) return false;
 | |
|   StringRef Name = F->getName();
 | |
|   
 | |
|   // In these cases, the check of the length is required.  We don't want to
 | |
|   // return true for a name like "cos\0blah" which strcmp would return equal to
 | |
|   // "cos", but has length 8.
 | |
|   switch (Name[0]) {
 | |
|   default: return false;
 | |
|   case 'a':
 | |
|     return Name == "acos" || Name == "asin" || 
 | |
|       Name == "atan" || Name == "atan2";
 | |
|   case 'c':
 | |
|     return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
 | |
|   case 'e':
 | |
|     return Name == "exp" || Name == "exp2";
 | |
|   case 'f':
 | |
|     return Name == "fabs" || Name == "fmod" || Name == "floor";
 | |
|   case 'l':
 | |
|     return Name == "log" || Name == "log10";
 | |
|   case 'p':
 | |
|     return Name == "pow";
 | |
|   case 's':
 | |
|     return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
 | |
|       Name == "sinf" || Name == "sqrtf";
 | |
|   case 't':
 | |
|     return Name == "tan" || Name == "tanh";
 | |
|   }
 | |
| }
 | |
| 
 | |
| static Constant *ConstantFoldFP(double (*NativeFP)(double), double V, 
 | |
|                                 Type *Ty) {
 | |
|   sys::llvm_fenv_clearexcept();
 | |
|   V = NativeFP(V);
 | |
|   if (sys::llvm_fenv_testexcept()) {
 | |
|     sys::llvm_fenv_clearexcept();
 | |
|     return 0;
 | |
|   }
 | |
|   
 | |
|   if (Ty->isFloatTy())
 | |
|     return ConstantFP::get(Ty->getContext(), APFloat((float)V));
 | |
|   if (Ty->isDoubleTy())
 | |
|     return ConstantFP::get(Ty->getContext(), APFloat(V));
 | |
|   llvm_unreachable("Can only constant fold float/double");
 | |
| }
 | |
| 
 | |
| static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
 | |
|                                       double V, double W, Type *Ty) {
 | |
|   sys::llvm_fenv_clearexcept();
 | |
|   V = NativeFP(V, W);
 | |
|   if (sys::llvm_fenv_testexcept()) {
 | |
|     sys::llvm_fenv_clearexcept();
 | |
|     return 0;
 | |
|   }
 | |
|   
 | |
|   if (Ty->isFloatTy())
 | |
|     return ConstantFP::get(Ty->getContext(), APFloat((float)V));
 | |
|   if (Ty->isDoubleTy())
 | |
|     return ConstantFP::get(Ty->getContext(), APFloat(V));
 | |
|   llvm_unreachable("Can only constant fold float/double");
 | |
| }
 | |
| 
 | |
| /// ConstantFoldConvertToInt - Attempt to an SSE floating point to integer
 | |
| /// conversion of a constant floating point. If roundTowardZero is false, the
 | |
| /// default IEEE rounding is used (toward nearest, ties to even). This matches
 | |
| /// the behavior of the non-truncating SSE instructions in the default rounding
 | |
| /// mode. The desired integer type Ty is used to select how many bits are
 | |
| /// available for the result. Returns null if the conversion cannot be
 | |
| /// performed, otherwise returns the Constant value resulting from the
 | |
| /// conversion.
 | |
| static Constant *ConstantFoldConvertToInt(const APFloat &Val,
 | |
|                                           bool roundTowardZero, Type *Ty) {
 | |
|   // All of these conversion intrinsics form an integer of at most 64bits.
 | |
|   unsigned ResultWidth = cast<IntegerType>(Ty)->getBitWidth();
 | |
|   assert(ResultWidth <= 64 &&
 | |
|          "Can only constant fold conversions to 64 and 32 bit ints");
 | |
| 
 | |
|   uint64_t UIntVal;
 | |
|   bool isExact = false;
 | |
|   APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
 | |
|                                               : APFloat::rmNearestTiesToEven;
 | |
|   APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
 | |
|                                                   /*isSigned=*/true, mode,
 | |
|                                                   &isExact);
 | |
|   if (status != APFloat::opOK && status != APFloat::opInexact)
 | |
|     return 0;
 | |
|   return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
 | |
| }
 | |
| 
 | |
| /// ConstantFoldCall - Attempt to constant fold a call to the specified function
 | |
| /// with the specified arguments, returning null if unsuccessful.
