mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	operand into the Value interface just like the core print method is. That gives a more conistent organization to the IR printing interfaces -- they are all attached to the IR objects themselves. Also, update all the users. This removes the 'Writer.h' header which contained only a single function declaration. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198836 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			302 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			302 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- Dominators.cpp - Dominator Calculation -----------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements simple dominator construction algorithms for finding
 | 
						|
// forward dominators.  Postdominators are available in libanalysis, but are not
 | 
						|
// included in libvmcore, because it's not needed.  Forward dominators are
 | 
						|
// needed to support the Verifier pass.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/Analysis/DominatorInternals.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
// Always verify dominfo if expensive checking is enabled.
 | 
						|
#ifdef XDEBUG
 | 
						|
static bool VerifyDomInfo = true;
 | 
						|
#else
 | 
						|
static bool VerifyDomInfo = false;
 | 
						|
#endif
 | 
						|
static cl::opt<bool,true>
 | 
						|
VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
 | 
						|
               cl::desc("Verify dominator info (time consuming)"));
 | 
						|
 | 
						|
bool BasicBlockEdge::isSingleEdge() const {
 | 
						|
  const TerminatorInst *TI = Start->getTerminator();
 | 
						|
  unsigned NumEdgesToEnd = 0;
 | 
						|
  for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) {
 | 
						|
    if (TI->getSuccessor(i) == End)
 | 
						|
      ++NumEdgesToEnd;
 | 
						|
    if (NumEdgesToEnd >= 2)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  assert(NumEdgesToEnd == 1);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  DominatorTree Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Provide public access to DominatorTree information.  Implementation details
 | 
						|
// can be found in DominatorInternals.h.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
TEMPLATE_INSTANTIATION(class llvm::DomTreeNodeBase<BasicBlock>);
 | 
						|
TEMPLATE_INSTANTIATION(class llvm::DominatorTreeBase<BasicBlock>);
 | 
						|
 | 
						|
char DominatorTree::ID = 0;
 | 
						|
INITIALIZE_PASS(DominatorTree, "domtree",
 | 
						|
                "Dominator Tree Construction", true, true)
 | 
						|
 | 
						|
bool DominatorTree::runOnFunction(Function &F) {
 | 
						|
  DT->recalculate(F);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void DominatorTree::verifyAnalysis() const {
 | 
						|
  if (!VerifyDomInfo) return;
 | 
						|
 | 
						|
  Function &F = *getRoot()->getParent();
 | 
						|
 | 
						|
  DominatorTree OtherDT;
 | 
						|
  OtherDT.getBase().recalculate(F);
 | 
						|
  if (compare(OtherDT)) {
 | 
						|
    errs() << "DominatorTree is not up to date!\nComputed:\n";
 | 
						|
    print(errs());
 | 
						|
    errs() << "\nActual:\n";
 | 
						|
    OtherDT.print(errs());
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void DominatorTree::print(raw_ostream &OS, const Module *) const {
 | 
						|
  DT->print(OS);
 | 
						|
}
 | 
						|
 | 
						|
// dominates - Return true if Def dominates a use in User. This performs
 | 
						|
// the special checks necessary if Def and User are in the same basic block.
 | 
						|
// Note that Def doesn't dominate a use in Def itself!
 | 
						|
bool DominatorTree::dominates(const Instruction *Def,
 | 
						|
                              const Instruction *User) const {
 | 
						|
  const BasicBlock *UseBB = User->getParent();
 | 
						|
  const BasicBlock *DefBB = Def->getParent();
 | 
						|
 | 
						|
  // Any unreachable use is dominated, even if Def == User.
 | 
						|
  if (!isReachableFromEntry(UseBB))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Unreachable definitions don't dominate anything.
 | 
						|
  if (!isReachableFromEntry(DefBB))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // An instruction doesn't dominate a use in itself.
 | 
						|
  if (Def == User)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The value defined by an invoke dominates an instruction only if
 | 
						|
  // it dominates every instruction in UseBB.
 | 
						|
  // A PHI is dominated only if the instruction dominates every possible use
 | 
						|
  // in the UseBB.
 | 
						|
  if (isa<InvokeInst>(Def) || isa<PHINode>(User))
 | 
						|
    return dominates(Def, UseBB);
 | 
						|
 | 
						|
  if (DefBB != UseBB)
 | 
						|
    return dominates(DefBB, UseBB);
 | 
						|
 | 
						|
  // Loop through the basic block until we find Def or User.
