mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	-enable-no-nans-fp-math and -enable-no-infs-fp-math. All of the current codegen fp math optimizations only care whether the fp arithmetics arguments and results can never be NaN. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108465 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			5395 lines
		
	
	
		
			205 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			5395 lines
		
	
	
		
			205 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the interfaces that ARM uses to lower LLVM code into a
 | |
| // selection DAG.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "arm-isel"
 | |
| #include "ARM.h"
 | |
| #include "ARMAddressingModes.h"
 | |
| #include "ARMConstantPoolValue.h"
 | |
| #include "ARMISelLowering.h"
 | |
| #include "ARMMachineFunctionInfo.h"
 | |
| #include "ARMPerfectShuffle.h"
 | |
| #include "ARMRegisterInfo.h"
 | |
| #include "ARMSubtarget.h"
 | |
| #include "ARMTargetMachine.h"
 | |
| #include "ARMTargetObjectFile.h"
 | |
| #include "llvm/CallingConv.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/GlobalValue.h"
 | |
| #include "llvm/Instruction.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/CodeGen/CallingConvLower.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/PseudoSourceValue.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/MC/MCSectionMachO.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/ADT/VectorExtras.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <sstream>
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumTailCalls, "Number of tail calls");
 | |
| 
 | |
| // This option should go away when tail calls fully work.
 | |
| static cl::opt<bool>
 | |
| EnableARMTailCalls("arm-tail-calls", cl::Hidden,
 | |
|   cl::desc("Generate tail calls (TEMPORARY OPTION)."),
 | |
|   cl::init(true));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| EnableARMLongCalls("arm-long-calls", cl::Hidden,
 | |
|   cl::desc("Generate calls via indirect call instructions"),
 | |
|   cl::init(false));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| ARMInterworking("arm-interworking", cl::Hidden,
 | |
|   cl::desc("Enable / disable ARM interworking (for debugging only)"),
 | |
|   cl::init(true));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| EnableARMCodePlacement("arm-code-placement", cl::Hidden,
 | |
|   cl::desc("Enable code placement pass for ARM"),
 | |
|   cl::init(false));
 | |
| 
 | |
| static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
 | |
|                                    CCValAssign::LocInfo &LocInfo,
 | |
|                                    ISD::ArgFlagsTy &ArgFlags,
 | |
|                                    CCState &State);
 | |
| static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
 | |
|                                     CCValAssign::LocInfo &LocInfo,
 | |
|                                     ISD::ArgFlagsTy &ArgFlags,
 | |
|                                     CCState &State);
 | |
| static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
 | |
|                                       CCValAssign::LocInfo &LocInfo,
 | |
|                                       ISD::ArgFlagsTy &ArgFlags,
 | |
|                                       CCState &State);
 | |
| static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
 | |
|                                        CCValAssign::LocInfo &LocInfo,
 | |
|                                        ISD::ArgFlagsTy &ArgFlags,
 | |
|                                        CCState &State);
 | |
| 
 | |
| void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
 | |
|                                        EVT PromotedBitwiseVT) {
 | |
|   if (VT != PromotedLdStVT) {
 | |
|     setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
 | |
|     AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
 | |
|                        PromotedLdStVT.getSimpleVT());
 | |
| 
 | |
|     setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
 | |
|     AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
 | |
|                        PromotedLdStVT.getSimpleVT());
 | |
|   }
 | |
| 
 | |
|   EVT ElemTy = VT.getVectorElementType();
 | |
|   if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
 | |
|     setOperationAction(ISD::VSETCC, VT.getSimpleVT(), Custom);
 | |
|   if (ElemTy == MVT::i8 || ElemTy == MVT::i16)
 | |
|     setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
 | |
|   if (ElemTy != MVT::i32) {
 | |
|     setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
 | |
|     setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
 | |
|     setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
 | |
|     setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
 | |
|   }
 | |
|   setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
 | |
|   setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
 | |
|   setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
 | |
|   setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Expand);
 | |
|   setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
 | |
|   setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
 | |
|   if (VT.isInteger()) {
 | |
|     setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
 | |
|     setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
 | |
|     setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
 | |
|   }
 | |
| 
 | |
|   // Promote all bit-wise operations.
 | |
|   if (VT.isInteger() && VT != PromotedBitwiseVT) {
 | |
|     setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
 | |
|     AddPromotedToType (ISD::AND, VT.getSimpleVT(),
 | |
|                        PromotedBitwiseVT.getSimpleVT());
 | |
|     setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
 | |
|     AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
 | |
|                        PromotedBitwiseVT.getSimpleVT());
 | |
|     setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
 | |
|     AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
 | |
|                        PromotedBitwiseVT.getSimpleVT());
 | |
|   }
 | |
| 
 | |
|   // Neon does not support vector divide/remainder operations.
 | |
|   setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
 | |
|   setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
 | |
|   setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
 | |
|   setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
 | |
|   setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
 | |
|   setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
 | |
| }
 | |
| 
 | |
| void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
 | |
|   addRegisterClass(VT, ARM::DPRRegisterClass);
 | |
|   addTypeForNEON(VT, MVT::f64, MVT::v2i32);
 | |
| }
 | |
| 
 | |
| void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
 | |
|   addRegisterClass(VT, ARM::QPRRegisterClass);
 | |
|   addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
 | |
| }
 | |
| 
 | |
| static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
 | |
|   if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
 | |
|     return new TargetLoweringObjectFileMachO();
 | |
| 
 | |
|   return new ARMElfTargetObjectFile();
 | |
| }
 | |
| 
 | |
| ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
 | |
|     : TargetLowering(TM, createTLOF(TM)) {
 | |
|   Subtarget = &TM.getSubtarget<ARMSubtarget>();
 | |
| 
 | |
|   if (Subtarget->isTargetDarwin()) {
 | |
|     // Uses VFP for Thumb libfuncs if available.
 | |
|     if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
 | |
|       // Single-precision floating-point arithmetic.
 | |
|       setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
 | |
|       setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
 | |
|       setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
 | |
|       setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
 | |
| 
 | |
|       // Double-precision floating-point arithmetic.
 | |
|       setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
 | |
|       setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
 | |
|       setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
 | |
|       setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
 | |
| 
 | |
|       // Single-precision comparisons.
 | |
|       setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
 | |
|       setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
 | |
|       setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
 | |
|       setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
 | |
|       setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
 | |
|       setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
 | |
|       setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
 | |
|       setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
 | |
| 
 | |
|       setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
 | |
|       setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
 | |
|       setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
 | |
|       setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
 | |
|       setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
 | |
|       setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
 | |
|       setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
 | |
|       setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
 | |
| 
 | |
|       // Double-precision comparisons.
 | |
|       setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
 | |
|       setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
 | |
|       setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
 | |
|       setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
 | |
|       setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
 | |
|       setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
 | |
|       setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
 | |
|       setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
 | |
| 
 | |
|       setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
 | |
|       setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
 | |
|       setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
 | |
|       setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
 | |
|       setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
 | |
|       setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
 | |
|       setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
 | |
|       setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
 | |
| 
 | |
|       // Floating-point to integer conversions.
 | |
|       // i64 conversions are done via library routines even when generating VFP
 | |
|       // instructions, so use the same ones.
 | |
|       setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
 | |
|       setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
 | |
|       setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
 | |
|       setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
 | |
| 
 | |
|       // Conversions between floating types.
 | |
|       setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
 | |
|       setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
 | |
| 
 | |
|       // Integer to floating-point conversions.
 | |
|       // i64 conversions are done via library routines even when generating VFP
 | |
|       // instructions, so use the same ones.
 | |
|       // FIXME: There appears to be some naming inconsistency in ARM libgcc:
 | |
|       // e.g., __floatunsidf vs. __floatunssidfvfp.
 | |
|       setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
 | |
|       setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
 | |
|       setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
 | |
|       setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // These libcalls are not available in 32-bit.
 | |
|   setLibcallName(RTLIB::SHL_I128, 0);
 | |
|   setLibcallName(RTLIB::SRL_I128, 0);
 | |
|   setLibcallName(RTLIB::SRA_I128, 0);
 | |
| 
 | |
|   // Libcalls should use the AAPCS base standard ABI, even if hard float
 | |
|   // is in effect, as per the ARM RTABI specification, section 4.1.2.
 | |
|   if (Subtarget->isAAPCS_ABI()) {
 | |
|     for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
 | |
|       setLibcallCallingConv(static_cast<RTLIB::Libcall>(i),
 | |
|                             CallingConv::ARM_AAPCS);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Subtarget->isThumb1Only())
 | |
|     addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
 | |
|   else
 | |
|     addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
 | |
|   if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
 | |
|     addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
 | |
|     addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
 | |
| 
 | |
|     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
 | |
|   }
 | |
| 
 | |
|   if (Subtarget->hasNEON()) {
 | |
|     addDRTypeForNEON(MVT::v2f32);
 | |
|     addDRTypeForNEON(MVT::v8i8);
 | |
|     addDRTypeForNEON(MVT::v4i16);
 | |
|     addDRTypeForNEON(MVT::v2i32);
 | |
|     addDRTypeForNEON(MVT::v1i64);
 | |
| 
 | |
|     addQRTypeForNEON(MVT::v4f32);
 | |
|     addQRTypeForNEON(MVT::v2f64);
 | |
|     addQRTypeForNEON(MVT::v16i8);
 | |
|     addQRTypeForNEON(MVT::v8i16);
 | |
|     addQRTypeForNEON(MVT::v4i32);
 | |
|     addQRTypeForNEON(MVT::v2i64);
 | |
| 
 | |
|     // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
 | |
|     // neither Neon nor VFP support any arithmetic operations on it.
 | |
|     setOperationAction(ISD::FADD, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FREM, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::VSETCC, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FABS, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
 | |
|     setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
 | |
| 
 | |
|     // Neon does not support some operations on v1i64 and v2i64 types.
 | |
|     setOperationAction(ISD::MUL, MVT::v1i64, Expand);
 | |
|     setOperationAction(ISD::MUL, MVT::v2i64, Expand);
 | |
|     setOperationAction(ISD::VSETCC, MVT::v1i64, Expand);
 | |
|     setOperationAction(ISD::VSETCC, MVT::v2i64, Expand);
 | |
| 
 | |
|     setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
 | |
|     setTargetDAGCombine(ISD::SHL);
 | |
|     setTargetDAGCombine(ISD::SRL);
 | |
|     setTargetDAGCombine(ISD::SRA);
 | |
|     setTargetDAGCombine(ISD::SIGN_EXTEND);
 | |
|     setTargetDAGCombine(ISD::ZERO_EXTEND);
 | |
|     setTargetDAGCombine(ISD::ANY_EXTEND);
 | |
|     setTargetDAGCombine(ISD::SELECT_CC);
 | |
|   }
 | |
| 
 | |
|   computeRegisterProperties();
 | |
| 
 | |
|   // ARM does not have f32 extending load.
