mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-04 05:31:06 +00:00
d0fde30ce8
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@9903 91177308-0d34-0410-b5e6-96231b3b80d8
1300 lines
50 KiB
C++
1300 lines
50 KiB
C++
//===- InstrInfoEmitter.cpp - Generate a Instruction Set Desc. ------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This tablegen backend is responsible for emitting a description of the target
|
|
// instruction set for the code generator.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InstrSelectorEmitter.h"
|
|
#include "CodeGenWrappers.h"
|
|
#include "Record.h"
|
|
#include "Support/Debug.h"
|
|
#include "Support/StringExtras.h"
|
|
#include <set>
|
|
|
|
namespace llvm {
|
|
|
|
NodeType::ArgResultTypes NodeType::Translate(Record *R) {
|
|
const std::string &Name = R->getName();
|
|
if (Name == "DNVT_any") return Any;
|
|
if (Name == "DNVT_void") return Void;
|
|
if (Name == "DNVT_val" ) return Val;
|
|
if (Name == "DNVT_arg0") return Arg0;
|
|
if (Name == "DNVT_arg1") return Arg1;
|
|
if (Name == "DNVT_ptr" ) return Ptr;
|
|
if (Name == "DNVT_i8" ) return I8;
|
|
throw "Unknown DagNodeValType '" + Name + "'!";
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TreePatternNode implementation
|
|
//
|
|
|
|
/// getValueRecord - Returns the value of this tree node as a record. For now
|
|
/// we only allow DefInit's as our leaf values, so this is used.
|
|
Record *TreePatternNode::getValueRecord() const {
|
|
DefInit *DI = dynamic_cast<DefInit*>(getValue());
|
|
assert(DI && "Instruction Selector does not yet support non-def leaves!");
|
|
return DI->getDef();
|
|
}
|
|
|
|
|
|
// updateNodeType - Set the node type of N to VT if VT contains information. If
|
|
// N already contains a conflicting type, then throw an exception
|
|
//
|
|
bool TreePatternNode::updateNodeType(MVT::ValueType VT,
|
|
const std::string &RecName) {
|
|
if (VT == MVT::Other || getType() == VT) return false;
|
|
if (getType() == MVT::Other) {
|
|
setType(VT);
|
|
return true;
|
|
}
|
|
|
|
throw "Type inferfence contradiction found for pattern " + RecName;
|
|
}
|
|
|
|
/// InstantiateNonterminals - If this pattern refers to any nonterminals which
|
|
/// are not themselves completely resolved, clone the nonterminal and resolve it
|
|
/// with the using context we provide.
|
|
///
|
|
void TreePatternNode::InstantiateNonterminals(InstrSelectorEmitter &ISE) {
|
|
if (!isLeaf()) {
|
|
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
|
|
getChild(i)->InstantiateNonterminals(ISE);
|
|
return;
|
|
}
|
|
|
|
// If this is a leaf, it might be a reference to a nonterminal! Check now.
|
|
Record *R = getValueRecord();
|
|
if (R->isSubClassOf("Nonterminal")) {
|
|
Pattern *NT = ISE.getPattern(R);
|
|
if (!NT->isResolved()) {
|
|
// We found an unresolved nonterminal reference. Ask the ISE to clone
|
|
// it for us, then update our reference to the fresh, new, resolved,
|
|
// nonterminal.
|
|
|
|
Value = new DefInit(ISE.InstantiateNonterminal(NT, getType()));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// clone - Make a copy of this tree and all of its children.
|
|
///
|
|
TreePatternNode *TreePatternNode::clone() const {
|
|
TreePatternNode *New;
|
|
if (isLeaf()) {
|
|
New = new TreePatternNode(Value);
|
|
} else {
|
|
std::vector<std::pair<TreePatternNode*, std::string> > CChildren;
|
|
CChildren.reserve(Children.size());
|
|
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
|
|
CChildren.push_back(std::make_pair(getChild(i)->clone(),getChildName(i)));
|
|
New = new TreePatternNode(Operator, CChildren);
|
|
}
|
|
New->setType(Type);
|
|
return New;
|
|
}
|
|
|
|
std::ostream &operator<<(std::ostream &OS, const TreePatternNode &N) {
|
|
if (N.isLeaf())
|
|
return OS << N.getType() << ":" << *N.getValue();
|
|
OS << "(" << N.getType() << ":";
|
|
OS << N.getOperator()->getName();
|
|
|
|
if (N.getNumChildren() != 0) {
|
|
OS << " " << *N.getChild(0);
|
|
for (unsigned i = 1, e = N.getNumChildren(); i != e; ++i)
|
|
OS << ", " << *N.getChild(i);
|
|
}
|
|
return OS << ")";
|
|
}
|
|
|
|
void TreePatternNode::dump() const { std::cerr << *this; }
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Pattern implementation
|
|
//
|
|
|
|
// Parse the specified DagInit into a TreePattern which we can use.
|
|
//
|
|
Pattern::Pattern(PatternType pty, DagInit *RawPat, Record *TheRec,
|
|
InstrSelectorEmitter &ise)
|
|
: PTy(pty), ResultNode(0), TheRecord(TheRec), ISE(ise) {
|
|
|
|
// First, parse the pattern...
|
|
Tree = ParseTreePattern(RawPat);
|
|
|
|
// Run the type-inference engine...
|
|
InferAllTypes();
|
|
|
|
if (PTy == Instruction || PTy == Expander) {
|
|
// Check to make sure there is not any unset types in the tree pattern...
|
|
if (!isResolved()) {
|
|
std::cerr << "In pattern: " << *Tree << "\n";
|
|
error("Could not infer all types!");
|
|
}
|
|
|
|
// Check to see if we have a top-level (set) of a register.
|
|
if (Tree->getOperator()->getName() == "set") {
|
|
assert(Tree->getNumChildren() == 2 && "Set with != 2 arguments?");
|
|
if (!Tree->getChild(0)->isLeaf())
|
|
error("Arg #0 of set should be a register or register class!");
|
|
ResultNode = Tree->getChild(0);
|
|
ResultName = Tree->getChildName(0);
|
|
Tree = Tree->getChild(1);
|
|
}
|
|
}
|
|
|
|
calculateArgs(Tree, "");
|
|
}
|
|
|
|
void Pattern::error(const std::string &Msg) const {
|
|
std::string M = "In ";
|
|
switch (PTy) {
|
|
case Nonterminal: M += "nonterminal "; break;
|
|
case Instruction: M += "instruction "; break;
|
|
case Expander : M += "expander "; break;
|
|
}
|
|
throw M + TheRecord->getName() + ": " + Msg;
|
|
}
|
|
|
|
/// calculateArgs - Compute the list of all of the arguments to this pattern,
|
|
/// which are the non-void leaf nodes in this pattern.
|
|
///
|
|
void Pattern::calculateArgs(TreePatternNode *N, const std::string &Name) {
|
|
if (N->isLeaf() || N->getNumChildren() == 0) {
|
|
if (N->getType() != MVT::isVoid)
|
|
Args.push_back(std::make_pair(N, Name));
|
|
} else {
|
|
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
|
|
calculateArgs(N->getChild(i), N->getChildName(i));
|
|
}
|
|
}
|
|
|
|
/// getIntrinsicType - Check to see if the specified record has an intrinsic
|
|
/// type which should be applied to it. This infer the type of register
|
|
/// references from the register file information, for example.
|
|
///
|
|
MVT::ValueType Pattern::getIntrinsicType(Record *R) const {
|
|
// Check to see if this is a register or a register class...
