mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	equality check. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133409 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			482 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			482 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- llvm/DerivedTypes.h - Classes for handling data types ---*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the declarations of classes that represent "derived
 | |
| // types".  These are things like "arrays of x" or "structure of x, y, z" or
 | |
| // "function returning x taking (y,z) as parameters", etc...
 | |
| //
 | |
| // The implementations of these classes live in the Type.cpp file.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_DERIVED_TYPES_H
 | |
| #define LLVM_DERIVED_TYPES_H
 | |
| 
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/Support/DataTypes.h"
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| class Value;
 | |
| template<class ValType, class TypeClass> class TypeMap;
 | |
| class FunctionValType;
 | |
| class ArrayValType;
 | |
| class StructValType;
 | |
| class PointerValType;
 | |
| class VectorValType;
 | |
| class IntegerValType;
 | |
| class APInt;
 | |
| class LLVMContext;
 | |
| template<typename T> class ArrayRef;
 | |
| 
 | |
| class DerivedType : public Type {
 | |
|   friend class Type;
 | |
| 
 | |
| protected:
 | |
|   explicit DerivedType(LLVMContext &C, TypeID id) : Type(C, id) {}
 | |
| 
 | |
|   /// notifyUsesThatTypeBecameConcrete - Notify AbstractTypeUsers of this type
 | |
|   /// that the current type has transitioned from being abstract to being
 | |
|   /// concrete.
 | |
|   ///
 | |
|   void notifyUsesThatTypeBecameConcrete();
 | |
| 
 | |
|   /// dropAllTypeUses - When this (abstract) type is resolved to be equal to
 | |
|   /// another (more concrete) type, we must eliminate all references to other
 | |
|   /// types, to avoid some circular reference problems.
 | |
|   ///
 | |
|   void dropAllTypeUses();
 | |
| 
 | |
| public:
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Abstract Type handling methods - These types have special lifetimes, which
 | |
|   // are managed by (add|remove)AbstractTypeUser. See comments in
 | |
|   // AbstractTypeUser.h for more information.
 | |
| 
 | |
|   /// refineAbstractTypeTo - This function is used to when it is discovered that
 | |
|   /// the 'this' abstract type is actually equivalent to the NewType specified.
 | |
|   /// This causes all users of 'this' to switch to reference the more concrete
 | |
|   /// type NewType and for 'this' to be deleted.
 | |
|   ///
 | |
|   void refineAbstractTypeTo(const Type *NewType);
 | |
| 
 | |
|   void dump() const { Type::dump(); }
 | |
| 
 | |
|   // Methods for support type inquiry through isa, cast, and dyn_cast.
 | |
|   static inline bool classof(const DerivedType *) { return true; }
 | |
|   static inline bool classof(const Type *T) {
 | |
|     return T->isDerivedType();
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Class to represent integer types. Note that this class is also used to
 | |
| /// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and
 | |
| /// Int64Ty.
 | |
| /// @brief Integer representation type
 | |
| class IntegerType : public DerivedType {
 | |
|   friend class LLVMContextImpl;
 | |
|   
 | |
| protected:
 | |
|   explicit IntegerType(LLVMContext &C, unsigned NumBits) : 
 | |
|       DerivedType(C, IntegerTyID) {
 | |
|     setSubclassData(NumBits);
 | |
|   }
 | |
|   friend class TypeMap<IntegerValType, IntegerType>;
 | |
| public:
 | |
|   /// This enum is just used to hold constants we need for IntegerType.
 | |
|   enum {
 | |
|     MIN_INT_BITS = 1,        ///< Minimum number of bits that can be specified
 | |
|     MAX_INT_BITS = (1<<23)-1 ///< Maximum number of bits that can be specified
 | |
|       ///< Note that bit width is stored in the Type classes SubclassData field
 | |
|       ///< which has 23 bits. This yields a maximum bit width of 8,388,607 bits.
 | |
|   };
 | |
| 
 | |
|   /// This static method is the primary way of constructing an IntegerType.
 | |
|   /// If an IntegerType with the same NumBits value was previously instantiated,
 | |
|   /// that instance will be returned. Otherwise a new one will be created. Only
 | |
|   /// one instance with a given NumBits value is ever created.
 | |
|   /// @brief Get or create an IntegerType instance.