 | |
|   setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
 | |
| 
 | |
|   // ARM does not have i1 sign extending load.
 | |
|   setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
 | |
| 
 | |
|   // ARM supports all 4 flavors of integer indexed load / store.
 | |
|   if (!Subtarget->isThumb1Only()) {
 | |
|     for (unsigned im = (unsigned)ISD::PRE_INC;
 | |
|          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
 | |
|       setIndexedLoadAction(im,  MVT::i1,  Legal);
 | |
|       setIndexedLoadAction(im,  MVT::i8,  Legal);
 | |
|       setIndexedLoadAction(im,  MVT::i16, Legal);
 | |
|       setIndexedLoadAction(im,  MVT::i32, Legal);
 | |
|       setIndexedStoreAction(im, MVT::i1,  Legal);
 | |
|       setIndexedStoreAction(im, MVT::i8,  Legal);
 | |
|       setIndexedStoreAction(im, MVT::i16, Legal);
 | |
|       setIndexedStoreAction(im, MVT::i32, Legal);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // i64 operation support.
 | |
|   if (Subtarget->isThumb1Only()) {
 | |
|     setOperationAction(ISD::MUL,     MVT::i64, Expand);
 | |
|     setOperationAction(ISD::MULHU,   MVT::i32, Expand);
 | |
|     setOperationAction(ISD::MULHS,   MVT::i32, Expand);
 | |
|     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
 | |
|     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
 | |
|   } else {
 | |
|     setOperationAction(ISD::MUL,     MVT::i64, Expand);
 | |
|     setOperationAction(ISD::MULHU,   MVT::i32, Expand);
 | |
|     if (!Subtarget->hasV6Ops())
 | |
|       setOperationAction(ISD::MULHS, MVT::i32, Expand);
 | |
|   }
 | |
|   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::SRL,       MVT::i64, Custom);
 | |
|   setOperationAction(ISD::SRA,       MVT::i64, Custom);
 | |
| 
 | |
|   // ARM does not have ROTL.
 | |
|   setOperationAction(ISD::ROTL,  MVT::i32, Expand);
 | |
|   setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
 | |
|   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
 | |
|   if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
 | |
|     setOperationAction(ISD::CTLZ, MVT::i32, Expand);
 | |
| 
 | |
|   // Only ARMv6 has BSWAP.
 | |
|   if (!Subtarget->hasV6Ops())
 | |
|     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
 | |
| 
 | |
|   // These are expanded into libcalls.
 | |
|   if (!Subtarget->hasDivide()) {
 | |
|     // v7M has a hardware divider
 | |
|     setOperationAction(ISD::SDIV,  MVT::i32, Expand);
 | |
|     setOperationAction(ISD::UDIV,  MVT::i32, Expand);
 | |
|   }
 | |
|   setOperationAction(ISD::SREM,  MVT::i32, Expand);
 | |
|   setOperationAction(ISD::UREM,  MVT::i32, Expand);
 | |
|   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
 | |
|   setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
 | |
|   setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::TRAP, MVT::Other, Legal);
 | |
| 
 | |
|   // Use the default implementation.
 | |
|   setOperationAction(ISD::VASTART,            MVT::Other, Custom);
 | |
|   setOperationAction(ISD::VAARG,              MVT::Other, Expand);
 | |
|   setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
 | |
|   setOperationAction(ISD::VAEND,              MVT::Other, Expand);
 | |
|   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
 | |
|   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
 | |
|   setOperationAction(ISD::EHSELECTION,        MVT::i32,   Expand);
 | |
|   // FIXME: Shouldn't need this, since no register is used, but the legalizer
 | |
|   // doesn't yet know how to not do that for SjLj.
 | |
|   setExceptionSelectorRegister(ARM::R0);
 | |
|   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
 | |
|   // Handle atomics directly for ARMv[67] (except for Thumb1), otherwise
 | |
|   // use the default expansion.
 | |
|   bool canHandleAtomics =
 | |
|     (Subtarget->hasV7Ops() ||
 | |
|       (Subtarget->hasV6Ops() && !Subtarget->isThumb1Only()));
 | |
|   if (canHandleAtomics) {
 | |
|     // membarrier needs custom lowering; the rest are legal and handled
 | |
|     // normally.
 | |
|     setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
 | |
|   } else {
 | |
|     // Set them all for expansion, which will force libcalls.
 | |
|     setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i8,  Expand);
 | |
|     setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i16, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_SWAP,      MVT::i8,  Expand);
 | |
|     setOperationAction(ISD::ATOMIC_SWAP,      MVT::i16, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i8,  Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i16, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i8,  Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i16, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i8,  Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i16, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i8,  Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i16, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i8,  Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i16, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i8,  Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i16, Expand);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
 | |
|     // Since the libcalls include locking, fold in the fences
 | |
|     setShouldFoldAtomicFences(true);
 | |
|   }
 | |
|   // 64-bit versions are always libcalls (for now)
 | |
|   setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Expand);
 | |
|   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i64, Expand);
 | |
|   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Expand);
 | |
|   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Expand);
 | |
|   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Expand);
 | |
|   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Expand);
 | |
|   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Expand);
 | |
|   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Expand);
 | |
| 
 | |
|   // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
 | |
|   if (!Subtarget->hasV6Ops()) {
 | |
|     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
 | |
|     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
 | |
|   }
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
 | |
| 
 | |
|   if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only())
 | |
|     // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
 | |
|     // iff target supports vfp2.
 | |
|     setOperationAction(ISD::BIT_CONVERT, MVT::i64, Custom);
 | |
| 
 | |
|   // We want to custom lower some of our intrinsics.
 | |
|   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
 | |
|   if (Subtarget->isTargetDarwin()) {
 | |
|     setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
 | |
|     setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
 | |
|   }
 | |
| 
 | |
|   setOperationAction(ISD::SETCC,     MVT::i32, Expand);
 | |
|   setOperationAction(ISD::SETCC,     MVT::f32, Expand);
 | |
|   setOperationAction(ISD::SETCC,     MVT::f64, Expand);
 | |
|   setOperationAction(ISD::SELECT,    MVT::i32, Expand);
 | |
|   setOperationAction(ISD::SELECT,    MVT::f32, Expand);
 | |
|   setOperationAction(ISD::SELECT,    MVT::f64, Expand);
 | |
|   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
 | |
|   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
 | |
|   setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
 | |
|   setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
 | |
|   setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
 | |
|   setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
 | |
| 
 | |
|   // We don't support sin/cos/fmod/copysign/pow
 | |
|   setOperationAction(ISD::FSIN,      MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FSIN,      MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FCOS,      MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FCOS,      MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FREM,      MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FREM,      MVT::f32, Expand);
 | |
|   if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
 | |
|   }
 | |
|   setOperationAction(ISD::FPOW,      MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FPOW,      MVT::f32, Expand);
 | |
| 
 | |
|   // Various VFP goodness
 | |
|   if (!UseSoftFloat && !Subtarget->isThumb1Only()) {
 | |
|     // int <-> fp are custom expanded into bit_convert + ARMISD ops.
 | |
|     if (Subtarget->hasVFP2()) {
 | |
|       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
 | |
|       setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
 | |
|       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
 | |
|       setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
 | |
|     }
 | |
|     // Special handling for half-precision FP.
 | |
|     if (!Subtarget->hasFP16()) {
 | |
|       setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
 | |
|       setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We have target-specific dag combine patterns for the following nodes:
 | |
|   // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
 | |
|   setTargetDAGCombine(ISD::ADD);
 | |
|   setTargetDAGCombine(ISD::SUB);
 | |
|   setTargetDAGCombine(ISD::MUL);
 | |
| 
 | |
|   setStackPointerRegisterToSaveRestore(ARM::SP);
 | |
| 
 | |
|   if (UseSoftFloat || Subtarget->isThumb1Only() || !Subtarget->hasVFP2())
 | |
|     setSchedulingPreference(Sched::RegPressure);
 | |
|   else
 | |
|     setSchedulingPreference(Sched::Hybrid);
 | |
| 
 | |
|   maxStoresPerMemcpy = 1;   //// temporary - rewrite interface to use type
 | |
| 
 | |
|   // On ARM arguments smaller than 4 bytes are extended, so all arguments
 | |
|   // are at least 4 bytes aligned.
 | |
|   setMinStackArgumentAlignment(4);
 | |
| 
 | |
|   if (EnableARMCodePlacement)
 | |
|     benefitFromCodePlacementOpt = true;
 | |
| }
 | |
| 
 | |
| const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
 | |
|   switch (Opcode) {
 | |
|   default: return 0;
 | |
|   case ARMISD::Wrapper:       return "ARMISD::Wrapper";
 | |
|   case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
 | |
|   case ARMISD::CALL:          return "ARMISD::CALL";
 | |
|   case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
 | |
|   case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
 | |
|   case ARMISD::tCALL:         return "ARMISD::tCALL";
 | |
|   case ARMISD::BRCOND:        return "ARMISD::BRCOND";
 | |
|   case ARMISD::BR_JT:         return "ARMISD::BR_JT";
 | |
|   case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
 | |
|   case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
 | |
|   case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
 | |
|   case ARMISD::CMP:           return "ARMISD::CMP";
 | |
|   case ARMISD::CMPZ:          return "ARMISD::CMPZ";
 | |
|   case ARMISD::CMPFP:         return "ARMISD::CMPFP";
 | |
|   case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
 | |
|   case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
 | |
|   case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
 | |
|   case ARMISD::CMOV:          return "ARMISD::CMOV";
 | |
|   case ARMISD::CNEG:          return "ARMISD::CNEG";
 | |
| 
 | |
|   case ARMISD::RBIT:          return "ARMISD::RBIT";
 | |
| 
 | |
|   case ARMISD::FTOSI:         return "ARMISD::FTOSI";
 | |
|   case ARMISD::FTOUI:         return "ARMISD::FTOUI";
 | |
|   case ARMISD::SITOF:         return "ARMISD::SITOF";
 | |
|   case ARMISD::UITOF:         return "ARMISD::UITOF";
 | |
| 
 | |
|   case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
 | |
|   case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
 | |
|   case ARMISD::RRX:           return "ARMISD::RRX";
 | |
| 
 | |
|   case ARMISD::VMOVRRD:         return "ARMISD::VMOVRRD";
 | |
|   case ARMISD::VMOVDRR:         return "ARMISD::VMOVDRR";
 | |
| 
 | |
|   case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
 | |
|   case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
 | |
| 
 | |
|   case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
 | |
|   
 | |
|   case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
 | |
| 
 | |
|   case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
 | |
| 
 | |
|   case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
 | |
|   case ARMISD::SYNCBARRIER:   return "ARMISD::SYNCBARRIER";
 | |
| 
 | |
|   case ARMISD::VCEQ:          return "ARMISD::VCEQ";
 | |
|   case ARMISD::VCGE:          return "ARMISD::VCGE";
 | |
|   case ARMISD::VCGEU:         return "ARMISD::VCGEU";
 | |
|   case ARMISD::VCGT:          return "ARMISD::VCGT";
 | |
|   case ARMISD::VCGTU:         return "ARMISD::VCGTU";
 | |
|   case ARMISD::VTST:          return "ARMISD::VTST";
 | |
| 
 | |
|   case ARMISD::VSHL:          return "ARMISD::VSHL";
 | |
|   case ARMISD::VSHRs:         return "ARMISD::VSHRs";
 | |
|   case ARMISD::VSHRu:         return "ARMISD::VSHRu";
 | |
|   case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
 | |
|   case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
 | |
|   case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
 | |
|   case ARMISD::VSHRN:         return "ARMISD::VSHRN";
 | |
|   case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
 | |
|   case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
 | |
|   case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
 | |
|   case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
 | |
|   case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
 | |
|   case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
 | |
|   case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
 | |
|   case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
 | |
|   case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
 | |
|   case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
 | |
|   case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
 | |
|   case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
 | |
|   case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
 | |
|   case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
 | |
|   case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
 | |
|   case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
 | |
|   case ARMISD::VDUP:          return "ARMISD::VDUP";
 | |
|   case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
 | |
|   case ARMISD::VEXT:          return "ARMISD::VEXT";
 | |
|   case ARMISD::VREV64:        return "ARMISD::VREV64";
 | |
|   case ARMISD::VREV32:        return "ARMISD::VREV32";
 | |
|   case ARMISD::VREV16:        return "ARMISD::VREV16";
 | |
|   case ARMISD::VZIP:          return "ARMISD::VZIP";
 | |
|   case ARMISD::VUZP:          return "ARMISD::VUZP";
 | |
|   case ARMISD::VTRN:          return "ARMISD::VTRN";
 | |
|   case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
 | |
|   case ARMISD::FMAX:          return "ARMISD::FMAX";
 | |
|   case ARMISD::FMIN:          return "ARMISD::FMIN";
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getRegClassFor - Return the register class that should be used for the
 | |
| /// specified value type.
