mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	from ModulePass. Instead of implementing Pass::run, then should implement ModulePass::runOnModule. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@16436 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			260 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			260 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- InlineSimple.cpp - Code to perform simple function inlining --------===//
 | 
						|
// 
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
// 
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements bottom-up inlining of functions into callees.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "Inliner.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/Type.h"
 | 
						|
#include "llvm/Support/CallSite.h"
 | 
						|
#include "llvm/Transforms/IPO.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct ArgInfo {
 | 
						|
    unsigned ConstantWeight;
 | 
						|
    unsigned AllocaWeight;
 | 
						|
 | 
						|
    ArgInfo(unsigned CWeight, unsigned AWeight)
 | 
						|
      : ConstantWeight(CWeight), AllocaWeight(AWeight) {}
 | 
						|
  };
 | 
						|
 | 
						|
  // FunctionInfo - For each function, calculate the size of it in blocks and
 | 
						|
  // instructions.
 | 
						|
  struct FunctionInfo {
 | 
						|
    // HasAllocas - Keep track of whether or not a function contains an alloca
 | 
						|
    // instruction that is not in the entry block of the function.  Inlining
 | 
						|
    // this call could cause us to blow out the stack, because the stack memory
 | 
						|
    // would never be released.
 | 
						|
    //
 | 
						|
    // FIXME: LLVM needs a way of dealloca'ing memory, which would make this
 | 
						|
    // irrelevant!
 | 
						|
    //
 | 
						|
    bool HasAllocas;
 | 
						|
 | 
						|
    // NumInsts, NumBlocks - Keep track of how large each function is, which is
 | 
						|
    // used to estimate the code size cost of inlining it.
 | 
						|
    unsigned NumInsts, NumBlocks;
 | 
						|
 | 
						|
    // ArgumentWeights - Each formal argument of the function is inspected to
 | 
						|
    // see if it is used in any contexts where making it a constant or alloca
 | 
						|
    // would reduce the code size.  If so, we add some value to the argument
 | 
						|
    // entry here.
 | 
						|
    std::vector<ArgInfo> ArgumentWeights;
 | 
						|
 | 
						|
    FunctionInfo() : HasAllocas(false), NumInsts(0), NumBlocks(0) {}
 | 
						|
 | 
						|
    /// analyzeFunction - Fill in the current structure with information gleaned
 | 
						|
    /// from the specified function.
 | 
						|
    void analyzeFunction(Function *F);
 | 
						|
  };
 | 
						|
 | 
						|
  class SimpleInliner : public Inliner {
 | 
						|
    std::map<const Function*, FunctionInfo> CachedFunctionInfo;
 | 
						|
  public:
 | 
						|
    int getInlineCost(CallSite CS);
 | 
						|
  };
 | 
						|
  RegisterOpt<SimpleInliner> X("inline", "Function Integration/Inlining");
 | 
						|
}
 | 
						|
 | 
						|
ModulePass *llvm::createFunctionInliningPass() { return new SimpleInliner(); }
 | 
						|
 | 
						|
// CountCodeReductionForConstant - Figure out an approximation for how many
 | 
						|
// instructions will be constant folded if the specified value is constant.
 | 
						|
//
 | 
						|
static unsigned CountCodeReductionForConstant(Value *V) {
 | 
						|
  unsigned Reduction = 0;
 | 
						|
  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
 | 
						|
    if (isa<BranchInst>(*UI))
 | 
						|
      Reduction += 40;          // Eliminating a conditional branch is a big win
 | 
						|
    else if (SwitchInst *SI = dyn_cast<SwitchInst>(*UI))
 | 
						|
      // Eliminating a switch is a big win, proportional to the number of edges
 | 
						|
      // deleted.
 | 
						|
      Reduction += (SI->getNumSuccessors()-1) * 40;
 | 
						|
    else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
 | 
						|
      // Turning an indirect call into a direct call is a BIG win
 | 
						|
      Reduction += CI->getCalledValue() == V ? 500 : 0;
 | 
						|
    } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
 | 
						|
      // Turning an indirect call into a direct call is a BIG win
 | 
						|
      Reduction += II->getCalledValue() == V ? 500 : 0;
 | 
						|
    } else {
 | 
						|
      // Figure out if this instruction will be removed due to simple constant
 | 
						|
      // propagation.