 | |
|   static const IntegerType *get(LLVMContext &C, unsigned NumBits);
 | |
| 
 | |
|   /// @brief Get the number of bits in this IntegerType
 | |
|   unsigned getBitWidth() const { return getSubclassData(); }
 | |
| 
 | |
|   /// getBitMask - Return a bitmask with ones set for all of the bits
 | |
|   /// that can be set by an unsigned version of this type.  This is 0xFF for
 | |
|   /// i8, 0xFFFF for i16, etc.
 | |
|   uint64_t getBitMask() const {
 | |
|     return ~uint64_t(0UL) >> (64-getBitWidth());
 | |
|   }
 | |
| 
 | |
|   /// getSignBit - Return a uint64_t with just the most significant bit set (the
 | |
|   /// sign bit, if the value is treated as a signed number).
 | |
|   uint64_t getSignBit() const {
 | |
|     return 1ULL << (getBitWidth()-1);
 | |
|   }
 | |
| 
 | |
|   /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
 | |
|   /// @returns a bit mask with ones set for all the bits of this type.
 | |
|   /// @brief Get a bit mask for this type.
 | |
|   APInt getMask() const;
 | |
| 
 | |
|   /// This method determines if the width of this IntegerType is a power-of-2
 | |
|   /// in terms of 8 bit bytes.
 | |
|   /// @returns true if this is a power-of-2 byte width.
 | |
|   /// @brief Is this a power-of-2 byte-width IntegerType ?
 | |
|   bool isPowerOf2ByteWidth() const;
 | |
| 
 | |
|   // Methods for support type inquiry through isa, cast, and dyn_cast.
 | |
|   static inline bool classof(const IntegerType *) { return true; }
 | |
|   static inline bool classof(const Type *T) {
 | |
|     return T->getTypeID() == IntegerTyID;
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| /// FunctionType - Class to represent function types
 | |
| ///
 | |
| class FunctionType : public DerivedType {
 | |
|   friend class TypeMap<FunctionValType, FunctionType>;
 | |
|   FunctionType(const FunctionType &);                   // Do not implement
 | |
|   const FunctionType &operator=(const FunctionType &);  // Do not implement
 | |
|   FunctionType(const Type *Result, ArrayRef<const Type*> Params,
 | |
|                bool IsVarArgs);
 | |
| 
 | |
| public:
 | |
|   /// FunctionType::get - This static method is the primary way of constructing
 | |
|   /// a FunctionType.
 | |
|   ///
 | |
|   static FunctionType *get(const Type *Result,
 | |
|                            ArrayRef<const Type*> Params, bool isVarArg);
 | |
| 
 | |
|   /// FunctionType::get - Create a FunctionType taking no parameters.
 | |
|   ///
 | |
|   static FunctionType *get(const Type *Result, bool isVarArg);
 | |
|   
 | |
|   /// isValidReturnType - Return true if the specified type is valid as a return
 | |
|   /// type.
 | |
|   static bool isValidReturnType(const Type *RetTy);
 | |
| 
 | |
|   /// isValidArgumentType - Return true if the specified type is valid as an
 | |
|   /// argument type.
 | |
|   static bool isValidArgumentType(const Type *ArgTy);
 | |
| 
 | |
|   bool isVarArg() const { return getSubclassData(); }
 | |
|   const Type *getReturnType() const { return ContainedTys[0]; }
 | |
| 
 | |
|   typedef Type::subtype_iterator param_iterator;
 | |
|   param_iterator param_begin() const { return ContainedTys + 1; }
 | |
|   param_iterator param_end() const { return &ContainedTys[NumContainedTys]; }
 | |
| 
 | |
|   // Parameter type accessors.
 | |
|   const Type *getParamType(unsigned i) const { return ContainedTys[i+1]; }
 | |
| 
 | |
|   /// getNumParams - Return the number of fixed parameters this function type
 | |
|   /// requires.  This does not consider varargs.
 | |
|   ///
 | |
|   unsigned getNumParams() const { return NumContainedTys - 1; }
 | |
| 
 | |
|   // Implement the AbstractTypeUser interface.
 | |
|   virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
 | |
|   virtual void typeBecameConcrete(const DerivedType *AbsTy);
 | |
| 
 | |
|   // Methods for support type inquiry through isa, cast, and dyn_cast.
 | |
|   static inline bool classof(const FunctionType *) { return true; }
 | |
|   static inline bool classof(const Type *T) {
 | |
|     return T->getTypeID() == FunctionTyID;
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| /// CompositeType - Common super class of ArrayType, StructType, PointerType
 | |
| /// and VectorType.