|
|
if (R->isSubClassOf("RegisterClass"))
|
|
return getValueType(R->getValueAsDef("RegType"));
|
|
else if (R->isSubClassOf("Nonterminal"))
|
|
return ISE.ReadNonterminal(R)->getTree()->getType();
|
|
else if (R->isSubClassOf("Register")) {
|
|
std::cerr << "WARNING: Explicit registers not handled yet!\n";
|
|
return MVT::Other;
|
|
}
|
|
|
|
error("Unknown value used: " + R->getName());
|
|
return MVT::Other;
|
|
}
|
|
|
|
TreePatternNode *Pattern::ParseTreePattern(DagInit *Dag) {
|
|
Record *Operator = Dag->getNodeType();
|
|
|
|
if (Operator->isSubClassOf("ValueType")) {
|
|
// If the operator is a ValueType, then this must be "type cast" of a leaf
|
|
// node.
|
|
if (Dag->getNumArgs() != 1)
|
|
error("Type cast only valid for a leaf node!");
|
|
|
|
Init *Arg = Dag->getArg(0);
|
|
TreePatternNode *New;
|
|
if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) {
|
|
New = new TreePatternNode(DI);
|
|
// If it's a regclass or something else known, set the type.
|
|
New->setType(getIntrinsicType(DI->getDef()));
|
|
} else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
|
|
New = ParseTreePattern(DI);
|
|
} else {
|
|
Arg->dump();
|
|
error("Unknown leaf value for tree pattern!");
|
|
return 0;
|
|
}
|
|
|
|
// Apply the type cast...
|
|
New->updateNodeType(getValueType(Operator), TheRecord->getName());
|
|
return New;
|
|
}
|
|
|
|
if (!ISE.getNodeTypes().count(Operator))
|
|
error("Unrecognized node '" + Operator->getName() + "'!");
|
|
|
|
std::vector<std::pair<TreePatternNode*, std::string> > Children;
|
|
|
|
for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) {
|
|
Init *Arg = Dag->getArg(i);
|
|
if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
|
|
Children.push_back(std::make_pair(ParseTreePattern(DI),
|
|
Dag->getArgName(i)));
|
|
} else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) {
|
|
Record *R = DefI->getDef();
|
|
// Direct reference to a leaf DagNode? Turn it into a DagNode if its own.
|
|
if (R->isSubClassOf("DagNode")) {
|
|
Dag->setArg(i, new DagInit(R,
|
|
std::vector<std::pair<Init*, std::string> >()));
|
|
--i; // Revisit this node...
|
|
} else {
|
|
Children.push_back(std::make_pair(new TreePatternNode(DefI),
|
|
Dag->getArgName(i)));
|
|
// If it's a regclass or something else known, set the type.
|
|
Children.back().first->setType(getIntrinsicType(R));
|
|
}
|
|
} else {
|
|
Arg->dump();
|
|
error("Unknown leaf value for tree pattern!");
|
|
}
|
|
}
|
|
|
|
return new TreePatternNode(Operator, Children);
|
|
}
|
|
|
|
void Pattern::InferAllTypes() {
|
|
bool MadeChange, AnyUnset;
|
|
do {
|
|
MadeChange = false;
|
|
AnyUnset = InferTypes(Tree, MadeChange);
|
|
} while ((AnyUnset || MadeChange) && !(AnyUnset && !MadeChange));
|
|
Resolved = !AnyUnset;
|
|
}
|
|
|
|
|
|
// InferTypes - Perform type inference on the tree, returning true if there
|
|
// are any remaining untyped nodes and setting MadeChange if any changes were
|
|
// made.
|
|
bool Pattern::InferTypes(TreePatternNode *N, bool &MadeChange) {
|
|
if (N->isLeaf()) return N->getType() == MVT::Other;
|
|
|
|
bool AnyUnset = false;
|
|
Record *Operator = N->getOperator();
|
|
const NodeType &NT = ISE.getNodeType(Operator);
|
|
|
|
// Check to see if we can infer anything about the argument types from the
|
|
// return types...
|
|
if (N->getNumChildren() != NT.ArgTypes.size())
|
|
error("Incorrect number of children for " + Operator->getName() + " node!");
|
|
|
|
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
|
|
TreePatternNode *Child = N->getChild(i);
|
|
AnyUnset |= InferTypes(Child, MadeChange);
|
|
|
|
switch (NT.ArgTypes[i]) {
|
|
case NodeType::Any: break;
|
|
case NodeType::I8:
|
|
MadeChange |= Child->updateNodeType(MVT::i1, TheRecord->getName());
|
|
break;
|
|
case NodeType::Arg0:
|
|
MadeChange |= Child->updateNodeType(N->getChild(0)->getType(),
|
|
TheRecord->getName());
|
|
break;
|
|
case NodeType::Arg1:
|
|
MadeChange |= Child->updateNodeType(N->getChild(1)->getType(),
|
|
TheRecord->getName());
|
|
break;
|
|
case NodeType::Val:
|
|
if (Child->getType() == MVT::isVoid)
|
|
error("Inferred a void node in an illegal place!");
|
|
break;
|
|
case NodeType::Ptr:
|
|
MadeChange |= Child->updateNodeType(ISE.getTarget().getPointerType(),
|
|
TheRecord->getName());
|
|
break;
|
|
case NodeType::Void:
|
|
MadeChange |= Child->updateNodeType(MVT::isVoid, TheRecord->getName());
|
|
break;
|
|
default: assert(0 && "Invalid argument ArgType!");
|
|
}
|
|
}
|
|
|
|
// See if we can infer anything about the return type now...
|
|
switch (NT.ResultType) {
|
|
case NodeType::Any: break;
|
|
case NodeType::Void:
|
|
MadeChange |= N->updateNodeType(MVT::isVoid, TheRecord->getName());
|
|
break;
|
|
case NodeType::I8:
|
|
MadeChange |= N->updateNodeType(MVT::i1, TheRecord->getName());
|
|
break;
|
|
case NodeType::Arg0:
|
|
MadeChange |= N->updateNodeType(N->getChild(0)->getType(),
|
|
TheRecord->getName());
|
|
break;
|
|
case NodeType::Arg1:
|
|
MadeChange |= N->updateNodeType(N->getChild(1)->getType(),
|
|
TheRecord->getName());
|
|
break;
|
|
case NodeType::Ptr:
|
|
MadeChange |= N->updateNodeType(ISE.getTarget().getPointerType(),
|
|
TheRecord->getName());
|
|
break;
|
|
case NodeType::Val:
|
|
if (N->getType() == MVT::isVoid)
|
|
error("Inferred a void node in an illegal place!");
|
|
break;
|
|
default:
|
|
assert(0 && "Unhandled type constraint!");
|
|
break;
|
|
}
|
|
|
|
return AnyUnset | N->getType() == MVT::Other;
|
|
}
|
|
|
|
/// clone - This method is used to make an exact copy of the current pattern,
|
|
/// then change the "TheRecord" instance variable to the specified record.
|
|
///
|
|
Pattern *Pattern::clone(Record *R) const {
|
|
assert(PTy == Nonterminal && "Can only clone nonterminals");
|
|
return new Pattern(Tree->clone(), R, Resolved, ISE);
|
|
}
|
|
|
|
|
|
|
|
std::ostream &operator<<(std::ostream &OS, const Pattern &P) {
|
|
switch (P.getPatternType()) {
|
|
case Pattern::Nonterminal: OS << "Nonterminal pattern "; break;
|
|
case Pattern::Instruction: OS << "Instruction pattern "; break;
|
|
case Pattern::Expander: OS << "Expander pattern "; break;
|
|
}
|
|
|
|
OS << P.getRecord()->getName() << ":\t";
|
|
|
|
if (Record *Result = P.getResult())
|
|
OS << Result->getName() << " = ";
|
|
OS << *P.getTree();
|
|
|
|
if (!P.isResolved())
|
|
OS << " [not completely resolved]";
|
|
return OS;
|
|
}
|
|
|
|
void Pattern::dump() const { std::cerr << *this; }
|
|
|
|
|
|
|
|
/// getSlotName - If this is a leaf node, return the slot name that the operand
|
|
/// will update.