 | 
						|
      Instruction &Inst = cast<Instruction>(**UI);
 | 
						|
      bool AllOperandsConstant = true;
 | 
						|
      for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i)
 | 
						|
        if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) {
 | 
						|
          AllOperandsConstant = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
      if (AllOperandsConstant) {
 | 
						|
        // We will get to remove this instruction...
 | 
						|
        Reduction += 7;
 | 
						|
        
 | 
						|
        // And any other instructions that use it which become constants
 | 
						|
        // themselves.
 | 
						|
        Reduction += CountCodeReductionForConstant(&Inst);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  return Reduction;
 | 
						|
}
 | 
						|
 | 
						|
// CountCodeReductionForAlloca - Figure out an approximation of how much smaller
 | 
						|
// the function will be if it is inlined into a context where an argument
 | 
						|
// becomes an alloca.
 | 
						|
//
 | 
						|
static unsigned CountCodeReductionForAlloca(Value *V) {
 | 
						|
  if (!isa<PointerType>(V->getType())) return 0;  // Not a pointer
 | 
						|
  unsigned Reduction = 0;
 | 
						|
  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
 | 
						|
    Instruction *I = cast<Instruction>(*UI);
 | 
						|
    if (isa<LoadInst>(I) || isa<StoreInst>(I))
 | 
						|
      Reduction += 10;
 | 
						|
    else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
 | 
						|
      // If the GEP has variable indices, we won't be able to do much with it.
 | 
						|
      for (Instruction::op_iterator I = GEP->op_begin()+1, E = GEP->op_end();
 | 
						|
           I != E; ++I)
 | 
						|
        if (!isa<Constant>(*I)) return 0;
 | 
						|
      Reduction += CountCodeReductionForAlloca(GEP)+15;
 | 
						|
    } else {
 | 
						|
      // If there is some other strange instruction, we're not going to be able
 | 
						|
      // to do much if we inline this.
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Reduction;
 | 
						|
}
 | 
						|
 | 
						|
/// analyzeFunction - Fill in the current structure with information gleaned
 | 
						|
/// from the specified function.
 | 
						|
void FunctionInfo::analyzeFunction(Function *F) {
 | 
						|
  unsigned NumInsts = 0, NumBlocks = 0;
 | 
						|
 | 
						|
  // Look at the size of the callee.  Each basic block counts as 20 units, and
 | 
						|
  // each instruction counts as 10.
 | 
						|
  for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
 | 
						|
    for (BasicBlock::const_iterator II = BB->begin(), E = BB->end();
 | 
						|
         II != E; ++II) {
 | 
						|
      ++NumInsts;
 | 
						|
 | 
						|
      // If there is an alloca in the body of the function, we cannot currently
 | 
						|
      // inline the function without the risk of exploding the stack.
 | 
						|
      if (isa<AllocaInst>(II) && BB != F->begin()) {
 | 
						|
        HasAllocas = true;
 | 
						|
        this->NumBlocks = this->NumInsts = 1;
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    ++NumBlocks;
 | 
						|
  }
 | 
						|
 | 
						|
  this->NumBlocks = NumBlocks;
 | 
						|
  this->NumInsts  = NumInsts;
 | 
						|
 | 
						|
  // Check out all of the arguments to the function, figuring out how much
 | 
						|
  // code can be eliminated if one of the arguments is a constant.
 | 
						|
  for (Function::aiterator I = F->abegin(), E = F->aend(); I != E; ++I)
 | 
						|
    ArgumentWeights.push_back(ArgInfo(CountCodeReductionForConstant(I),
 | 
						|
                                      CountCodeReductionForAlloca(I)));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// getInlineCost - The heuristic used to determine if we should inline the
 | 
						|
// function call or not.
 | 
						|
//
 | 
						|
int SimpleInliner::getInlineCost(CallSite CS) {
 | 
						|
  Instruction *TheCall = CS.getInstruction();
 | 
						|
  Function *Callee = CS.getCalledFunction();
 | 
						|
  const Function *Caller = TheCall->getParent()->getParent();
 | 
						|
 | 
						|
  // Don't inline a directly recursive call.