 | |
| class CompositeType : public DerivedType {
 | |
| protected:
 | |
|   explicit CompositeType(LLVMContext &C, TypeID tid) : DerivedType(C, tid) { }
 | |
| public:
 | |
| 
 | |
|   /// getTypeAtIndex - Given an index value into the type, return the type of
 | |
|   /// the element.
 | |
|   ///
 | |
|   const Type *getTypeAtIndex(const Value *V) const;
 | |
|   const Type *getTypeAtIndex(unsigned Idx) const;
 | |
|   bool indexValid(const Value *V) const;
 | |
|   bool indexValid(unsigned Idx) const;
 | |
| 
 | |
|   // Methods for support type inquiry through isa, cast, and dyn_cast.
 | |
|   static inline bool classof(const CompositeType *) { return true; }
 | |
|   static inline bool classof(const Type *T) {
 | |
|     return T->getTypeID() == ArrayTyID ||
 | |
|            T->getTypeID() == StructTyID ||
 | |
|            T->getTypeID() == PointerTyID ||
 | |
|            T->getTypeID() == VectorTyID;
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| /// StructType - Class to represent struct types, both normal and packed.
 | |
| ///
 | |
| class StructType : public CompositeType {
 | |
|   friend class TypeMap<StructValType, StructType>;
 | |
|   StructType(const StructType &);                   // Do not implement
 | |
|   const StructType &operator=(const StructType &);  // Do not implement
 | |
|   StructType(LLVMContext &C, ArrayRef<const Type*> Types, bool isPacked);
 | |
| public:
 | |
|   /// StructType::get - This static method is the primary way to create a
 | |
|   /// StructType.
 | |
|   ///
 | |
|   static StructType *get(LLVMContext &Context, ArrayRef<const Type*> Elements,
 | |
|                          bool isPacked = false);
 | |
| 
 | |
|   /// StructType::get - Create an empty structure type.
 | |
|   ///
 | |
|   static StructType *get(LLVMContext &Context, bool isPacked = false);
 | |
|   
 | |
|   /// StructType::get - This static method is a convenience method for creating
 | |
|   /// structure types by specifying the elements as arguments.  Note that this
 | |
|   /// method always returns a non-packed struct, and requires at least one
 | |
|   /// element type.
 | |
|   static StructType *get(const Type *elt1, ...) END_WITH_NULL;
 | |
| 
 | |
|   /// isValidElementType - Return true if the specified type is valid as a
 | |
|   /// element type.
 | |
|   static bool isValidElementType(const Type *ElemTy);
 | |
| 
 | |
|   bool isPacked() const { return getSubclassData() != 0 ? true : false; }
 | |
| 
 | |
|   // Iterator access to the elements.
 | |
|   typedef Type::subtype_iterator element_iterator;
 | |
|   element_iterator element_begin() const { return ContainedTys; }
 | |
|   element_iterator element_end() const { return &ContainedTys[NumContainedTys];}
 | |
| 
 | |
|   /// isLayoutIdentical - Return true if this is layout identical to the
 | |
|   /// specified struct.
 | |
|   bool isLayoutIdentical(const StructType *Other) const {
 | |
|     return this == Other;
 | |
|   }
 | |
|   
 | |
|   
 | |
|   // Random access to the elements
 | |
|   unsigned getNumElements() const { return NumContainedTys; }
 | |
|   const Type *getElementType(unsigned N) const {
 | |
|     assert(N < NumContainedTys && "Element number out of range!");
 | |
|     return ContainedTys[N];
 | |
|   }
 | |
| 
 | |
|   // Implement the AbstractTypeUser interface.
 | |
|   virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
 | |
|   virtual void typeBecameConcrete(const DerivedType *AbsTy);
 | |
| 
 | |
|   // Methods for support type inquiry through isa, cast, and dyn_cast.
 | |
|   static inline bool classof(const StructType *) { return true; }
 | |
|   static inline bool classof(const Type *T) {
 | |
|     return T->getTypeID() == StructTyID;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// SequentialType - This is the superclass of the array, pointer and vector
 | |
| /// type classes.  All of these represent "arrays" in memory.  The array type
 | |
| /// represents a specifically sized array, pointer types are unsized/unknown
 | |
| /// size arrays, vector types represent specifically sized arrays that
 | |
| /// allow for use of SIMD instructions.  SequentialType holds the common
 | |
| /// features of all, which stem from the fact that all three lay their
 | |
| /// components out in memory identically.