|
|
std::string Pattern::getSlotName() const {
|
|
if (getPatternType() == Pattern::Nonterminal) {
|
|
// Just use the nonterminal name, which will already include the type if
|
|
// it has been cloned.
|
|
return getRecord()->getName();
|
|
} else {
|
|
std::string SlotName;
|
|
if (getResult())
|
|
SlotName = getResult()->getName()+"_";
|
|
else
|
|
SlotName = "Void_";
|
|
return SlotName + getName(getTree()->getType());
|
|
}
|
|
}
|
|
|
|
/// getSlotName - If this is a leaf node, return the slot name that the
|
|
/// operand will update.
|
|
std::string Pattern::getSlotName(Record *R) {
|
|
if (R->isSubClassOf("Nonterminal")) {
|
|
// Just use the nonterminal name, which will already include the type if
|
|
// it has been cloned.
|
|
return R->getName();
|
|
} else if (R->isSubClassOf("RegisterClass")) {
|
|
MVT::ValueType Ty = getValueType(R->getValueAsDef("RegType"));
|
|
return R->getName() + "_" + getName(Ty);
|
|
} else {
|
|
assert(0 && "Don't know how to get a slot name for this!");
|
|
}
|
|
return "";
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PatternOrganizer implementation
|
|
//
|
|
|
|
/// addPattern - Add the specified pattern to the appropriate location in the
|
|
/// collection.
|
|
void PatternOrganizer::addPattern(Pattern *P) {
|
|
NodesForSlot &Nodes = AllPatterns[P->getSlotName()];
|
|
if (!P->getTree()->isLeaf())
|
|
Nodes[P->getTree()->getOperator()].push_back(P);
|
|
else {
|
|
// Right now we only support DefInit's with node types...
|
|
Nodes[P->getTree()->getValueRecord()].push_back(P);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// InstrSelectorEmitter implementation
|
|
//
|
|
|
|
/// ReadNodeTypes - Read in all of the node types in the current RecordKeeper,
|
|
/// turning them into the more accessible NodeTypes data structure.
|
|
///
|
|
void InstrSelectorEmitter::ReadNodeTypes() {
|
|
std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("DagNode");
|
|
DEBUG(std::cerr << "Getting node types: ");
|
|
for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
|
|
Record *Node = Nodes[i];
|
|
|
|
// Translate the return type...
|
|
NodeType::ArgResultTypes RetTy =
|
|
NodeType::Translate(Node->getValueAsDef("RetType"));
|
|
|
|
// Translate the arguments...
|
|
ListInit *Args = Node->getValueAsListInit("ArgTypes");
|
|
std::vector<NodeType::ArgResultTypes> ArgTypes;
|
|
|
|
for (unsigned a = 0, e = Args->getSize(); a != e; ++a) {
|
|
if (DefInit *DI = dynamic_cast<DefInit*>(Args->getElement(a)))
|
|
ArgTypes.push_back(NodeType::Translate(DI->getDef()));
|
|
else
|
|
throw "In node " + Node->getName() + ", argument is not a Def!";
|
|
|
|
if (a == 0 && ArgTypes.back() == NodeType::Arg0)
|
|
throw "In node " + Node->getName() + ", arg 0 cannot have type 'arg0'!";
|
|
if (a == 1 && ArgTypes.back() == NodeType::Arg1)
|
|
throw "In node " + Node->getName() + ", arg 1 cannot have type 'arg1'!";
|
|
}
|
|
if ((RetTy == NodeType::Arg0 && Args->getSize() == 0) ||
|
|
(RetTy == NodeType::Arg1 && Args->getSize() < 2))
|
|
throw "In node " + Node->getName() +
|
|
", invalid return type for node with this many operands!";
|
|
|
|
// Add the node type mapping now...
|
|
NodeTypes[Node] = NodeType(RetTy, ArgTypes);
|
|
DEBUG(std::cerr << Node->getName() << ", ");
|
|
}
|
|
DEBUG(std::cerr << "DONE!\n");
|
|
}
|
|
|
|
Pattern *InstrSelectorEmitter::ReadNonterminal(Record *R) {
|
|
Pattern *&P = Patterns[R];
|
|
if (P) return P; // Don't reread it!
|
|
|
|
DagInit *DI = R->getValueAsDag("Pattern");
|
|
P = new Pattern(Pattern::Nonterminal, DI, R, *this);
|
|
DEBUG(std::cerr << "Parsed " << *P << "\n");
|
|
return P;
|
|
}
|
|
|
|
|
|
// ReadNonTerminals - Read in all nonterminals and incorporate them into our
|
|
// pattern database.
|
|
void InstrSelectorEmitter::ReadNonterminals() {
|
|
std::vector<Record*> NTs = Records.getAllDerivedDefinitions("Nonterminal");
|
|
for (unsigned i = 0, e = NTs.size(); i != e; ++i)
|
|
ReadNonterminal(NTs[i]);
|
|
}
|
|
|
|
|
|
/// ReadInstructionPatterns - Read in all subclasses of Instruction, and process
|
|
/// those with a useful Pattern field.
|
|
///
|
|
void InstrSelectorEmitter::ReadInstructionPatterns() {
|
|
std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
|
|
for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
|
|
Record *Inst = Insts[i];
|
|
if (DagInit *DI = dynamic_cast<DagInit*>(Inst->getValueInit("Pattern"))) {
|
|
Patterns[Inst] = new Pattern(Pattern::Instruction, DI, Inst, *this);
|
|
DEBUG(std::cerr << "Parsed " << *Patterns[Inst] << "\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
/// ReadExpanderPatterns - Read in all expander patterns...
|
|
///
|
|
void InstrSelectorEmitter::ReadExpanderPatterns() {
|
|
std::vector<Record*> Expanders = Records.getAllDerivedDefinitions("Expander");
|
|
for (unsigned i = 0, e = Expanders.size(); i != e; ++i) {
|
|
Record *Expander = Expanders[i];
|
|
DagInit *DI = Expander->getValueAsDag("Pattern");
|
|
Patterns[Expander] = new Pattern(Pattern::Expander, DI, Expander, *this);
|
|
DEBUG(std::cerr << "Parsed " << *Patterns[Expander] << "\n");
|
|
}
|
|
}
|
|
|
|
|
|
// InstantiateNonterminals - Instantiate any unresolved nonterminals with
|
|
// information from the context that they are used in.
|
|
//
|
|
void InstrSelectorEmitter::InstantiateNonterminals() {
|
|
DEBUG(std::cerr << "Instantiating nonterminals:\n");
|
|
for (std::map<Record*, Pattern*>::iterator I = Patterns.begin(),
|
|
E = Patterns.end(); I != E; ++I)
|
|
if (I->second->isResolved())
|
|
I->second->InstantiateNonterminals();
|
|
}
|
|
|
|
/// InstantiateNonterminal - This method takes the nonterminal specified by
|
|
/// NT, which should not be completely resolved, clones it, applies ResultTy
|
|
/// to its root, then runs the type inference stuff on it. This should
|
|
/// produce a newly resolved nonterminal, which we make a record for and
|
|
/// return. To be extra fancy and efficient, this only makes one clone for
|
|
/// each type it is instantiated with.