 | |
| TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
 | |
|   // Map v4i64 to QQ registers but do not make the type legal. Similarly map
 | |
|   // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
 | |
|   // load / store 4 to 8 consecutive D registers.
 | |
|   if (Subtarget->hasNEON()) {
 | |
|     if (VT == MVT::v4i64)
 | |
|       return ARM::QQPRRegisterClass;
 | |
|     else if (VT == MVT::v8i64)
 | |
|       return ARM::QQQQPRRegisterClass;
 | |
|   }
 | |
|   return TargetLowering::getRegClassFor(VT);
 | |
| }
 | |
| 
 | |
| /// getFunctionAlignment - Return the Log2 alignment of this function.
 | |
| unsigned ARMTargetLowering::getFunctionAlignment(const Function *F) const {
 | |
|   return getTargetMachine().getSubtarget<ARMSubtarget>().isThumb() ? 1 : 2;
 | |
| }
 | |
| 
 | |
| Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
 | |
|   unsigned NumVals = N->getNumValues();
 | |
|   if (!NumVals)
 | |
|     return Sched::RegPressure;
 | |
| 
 | |
|   for (unsigned i = 0; i != NumVals; ++i) {
 | |
|     EVT VT = N->getValueType(i);
 | |
|     if (VT.isFloatingPoint() || VT.isVector())
 | |
|       return Sched::Latency;
 | |
|   }
 | |
| 
 | |
|   if (!N->isMachineOpcode())
 | |
|     return Sched::RegPressure;
 | |
| 
 | |
|   // Load are scheduled for latency even if there instruction itinerary
 | |
|   // is not available.
 | |
|   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | |
|   const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
 | |
|   if (TID.mayLoad())
 | |
|     return Sched::Latency;
 | |
| 
 | |
|   const InstrItineraryData &Itins = getTargetMachine().getInstrItineraryData();
 | |
|   if (!Itins.isEmpty() && Itins.getStageLatency(TID.getSchedClass()) > 2)
 | |
|     return Sched::Latency;
 | |
|   return Sched::RegPressure;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Lowering Code
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
 | |
| static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
 | |
|   switch (CC) {
 | |
|   default: llvm_unreachable("Unknown condition code!");
 | |
|   case ISD::SETNE:  return ARMCC::NE;
 | |
|   case ISD::SETEQ:  return ARMCC::EQ;
 | |
|   case ISD::SETGT:  return ARMCC::GT;
 | |
|   case ISD::SETGE:  return ARMCC::GE;
 | |
|   case ISD::SETLT:  return ARMCC::LT;
 | |
|   case ISD::SETLE:  return ARMCC::LE;
 | |
|   case ISD::SETUGT: return ARMCC::HI;
 | |
|   case ISD::SETUGE: return ARMCC::HS;
 | |
|   case ISD::SETULT: return ARMCC::LO;
 | |
|   case ISD::SETULE: return ARMCC::LS;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
 | |
| static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
 | |
|                         ARMCC::CondCodes &CondCode2) {
 | |
|   CondCode2 = ARMCC::AL;
 | |
|   switch (CC) {
 | |
|   default: llvm_unreachable("Unknown FP condition!");
 | |
|   case ISD::SETEQ:
 | |
|   case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
 | |
|   case ISD::SETGT:
 | |
|   case ISD::SETOGT: CondCode = ARMCC::GT; break;
 | |
|   case ISD::SETGE:
 | |
|   case ISD::SETOGE: CondCode = ARMCC::GE; break;
 | |
|   case ISD::SETOLT: CondCode = ARMCC::MI; break;
 | |
|   case ISD::SETOLE: CondCode = ARMCC::LS; break;
 | |
|   case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
 | |
|   case ISD::SETO:   CondCode = ARMCC::VC; break;
 | |
|   case ISD::SETUO:  CondCode = ARMCC::VS; break;
 | |
|   case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
 | |
|   case ISD::SETUGT: CondCode = ARMCC::HI; break;
 | |
|   case ISD::SETUGE: CondCode = ARMCC::PL; break;
 | |
|   case ISD::SETLT:
 | |
|   case ISD::SETULT: CondCode = ARMCC::LT; break;
 | |
|   case ISD::SETLE:
 | |
|   case ISD::SETULE: CondCode = ARMCC::LE; break;
 | |
|   case ISD::SETNE:
 | |
|   case ISD::SETUNE: CondCode = ARMCC::NE; break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                      Calling Convention Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "ARMGenCallingConv.inc"
 | |
| 
 | |
| // APCS f64 is in register pairs, possibly split to stack
 | |
| static bool f64AssignAPCS(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
 | |
|                           CCValAssign::LocInfo &LocInfo,
 | |
|                           CCState &State, bool CanFail) {
 | |
|   static const unsigned RegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
 | |
| 
 | |
|   // Try to get the first register.
 | |
|   if (unsigned Reg = State.AllocateReg(RegList, 4))
 | |
|     State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
 | |
|   else {
 | |
|     // For the 2nd half of a v2f64, do not fail.
 | |
|     if (CanFail)
 | |
|       return false;
 | |
| 
 | |
|     // Put the whole thing on the stack.
 | |
|     State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
 | |
|                                            State.AllocateStack(8, 4),
 | |
|                                            LocVT, LocInfo));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Try to get the second register.
 | |
|   if (unsigned Reg = State.AllocateReg(RegList, 4))
 | |
|     State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
 | |
|   else
 | |
|     State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
 | |
|                                            State.AllocateStack(4, 4),
 | |
|                                            LocVT, LocInfo));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
 | |
|                                    CCValAssign::LocInfo &LocInfo,
 | |
|                                    ISD::ArgFlagsTy &ArgFlags,
 | |
|                                    CCState &State) {
 | |
|   if (!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
 | |
|     return false;
 | |
|   if (LocVT == MVT::v2f64 &&
 | |
|       !f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
 | |
|     return false;
 | |
|   return true;  // we handled it
 | |
| }
 | |
| 
 | |
| // AAPCS f64 is in aligned register pairs
 | |
| static bool f64AssignAAPCS(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
 | |
|                            CCValAssign::LocInfo &LocInfo,
 | |
|                            CCState &State, bool CanFail) {
 | |
|   static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
 | |
|   static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
 | |
| 
 | |
|   unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
 | |
|   if (Reg == 0) {
 | |
|     // For the 2nd half of a v2f64, do not just fail.
 | |
|     if (CanFail)
 | |
|       return false;
 | |
| 
 | |
|     // Put the whole thing on the stack.
 | |
|     State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
 | |
|                                            State.AllocateStack(8, 8),
 | |
|                                            LocVT, LocInfo));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   unsigned i;
 | |
|   for (i = 0; i < 2; ++i)
 | |
|     if (HiRegList[i] == Reg)
 | |
|       break;
 | |
| 
 | |
|   State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
 | |
|   State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
 | |
|                                          LocVT, LocInfo));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
 | |
|                                     CCValAssign::LocInfo &LocInfo,
 | |
|                                     ISD::ArgFlagsTy &ArgFlags,
 | |
|                                     CCState &State) {
 | |
|   if (!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
 | |
|     return false;
 | |
|   if (LocVT == MVT::v2f64 &&
 | |
|       !f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
 | |
|     return false;
 | |
|   return true;  // we handled it
 | |
| }
 | |
| 
 | |
| static bool f64RetAssign(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
 | |
|                          CCValAssign::LocInfo &LocInfo, CCState &State) {
 | |
|   static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
 | |
|   static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
 | |
| 
 | |
|   unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
 | |
|   if (Reg == 0)
 | |
|     return false; // we didn't handle it
 | |
| 
 | |
|   unsigned i;
 | |
|   for (i = 0; i < 2; ++i)
 | |
|     if (HiRegList[i] == Reg)
 | |
|       break;
 | |
| 
 | |
|   State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
 | |
|   State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
 | |
|                                          LocVT, LocInfo));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
 | |
|                                       CCValAssign::LocInfo &LocInfo,
 | |
|                                       ISD::ArgFlagsTy &ArgFlags,
 | |
|                                       CCState &State) {
 | |
|   if (!f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
 | |
|     return false;
 | |
|   if (LocVT == MVT::v2f64 && !f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
 | |
|     return false;
 | |
|   return true;  // we handled it
 | |
| }
 | |
| 
 | |
| static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
 | |
|                                        CCValAssign::LocInfo &LocInfo,
 | |
|                                        ISD::ArgFlagsTy &ArgFlags,
 | |
|                                        CCState &State) {
 | |
|   return RetCC_ARM_APCS_Custom_f64(ValNo, ValVT, LocVT, LocInfo, ArgFlags,
 | |
|                                    State);
 | |
| }
 | |
| 
 | |
| /// CCAssignFnForNode - Selects the correct CCAssignFn for a the
 | |
| /// given CallingConvention value.