 | |
| Constant *
 | |
| llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
 | |
|                        const TargetLibraryInfo *TLI) {
 | |
|   if (!F->hasName()) return 0;
 | |
|   StringRef Name = F->getName();
 | |
| 
 | |
|   Type *Ty = F->getReturnType();
 | |
|   if (Operands.size() == 1) {
 | |
|     if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
 | |
|       if (F->getIntrinsicID() == Intrinsic::convert_to_fp16) {
 | |
|         APFloat Val(Op->getValueAPF());
 | |
| 
 | |
|         bool lost = false;
 | |
|         Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
 | |
| 
 | |
|         return ConstantInt::get(F->getContext(), Val.bitcastToAPInt());
 | |
|       }
 | |
|       if (!TLI)
 | |
|         return 0;
 | |
| 
 | |
|       if (!Ty->isFloatTy() && !Ty->isDoubleTy())
 | |
|         return 0;
 | |
| 
 | |
|       /// We only fold functions with finite arguments. Folding NaN and inf is
 | |
|       /// likely to be aborted with an exception anyway, and some host libms
 | |
|       /// have known errors raising exceptions.
 | |
|       if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
 | |
|         return 0;
 | |
| 
 | |
|       /// Currently APFloat versions of these functions do not exist, so we use
 | |
|       /// the host native double versions.  Float versions are not called
 | |
|       /// directly but for all these it is true (float)(f((double)arg)) ==
 | |
|       /// f(arg).  Long double not supported yet.
 | |
|       double V = Ty->isFloatTy() ? (double)Op->getValueAPF().convertToFloat() :
 | |
|                                      Op->getValueAPF().convertToDouble();
 | |
|       switch (Name[0]) {
 | |
|       case 'a':
 | |
|         if (Name == "acos" && TLI->has(LibFunc::acos))
 | |
|           return ConstantFoldFP(acos, V, Ty);
 | |
|         else if (Name == "asin" && TLI->has(LibFunc::asin))
 | |
|           return ConstantFoldFP(asin, V, Ty);
 | |
|         else if (Name == "atan" && TLI->has(LibFunc::atan))
 | |
|           return ConstantFoldFP(atan, V, Ty);
 | |
|         break;
 | |
|       case 'c':
 | |
|         if (Name == "ceil" && TLI->has(LibFunc::ceil))
 | |
|           return ConstantFoldFP(ceil, V, Ty);
 | |
|         else if (Name == "cos" && TLI->has(LibFunc::cos))
 | |
|           return ConstantFoldFP(cos, V, Ty);
 | |
|         else if (Name == "cosh" && TLI->has(LibFunc::cosh))
 | |
|           return ConstantFoldFP(cosh, V, Ty);
 | |
|         else if (Name == "cosf" && TLI->has(LibFunc::cosf))
 | |
|           return ConstantFoldFP(cos, V, Ty);
 | |
|         break;
 | |
|       case 'e':
 | |
|         if (Name == "exp" && TLI->has(LibFunc::exp))
 | |
|           return ConstantFoldFP(exp, V, Ty);
 | |
|   
 | |
|         if (Name == "exp2" && TLI->has(LibFunc::exp2)) {
 | |
|           // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
 | |
|           // C99 library.