|
|
Record *InstrSelectorEmitter::InstantiateNonterminal(Pattern *NT,
|
|
MVT::ValueType ResultTy) {
|
|
assert(!NT->isResolved() && "Nonterminal is already resolved!");
|
|
|
|
// Check to see if we have already instantiated this pair...
|
|
Record* &Slot = InstantiatedNTs[std::make_pair(NT, ResultTy)];
|
|
if (Slot) return Slot;
|
|
|
|
Record *New = new Record(NT->getRecord()->getName()+"_"+getName(ResultTy));
|
|
|
|
// Copy over the superclasses...
|
|
const std::vector<Record*> &SCs = NT->getRecord()->getSuperClasses();
|
|
for (unsigned i = 0, e = SCs.size(); i != e; ++i)
|
|
New->addSuperClass(SCs[i]);
|
|
|
|
DEBUG(std::cerr << " Nonterminal '" << NT->getRecord()->getName()
|
|
<< "' for type '" << getName(ResultTy) << "', producing '"
|
|
<< New->getName() << "'\n");
|
|
|
|
// Copy the pattern...
|
|
Pattern *NewPat = NT->clone(New);
|
|
|
|
// Apply the type to the root...
|
|
NewPat->getTree()->updateNodeType(ResultTy, New->getName());
|
|
|
|
// Infer types...
|
|
NewPat->InferAllTypes();
|
|
|
|
// Make sure everything is good to go now...
|
|
if (!NewPat->isResolved())
|
|
NewPat->error("Instantiating nonterminal did not resolve all types!");
|
|
|
|
// Add the pattern to the patterns map, add the record to the RecordKeeper,
|
|
// return the new record.
|
|
Patterns[New] = NewPat;
|
|
Records.addDef(New);
|
|
return Slot = New;
|
|
}
|
|
|
|
// CalculateComputableValues - Fill in the ComputableValues map through
|
|
// analysis of the patterns we are playing with.
|
|
void InstrSelectorEmitter::CalculateComputableValues() {
|
|
// Loop over all of the patterns, adding them to the ComputableValues map
|
|
for (std::map<Record*, Pattern*>::iterator I = Patterns.begin(),
|
|
E = Patterns.end(); I != E; ++I)
|
|
if (I->second->isResolved()) {
|
|
// We don't want to add patterns like R32 = R32. This is a hack working
|
|
// around a special case of a general problem, but for now we explicitly
|
|
// forbid these patterns. They can never match anyway.
|
|
Pattern *P = I->second;
|
|
if (!P->getResult() || !P->getTree()->isLeaf() ||
|
|
P->getResult() != P->getTree()->getValueRecord())
|
|
ComputableValues.addPattern(P);
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
// MoveIdenticalPatterns - Given a tree pattern 'P', move all of the tree
|
|
// patterns which have the same top-level structure as P from the 'From' list to
|
|
// the 'To' list.
|
|
static void MoveIdenticalPatterns(TreePatternNode *P,
|
|
std::vector<std::pair<Pattern*, TreePatternNode*> > &From,
|
|
std::vector<std::pair<Pattern*, TreePatternNode*> > &To) {
|
|
assert(!P->isLeaf() && "All leaves are identical!");
|
|
|
|
const std::vector<TreePatternNode*> &PChildren = P->getChildren();
|
|
for (unsigned i = 0; i != From.size(); ++i) {
|
|
TreePatternNode *N = From[i].second;
|
|
assert(P->getOperator() == N->getOperator() &&"Differing operators?");
|
|
assert(PChildren.size() == N->getChildren().size() &&
|
|
"Nodes with different arity??");
|
|
bool isDifferent = false;
|
|
for (unsigned c = 0, e = PChildren.size(); c != e; ++c) {
|
|
TreePatternNode *PC = PChildren[c];
|
|
TreePatternNode *NC = N->getChild(c);
|
|
if (PC->isLeaf() != NC->isLeaf()) {
|
|
isDifferent = true;
|
|
break;
|
|
}
|
|
|
|
if (!PC->isLeaf()) {
|
|
if (PC->getOperator() != NC->getOperator()) {
|
|
isDifferent = true;
|
|
break;
|
|
}
|
|
} else { // It's a leaf!
|
|
if (PC->getValueRecord() != NC->getValueRecord()) {
|
|
isDifferent = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// If it's the same as the reference one, move it over now...
|
|
if (!isDifferent) {
|
|
To.push_back(std::make_pair(From[i].first, N));
|
|
From.erase(From.begin()+i);
|
|
--i; // Don't skip an entry...
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static std::string getNodeName(Record *R) {
|
|
RecordVal *RV = R->getValue("EnumName");
|
|
if (RV)
|
|
if (Init *I = RV->getValue())
|
|
if (StringInit *SI = dynamic_cast<StringInit*>(I))
|
|
return SI->getValue();
|
|
return R->getName();
|
|
}
|
|
|
|
|
|
static void EmitPatternPredicates(TreePatternNode *Tree,
|
|
const std::string &VarName, std::ostream &OS){
|
|
OS << " && " << VarName << "->getNodeType() == ISD::"
|
|
<< getNodeName(Tree->getOperator());
|
|
|
|
for (unsigned c = 0, e = Tree->getNumChildren(); c != e; ++c)
|
|
if (!Tree->getChild(c)->isLeaf())
|
|
EmitPatternPredicates(Tree->getChild(c),
|
|
VarName + "->getUse(" + utostr(c)+")", OS);
|
|
}
|
|
|
|
static void EmitPatternCosts(TreePatternNode *Tree, const std::string &VarName,
|
|
std::ostream &OS) {
|
|
for (unsigned c = 0, e = Tree->getNumChildren(); c != e; ++c)
|
|
if (Tree->getChild(c)->isLeaf()) {
|
|
OS << " + Match_"
|
|
<< Pattern::getSlotName(Tree->getChild(c)->getValueRecord()) << "("
|
|
<< VarName << "->getUse(" << c << "))";
|
|
} else {
|
|
EmitPatternCosts(Tree->getChild(c),
|
|
VarName + "->getUse(" + utostr(c) + ")", OS);
|
|
}
|
|
}
|
|
|
|
|
|
// EmitMatchCosters - Given a list of patterns, which all have the same root
|
|
// pattern operator, emit an efficient decision tree to decide which one to
|
|
// pick. This is structured this way to avoid reevaluations of non-obvious
|
|
// subexpressions.
|
|
void InstrSelectorEmitter::EmitMatchCosters(std::ostream &OS,
|
|
const std::vector<std::pair<Pattern*, TreePatternNode*> > &Patterns,
|
|
const std::string &VarPrefix,
|
|
unsigned IndentAmt) {
|
|
assert(!Patterns.empty() && "No patterns to emit matchers for!");
|
|
std::string Indent(IndentAmt, ' ');
|
|
|
|
// Load all of the operands of the root node into scalars for fast access
|
|
const NodeType &ONT = getNodeType(Patterns[0].second->getOperator());
|
|
for (unsigned i = 0, e = ONT.ArgTypes.size(); i != e; ++i)
|
|
OS << Indent << "SelectionDAGNode *" << VarPrefix << "_Op" << i
|
|
<< " = N->getUse(" << i << ");\n";
|
|
|
|
// Compute the costs of computing the various nonterminals/registers, which
|
|
// are directly used at this level.
|
|
OS << "\n" << Indent << "// Operand matching costs...\n";
|
|
std::set<std::string> ComputedValues; // Avoid duplicate computations...