 | |
| CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
 | |
|                                                  bool Return,
 | |
|                                                  bool isVarArg) const {
 | |
|   switch (CC) {
 | |
|   default:
 | |
|     llvm_unreachable("Unsupported calling convention");
 | |
|   case CallingConv::C:
 | |
|   case CallingConv::Fast:
 | |
|     // Use target triple & subtarget features to do actual dispatch.
 | |
|     if (Subtarget->isAAPCS_ABI()) {
 | |
|       if (Subtarget->hasVFP2() &&
 | |
|           FloatABIType == FloatABI::Hard && !isVarArg)
 | |
|         return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
 | |
|       else
 | |
|         return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
 | |
|     } else
 | |
|         return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
 | |
|   case CallingConv::ARM_AAPCS_VFP:
 | |
|     return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
 | |
|   case CallingConv::ARM_AAPCS:
 | |
|     return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
 | |
|   case CallingConv::ARM_APCS:
 | |
|     return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// LowerCallResult - Lower the result values of a call into the
 | |
| /// appropriate copies out of appropriate physical registers.
 | |
| SDValue
 | |
| ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
 | |
|                                    CallingConv::ID CallConv, bool isVarArg,
 | |
|                                    const SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                                    DebugLoc dl, SelectionDAG &DAG,
 | |
|                                    SmallVectorImpl<SDValue> &InVals) const {
 | |
| 
 | |
|   // Assign locations to each value returned by this call.
 | |
|   SmallVector<CCValAssign, 16> RVLocs;
 | |
|   CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
 | |
|                  RVLocs, *DAG.getContext());
 | |
|   CCInfo.AnalyzeCallResult(Ins,
 | |
|                            CCAssignFnForNode(CallConv, /* Return*/ true,
 | |
|                                              isVarArg));
 | |
| 
 | |
|   // Copy all of the result registers out of their specified physreg.
 | |
|   for (unsigned i = 0; i != RVLocs.size(); ++i) {
 | |
|     CCValAssign VA = RVLocs[i];
 | |
| 
 | |
|     SDValue Val;
 | |
|     if (VA.needsCustom()) {
 | |
|       // Handle f64 or half of a v2f64.
 | |
|       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
 | |
|                                       InFlag);
 | |
|       Chain = Lo.getValue(1);
 | |
|       InFlag = Lo.getValue(2);
 | |
|       VA = RVLocs[++i]; // skip ahead to next loc
 | |
|       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
 | |
|                                       InFlag);
 | |
|       Chain = Hi.getValue(1);
 | |
|       InFlag = Hi.getValue(2);
 | |
|       Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
 | |
| 
 | |
|       if (VA.getLocVT() == MVT::v2f64) {
 | |
|         SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
 | |
|         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
 | |
|                           DAG.getConstant(0, MVT::i32));
 | |
| 
 | |
|         VA = RVLocs[++i]; // skip ahead to next loc
 | |
|         Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
 | |
|         Chain = Lo.getValue(1);
 | |
|         InFlag = Lo.getValue(2);
 | |
|         VA = RVLocs[++i]; // skip ahead to next loc
 | |
|         Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
 | |
|         Chain = Hi.getValue(1);
 | |
|         InFlag = Hi.getValue(2);
 | |
|         Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
 | |
|         Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
 | |
|                           DAG.getConstant(1, MVT::i32));
 | |
|       }
 | |
|     } else {
 | |
|       Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
 | |
|                                InFlag);
 | |
|       Chain = Val.getValue(1);
 | |
|       InFlag = Val.getValue(2);
 | |
|     }
 | |
| 
 | |
|     switch (VA.getLocInfo()) {
 | |
|     default: llvm_unreachable("Unknown loc info!");
 | |
|     case CCValAssign::Full: break;
 | |
|     case CCValAssign::BCvt:
 | |
|       Val = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), Val);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     InVals.push_back(Val);
 | |
|   }
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
 | |
| /// by "Src" to address "Dst" of size "Size".  Alignment information is
 | |
| /// specified by the specific parameter attribute.  The copy will be passed as
 | |
| /// a byval function parameter.
 | |
| /// Sometimes what we are copying is the end of a larger object, the part that
 | |
| /// does not fit in registers.
 | |
| static SDValue
 | |
| CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
 | |
|                           ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
 | |
|                           DebugLoc dl) {
 | |
|   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
 | |
|   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
 | |
|                        /*isVolatile=*/false, /*AlwaysInline=*/false,
 | |
|                        NULL, 0, NULL, 0);
 | |
| }
 | |
| 
 | |
| /// LowerMemOpCallTo - Store the argument to the stack.
 | |
| SDValue
 | |
| ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
 | |
|                                     SDValue StackPtr, SDValue Arg,
 | |
|                                     DebugLoc dl, SelectionDAG &DAG,
 | |
|                                     const CCValAssign &VA,
 | |
|                                     ISD::ArgFlagsTy Flags) const {
 | |
|   unsigned LocMemOffset = VA.getLocMemOffset();
 | |
|   SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
 | |
|   PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
 | |
|   if (Flags.isByVal()) {
 | |
|     return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
 | |
|   }
 | |
|   return DAG.getStore(Chain, dl, Arg, PtrOff,
 | |
|                       PseudoSourceValue::getStack(), LocMemOffset,
 | |
|                       false, false, 0);
 | |
| }
 | |
| 
 | |
| void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
 | |
|                                          SDValue Chain, SDValue &Arg,
 | |
|                                          RegsToPassVector &RegsToPass,
 | |
|                                          CCValAssign &VA, CCValAssign &NextVA,
 | |
|                                          SDValue &StackPtr,
 | |
|                                          SmallVector<SDValue, 8> &MemOpChains,
 | |
|                                          ISD::ArgFlagsTy Flags) const {
 | |
| 
 | |
|   SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
 | |
|                               DAG.getVTList(MVT::i32, MVT::i32), Arg);
 | |
|   RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
 | |
| 
 | |
|   if (NextVA.isRegLoc())
 | |
|     RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
 | |
|   else {
 | |
|     assert(NextVA.isMemLoc());
 | |
|     if (StackPtr.getNode() == 0)
 | |
|       StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
 | |
| 
 | |
|     MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
 | |
|                                            dl, DAG, NextVA,
 | |
|                                            Flags));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// LowerCall - Lowering a call into a callseq_start <-
 | |
| /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
 | |
| /// nodes.
 | |
| SDValue
 | |
| ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
 | |
|                              CallingConv::ID CallConv, bool isVarArg,
 | |
|                              bool &isTailCall,
 | |
|                              const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                              const SmallVectorImpl<SDValue> &OutVals,
 | |
|                              const SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                              DebugLoc dl, SelectionDAG &DAG,
 | |
|                              SmallVectorImpl<SDValue> &InVals) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
 | |
|   bool IsSibCall = false;
 | |
|   // Temporarily disable tail calls so things don't break.
 | |
|   if (!EnableARMTailCalls)
 | |
|     isTailCall = false;
 | |
|   if (isTailCall) {
 | |
|     // Check if it's really possible to do a tail call.
 | |
|     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
 | |
|                     isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
 | |
|                                                    Outs, OutVals, Ins, DAG);
 | |
|     // We don't support GuaranteedTailCallOpt for ARM, only automatically
 | |
|     // detected sibcalls.
 | |
|     if (isTailCall) {
 | |
|       ++NumTailCalls;
 | |
|       IsSibCall = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Analyze operands of the call, assigning locations to each operand.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
 | |
|                  *DAG.getContext());
 | |
|   CCInfo.AnalyzeCallOperands(Outs,
 | |
|                              CCAssignFnForNode(CallConv, /* Return*/ false,
 | |
|                                                isVarArg));
 | |
| 
 | |
|   // Get a count of how many bytes are to be pushed on the stack.
 | |
|   unsigned NumBytes = CCInfo.getNextStackOffset();
 | |
| 
 | |
|   // For tail calls, memory operands are available in our caller's stack.
 | |
|   if (IsSibCall)
 | |
|     NumBytes = 0;
 | |
| 
 | |
|   // Adjust the stack pointer for the new arguments...
 | |
|   // These operations are automatically eliminated by the prolog/epilog pass
 | |
|   if (!IsSibCall)
 | |
|     Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
 | |
| 
 | |
|   SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
 | |
| 
 | |
|   RegsToPassVector RegsToPass;
 | |
|   SmallVector<SDValue, 8> MemOpChains;
 | |
| 
 | |
|   // Walk the register/memloc assignments, inserting copies/loads.  In the case
 | |
|   // of tail call optimization, arguments are handled later.
 | |
|   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
 | |
|        i != e;
 | |
|        ++i, ++realArgIdx) {
 | |
|     CCValAssign &VA = ArgLocs[i];
 | |
|     SDValue Arg = OutVals[realArgIdx];
 | |
|     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
 | |
| 
 | |
|     // Promote the value if needed.
 | |
|     switch (VA.getLocInfo()) {
 | |
|     default: llvm_unreachable("Unknown loc info!");
 | |
|     case CCValAssign::Full: break;
 | |
|     case CCValAssign::SExt:
 | |
|       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
 | |
|       break;
 | |
|     case CCValAssign::ZExt:
 | |
|       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
 | |
|       break;
 | |
|     case CCValAssign::AExt:
 | |
|       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
 | |
|       break;
 | |
|     case CCValAssign::BCvt:
 | |
|       Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
 | |
|     if (VA.needsCustom()) {
 | |
|       if (VA.getLocVT() == MVT::v2f64) {
 | |
|         SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
 | |
|                                   DAG.getConstant(0, MVT::i32));
 | |
|         SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
 | |
|                                   DAG.getConstant(1, MVT::i32));
 | |
| 
 | |
|         PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
 | |
|                          VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
 | |
| 
 | |
|         VA = ArgLocs[++i]; // skip ahead to next loc
 | |
|         if (VA.isRegLoc()) {
 | |
|           PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
 | |
|                            VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
 | |
|         } else {
 | |
|           assert(VA.isMemLoc());
 | |
| 
 | |
|           MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
 | |
|                                                  dl, DAG, VA, Flags));
 | |
|         }
 | |
|       } else {
 | |
|         PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
 | |
|                          StackPtr, MemOpChains, Flags);
 | |
|       }
 | |
|     } else if (VA.isRegLoc()) {
 | |
|       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
 | |
|     } else if (!IsSibCall) {
 | |
|       assert(VA.isMemLoc());
 | |
| 
 | |
|       MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
 | |
|                                              dl, DAG, VA, Flags));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!MemOpChains.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | |
|                         &MemOpChains[0], MemOpChains.size());
 | |
| 
 | |
|   // Build a sequence of copy-to-reg nodes chained together with token chain
 | |
|   // and flag operands which copy the outgoing args into the appropriate regs.