 | |
|           return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
 | |
|         }
 | |
|         break;
 | |
|       case 'f':
 | |
|         if (Name == "fabs" && TLI->has(LibFunc::fabs))
 | |
|           return ConstantFoldFP(fabs, V, Ty);
 | |
|         else if (Name == "floor" && TLI->has(LibFunc::floor))
 | |
|           return ConstantFoldFP(floor, V, Ty);
 | |
|         break;
 | |
|       case 'l':
 | |
|         if (Name == "log" && V > 0 && TLI->has(LibFunc::log))
 | |
|           return ConstantFoldFP(log, V, Ty);
 | |
|         else if (Name == "log10" && V > 0 && TLI->has(LibFunc::log10))
 | |
|           return ConstantFoldFP(log10, V, Ty);
 | |
|         else if (F->getIntrinsicID() == Intrinsic::sqrt &&
 | |
|                  (Ty->isFloatTy() || Ty->isDoubleTy())) {
 | |
|           if (V >= -0.0)
 | |
|             return ConstantFoldFP(sqrt, V, Ty);
 | |
|           else // Undefined
 | |
|             return Constant::getNullValue(Ty);
 | |
|         }
 | |
|         break;
 | |
|       case 's':
 | |
|         if (Name == "sin" && TLI->has(LibFunc::sin))
 | |
|           return ConstantFoldFP(sin, V, Ty);
 | |
|         else if (Name == "sinh" && TLI->has(LibFunc::sinh))
 | |
|           return ConstantFoldFP(sinh, V, Ty);
 | |
|         else if (Name == "sqrt" && V >= 0 && TLI->has(LibFunc::sqrt))
 | |
|           return ConstantFoldFP(sqrt, V, Ty);
 | |
|         else if (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc::sqrtf))
 | |
|           return ConstantFoldFP(sqrt, V, Ty);
 | |
|         else if (Name == "sinf" && TLI->has(LibFunc::sinf))
 | |
|           return ConstantFoldFP(sin, V, Ty);
 | |
|         break;
 | |
|       case 't':
 | |
|         if (Name == "tan" && TLI->has(LibFunc::tan))
 | |
|           return ConstantFoldFP(tan, V, Ty);
 | |
|         else if (Name == "tanh" && TLI->has(LibFunc::tanh))
 | |
|           return ConstantFoldFP(tanh, V, Ty);
 | |
|         break;
 | |
|       default:
 | |
|         break;
 | |
|       }
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
 | |
|       switch (F->getIntrinsicID()) {
 | |
|       case Intrinsic::bswap:
 | |
|         return ConstantInt::get(F->getContext(), Op->getValue().byteSwap());
 | |
|       case Intrinsic::ctpop:
 | |
|         return ConstantInt::get(Ty, Op->getValue().countPopulation());
 | |
|       case Intrinsic::convert_from_fp16: {
 | |
|         APFloat Val(Op->getValue());
 | |
| 
 | |
|         bool lost = false;
 | |
|         APFloat::opStatus status =
 | |
|           Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
 | |
| 
 | |
|         // Conversion is always precise.
 | |
|         (void)status;
 | |
|         assert(status == APFloat::opOK && !lost &&
 | |
|                "Precision lost during fp16 constfolding");
 | |
| 
 | |
|         return ConstantFP::get(F->getContext(), Val);
 | |
|       }
 | |
|       default:
 | |
|         return 0;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Support ConstantVector in case we have an Undef in the top.
 | |
|     if (isa<ConstantVector>(Operands[0]) || 
 | |
|         isa<ConstantDataVector>(Operands[0])) {
 | |
|       Constant *Op = cast<Constant>(Operands[0]);
 | |
|       switch (F->getIntrinsicID()) {
 | |
|       default: break;
 | |
|       case Intrinsic::x86_sse_cvtss2si:
 | |
|       case Intrinsic::x86_sse_cvtss2si64:
 | |
|       case Intrinsic::x86_sse2_cvtsd2si:
 | |
|       case Intrinsic::x86_sse2_cvtsd2si64:
 | |
|         if (ConstantFP *FPOp =
 | |
|               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
 | |
|           return ConstantFoldConvertToInt(FPOp->getValueAPF(),
 | |
|                                           /*roundTowardZero=*/false, Ty);
 | |
|       case Intrinsic::x86_sse_cvttss2si:
 | |
|       case Intrinsic::x86_sse_cvttss2si64:
 | |
|       case Intrinsic::x86_sse2_cvttsd2si:
 | |
|       case Intrinsic::x86_sse2_cvttsd2si64:
 | |
|         if (ConstantFP *FPOp =
 | |
|               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
 | |
|           return ConstantFoldConvertToInt(FPOp->getValueAPF(), 
 | |
|                                           /*roundTowardZero=*/true, Ty);
 | |
|       }
 | |
|     }
 | |
|   
 | |
|     if (isa<UndefValue>(Operands[0])) {
 | |
|       if (F->getIntrinsicID() == Intrinsic::bswap)
 | |
|         return Operands[0];
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   if (Operands.size() == 2) {
 | |
|     if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
 | |
|       if (!Ty->isFloatTy() && !Ty->isDoubleTy())
 | |
|         return 0;
 | |
|       double Op1V = Ty->isFloatTy() ? 