|
|
for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
|
|
TreePatternNode *NParent = Patterns[i].second;
|
|
for (unsigned c = 0, e = NParent->getNumChildren(); c != e; ++c) {
|
|
TreePatternNode *N = NParent->getChild(c);
|
|
if (N->isLeaf()) {
|
|
Record *VR = N->getValueRecord();
|
|
const std::string &LeafName = VR->getName();
|
|
std::string OpName = VarPrefix + "_Op" + utostr(c);
|
|
std::string ValName = OpName + "_" + LeafName + "_Cost";
|
|
if (!ComputedValues.count(ValName)) {
|
|
OS << Indent << "unsigned " << ValName << " = Match_"
|
|
<< Pattern::getSlotName(VR) << "(" << OpName << ");\n";
|
|
ComputedValues.insert(ValName);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
OS << "\n";
|
|
|
|
|
|
std::string LocCostName = VarPrefix + "_Cost";
|
|
OS << Indent << "unsigned " << LocCostName << "Min = ~0U >> 1;\n"
|
|
<< Indent << "unsigned " << VarPrefix << "_PatternMin = NoMatchPattern;\n";
|
|
|
|
#if 0
|
|
// Separate out all of the patterns into groups based on what their top-level
|
|
// signature looks like...
|
|
std::vector<std::pair<Pattern*, TreePatternNode*> > PatternsLeft(Patterns);
|
|
while (!PatternsLeft.empty()) {
|
|
// Process all of the patterns that have the same signature as the last
|
|
// element...
|
|
std::vector<std::pair<Pattern*, TreePatternNode*> > Group;
|
|
MoveIdenticalPatterns(PatternsLeft.back().second, PatternsLeft, Group);
|
|
assert(!Group.empty() && "Didn't at least pick the source pattern?");
|
|
|
|
#if 0
|
|
OS << "PROCESSING GROUP:\n";
|
|
for (unsigned i = 0, e = Group.size(); i != e; ++i)
|
|
OS << " " << *Group[i].first << "\n";
|
|
OS << "\n\n";
|
|
#endif
|
|
|
|
OS << Indent << "{ // ";
|
|
|
|
if (Group.size() != 1) {
|
|
OS << Group.size() << " size group...\n";
|
|
OS << Indent << " unsigned " << VarPrefix << "_Pattern = NoMatch;\n";
|
|
} else {
|
|
OS << *Group[0].first << "\n";
|
|
OS << Indent << " unsigned " << VarPrefix << "_Pattern = "
|
|
<< Group[0].first->getRecord()->getName() << "_Pattern;\n";
|
|
}
|
|
|
|
OS << Indent << " unsigned " << LocCostName << " = ";
|
|
if (Group.size() == 1)
|
|
OS << "1;\n"; // Add inst cost if at individual rec
|
|
else
|
|
OS << "0;\n";
|
|
|
|
// Loop over all of the operands, adding in their costs...
|
|
TreePatternNode *N = Group[0].second;
|
|
const std::vector<TreePatternNode*> &Children = N->getChildren();
|
|
|
|
// If necessary, emit conditionals to check for the appropriate tree
|
|
// structure here...
|
|
for (unsigned i = 0, e = Children.size(); i != e; ++i) {
|
|
TreePatternNode *C = Children[i];
|
|
if (C->isLeaf()) {
|
|
// We already calculated the cost for this leaf, add it in now...
|
|
OS << Indent << " " << LocCostName << " += "
|
|
<< VarPrefix << "_Op" << utostr(i) << "_"
|
|
<< C->getValueRecord()->getName() << "_Cost;\n";
|
|
} else {
|
|
// If it's not a leaf, we have to check to make sure that the current
|
|
// node has the appropriate structure, then recurse into it...
|
|
OS << Indent << " if (" << VarPrefix << "_Op" << i
|
|
<< "->getNodeType() == ISD::" << getNodeName(C->getOperator())
|
|
<< ") {\n";
|
|
std::vector<std::pair<Pattern*, TreePatternNode*> > SubPatterns;
|
|
for (unsigned n = 0, e = Group.size(); n != e; ++n)
|
|
SubPatterns.push_back(std::make_pair(Group[n].first,
|
|
Group[n].second->getChild(i)));
|
|
EmitMatchCosters(OS, SubPatterns, VarPrefix+"_Op"+utostr(i),
|
|
IndentAmt + 4);
|
|
OS << Indent << " }\n";
|
|
}
|
|
}
|
|
|
|
// If the cost for this match is less than the minimum computed cost so far,
|
|
// update the minimum cost and selected pattern.
|
|
OS << Indent << " if (" << LocCostName << " < " << LocCostName << "Min) { "
|
|
<< LocCostName << "Min = " << LocCostName << "; " << VarPrefix
|
|
<< "_PatternMin = " << VarPrefix << "_Pattern; }\n";
|
|
|
|
OS << Indent << "}\n";
|
|
}
|
|
#endif
|
|
|
|
for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
|
|
Pattern *P = Patterns[i].first;
|
|
TreePatternNode *PTree = P->getTree();
|
|
unsigned PatternCost = 1;
|
|
|
|
// Check to see if there are any non-leaf elements in the pattern. If so,
|
|
// we need to emit a predicate for this match.
|
|
bool AnyNonLeaf = false;
|
|
for (unsigned c = 0, e = PTree->getNumChildren(); c != e; ++c)
|
|
if (!PTree->getChild(c)->isLeaf()) {
|
|
AnyNonLeaf = true;
|
|
break;
|
|
}
|
|
|
|
if (!AnyNonLeaf) { // No predicate necessary, just output a scope...
|
|
OS << " {// " << *P << "\n";
|
|
} else {
|
|
// We need to emit a predicate to make sure the tree pattern matches, do
|
|
// so now...
|
|
OS << " if (1";
|
|
for (unsigned c = 0, e = PTree->getNumChildren(); c != e; ++c)
|
|
if (!PTree->getChild(c)->isLeaf())
|
|
EmitPatternPredicates(PTree->getChild(c),
|
|
VarPrefix + "_Op" + utostr(c), OS);
|
|
|
|
OS << ") {\n // " << *P << "\n";
|
|
}
|
|
|
|
OS << " unsigned PatCost = " << PatternCost;
|
|
|
|
for (unsigned c = 0, e = PTree->getNumChildren(); c != e; ++c)
|
|
if (PTree->getChild(c)->isLeaf()) {
|
|
OS << " + " << VarPrefix << "_Op" << c << "_"
|
|
<< PTree->getChild(c)->getValueRecord()->getName() << "_Cost";
|
|
} else {
|
|
EmitPatternCosts(PTree->getChild(c), VarPrefix + "_Op" + utostr(c), OS);
|
|
}
|
|
OS << ";\n";
|
|
OS << " if (PatCost < MinCost) { MinCost = PatCost; Pattern = "
|
|
<< P->getRecord()->getName() << "_Pattern; }\n"
|
|
<< " }\n";
|
|
}
|
|
}
|
|
|
|
static void ReduceAllOperands(TreePatternNode *N, const std::string &Name,
|
|
std::vector<std::pair<TreePatternNode*, std::string> > &Operands,
|
|
std::ostream &OS) {
|
|
if (N->isLeaf()) {
|
|
// If this is a leaf, register or nonterminal reference...
|
|
std::string SlotName = Pattern::getSlotName(N->getValueRecord());
|
|
OS << " ReducedValue_" << SlotName << " *" << Name << "Val = Reduce_"
|
|
<< SlotName << "(" << Name << ", MBB);\n";
|
|
Operands.push_back(std::make_pair(N, Name+"Val"));
|
|
} else if (N->getNumChildren() == 0) {
|
|
// This is a reference to a leaf tree node, like an immediate or frame
|
|
// index.