 | 
						|
  BasicBlock::const_iterator I = DefBB->begin();
 | 
						|
  for (; &*I != Def && &*I != User; ++I)
 | 
						|
    /*empty*/;
 | 
						|
 | 
						|
  return &*I == Def;
 | 
						|
}
 | 
						|
 | 
						|
// true if Def would dominate a use in any instruction in UseBB.
 | 
						|
// note that dominates(Def, Def->getParent()) is false.
 | 
						|
bool DominatorTree::dominates(const Instruction *Def,
 | 
						|
                              const BasicBlock *UseBB) const {
 | 
						|
  const BasicBlock *DefBB = Def->getParent();
 | 
						|
 | 
						|
  // Any unreachable use is dominated, even if DefBB == UseBB.
 | 
						|
  if (!isReachableFromEntry(UseBB))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Unreachable definitions don't dominate anything.
 | 
						|
  if (!isReachableFromEntry(DefBB))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (DefBB == UseBB)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const InvokeInst *II = dyn_cast<InvokeInst>(Def);
 | 
						|
  if (!II)
 | 
						|
    return dominates(DefBB, UseBB);
 | 
						|
 | 
						|
  // Invoke results are only usable in the normal destination, not in the
 | 
						|
  // exceptional destination.
 | 
						|
  BasicBlock *NormalDest = II->getNormalDest();
 | 
						|
  BasicBlockEdge E(DefBB, NormalDest);
 | 
						|
  return dominates(E, UseBB);
 | 
						|
}
 | 
						|
 | 
						|
bool DominatorTree::dominates(const BasicBlockEdge &BBE,
 | 
						|
                              const BasicBlock *UseBB) const {
 | 
						|
  // Assert that we have a single edge. We could handle them by simply
 | 
						|
  // returning false, but since isSingleEdge is linear on the number of
 | 
						|
  // edges, the callers can normally handle them more efficiently.
 | 
						|
  assert(BBE.isSingleEdge());
 | 
						|
 | 
						|
  // If the BB the edge ends in doesn't dominate the use BB, then the
 | 
						|
  // edge also doesn't.
 | 
						|
  const BasicBlock *Start = BBE.getStart();
 | 
						|
  const BasicBlock *End = BBE.getEnd();
 | 
						|
  if (!dominates(End, UseBB))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Simple case: if the end BB has a single predecessor, the fact that it
 | 
						|
  // dominates the use block implies that the edge also does.
 | 
						|
  if (End->getSinglePredecessor())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // The normal edge from the invoke is critical. Conceptually, what we would
 | 
						|
  // like to do is split it and check if the new block dominates the use.
 | 
						|
  // With X being the new block, the graph would look like:
 | 
						|
  //
 | 
						|
  //        DefBB
 | 
						|
  //          /\      .  .
 | 
						|
  //         /  \     .  .
 | 
						|
  //        /    \    .  .
 | 
						|
  //       /      \   |  |
 | 
						|
  //      A        X  B  C
 | 
						|
  //      |         \ | /
 | 
						|
  //      .          \|/
 | 
						|
  //      .      NormalDest
 | 
						|
  //      .
 | 
						|
  //
 | 
						|
  // Given the definition of dominance, NormalDest is dominated by X iff X
 | 
						|
  // dominates all of NormalDest's predecessors (X, B, C in the example). X
 | 
						|
  // trivially dominates itself, so we only have to find if it dominates the
 | 
						|
  // other predecessors. Since the only way out of X is via NormalDest, X can
 | 
						|
  // only properly dominate a node if NormalDest dominates that node too.
 | 
						|
  for (const_pred_iterator PI = pred_begin(End), E = pred_end(End);
 | 
						|
       PI != E; ++PI) {
 | 
						|
    const BasicBlock *BB = *PI;
 | 
						|
    if (BB == Start)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (!dominates(End, BB))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool DominatorTree::dominates(const BasicBlockEdge &BBE,
 | 
						|
                              const Use &U) const {
 | 
						|
  // Assert that we have a single edge. We could handle them by simply
 | 
						|
  // returning false, but since isSingleEdge is linear on the number of
 | 
						|
  // edges, the callers can normally handle them more efficiently.