 | 
						|
  if (Caller == Callee) return 2000000000;
 | 
						|
 | 
						|
  // InlineCost - This value measures how good of an inline candidate this call
 | 
						|
  // site is to inline.  A lower inline cost make is more likely for the call to
 | 
						|
  // be inlined.  This value may go negative.
 | 
						|
  //
 | 
						|
  int InlineCost = 0;
 | 
						|
 | 
						|
  // If there is only one call of the function, and it has internal linkage,
 | 
						|
  // make it almost guaranteed to be inlined.
 | 
						|
  //
 | 
						|
  if (Callee->hasInternalLinkage() && Callee->hasOneUse())
 | 
						|
    InlineCost -= 30000;
 | 
						|
 | 
						|
  // Get information about the callee...
 | 
						|
  FunctionInfo &CalleeFI = CachedFunctionInfo[Callee];
 | 
						|
 | 
						|
  // If we haven't calculated this information yet, do so now.
 | 
						|
  if (CalleeFI.NumBlocks == 0)
 | 
						|
    CalleeFI.analyzeFunction(Callee);
 | 
						|
 | 
						|
  // Don't inline calls to functions with allocas that are not in the entry
 | 
						|
  // block of the function.
 | 
						|
  if (CalleeFI.HasAllocas)
 | 
						|
    return 2000000000;
 | 
						|
 | 
						|
  // Add to the inline quality for properties that make the call valuable to
 | 
						|
  // inline.  This includes factors that indicate that the result of inlining
 | 
						|
  // the function will be optimizable.  Currently this just looks at arguments
 | 
						|
  // passed into the function.
 | 
						|
  //
 | 
						|
  unsigned ArgNo = 0;
 | 
						|
  for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
 | 
						|
       I != E; ++I, ++ArgNo) {
 | 
						|
    // Each argument passed in has a cost at both the caller and the callee
 | 
						|
    // sides.  This favors functions that take many arguments over functions
 | 
						|
    // that take few arguments.
 | 
						|
    InlineCost -= 20;
 | 
						|
 | 
						|
    // If this is a function being passed in, it is very likely that we will be
 | 
						|
    // able to turn an indirect function call into a direct function call.
 | 
						|
    if (isa<Function>(I))
 | 
						|
      InlineCost -= 100;
 | 
						|
 | 
						|
    // If an alloca is passed in, inlining this function is likely to allow
 | 
						|
    // significant future optimization possibilities (like scalar promotion, and
 | 
						|
    // scalarization), so encourage the inlining of the function.
 | 
						|
    //
 | 
						|
    else if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
 | 
						|
      if (ArgNo < CalleeFI.ArgumentWeights.size())
 | 
						|
        InlineCost -= CalleeFI.ArgumentWeights[ArgNo].AllocaWeight;
 | 
						|
 | 
						|
    // If this is a constant being passed into the function, use the argument
 | 
						|
    // weights calculated for the callee to determine how much will be folded
 | 
						|
    // away with this information.
 | 
						|
    } else if (isa<Constant>(I)) {
 | 
						|
      if (ArgNo < CalleeFI.ArgumentWeights.size())
 | 
						|
        InlineCost -= CalleeFI.ArgumentWeights[ArgNo].ConstantWeight;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that we have considered all of the factors that make the call site more
 | 
						|
  // likely to be inlined, look at factors that make us not want to inline it.
 | 
						|
 | 
						|
  // Don't inline into something too big, which would make it bigger.  Here, we
 | 
						|
  // count each basic block as a single unit.
 | 
						|
  //
 | 
						|
  InlineCost += Caller->size()/20;
 | 
						|
 | 
						|
 | 
						|
  // Look at the size of the callee.  Each basic block counts as 20 units, and
 | 
						|
  // each instruction counts as 5.
 | 
						|
  InlineCost += CalleeFI.NumInsts*5 + CalleeFI.NumBlocks*20;
 | 
						|
  return InlineCost;
 | 
						|
}
 | 
						|
 |