 | |
|   SDValue InFlag;
 | |
|   // Tail call byval lowering might overwrite argument registers so in case of
 | |
|   // tail call optimization the copies to registers are lowered later.
 | |
|   if (!isTailCall)
 | |
|     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | |
|       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
 | |
|                                RegsToPass[i].second, InFlag);
 | |
|       InFlag = Chain.getValue(1);
 | |
|     }
 | |
| 
 | |
|   // For tail calls lower the arguments to the 'real' stack slot.
 | |
|   if (isTailCall) {
 | |
|     // Force all the incoming stack arguments to be loaded from the stack
 | |
|     // before any new outgoing arguments are stored to the stack, because the
 | |
|     // outgoing stack slots may alias the incoming argument stack slots, and
 | |
|     // the alias isn't otherwise explicit. This is slightly more conservative
 | |
|     // than necessary, because it means that each store effectively depends
 | |
|     // on every argument instead of just those arguments it would clobber.
 | |
| 
 | |
|     // Do not flag preceeding copytoreg stuff together with the following stuff.
 | |
|     InFlag = SDValue();
 | |
|     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | |
|       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
 | |
|                                RegsToPass[i].second, InFlag);
 | |
|       InFlag = Chain.getValue(1);
 | |
|     }
 | |
|     InFlag =SDValue();
 | |
|   }
 | |
| 
 | |
|   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
 | |
|   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
 | |
|   // node so that legalize doesn't hack it.
 | |
|   bool isDirect = false;
 | |
|   bool isARMFunc = false;
 | |
|   bool isLocalARMFunc = false;
 | |
|   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | |
| 
 | |
|   if (EnableARMLongCalls) {
 | |
|     assert (getTargetMachine().getRelocationModel() == Reloc::Static
 | |
|             && "long-calls with non-static relocation model!");
 | |
|     // Handle a global address or an external symbol. If it's not one of
 | |
|     // those, the target's already in a register, so we don't need to do
 | |
|     // anything extra.
 | |
|     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
 | |
|       const GlobalValue *GV = G->getGlobal();
 | |
|       // Create a constant pool entry for the callee address
 | |
|       unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
 | |
|       ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
 | |
|                                                            ARMPCLabelIndex,
 | |
|                                                            ARMCP::CPValue, 0);
 | |
|       // Get the address of the callee into a register
 | |
|       SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
 | |
|       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
 | |
|       Callee = DAG.getLoad(getPointerTy(), dl,
 | |
|                            DAG.getEntryNode(), CPAddr,
 | |
|                            PseudoSourceValue::getConstantPool(), 0,
 | |
|                            false, false, 0);
 | |
|     } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
 | |
|       const char *Sym = S->getSymbol();
 | |
| 
 | |
|       // Create a constant pool entry for the callee address
 | |
|       unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
 | |
|       ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
 | |
|                                                        Sym, ARMPCLabelIndex, 0);
 | |
|       // Get the address of the callee into a register
 | |
|       SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
 | |
|       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
 | |
|       Callee = DAG.getLoad(getPointerTy(), dl,
 | |
|                            DAG.getEntryNode(), CPAddr,
 | |
|                            PseudoSourceValue::getConstantPool(), 0,
 | |
|                            false, false, 0);
 | |
|     }
 | |
|   } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
 | |
|     const GlobalValue *GV = G->getGlobal();
 | |
|     isDirect = true;
 | |
|     bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
 | |
|     bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
 | |
|                    getTargetMachine().getRelocationModel() != Reloc::Static;
 | |
|     isARMFunc = !Subtarget->isThumb() || isStub;
 | |
|     // ARM call to a local ARM function is predicable.
 | |
|     isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
 | |
|     // tBX takes a register source operand.
 | |
|     if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
 | |
|       unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
 | |
|       ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
 | |
|                                                            ARMPCLabelIndex,
 | |
|                                                            ARMCP::CPValue, 4);
 | |
|       SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
 | |
|       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
 | |
|       Callee = DAG.getLoad(getPointerTy(), dl,
 | |
|                            DAG.getEntryNode(), CPAddr,
 | |
|                            PseudoSourceValue::getConstantPool(), 0,
 | |
|                            false, false, 0);
 | |
|       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
 | |
|       Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
 | |
|                            getPointerTy(), Callee, PICLabel);
 | |
|     } else
 | |
|       Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy());
 | |
|   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
 | |
|     isDirect = true;
 | |
|     bool isStub = Subtarget->isTargetDarwin() &&
 | |
|                   getTargetMachine().getRelocationModel() != Reloc::Static;
 | |
|     isARMFunc = !Subtarget->isThumb() || isStub;
 | |
|     // tBX takes a register source operand.
 | |
|     const char *Sym = S->getSymbol();
 | |
|     if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
 | |
|       unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
 | |
|       ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
 | |
|                                                        Sym, ARMPCLabelIndex, 4);
 | |
|       SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
 | |
|       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
 | |
|       Callee = DAG.getLoad(getPointerTy(), dl,
 | |
|                            DAG.getEntryNode(), CPAddr,
 | |
|                            PseudoSourceValue::getConstantPool(), 0,
 | |
|                            false, false, 0);
 | |
|       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
 | |
|       Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
 | |
|                            getPointerTy(), Callee, PICLabel);
 | |
|     } else
 | |
|       Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
 | |
|   }
 | |
| 
 | |
|   // FIXME: handle tail calls differently.
 | |
|   unsigned CallOpc;
 | |
|   if (Subtarget->isThumb()) {
 | |
|     if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
 | |
|       CallOpc = ARMISD::CALL_NOLINK;
 | |
|     else
 | |
|       CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
 | |
|   } else {
 | |
|     CallOpc = (isDirect || Subtarget->hasV5TOps())
 | |
|       ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
 | |
|       : ARMISD::CALL_NOLINK;
 | |
|   }
 | |
| 
 | |
|   std::vector<SDValue> Ops;
 | |
|   Ops.push_back(Chain);
 | |
|   Ops.push_back(Callee);
 | |
| 
 | |
|   // Add argument registers to the end of the list so that they are known live
 | |
|   // into the call.
 | |
|   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
 | |
|     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
 | |
|                                   RegsToPass[i].second.getValueType()));
 | |
| 
 | |
|   if (InFlag.getNode())
 | |
|     Ops.push_back(InFlag);
 | |
| 
 | |
|   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
 | |
|   if (isTailCall)
 | |
|     return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
 | |
| 
 | |
|   // Returns a chain and a flag for retval copy to use.
 | |
|   Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
 | |
|   InFlag = Chain.getValue(1);
 | |
| 
 | |
|   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
 | |
|                              DAG.getIntPtrConstant(0, true), InFlag);
 | |
|   if (!Ins.empty())
 | |
|     InFlag = Chain.getValue(1);
 | |
| 
 | |
|   // Handle result values, copying them out of physregs into vregs that we
 | |
|   // return.
 | |
|   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
 | |
|                          dl, DAG, InVals);
 | |
| }
 | |
| 
 | |
| /// MatchingStackOffset - Return true if the given stack call argument is
 | |
| /// already available in the same position (relatively) of the caller's
 | |
| /// incoming argument stack.
 | |
| static
 | |
| bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
 | |
|                          MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
 | |
|                          const ARMInstrInfo *TII) {
 | |
|   unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
 | |
|   int FI = INT_MAX;
 | |
|   if (Arg.getOpcode() == ISD::CopyFromReg) {
 | |
|     unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
 | |
|     if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
 | |
|       return false;
 | |
|     MachineInstr *Def = MRI->getVRegDef(VR);
 | |
|     if (!Def)
 | |
|       return false;
 | |
|     if (!Flags.isByVal()) {
 | |
|       if (!TII->isLoadFromStackSlot(Def, FI))
 | |
|         return false;
 | |
|     } else {
 | |
|       return false;
 | |
|     }
 | |
|   } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
 | |
|     if (Flags.isByVal())
 | |
|       // ByVal argument is passed in as a pointer but it's now being
 | |
|       // dereferenced. e.g.
 | |
|       // define @foo(%struct.X* %A) {
 | |
|       //   tail call @bar(%struct.X* byval %A)
 | |
|       // }
 | |
|       return false;
 | |
|     SDValue Ptr = Ld->getBasePtr();
 | |
|     FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
 | |
|     if (!FINode)
 | |
|       return false;
 | |
|     FI = FINode->getIndex();
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   assert(FI != INT_MAX);
 | |
|   if (!MFI->isFixedObjectIndex(FI))
 | |
|     return false;
 | |
|   return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
 | |
| }
 | |
| 
 | |
| /// IsEligibleForTailCallOptimization - Check whether the call is eligible
 | |
| /// for tail call optimization. Targets which want to do tail call
 | |
| /// optimization should implement this function.
 | |
| bool
 | |
| ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
 | |
|                                                      CallingConv::ID CalleeCC,
 | |
|                                                      bool isVarArg,
 | |
|                                                      bool isCalleeStructRet,
 | |
|                                                      bool isCallerStructRet,
 | |
|                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                                     const SmallVectorImpl<SDValue> &OutVals,
 | |
|                                     const SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                                                      SelectionDAG& DAG) const {
 | |
|   const Function *CallerF = DAG.getMachineFunction().getFunction();
 | |
|   CallingConv::ID CallerCC = CallerF->getCallingConv();
 | |
|   bool CCMatch = CallerCC == CalleeCC;
 | |
| 
 | |
|   // Look for obvious safe cases to perform tail call optimization that do not
 | |
|   // require ABI changes. This is what gcc calls sibcall.
 | |
| 
 | |
|   // Do not sibcall optimize vararg calls unless the call site is not passing
 | |
|   // any arguments.
 | |
|   if (isVarArg && !Outs.empty())
 | |
|     return false;
 | |
| 
 | |
|   // Also avoid sibcall optimization if either caller or callee uses struct
 | |
|   // return semantics.
 | |
|   if (isCalleeStructRet || isCallerStructRet)
 | |
|     return false;
 | |
| 
 | |
|   // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
 | |
|   // emitEpilogue is not ready for them.
 | |
|   // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
 | |
|   // LR.  This means if we need to reload LR, it takes an extra instructions,
 | |
|   // which outweighs the value of the tail call; but here we don't know yet
 | |
|   // whether LR is going to be used.  Probably the right approach is to
 | |
|   // generate the tail call here and turn it back into CALL/RET in 
 | |
|   // emitEpilogue if LR is used.
 | |
|   if (Subtarget->isThumb1Only())
 | |
|     return false;
 | |
| 
 | |
|   // For the moment, we can only do this to functions defined in this
 | |
|   // compilation, or to indirect calls.  A Thumb B to an ARM function,
 | |
|   // or vice versa, is not easily fixed up in the linker unlike BL.