 | |
| ///
 | |
| class SequentialType : public CompositeType {
 | |
|   PATypeHandle ContainedType;       ///< Storage for the single contained type.
 | |
|   SequentialType(const SequentialType &);                  // Do not implement!
 | |
|   const SequentialType &operator=(const SequentialType &); // Do not implement!
 | |
| 
 | |
|   // avoiding warning: 'this' : used in base member initializer list
 | |
|   SequentialType *this_() { return this; }
 | |
| protected:
 | |
|   SequentialType(TypeID TID, const Type *ElType)
 | |
|     : CompositeType(ElType->getContext(), TID), ContainedType(ElType, this_()) {
 | |
|     ContainedTys = &ContainedType;
 | |
|     NumContainedTys = 1;
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   const Type *getElementType() const { return ContainedTys[0]; }
 | |
| 
 | |
|   // Methods for support type inquiry through isa, cast, and dyn_cast.
 | |
|   static inline bool classof(const SequentialType *) { return true; }
 | |
|   static inline bool classof(const Type *T) {
 | |
|     return T->getTypeID() == ArrayTyID ||
 | |
|            T->getTypeID() == PointerTyID ||
 | |
|            T->getTypeID() == VectorTyID;
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| /// ArrayType - Class to represent array types.
 | |
| ///
 | |
| class ArrayType : public SequentialType {
 | |
|   friend class TypeMap<ArrayValType, ArrayType>;
 | |
|   uint64_t NumElements;
 | |
| 
 | |
|   ArrayType(const ArrayType &);                   // Do not implement
 | |
|   const ArrayType &operator=(const ArrayType &);  // Do not implement
 | |
|   ArrayType(const Type *ElType, uint64_t NumEl);
 | |
| public:
 | |
|   /// ArrayType::get - This static method is the primary way to construct an
 | |
|   /// ArrayType
 | |
|   ///
 | |
|   static ArrayType *get(const Type *ElementType, uint64_t NumElements);
 | |
| 
 | |
|   /// isValidElementType - Return true if the specified type is valid as a
 | |
|   /// element type.
 | |
|   static bool isValidElementType(const Type *ElemTy);
 | |
| 
 | |
|   uint64_t getNumElements() const { return NumElements; }
 | |
| 
 | |
|   // Implement the AbstractTypeUser interface.
 | |
|   virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
 | |
|   virtual void typeBecameConcrete(const DerivedType *AbsTy);
 | |
| 
 | |
|   // Methods for support type inquiry through isa, cast, and dyn_cast.
 | |
|   static inline bool classof(const ArrayType *) { return true; }
 | |
|   static inline bool classof(const Type *T) {
 | |
|     return T->getTypeID() == ArrayTyID;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// VectorType - Class to represent vector types.
 | |
| ///
 | |
| class VectorType : public SequentialType {
 | |
|   friend class TypeMap<VectorValType, VectorType>;
 | |
|   unsigned NumElements;
 | |
| 
 | |
|   VectorType(const VectorType &);                   // Do not implement
 | |
|   const VectorType &operator=(const VectorType &);  // Do not implement
 | |
|   VectorType(const Type *ElType, unsigned NumEl);
 | |
| public:
 | |
|   /// VectorType::get - This static method is the primary way to construct an
 | |
|   /// VectorType.
 | |
|   ///
 | |
|   static VectorType *get(const Type *ElementType, unsigned NumElements);
 | |
| 
 | |
|   /// VectorType::getInteger - This static method gets a VectorType with the
 | |
|   /// same number of elements as the input type, and the element type is an
 | |
|   /// integer type of the same width as the input element type.
 | |
|   ///
 | |
|   static VectorType *getInteger(const VectorType *VTy) {
 | |
|     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
 | |
|     const Type *EltTy = IntegerType::get(VTy->getContext(), EltBits);
 | |
|     return VectorType::get(EltTy, VTy->getNumElements());
 | |
|   }
 | |
| 
 | |
|   /// VectorType::getExtendedElementVectorType - This static method is like
 | |
|   /// getInteger except that the element types are twice as wide as the
 | |
|   /// elements in the input type.
 | |
|   ///
 | |
|   static VectorType *getExtendedElementVectorType(const VectorType *VTy) {
 | |
|     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
 | |
|     const Type *EltTy = IntegerType::get(VTy->getContext(), EltBits * 2);
 | |
|     return VectorType::get(EltTy, VTy->getNumElements());
 | |
|   }
 | |
| 
 | |
|   /// VectorType::getTruncatedElementVectorType - This static method is like
 | |
|   /// getInteger except that the element types are half as wide as the
 | |
|   /// elements in the input type.