 | 
						|
  assert(BBE.isSingleEdge());
 | 
						|
 | 
						|
  Instruction *UserInst = cast<Instruction>(U.getUser());
 | 
						|
  // A PHI in the end of the edge is dominated by it.
 | 
						|
  PHINode *PN = dyn_cast<PHINode>(UserInst);
 | 
						|
  if (PN && PN->getParent() == BBE.getEnd() &&
 | 
						|
      PN->getIncomingBlock(U) == BBE.getStart())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Otherwise use the edge-dominates-block query, which
 | 
						|
  // handles the crazy critical edge cases properly.
 | 
						|
  const BasicBlock *UseBB;
 | 
						|
  if (PN)
 | 
						|
    UseBB = PN->getIncomingBlock(U);
 | 
						|
  else
 | 
						|
    UseBB = UserInst->getParent();
 | 
						|
  return dominates(BBE, UseBB);
 | 
						|
}
 | 
						|
 | 
						|
bool DominatorTree::dominates(const Instruction *Def,
 | 
						|
                              const Use &U) const {
 | 
						|
  Instruction *UserInst = cast<Instruction>(U.getUser());
 | 
						|
  const BasicBlock *DefBB = Def->getParent();
 | 
						|
 | 
						|
  // Determine the block in which the use happens. PHI nodes use
 | 
						|
  // their operands on edges; simulate this by thinking of the use
 | 
						|
  // happening at the end of the predecessor block.
 | 
						|
  const BasicBlock *UseBB;
 | 
						|
  if (PHINode *PN = dyn_cast<PHINode>(UserInst))
 | 
						|
    UseBB = PN->getIncomingBlock(U);
 | 
						|
  else
 | 
						|
    UseBB = UserInst->getParent();
 | 
						|
 | 
						|
  // Any unreachable use is dominated, even if Def == User.
 | 
						|
  if (!isReachableFromEntry(UseBB))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Unreachable definitions don't dominate anything.
 | 
						|
  if (!isReachableFromEntry(DefBB))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Invoke instructions define their return values on the edges
 | 
						|
  // to their normal successors, so we have to handle them specially.
 | 
						|
  // Among other things, this means they don't dominate anything in
 | 
						|
  // their own block, except possibly a phi, so we don't need to
 | 
						|
  // walk the block in any case.
 | 
						|
  if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
 | 
						|
    BasicBlock *NormalDest = II->getNormalDest();
 | 
						|
    BasicBlockEdge E(DefBB, NormalDest);
 | 
						|
    return dominates(E, U);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the def and use are in different blocks, do a simple CFG dominator
 | 
						|
  // tree query.
 | 
						|
  if (DefBB != UseBB)
 | 
						|
    return dominates(DefBB, UseBB);
 | 
						|
 | 
						|
  // Ok, def and use are in the same block. If the def is an invoke, it
 | 
						|
  // doesn't dominate anything in the block. If it's a PHI, it dominates
 | 
						|
  // everything in the block.
 | 
						|
  if (isa<PHINode>(UserInst))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Otherwise, just loop through the basic block until we find Def or User.
 | 
						|
  BasicBlock::const_iterator I = DefBB->begin();
 | 
						|
  for (; &*I != Def && &*I != UserInst; ++I)
 | 
						|
    /*empty*/;
 | 
						|
 | 
						|
  return &*I != UserInst;
 | 
						|
}
 | 
						|
 | 
						|
bool DominatorTree::isReachableFromEntry(const Use &U) const {
 | 
						|
  Instruction *I = dyn_cast<Instruction>(U.getUser());
 | 
						|
 | 
						|
  // ConstantExprs aren't really reachable from the entry block, but they
 | 
						|
  // don't need to be treated like unreachable code either.
 | 
						|
  if (!I) return true;
 | 
						|
 | 
						|
  // PHI nodes use their operands on their incoming edges.
 | 
						|
  if (PHINode *PN = dyn_cast<PHINode>(I))
 | 
						|
    return isReachableFromEntry(PN->getIncomingBlock(U));
 | 
						|
 | 
						|
  // Everything else uses their operands in their own block.
 | 
						|
  return isReachableFromEntry(I->getParent());
 | 
						|
}
 |