 | |
|   // (We could do this by loading the address of the callee into a register;
 | |
|   // that is an extra instruction over the direct call and burns a register
 | |
|   // as well, so is not likely to be a win.)
 | |
| 
 | |
|   // It might be safe to remove this restriction on non-Darwin.
 | |
| 
 | |
|   // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
 | |
|   // but we need to make sure there are enough registers; the only valid
 | |
|   // registers are the 4 used for parameters.  We don't currently do this
 | |
|   // case.
 | |
|   if (isa<ExternalSymbolSDNode>(Callee))
 | |
|       return false;
 | |
| 
 | |
|   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
 | |
|     const GlobalValue *GV = G->getGlobal();
 | |
|     if (GV->isDeclaration() || GV->isWeakForLinker())
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // If the calling conventions do not match, then we'd better make sure the
 | |
|   // results are returned in the same way as what the caller expects.
 | |
|   if (!CCMatch) {
 | |
|     SmallVector<CCValAssign, 16> RVLocs1;
 | |
|     CCState CCInfo1(CalleeCC, false, getTargetMachine(),
 | |
|                     RVLocs1, *DAG.getContext());
 | |
|     CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
 | |
| 
 | |
|     SmallVector<CCValAssign, 16> RVLocs2;
 | |
|     CCState CCInfo2(CallerCC, false, getTargetMachine(),
 | |
|                     RVLocs2, *DAG.getContext());
 | |
|     CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
 | |
| 
 | |
|     if (RVLocs1.size() != RVLocs2.size())
 | |
|       return false;
 | |
|     for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
 | |
|       if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
 | |
|         return false;
 | |
|       if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
 | |
|         return false;
 | |
|       if (RVLocs1[i].isRegLoc()) {
 | |
|         if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
 | |
|           return false;
 | |
|       } else {
 | |
|         if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the callee takes no arguments then go on to check the results of the
 | |
|   // call.
 | |
|   if (!Outs.empty()) {
 | |
|     // Check if stack adjustment is needed. For now, do not do this if any
 | |
|     // argument is passed on the stack.
 | |
|     SmallVector<CCValAssign, 16> ArgLocs;
 | |
|     CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
 | |
|                    ArgLocs, *DAG.getContext());
 | |
|     CCInfo.AnalyzeCallOperands(Outs,
 | |
|                                CCAssignFnForNode(CalleeCC, false, isVarArg));
 | |
|     if (CCInfo.getNextStackOffset()) {
 | |
|       MachineFunction &MF = DAG.getMachineFunction();
 | |
| 
 | |
|       // Check if the arguments are already laid out in the right way as
 | |
|       // the caller's fixed stack objects.
 | |
|       MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
|       const MachineRegisterInfo *MRI = &MF.getRegInfo();
 | |
|       const ARMInstrInfo *TII =
 | |
|         ((ARMTargetMachine&)getTargetMachine()).getInstrInfo();
 | |
|       for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
 | |
|            i != e;
 | |
|            ++i, ++realArgIdx) {
 | |
|         CCValAssign &VA = ArgLocs[i];
 | |
|         EVT RegVT = VA.getLocVT();
 | |
|         SDValue Arg = OutVals[realArgIdx];
 | |
|         ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
 | |
|         if (VA.getLocInfo() == CCValAssign::Indirect)
 | |
|           return false;
 | |
|         if (VA.needsCustom()) {
 | |
|           // f64 and vector types are split into multiple registers or
 | |
|           // register/stack-slot combinations.  The types will not match
 | |
|           // the registers; give up on memory f64 refs until we figure
 | |
|           // out what to do about this.
 | |
|           if (!VA.isRegLoc())
 | |
|             return false;
 | |
|           if (!ArgLocs[++i].isRegLoc())
 | |
|             return false; 
 | |
|           if (RegVT == MVT::v2f64) {
 | |
|             if (!ArgLocs[++i].isRegLoc())
 | |
|               return false;
 | |
|             if (!ArgLocs[++i].isRegLoc())
 | |
|               return false;
 | |
|           }
 | |
|         } else if (!VA.isRegLoc()) {
 | |
|           if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
 | |
|                                    MFI, MRI, TII))
 | |
|             return false;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| ARMTargetLowering::LowerReturn(SDValue Chain,
 | |
|                                CallingConv::ID CallConv, bool isVarArg,
 | |
|                                const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                                const SmallVectorImpl<SDValue> &OutVals,
 | |
|                                DebugLoc dl, SelectionDAG &DAG) const {
 | |
| 
 | |
|   // CCValAssign - represent the assignment of the return value to a location.
 | |
|   SmallVector<CCValAssign, 16> RVLocs;
 | |
| 
 | |
|   // CCState - Info about the registers and stack slots.
 | |
|   CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
 | |
|                  *DAG.getContext());
 | |
| 
 | |
|   // Analyze outgoing return values.
 | |
|   CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
 | |
|                                                isVarArg));
 | |
| 
 | |
|   // If this is the first return lowered for this function, add
 | |
|   // the regs to the liveout set for the function.
 | |
|   if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
 | |
|     for (unsigned i = 0; i != RVLocs.size(); ++i)
 | |
|       if (RVLocs[i].isRegLoc())
 | |
|         DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
 | |
|   }
 | |
| 
 | |
|   SDValue Flag;
 | |
| 
 | |
|   // Copy the result values into the output registers.
 | |
|   for (unsigned i = 0, realRVLocIdx = 0;
 | |
|        i != RVLocs.size();
 | |
|        ++i, ++realRVLocIdx) {
 | |
|     CCValAssign &VA = RVLocs[i];
 | |
|     assert(VA.isRegLoc() && "Can only return in registers!");
 | |
| 
 | |
|     SDValue Arg = OutVals[realRVLocIdx];
 | |
| 
 | |
|     switch (VA.getLocInfo()) {
 | |
|     default: llvm_unreachable("Unknown loc info!");
 | |
|     case CCValAssign::Full: break;
 | |
|     case CCValAssign::BCvt:
 | |
|       Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (VA.needsCustom()) {
 | |
|       if (VA.getLocVT() == MVT::v2f64) {
 | |
|         // Extract the first half and return it in two registers.
 | |
|         SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
 | |
|                                    DAG.getConstant(0, MVT::i32));
 | |
|         SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
 | |
|                                        DAG.getVTList(MVT::i32, MVT::i32), Half);
 | |
| 
 | |
|         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
 | |
|         Flag = Chain.getValue(1);
 | |
|         VA = RVLocs[++i]; // skip ahead to next loc
 | |
|         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
 | |
|                                  HalfGPRs.getValue(1), Flag);
 | |
|         Flag = Chain.getValue(1);
 | |
|         VA = RVLocs[++i]; // skip ahead to next loc
 | |
| 
 | |
|         // Extract the 2nd half and fall through to handle it as an f64 value.
 | |
|         Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
 | |
|                           DAG.getConstant(1, MVT::i32));
 | |
|       }
 | |
|       // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
 | |
|       // available.
 | |
|       SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
 | |
|                                   DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
 | |
|       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
 | |
|       Flag = Chain.getValue(1);
 | |
|       VA = RVLocs[++i]; // skip ahead to next loc
 | |
|       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
 | |
|                                Flag);
 | |
|     } else
 | |
|       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
 | |
| 
 | |
|     // Guarantee that all emitted copies are
 | |
|     // stuck together, avoiding something bad.
 | |
|     Flag = Chain.getValue(1);
 | |
|   }
 | |
| 
 | |
|   SDValue result;
 | |
|   if (Flag.getNode())
 | |
|     result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
 | |
|   else // Return Void
 | |
|     result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
 | |
| 
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
 | |
| // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
 | |
| // one of the above mentioned nodes. It has to be wrapped because otherwise
 | |
| // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
 | |
| // be used to form addressing mode. These wrapped nodes will be selected
 | |
| // into MOVi.
 | |
| static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
 | |
|   EVT PtrVT = Op.getValueType();
 | |
|   // FIXME there is no actual debug info here
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
 | |
|   SDValue Res;
 | |
|   if (CP->isMachineConstantPoolEntry())
 | |
|     Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
 | |
|                                     CP->getAlignment());
 | |
|   else
 | |
|     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
 | |
|                                     CP->getAlignment());
 | |
|   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
 | |
|                                              SelectionDAG &DAG) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | |
|   unsigned ARMPCLabelIndex = 0;
 | |
|   DebugLoc DL = Op.getDebugLoc();
 | |
|   EVT PtrVT = getPointerTy();
 | |
|   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
 | |
|   Reloc::Model RelocM = getTargetMachine().getRelocationModel();
 | |
|   SDValue CPAddr;
 | |
|   if (RelocM == Reloc::Static) {
 | |
|     CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
 | |
|   } else {
 | |
|     unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
 | |
|     ARMPCLabelIndex = AFI->createConstPoolEntryUId();
 | |
|     ARMConstantPoolValue *CPV = new ARMConstantPoolValue(BA, ARMPCLabelIndex,
 | |
|                                                          ARMCP::CPBlockAddress,
 | |
|                                                          PCAdj);
 | |
|     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
 | |
|   }
 | |
|   CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
 | |
|   SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
 | |
|                                PseudoSourceValue::getConstantPool(), 0,
 | |
|                                false, false, 0);
 | |
|   if (RelocM == Reloc::Static)
 | |
|     return Result;
 | |
|   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
 | |
|   return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
 | |
| }
 | |
| 
 | |
| // Lower ISD::GlobalTLSAddress using the "general dynamic" model
 | |
| SDValue
 | |
| ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
 | |
|                                                  SelectionDAG &DAG) const {
 | |
|   DebugLoc dl = GA->getDebugLoc();
 | |
|   EVT PtrVT = getPointerTy();
 | |
|   unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | |
|   unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
 | |
|   ARMConstantPoolValue *CPV =
 | |
|     new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
 | |
|                              ARMCP::CPValue, PCAdj, "tlsgd", true);
 | |
|   SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
 | |
|   Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
 | |
|   Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
 | |
|                          PseudoSourceValue::getConstantPool(), 0,
 | |
|                          false, false, 0);
 | |
|   SDValue Chain = Argument.getValue(1);
 | |
| 
 | |
|   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
 | |
|   Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
 | |
| 
 | |
|   // call __tls_get_addr.
 | |
|   ArgListTy Args;
 | |
|   ArgListEntry Entry;
 | |
|   Entry.Node = Argument;
 | |
|   Entry.Ty = (const Type *) Type::getInt32Ty(*DAG.getContext());
 | |
|   Args.push_back(Entry);
 | |
|   // FIXME: is there useful debug info available here?