|
|
if (N->getType() != MVT::isVoid) {
|
|
std::string SlotName =
|
|
getNodeName(N->getOperator()) + "_" + getName(N->getType());
|
|
OS << " ReducedValue_" << SlotName << " *" << Name << "Val = "
|
|
<< Name << "->getValue<ReducedValue_" << SlotName << ">(ISD::"
|
|
<< SlotName << "_Slot);\n";
|
|
Operands.push_back(std::make_pair(N, Name+"Val"));
|
|
}
|
|
} else {
|
|
// Otherwise this is an interior node...
|
|
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
|
|
std::string ChildName = Name + "_Op" + utostr(i);
|
|
OS << " SelectionDAGNode *" << ChildName << " = " << Name
|
|
<< "->getUse(" << i << ");\n";
|
|
ReduceAllOperands(N->getChild(i), ChildName, Operands, OS);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// PrintExpanderOperand - Print out Arg as part of the instruction emission
|
|
/// process for the expander pattern P. This argument may be referencing some
|
|
/// values defined in P, or may just be physical register references or
|
|
/// something like that. If PrintArg is true, we are printing out arguments to
|
|
/// the BuildMI call. If it is false, we are printing the result register
|
|
/// name.
|
|
void InstrSelectorEmitter::PrintExpanderOperand(Init *Arg,
|
|
const std::string &NameVar,
|
|
TreePatternNode *ArgDeclNode,
|
|
Pattern *P, bool PrintArg,
|
|
std::ostream &OS) {
|
|
if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) {
|
|
Record *Arg = DI->getDef();
|
|
if (!ArgDeclNode->isLeaf() && ArgDeclNode->getNumChildren() != 0)
|
|
P->error("Expected leaf node as argument!");
|
|
Record *ArgDecl = ArgDeclNode->isLeaf() ? ArgDeclNode->getValueRecord() :
|
|
ArgDeclNode->getOperator();
|
|
if (Arg->isSubClassOf("Register")) {
|
|
// This is a physical register reference... make sure that the instruction
|
|
// requested a register!
|
|
if (!ArgDecl->isSubClassOf("RegisterClass"))
|
|
P->error("Argument mismatch for instruction pattern!");
|
|
|
|
// FIXME: This should check to see if the register is in the specified
|
|
// register class!
|
|
if (PrintArg) OS << ".addReg(";
|
|
OS << getQualifiedName(Arg);
|
|
if (PrintArg) OS << ")";
|
|
return;
|
|
} else if (Arg->isSubClassOf("RegisterClass")) {
|
|
// If this is a symbolic register class reference, we must be using a
|
|
// named value.
|
|
if (NameVar.empty()) P->error("Did not specify WHICH register to pass!");
|
|
if (Arg != ArgDecl) P->error("Instruction pattern mismatch!");
|
|
|
|
if (PrintArg) OS << ".addReg(";
|
|
OS << NameVar;
|
|
if (PrintArg) OS << ")";
|
|
return;
|
|
} else if (Arg->getName() == "frameidx") {
|
|
if (!PrintArg) P->error("Cannot define a new frameidx value!");
|
|
OS << ".addFrameIndex(" << NameVar << ")";
|
|
return;
|
|
} else if (Arg->getName() == "basicblock") {
|
|
if (!PrintArg) P->error("Cannot define a new basicblock value!");
|
|
OS << ".addMBB(" << NameVar << ")";
|
|
return;
|
|
}
|
|
P->error("Unknown operand type '" + Arg->getName() + "' to expander!");
|
|
} else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
|
|
if (!NameVar.empty())
|
|
P->error("Illegal to specify a name for a constant initializer arg!");
|
|
|
|
// Hack this check to allow R32 values with 0 as the initializer for memory
|
|
// references... FIXME!
|
|
if (ArgDeclNode->isLeaf() && II->getValue() == 0 &&
|
|
ArgDeclNode->getValueRecord()->getName() == "R32") {
|
|
OS << ".addReg(0)";
|
|
} else {
|
|
if (ArgDeclNode->isLeaf() || ArgDeclNode->getOperator()->getName()!="imm")
|
|
P->error("Illegal immediate int value '" + itostr(II->getValue()) +
|
|
"' operand!");
|
|
OS << ".addZImm(" << II->getValue() << ")";
|
|
}
|
|
return;
|
|
}
|
|
P->error("Unknown operand type to expander!");
|
|
}
|
|
|
|
static std::string getArgName(Pattern *P, const std::string &ArgName,
|
|
const std::vector<std::pair<TreePatternNode*, std::string> > &Operands) {
|
|
assert(P->getNumArgs() == Operands.size() &&"Argument computation mismatch!");
|
|
if (ArgName.empty()) return "";
|
|
|
|
for (unsigned i = 0, e = P->getNumArgs(); i != e; ++i)
|
|
if (P->getArgName(i) == ArgName)
|
|
return Operands[i].second + "->Val";
|
|
|
|
if (ArgName == P->getResultName())
|
|
return "NewReg";
|
|
P->error("Pattern does not define a value named $" + ArgName + "!");
|
|
return "";
|
|
}
|
|
|
|
|
|
void InstrSelectorEmitter::run(std::ostream &OS) {
|
|
// Type-check all of the node types to ensure we "understand" them.
|
|
ReadNodeTypes();
|
|
|
|
// Read in all of the nonterminals, instructions, and expanders...
|
|
ReadNonterminals();
|
|
ReadInstructionPatterns();
|
|
ReadExpanderPatterns();
|
|
|
|
// Instantiate any unresolved nonterminals with information from the context
|
|
// that they are used in.
|
|
InstantiateNonterminals();
|
|
|
|
// Clear InstantiatedNTs, we don't need it anymore...
|
|
InstantiatedNTs.clear();
|
|
|
|
DEBUG(std::cerr << "Patterns acquired:\n");
|
|
for (std::map<Record*, Pattern*>::iterator I = Patterns.begin(),
|
|
E = Patterns.end(); I != E; ++I)
|
|
if (I->second->isResolved())
|
|
DEBUG(std::cerr << " " << *I->second << "\n");
|
|
|
|
CalculateComputableValues();
|
|
|
|
OS << "#include \"llvm/CodeGen/MachineInstrBuilder.h\"\n";
|
|
|
|
EmitSourceFileHeader("Instruction Selector for the " + Target.getName() +
|
|
" target", OS);
|
|
|
|
// Output the slot number enums...
|
|
OS << "\nenum { // Slot numbers...\n"
|
|
<< " LastBuiltinSlot = ISD::NumBuiltinSlots-1, // Start numbering here\n";
|
|
for (PatternOrganizer::iterator I = ComputableValues.begin(),
|
|
E = ComputableValues.end(); I != E; ++I)
|
|
OS << " " << I->first << "_Slot,\n";
|
|
OS << " NumSlots\n};\n\n// Reduction value typedefs...\n";
|
|
|
|
// Output the reduction value typedefs...
|
|
for (PatternOrganizer::iterator I = ComputableValues.begin(),
|
|
E = ComputableValues.end(); I != E; ++I) {
|
|
|
|
OS << "typedef ReducedValue<unsigned, " << I->first
|
|
<< "_Slot> ReducedValue_" << I->first << ";\n";
|
|
}
|
|
|
|
// Output the pattern enums...