 | |
|                       (double)Op1->getValueAPF().convertToFloat() :
 | |
|                       Op1->getValueAPF().convertToDouble();
 | |
|       if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
 | |
|         if (Op2->getType() != Op1->getType())
 | |
|           return 0;
 | |
| 
 | |
|         double Op2V = Ty->isFloatTy() ? 
 | |
|                       (double)Op2->getValueAPF().convertToFloat():
 | |
|                       Op2->getValueAPF().convertToDouble();
 | |
| 
 | |
|         if (F->getIntrinsicID() == Intrinsic::pow) {
 | |
|           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
 | |
|         }
 | |
|         if (!TLI)
 | |
|           return 0;
 | |
|         if (Name == "pow" && TLI->has(LibFunc::pow))
 | |
|           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
 | |
|         if (Name == "fmod" && TLI->has(LibFunc::fmod))
 | |
|           return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
 | |
|         if (Name == "atan2" && TLI->has(LibFunc::atan2))
 | |
|           return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
 | |
|       } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
 | |
|         if (F->getIntrinsicID() == Intrinsic::powi && Ty->isFloatTy())
 | |
|           return ConstantFP::get(F->getContext(),
 | |
|                                  APFloat((float)std::pow((float)Op1V,
 | |
|                                                  (int)Op2C->getZExtValue())));
 | |
|         if (F->getIntrinsicID() == Intrinsic::powi && Ty->isDoubleTy())
 | |
|           return ConstantFP::get(F->getContext(),
 | |
|                                  APFloat((double)std::pow((double)Op1V,
 | |
|                                                    (int)Op2C->getZExtValue())));
 | |
|       }
 | |
|       return 0;
 | |
|     }
 | |
|     
 | |
|     if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
 | |
|       if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
 | |
|         switch (F->getIntrinsicID()) {
 | |
|         default: break;
 | |
|         case Intrinsic::sadd_with_overflow:
 | |
|         case Intrinsic::uadd_with_overflow:
 | |
|         case Intrinsic::ssub_with_overflow:
 | |
|         case Intrinsic::usub_with_overflow:
 | |
|         case Intrinsic::smul_with_overflow:
 | |
|         case Intrinsic::umul_with_overflow: {
 | |
|           APInt Res;
 | |
|           bool Overflow;
 | |
|           switch (F->getIntrinsicID()) {
 | |
|           default: llvm_unreachable("Invalid case");
 | |
|           case Intrinsic::sadd_with_overflow:
 | |
|             Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
 | |
|             break;
 | |
|           case Intrinsic::uadd_with_overflow:
 | |
|             Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
 | |
|             break;
 | |
|           case Intrinsic::ssub_with_overflow:
 | |
|             Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
 | |
|             break;
 | |
|           case Intrinsic::usub_with_overflow:
 | |
|             Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
 | |
|             break;
 | |
|           case Intrinsic::smul_with_overflow:
 | |
|             Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
 | |
|             break;
 | |
|           case Intrinsic::umul_with_overflow:
 | |
|             Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
 | |
|             break;
 | |
|           }
 | |
|           Constant *Ops[] = {
 | |
|             ConstantInt::get(F->getContext(), Res),
 | |
|             ConstantInt::get(Type::getInt1Ty(F->getContext()), Overflow)
 | |
|           };
 | |
|           return ConstantStruct::get(cast<StructType>(F->getReturnType()), Ops);
 | |
|         }
 | |
|         case Intrinsic::cttz:
 | |
|           // FIXME: This should check for Op2 == 1, and become unreachable if
 | |
|           // Op1 == 0.
 | |
|           return ConstantInt::get(Ty, Op1->getValue().countTrailingZeros());
 | |
|         case Intrinsic::ctlz:
 | |
|           // FIXME: This should check for Op2 == 1, and become unreachable if
 | |
|           // Op1 == 0.
 | |
|           return ConstantInt::get(Ty, Op1->getValue().countLeadingZeros());
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       return 0;
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
|   return 0;
 | |
| }
 |