 | |
|   std::pair<SDValue, SDValue> CallResult =
 | |
|     LowerCallTo(Chain, (const Type *) Type::getInt32Ty(*DAG.getContext()),
 | |
|                 false, false, false, false,
 | |
|                 0, CallingConv::C, false, /*isReturnValueUsed=*/true,
 | |
|                 DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
 | |
|   return CallResult.first;
 | |
| }
 | |
| 
 | |
| // Lower ISD::GlobalTLSAddress using the "initial exec" or
 | |
| // "local exec" model.
 | |
| SDValue
 | |
| ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
 | |
|                                         SelectionDAG &DAG) const {
 | |
|   const GlobalValue *GV = GA->getGlobal();
 | |
|   DebugLoc dl = GA->getDebugLoc();
 | |
|   SDValue Offset;
 | |
|   SDValue Chain = DAG.getEntryNode();
 | |
|   EVT PtrVT = getPointerTy();
 | |
|   // Get the Thread Pointer
 | |
|   SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
 | |
| 
 | |
|   if (GV->isDeclaration()) {
 | |
|     MachineFunction &MF = DAG.getMachineFunction();
 | |
|     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | |
|     unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
 | |
|     // Initial exec model.
 | |
|     unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
 | |
|     ARMConstantPoolValue *CPV =
 | |
|       new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
 | |
|                                ARMCP::CPValue, PCAdj, "gottpoff", true);
 | |
|     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
 | |
|     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
 | |
|     Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
 | |
|                          PseudoSourceValue::getConstantPool(), 0,
 | |
|                          false, false, 0);
 | |
|     Chain = Offset.getValue(1);
 | |
| 
 | |
|     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
 | |
|     Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
 | |
| 
 | |
|     Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
 | |
|                          PseudoSourceValue::getConstantPool(), 0,
 | |
|                          false, false, 0);
 | |
|   } else {
 | |
|     // local exec model
 | |
|     ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, "tpoff");
 | |
|     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
 | |
|     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
 | |
|     Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
 | |
|                          PseudoSourceValue::getConstantPool(), 0,
 | |
|                          false, false, 0);
 | |
|   }
 | |
| 
 | |
|   // The address of the thread local variable is the add of the thread
 | |
|   // pointer with the offset of the variable.
 | |
|   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
 | |
|   // TODO: implement the "local dynamic" model
 | |
|   assert(Subtarget->isTargetELF() &&
 | |
|          "TLS not implemented for non-ELF targets");
 | |
|   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
 | |
|   // If the relocation model is PIC, use the "General Dynamic" TLS Model,
 | |
|   // otherwise use the "Local Exec" TLS Model
 | |
|   if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
 | |
|     return LowerToTLSGeneralDynamicModel(GA, DAG);
 | |
|   else
 | |
|     return LowerToTLSExecModels(GA, DAG);
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
 | |
|                                                  SelectionDAG &DAG) const {
 | |
|   EVT PtrVT = getPointerTy();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
 | |
|   Reloc::Model RelocM = getTargetMachine().getRelocationModel();
 | |
|   if (RelocM == Reloc::PIC_) {
 | |
|     bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
 | |
|     ARMConstantPoolValue *CPV =
 | |
|       new ARMConstantPoolValue(GV, UseGOTOFF ? "GOTOFF" : "GOT");
 | |
|     SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
 | |
|     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
 | |
|     SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
 | |
|                                  CPAddr,
 | |
|                                  PseudoSourceValue::getConstantPool(), 0,
 | |
|                                  false, false, 0);
 | |
|     SDValue Chain = Result.getValue(1);
 | |
|     SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
 | |
|     Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
 | |
|     if (!UseGOTOFF)
 | |
|       Result = DAG.getLoad(PtrVT, dl, Chain, Result,
 | |
|                            PseudoSourceValue::getGOT(), 0,
 | |
|                            false, false, 0);
 | |
|     return Result;
 | |
|   } else {
 | |
|     // If we have T2 ops, we can materialize the address directly via movt/movw
 | |
|     // pair. This is always cheaper.
 | |
|     if (Subtarget->useMovt()) {
 | |
|       return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
 | |
|                          DAG.getTargetGlobalAddress(GV, dl, PtrVT));
 | |
|     } else {
 | |
|       SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
 | |
|       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
 | |
|       return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
 | |
|                          PseudoSourceValue::getConstantPool(), 0,
 | |
|                          false, false, 0);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
 | |
|                                                     SelectionDAG &DAG) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | |
|   unsigned ARMPCLabelIndex = 0;
 | |
|   EVT PtrVT = getPointerTy();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
 | |
|   Reloc::Model RelocM = getTargetMachine().getRelocationModel();
 | |
|   SDValue CPAddr;
 | |
|   if (RelocM == Reloc::Static)
 | |
|     CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
 | |
|   else {
 | |
|     ARMPCLabelIndex = AFI->createConstPoolEntryUId();
 | |
|     unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
 | |
|     ARMConstantPoolValue *CPV =
 | |
|       new ARMConstantPoolValue(GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj);
 | |
|     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
 | |
|   }
 | |
|   CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
 | |
| 
 | |
|   SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
 | |
|                                PseudoSourceValue::getConstantPool(), 0,
 | |
|                                false, false, 0);
 | |
|   SDValue Chain = Result.getValue(1);
 | |
| 
 | |
|   if (RelocM == Reloc::PIC_) {
 | |
|     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
 | |
|     Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
 | |
|   }
 | |
| 
 | |
|   if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
 | |
|     Result = DAG.getLoad(PtrVT, dl, Chain, Result,
 | |
|                          PseudoSourceValue::getGOT(), 0,
 | |
|                          false, false, 0);
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
 | |
|                                                     SelectionDAG &DAG) const {
 | |
|   assert(Subtarget->isTargetELF() &&
 | |
|          "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | |
|   unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
 | |
|   EVT PtrVT = getPointerTy();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
 | |
|   ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
 | |
|                                                        "_GLOBAL_OFFSET_TABLE_",
 | |
|                                                        ARMPCLabelIndex, PCAdj);
 | |
|   SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
 | |
|   CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
 | |
|   SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
 | |
|                                PseudoSourceValue::getConstantPool(), 0,
 | |
|                                false, false, 0);
 | |
|   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
 | |
|   return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   SDValue Val = DAG.getConstant(0, MVT::i32);
 | |
|   return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32, Op.getOperand(0),
 | |
|                      Op.getOperand(1), Val);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
 | |
|                      Op.getOperand(1), DAG.getConstant(0, MVT::i32));
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
 | |
|                                           const ARMSubtarget *Subtarget) const {
 | |
|   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   switch (IntNo) {
 | |
|   default: return SDValue();    // Don't custom lower most intrinsics.
 | |
|   case Intrinsic::arm_thread_pointer: {
 | |
|     EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|     return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
 | |
|   }
 | |
|   case Intrinsic::eh_sjlj_lsda: {
 | |
|     MachineFunction &MF = DAG.getMachineFunction();
 | |
|     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | |
|     unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
 | |
|     EVT PtrVT = getPointerTy();
 | |
|     DebugLoc dl = Op.getDebugLoc();
 | |
|     Reloc::Model RelocM = getTargetMachine().getRelocationModel();
 | |
|     SDValue CPAddr;
 | |
|     unsigned PCAdj = (RelocM != Reloc::PIC_)
 | |
|       ? 0 : (Subtarget->isThumb() ? 4 : 8);
 | |
|     ARMConstantPoolValue *CPV =
 | |
|       new ARMConstantPoolValue(MF.getFunction(), ARMPCLabelIndex,
 | |
|                                ARMCP::CPLSDA, PCAdj);
 | |
|     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
 | |
|     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
 | |
|     SDValue Result =
 | |
|       DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
 | |
|                   PseudoSourceValue::getConstantPool(), 0,
 | |
|                   false, false, 0);
 | |
| 
 | |
|     if (RelocM == Reloc::PIC_) {
 | |
|       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
 | |
|       Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
 | |
|     }
 | |
|     return Result;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
 | |
|                                const ARMSubtarget *Subtarget) {
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   SDValue Op5 = Op.getOperand(5);
 | |
|   unsigned isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue();
 | |
|   // v6 and v7 can both handle barriers directly, but need handled a bit
 | |
|   // differently. Thumb1 and pre-v6 ARM mode use a libcall instead and should
 | |
|   // never get here.
 | |
|   unsigned Opc = isDeviceBarrier ? ARMISD::SYNCBARRIER : ARMISD::MEMBARRIER;
 | |
|   if (Subtarget->hasV7Ops())
 | |
|     return DAG.getNode(Opc, dl, MVT::Other, Op.getOperand(0));
 | |
|   else if (Subtarget->hasV6Ops() && !Subtarget->isThumb1Only())
 | |
|     return DAG.getNode(Opc, dl, MVT::Other, Op.getOperand(0),
 | |
|                        DAG.getConstant(0, MVT::i32));
 | |
|   assert(0 && "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
 | |
| 
 | |
|   // vastart just stores the address of the VarArgsFrameIndex slot into the
 | |
|   // memory location argument.
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
 | |
|   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
 | |
|   return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0,
 | |
|                       false, false, 0);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
 | |
|                                            SelectionDAG &DAG) const {
 | |
|   SDNode *Node = Op.getNode();
 | |
|   DebugLoc dl = Node->getDebugLoc();
 | |
|   EVT VT = Node->getValueType(0);
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   SDValue Size  = Op.getOperand(1);
 | |
|   SDValue Align = Op.getOperand(2);
 | |
| 
 | |
|   // Chain the dynamic stack allocation so that it doesn't modify the stack
 | |
|   // pointer when other instructions are using the stack.
 | |
|   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
 | |
| 
 | |
|   unsigned AlignVal = cast<ConstantSDNode>(Align)->getZExtValue();
 | |
|   unsigned StackAlign = getTargetMachine().getFrameInfo()->getStackAlignment();
 | |
|   if (AlignVal > StackAlign)
 | |
|     // Do this now since selection pass cannot introduce new target
 | |
|     // independent node.
 | |
|     Align = DAG.getConstant(-(uint64_t)AlignVal, VT);
 | |
| 
 | |
|   // In Thumb1 mode, there isn't a "sub r, sp, r" instruction, we will end up
 | |
|   // using a "add r, sp, r" instead. Negate the size now so we don't have to
 | |
|   // do even more horrible hack later.