|
|
OS << "\n\n"
|
|
<< "enum { // Patterns...\n"
|
|
<< " NotComputed = 0,\n"
|
|
<< " NoMatchPattern, \n";
|
|
for (PatternOrganizer::iterator I = ComputableValues.begin(),
|
|
E = ComputableValues.end(); I != E; ++I) {
|
|
OS << " // " << I->first << " patterns...\n";
|
|
for (PatternOrganizer::NodesForSlot::iterator J = I->second.begin(),
|
|
E = I->second.end(); J != E; ++J)
|
|
for (unsigned i = 0, e = J->second.size(); i != e; ++i)
|
|
OS << " " << J->second[i]->getRecord()->getName() << "_Pattern,\n";
|
|
}
|
|
OS << "};\n\n";
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Emit the class definition...
|
|
//
|
|
OS << "namespace {\n"
|
|
<< " class " << Target.getName() << "ISel {\n"
|
|
<< " SelectionDAG &DAG;\n"
|
|
<< " public:\n"
|
|
<< " X86ISel(SelectionDAG &D) : DAG(D) {}\n"
|
|
<< " void generateCode();\n"
|
|
<< " private:\n"
|
|
<< " unsigned makeAnotherReg(const TargetRegisterClass *RC) {\n"
|
|
<< " return DAG.getMachineFunction().getSSARegMap()->createVirt"
|
|
"ualRegister(RC);\n"
|
|
<< " }\n\n"
|
|
<< " // DAG matching methods for classes... all of these methods"
|
|
" return the cost\n"
|
|
<< " // of producing a value of the specified class and type, which"
|
|
" also gets\n"
|
|
<< " // added to the DAG node.\n";
|
|
|
|
// Output all of the matching prototypes for slots...
|
|
for (PatternOrganizer::iterator I = ComputableValues.begin(),
|
|
E = ComputableValues.end(); I != E; ++I)
|
|
OS << " unsigned Match_" << I->first << "(SelectionDAGNode *N);\n";
|
|
OS << "\n // DAG matching methods for DAG nodes...\n";
|
|
|
|
// Output all of the matching prototypes for slot/node pairs
|
|
for (PatternOrganizer::iterator I = ComputableValues.begin(),
|
|
E = ComputableValues.end(); I != E; ++I)
|
|
for (PatternOrganizer::NodesForSlot::iterator J = I->second.begin(),
|
|
E = I->second.end(); J != E; ++J)
|
|
OS << " unsigned Match_" << I->first << "_" << getNodeName(J->first)
|
|
<< "(SelectionDAGNode *N);\n";
|
|
|
|
// Output all of the dag reduction methods prototypes...
|
|
OS << "\n // DAG reduction methods...\n";
|
|
for (PatternOrganizer::iterator I = ComputableValues.begin(),
|
|
E = ComputableValues.end(); I != E; ++I)
|
|
OS << " ReducedValue_" << I->first << " *Reduce_" << I->first
|
|
<< "(SelectionDAGNode *N,\n" << std::string(27+2*I->first.size(), ' ')
|
|
<< "MachineBasicBlock *MBB);\n";
|
|
OS << " };\n}\n\n";
|
|
|
|
// Emit the generateCode entry-point...
|
|
OS << "void X86ISel::generateCode() {\n"
|
|
<< " SelectionDAGNode *Root = DAG.getRoot();\n"
|
|
<< " assert(Root->getValueType() == MVT::isVoid && "
|
|
"\"Root of DAG produces value??\");\n\n"
|
|
<< " std::cerr << \"\\n\";\n"
|
|
<< " unsigned Cost = Match_Void_void(Root);\n"
|
|
<< " if (Cost >= ~0U >> 1) {\n"
|
|
<< " std::cerr << \"Match failed!\\n\";\n"
|
|
<< " Root->dump();\n"
|
|
<< " abort();\n"
|
|
<< " }\n\n"
|
|
<< " std::cerr << \"Total DAG Cost: \" << Cost << \"\\n\\n\";\n\n"
|
|
<< " Reduce_Void_void(Root, 0);\n"
|
|
<< "}\n\n"
|
|
<< "//===" << std::string(70, '-') << "===//\n"
|
|
<< "// Matching methods...\n"
|
|
<< "//\n\n";
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Emit all of the matcher methods...
|
|
//
|
|
for (PatternOrganizer::iterator I = ComputableValues.begin(),
|
|
E = ComputableValues.end(); I != E; ++I) {
|
|
const std::string &SlotName = I->first;
|
|
OS << "unsigned " << Target.getName() << "ISel::Match_" << SlotName
|
|
<< "(SelectionDAGNode *N) {\n"
|
|
<< " assert(N->getValueType() == MVT::"
|
|
<< getEnumName((*I->second.begin()).second[0]->getTree()->getType())
|
|
<< ");\n" << " // If we already have a cost available for " << SlotName
|
|
<< " use it!\n"
|
|
<< " if (N->getPatternFor(" << SlotName << "_Slot))\n"
|
|
<< " return N->getCostFor(" << SlotName << "_Slot);\n\n"
|
|
<< " unsigned Cost;\n"
|
|
<< " switch (N->getNodeType()) {\n"
|
|
<< " default: Cost = ~0U >> 1; // Match failed\n"
|
|
<< " N->setPatternCostFor(" << SlotName << "_Slot, NoMatchPattern, Cost, NumSlots);\n"
|
|
<< " break;\n";
|
|
|
|
for (PatternOrganizer::NodesForSlot::iterator J = I->second.begin(),
|
|
E = I->second.end(); J != E; ++J)
|
|
if (!J->first->isSubClassOf("Nonterminal"))
|
|
OS << " case ISD::" << getNodeName(J->first) << ":\tCost = Match_"
|
|
<< SlotName << "_" << getNodeName(J->first) << "(N); break;\n";
|
|
OS << " }\n"; // End of the switch statement
|
|
|
|
// Emit any patterns which have a nonterminal leaf as the RHS. These may
|
|
// match multiple root nodes, so they cannot be handled with the switch...
|
|
for (PatternOrganizer::NodesForSlot::iterator J = I->second.begin(),
|
|
E = I->second.end(); J != E; ++J)
|
|
if (J->first->isSubClassOf("Nonterminal")) {
|
|
OS << " unsigned " << J->first->getName() << "_Cost = Match_"
|
|
<< getNodeName(J->first) << "(N);\n"
|
|
<< " if (" << getNodeName(J->first) << "_Cost < Cost) Cost = "
|
|
<< getNodeName(J->first) << "_Cost;\n";
|
|
}
|
|
|
|
OS << " return Cost;\n}\n\n";
|
|
|
|
for (PatternOrganizer::NodesForSlot::iterator J = I->second.begin(),
|
|
E = I->second.end(); J != E; ++J) {
|
|
Record *Operator = J->first;
|
|
bool isNonterm = Operator->isSubClassOf("Nonterminal");
|
|
if (!isNonterm) {
|
|
OS << "unsigned " << Target.getName() << "ISel::Match_";
|
|
if (!isNonterm) OS << SlotName << "_";
|
|
OS << getNodeName(Operator) << "(SelectionDAGNode *N) {\n"
|
|
<< " unsigned Pattern = NoMatchPattern;\n"
|
|
<< " unsigned MinCost = ~0U >> 1;\n";
|
|
|
|
std::vector<std::pair<Pattern*, TreePatternNode*> > Patterns;
|
|
for (unsigned i = 0, e = J->second.size(); i != e; ++i)
|
|
Patterns.push_back(std::make_pair(J->second[i],
|
|
J->second[i]->getTree()));
|
|
EmitMatchCosters(OS, Patterns, "N", 2);
|
|
|
|
OS << "\n N->setPatternCostFor(" << SlotName
|
|
<< "_Slot, Pattern, MinCost, NumSlots);\n"
|
|
<< " return MinCost;\n"
|
|
<< "}\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Emit all of the reducer methods...