 | |
|   ///
 | |
|   static VectorType *getTruncatedElementVectorType(const VectorType *VTy) {
 | |
|     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
 | |
|     assert((EltBits & 1) == 0 &&
 | |
|            "Cannot truncate vector element with odd bit-width");
 | |
|     const Type *EltTy = IntegerType::get(VTy->getContext(), EltBits / 2);
 | |
|     return VectorType::get(EltTy, VTy->getNumElements());
 | |
|   }
 | |
| 
 | |
|   /// isValidElementType - Return true if the specified type is valid as a
 | |
|   /// element type.
 | |
|   static bool isValidElementType(const Type *ElemTy);
 | |
| 
 | |
|   /// @brief Return the number of elements in the Vector type.
 | |
|   unsigned getNumElements() const { return NumElements; }
 | |
| 
 | |
|   /// @brief Return the number of bits in the Vector type.
 | |
|   unsigned getBitWidth() const {
 | |
|     return NumElements * getElementType()->getPrimitiveSizeInBits();
 | |
|   }
 | |
| 
 | |
|   // Implement the AbstractTypeUser interface.
 | |
|   virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
 | |
|   virtual void typeBecameConcrete(const DerivedType *AbsTy);
 | |
| 
 | |
|   // Methods for support type inquiry through isa, cast, and dyn_cast.
 | |
|   static inline bool classof(const VectorType *) { return true; }
 | |
|   static inline bool classof(const Type *T) {
 | |
|     return T->getTypeID() == VectorTyID;
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| /// PointerType - Class to represent pointers.
 | |
| ///
 | |
| class PointerType : public SequentialType {
 | |
|   friend class TypeMap<PointerValType, PointerType>;
 | |
| 
 | |
|   PointerType(const PointerType &);                   // Do not implement
 | |
|   const PointerType &operator=(const PointerType &);  // Do not implement
 | |
|   explicit PointerType(const Type *ElType, unsigned AddrSpace);
 | |
| public:
 | |
|   /// PointerType::get - This constructs a pointer to an object of the specified
 | |
|   /// type in a numbered address space.
 | |
|   static PointerType *get(const Type *ElementType, unsigned AddressSpace);
 | |
| 
 | |
|   /// PointerType::getUnqual - This constructs a pointer to an object of the
 | |
|   /// specified type in the generic address space (address space zero).
 | |
|   static PointerType *getUnqual(const Type *ElementType) {
 | |
|     return PointerType::get(ElementType, 0);
 | |
|   }
 | |
| 
 | |
|   /// isValidElementType - Return true if the specified type is valid as a
 | |
|   /// element type.
 | |
|   static bool isValidElementType(const Type *ElemTy);
 | |
| 
 | |
|   /// @brief Return the address space of the Pointer type.
 | |
|   inline unsigned getAddressSpace() const { return getSubclassData(); }
 | |
| 
 | |
|   // Implement the AbstractTypeUser interface.
 | |
|   virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
 | |
|   virtual void typeBecameConcrete(const DerivedType *AbsTy);
 | |
| 
 | |
|   // Implement support type inquiry through isa, cast, and dyn_cast.
 | |
|   static inline bool classof(const PointerType *) { return true; }
 | |
|   static inline bool classof(const Type *T) {
 | |
|     return T->getTypeID() == PointerTyID;
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| /// OpaqueType - Class to represent opaque types.
 | |
| ///
 | |
| class OpaqueType : public DerivedType {
 | |
|   friend class LLVMContextImpl;
 | |
|   OpaqueType(const OpaqueType &);                   // DO NOT IMPLEMENT
 | |
|   const OpaqueType &operator=(const OpaqueType &);  // DO NOT IMPLEMENT
 | |
|   OpaqueType(LLVMContext &C);
 | |
| public:
 | |
|   /// OpaqueType::get - Static factory method for the OpaqueType class.
 | |
|   ///
 | |
|   static OpaqueType *get(LLVMContext &C);
 | |
| 
 | |
|   // Implement support for type inquiry through isa, cast, and dyn_cast.
 | |
|   static inline bool classof(const OpaqueType *) { return true; }
 | |
|   static inline bool classof(const Type *T) {
 | |
|     return T->getTypeID() == OpaqueTyID;
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // End llvm namespace
 | |
| 
 | |
| #endif
 |