|
|
//
|
|
OS << "\n\n//===" << std::string(70, '-') << "===//\n"
|
|
<< "// Reducer methods...\n"
|
|
<< "//\n";
|
|
|
|
for (PatternOrganizer::iterator I = ComputableValues.begin(),
|
|
E = ComputableValues.end(); I != E; ++I) {
|
|
const std::string &SlotName = I->first;
|
|
OS << "ReducedValue_" << SlotName << " *" << Target.getName()
|
|
<< "ISel::Reduce_" << SlotName
|
|
<< "(SelectionDAGNode *N, MachineBasicBlock *MBB) {\n"
|
|
<< " ReducedValue_" << SlotName << " *Val = N->hasValue<ReducedValue_"
|
|
<< SlotName << ">(" << SlotName << "_Slot);\n"
|
|
<< " if (Val) return Val;\n"
|
|
<< " if (N->getBB()) MBB = N->getBB();\n\n"
|
|
<< " switch (N->getPatternFor(" << SlotName << "_Slot)) {\n";
|
|
|
|
// Loop over all of the patterns that can produce a value for this slot...
|
|
PatternOrganizer::NodesForSlot &NodesForSlot = I->second;
|
|
for (PatternOrganizer::NodesForSlot::iterator J = NodesForSlot.begin(),
|
|
E = NodesForSlot.end(); J != E; ++J)
|
|
for (unsigned i = 0, e = J->second.size(); i != e; ++i) {
|
|
Pattern *P = J->second[i];
|
|
OS << " case " << P->getRecord()->getName() << "_Pattern: {\n"
|
|
<< " // " << *P << "\n";
|
|
// Loop over the operands, reducing them...
|
|
std::vector<std::pair<TreePatternNode*, std::string> > Operands;
|
|
ReduceAllOperands(P->getTree(), "N", Operands, OS);
|
|
|
|
// Now that we have reduced all of our operands, and have the values
|
|
// that reduction produces, perform the reduction action for this
|
|
// pattern.
|
|
std::string Result;
|
|
|
|
// If the pattern produces a register result, generate a new register
|
|
// now.
|
|
if (Record *R = P->getResult()) {
|
|
assert(R->isSubClassOf("RegisterClass") &&
|
|
"Only handle register class results so far!");
|
|
OS << " unsigned NewReg = makeAnotherReg(" << Target.getName()
|
|
<< "::" << R->getName() << "RegisterClass);\n";
|
|
Result = "NewReg";
|
|
DEBUG(OS << " std::cerr << \"%reg\" << NewReg << \" =\t\";\n");
|
|
} else {
|
|
DEBUG(OS << " std::cerr << \"\t\t\";\n");
|
|
Result = "0";
|
|
}
|
|
|
|
// Print out the pattern that matched...
|
|
DEBUG(OS << " std::cerr << \" " << P->getRecord()->getName() <<'"');
|
|
DEBUG(for (unsigned i = 0, e = Operands.size(); i != e; ++i)
|
|
if (Operands[i].first->isLeaf()) {
|
|
Record *RV = Operands[i].first->getValueRecord();
|
|
assert(RV->isSubClassOf("RegisterClass") &&
|
|
"Only handles registers here so far!");
|
|
OS << " << \" %reg\" << " << Operands[i].second
|
|
<< "->Val";
|
|
} else {
|
|
OS << " << ' ' << " << Operands[i].second
|
|
<< "->Val";
|
|
});
|
|
DEBUG(OS << " << \"\\n\";\n");
|
|
|
|
// Generate the reduction code appropriate to the particular type of
|
|
// pattern that this is...
|
|
switch (P->getPatternType()) {
|
|
case Pattern::Instruction:
|
|
// Instruction patterns just emit a single MachineInstr, using BuildMI
|
|
OS << " BuildMI(MBB, " << Target.getName() << "::"
|
|
<< P->getRecord()->getName() << ", " << Operands.size();
|
|
if (P->getResult()) OS << ", NewReg";
|
|
OS << ")";
|
|
|
|
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
|
|
TreePatternNode *Op = Operands[i].first;
|
|
if (Op->isLeaf()) {
|
|
Record *RV = Op->getValueRecord();
|
|
assert(RV->isSubClassOf("RegisterClass") &&
|
|
"Only handles registers here so far!");
|
|
OS << ".addReg(" << Operands[i].second << "->Val)";
|
|
} else if (Op->getOperator()->getName() == "imm") {
|
|
OS << ".addZImm(" << Operands[i].second << "->Val)";
|
|
} else if (Op->getOperator()->getName() == "basicblock") {
|
|
OS << ".addMBB(" << Operands[i].second << "->Val)";
|
|
} else {
|
|
assert(0 && "Unknown value type!");
|
|
}
|
|
}
|
|
OS << ";\n";
|
|
break;
|
|
case Pattern::Expander: {
|
|
// Expander patterns emit one machine instr for each instruction in
|
|
// the list of instructions expanded to.
|
|
ListInit *Insts = P->getRecord()->getValueAsListInit("Result");
|
|
for (unsigned IN = 0, e = Insts->getSize(); IN != e; ++IN) {
|
|
DagInit *DIInst = dynamic_cast<DagInit*>(Insts->getElement(IN));
|
|
if (!DIInst) P->error("Result list must contain instructions!");
|
|
Record *InstRec = DIInst->getNodeType();
|
|
Pattern *InstPat = getPattern(InstRec);
|
|
if (!InstPat || InstPat->getPatternType() != Pattern::Instruction)
|
|
P->error("Instruction list must contain Instruction patterns!");
|
|
|
|
bool hasResult = InstPat->getResult() != 0;
|
|
if (InstPat->getNumArgs() != DIInst->getNumArgs()-hasResult) {
|
|
P->error("Incorrect number of arguments specified for inst '" +
|
|
InstPat->getRecord()->getName() + "' in result list!");
|
|
}
|
|
|
|
// Start emission of the instruction...
|
|
OS << " BuildMI(MBB, " << Target.getName() << "::"
|
|
<< InstRec->getName() << ", "
|
|
<< DIInst->getNumArgs()-hasResult;
|
|
// Emit register result if necessary..
|
|
if (hasResult) {
|
|
std::string ArgNameVal =
|
|
getArgName(P, DIInst->getArgName(0), Operands);
|
|
PrintExpanderOperand(DIInst->getArg(0), ArgNameVal,
|
|
InstPat->getResultNode(), P, false,
|
|
OS << ", ");
|
|
}
|
|
OS << ")";
|
|
|
|
for (unsigned i = hasResult, e = DIInst->getNumArgs(); i != e; ++i){
|
|
std::string ArgNameVal =
|
|
getArgName(P, DIInst->getArgName(i), Operands);
|
|
|
|
PrintExpanderOperand(DIInst->getArg(i), ArgNameVal,
|
|
InstPat->getArg(i-hasResult), P, true, OS);
|
|
}
|
|
|
|
OS << ";\n";
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
assert(0 && "Reduction of this type of pattern not implemented!");
|
|
}
|
|
|
|
OS << " Val = new ReducedValue_" << SlotName << "(" << Result<<");\n"
|
|
<< " break;\n"
|
|
<< " }\n";
|
|
}
|
|
|
|
|
|
OS << " default: assert(0 && \"Unknown " << SlotName << " pattern!\");\n"
|
|
<< " }\n\n N->addValue(Val); // Do not ever recalculate this\n"
|
|
<< " return Val;\n}\n\n";
|
|
}
|
|
EmitSourceFileTail(OS);
|
|
}
|
|
|
|
} // End llvm namespace
|