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | |
|   if (AFI->isThumb1OnlyFunction()) {
 | |
|     bool Negate = true;
 | |
|     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Size);
 | |
|     if (C) {
 | |
|       uint32_t Val = C->getZExtValue();
 | |
|       if (Val <= 508 && ((Val & 3) == 0))
 | |
|         Negate = false;
 | |
|     }
 | |
|     if (Negate)
 | |
|       Size = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, VT), Size);
 | |
|   }
 | |
| 
 | |
|   SDVTList VTList = DAG.getVTList(VT, MVT::Other);
 | |
|   SDValue Ops1[] = { Chain, Size, Align };
 | |
|   SDValue Res = DAG.getNode(ARMISD::DYN_ALLOC, dl, VTList, Ops1, 3);
 | |
|   Chain = Res.getValue(1);
 | |
|   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true),
 | |
|                              DAG.getIntPtrConstant(0, true), SDValue());
 | |
|   SDValue Ops2[] = { Res, Chain };
 | |
|   return DAG.getMergeValues(Ops2, 2, dl);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
 | |
|                                         SDValue &Root, SelectionDAG &DAG,
 | |
|                                         DebugLoc dl) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | |
| 
 | |
|   TargetRegisterClass *RC;
 | |
|   if (AFI->isThumb1OnlyFunction())
 | |
|     RC = ARM::tGPRRegisterClass;
 | |
|   else
 | |
|     RC = ARM::GPRRegisterClass;
 | |
| 
 | |
|   // Transform the arguments stored in physical registers into virtual ones.
 | |
|   unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 
 | |
|   SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
 | |
| 
 | |
|   SDValue ArgValue2;
 | |
|   if (NextVA.isMemLoc()) {
 | |
|     MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
|     int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
 | |
| 
 | |
|     // Create load node to retrieve arguments from the stack.
 | |
|     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
 | |
|     ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
 | |
|                             PseudoSourceValue::getFixedStack(FI), 0,
 | |
|                             false, false, 0);
 | |
|   } else {
 | |
|     Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
 | |
|     ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| ARMTargetLowering::LowerFormalArguments(SDValue Chain,
 | |
|                                         CallingConv::ID CallConv, bool isVarArg,
 | |
|                                         const SmallVectorImpl<ISD::InputArg>
 | |
|                                           &Ins,
 | |
|                                         DebugLoc dl, SelectionDAG &DAG,
 | |
|                                         SmallVectorImpl<SDValue> &InVals)
 | |
|                                           const {
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
| 
 | |
|   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
 | |
| 
 | |
|   // Assign locations to all of the incoming arguments.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
 | |
|                  *DAG.getContext());
 | |
|   CCInfo.AnalyzeFormalArguments(Ins,
 | |
|                                 CCAssignFnForNode(CallConv, /* Return*/ false,
 | |
|                                                   isVarArg));
 | |
| 
 | |
|   SmallVector<SDValue, 16> ArgValues;
 | |
| 
 | |
|   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | |
|     CCValAssign &VA = ArgLocs[i];
 | |
| 
 | |
|     // Arguments stored in registers.
 | |
|     if (VA.isRegLoc()) {
 | |
|       EVT RegVT = VA.getLocVT();
 | |
| 
 | |
|       SDValue ArgValue;
 | |
|       if (VA.needsCustom()) {
 | |
|         // f64 and vector types are split up into multiple registers or
 | |
|         // combinations of registers and stack slots.
 | |
|         if (VA.getLocVT() == MVT::v2f64) {
 | |
|           SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
 | |
|                                                    Chain, DAG, dl);
 | |
|           VA = ArgLocs[++i]; // skip ahead to next loc
 | |
|           SDValue ArgValue2;
 | |
|           if (VA.isMemLoc()) {
 | |
|             int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
 | |
|             SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
 | |
|             ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
 | |
|                                     PseudoSourceValue::getFixedStack(FI), 0,
 | |
|                                     false, false, 0);
 | |
|           } else {
 | |
|             ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
 | |
|                                              Chain, DAG, dl);
 | |
|           }
 | |
|           ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
 | |
|           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
 | |
|                                  ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
 | |
|           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
 | |
|                                  ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
 | |
|         } else
 | |
|           ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
 | |
| 
 | |
|       } else {
 | |
|         TargetRegisterClass *RC;
 | |
| 
 | |
|         if (RegVT == MVT::f32)
 | |
|           RC = ARM::SPRRegisterClass;
 | |
|         else if (RegVT == MVT::f64)
 | |
|           RC = ARM::DPRRegisterClass;
 | |
|         else if (RegVT == MVT::v2f64)
 | |
|           RC = ARM::QPRRegisterClass;
 | |
|         else if (RegVT == MVT::i32)
 | |
|           RC = (AFI->isThumb1OnlyFunction() ?
 | |
|                 ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
 | |
|         else
 | |
|           llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
 | |
| 
 | |
|         // Transform the arguments in physical registers into virtual ones.
 | |
|         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
 | |
|         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
 | |
|       }
 | |
| 
 | |
|       // If this is an 8 or 16-bit value, it is really passed promoted
 | |
|       // to 32 bits.  Insert an assert[sz]ext to capture this, then
 | |
|       // truncate to the right size.
 | |
|       switch (VA.getLocInfo()) {
 | |
|       default: llvm_unreachable("Unknown loc info!");
 | |
|       case CCValAssign::Full: break;
 | |
|       case CCValAssign::BCvt:
 | |
|         ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
 | |
|         break;
 | |
|       case CCValAssign::SExt:
 | |
|         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
 | |
|                                DAG.getValueType(VA.getValVT()));
 | |
|         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
 | |
|         break;
 | |
|       case CCValAssign::ZExt:
 | |
|         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
 | |
|                                DAG.getValueType(VA.getValVT()));
 | |
|         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       InVals.push_back(ArgValue);
 | |
| 
 | |
|     } else { // VA.isRegLoc()
 | |
| 
 | |
|       // sanity check
 | |
|       assert(VA.isMemLoc());
 | |
|       assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
 | |
| 
 | |
|       unsigned ArgSize = VA.getLocVT().getSizeInBits()/8;
 | |
|       int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), true);
 | |
| 
 | |
|       // Create load nodes to retrieve arguments from the stack.
 | |
|       SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
 | |
|       InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
 | |
|                                    PseudoSourceValue::getFixedStack(FI), 0,
 | |
|                                    false, false, 0));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // varargs
 | |
|   if (isVarArg) {
 | |
|     static const unsigned GPRArgRegs[] = {
 | |
|       ARM::R0, ARM::R1, ARM::R2, ARM::R3
 | |
|     };
 | |
| 
 | |
|     unsigned NumGPRs = CCInfo.getFirstUnallocated
 | |
|       (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
 | |
| 
 | |
|     unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
 | |
|     unsigned VARegSize = (4 - NumGPRs) * 4;
 | |
|     unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
 | |
|     unsigned ArgOffset = CCInfo.getNextStackOffset();
 | |
|     if (VARegSaveSize) {
 | |
|       // If this function is vararg, store any remaining integer argument regs
 | |
|       // to their spots on the stack so that they may be loaded by deferencing
 | |
|       // the result of va_next.
 | |
|       AFI->setVarArgsRegSaveSize(VARegSaveSize);
 | |
|       AFI->setVarArgsFrameIndex(
 | |
|         MFI->CreateFixedObject(VARegSaveSize,
 | |
|                                ArgOffset + VARegSaveSize - VARegSize,
 | |
|                                true));
 | |
|       SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
 | |
|                                       getPointerTy());
 | |
| 
 | |
|       SmallVector<SDValue, 4> MemOps;
 | |
|       for (; NumGPRs < 4; ++NumGPRs) {
 | |
|         TargetRegisterClass *RC;
 | |
|         if (AFI->isThumb1OnlyFunction())
 | |
|           RC = ARM::tGPRRegisterClass;
 | |
|         else
 | |
|           RC = ARM::GPRRegisterClass;
 | |
| 
 | |
|         unsigned VReg = MF.addLiveIn(GPRArgRegs[NumGPRs], RC);
 | |
|         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
 | |
|         SDValue Store =
 | |
|           DAG.getStore(Val.getValue(1), dl, Val, FIN,
 | |
|                PseudoSourceValue::getFixedStack(AFI->getVarArgsFrameIndex()),
 | |
|                0, false, false, 0);
 | |
|         MemOps.push_back(Store);
 | |
|         FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
 | |
|                           DAG.getConstant(4, getPointerTy()));
 | |
|       }
 | |
|       if (!MemOps.empty())
 | |
|         Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | |
|                             &MemOps[0], MemOps.size());
 | |
|     } else
 | |
|       // This will point to the next argument passed via stack.
 | |
|       AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
 | |
|   }
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| /// isFloatingPointZero - Return true if this is +0.0.
 | |
| static bool isFloatingPointZero(SDValue Op) {
 | |
|   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
 | |
|     return CFP->getValueAPF().isPosZero();
 | |
|   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
 | |
|     // Maybe this has already been legalized into the constant pool?
 | |
|     if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
 | |
|       SDValue WrapperOp = Op.getOperand(1).getOperand(0);
 | |
|       if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
 | |
|         if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
 | |
|           return CFP->getValueAPF().isPosZero();
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
 | |
| /// the given operands.
 | |
| SDValue
 | |
| ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
 | |
|                              SDValue &ARMcc, SelectionDAG &DAG,
 | |
|                              DebugLoc dl) const {
 | |
|   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
 | |
|     unsigned C = RHSC->getZExtValue();
 | |
|     if (!isLegalICmpImmediate(C)) {
 | |
|       // Constant does not fit, try adjusting it by one?
 | |
|       switch (CC) {
 | |
|       default: break;
 | |
|       case ISD::SETLT:
 | |
|       case ISD::SETGE:
 | |
|         if (isLegalICmpImmediate(C-1)) {
 | |
|           CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
 | |
|           RHS = DAG.getConstant(C-1, MVT::i32);
 | |
|         }
 | |
|         break;
 | |
|       case ISD::SETULT:
 | |
|       case ISD::SETUGE:
 | |
|         if (C > 0 && isLegalICmpImmediate(C-1)) {
 | |
|           CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
 | |
|           RHS = DAG.getConstant(C-1, MVT::i32);
 | |
|         }
 | |
|         break;
 | |
|       case ISD::SETLE:
 | |
|       case ISD::SETGT:
 | |
|         if (isLegalICmpImmediate(C+1)) {
 | |
|           CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
 | |
|           RHS = DAG.getConstant(C+1, MVT::i32);
 | |
|         }
 | |
|         break;
 | |
|       case ISD::SETULE:
 | |
|       case ISD::SETUGT:
 | |
|         if (C < 0xffffffff && isLegalICmpImmediate(C+1)) {
 | |
|           CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
 | |
|           RHS = DAG.getConstant(C+1, MVT::i32);
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
 | |
|   ARMISD::NodeType CompareType;
 | |
|   switch (CondCode) {
 | |
|   default:
 | |
|     CompareType = ARMISD::CMP;
 | |
|     break;
 | |
|   case ARMCC::EQ:
 | |
|   case ARMCC::NE:
 | |
|     // Uses only Z Flag
 | |
|     CompareType = ARMISD::CMPZ;
 | |
|     break;
 | |
|   }
 | |
|   ARMcc = DAG.getConstant(CondCode, MVT::i32);
 | |
|   return DAG.getNode(CompareType, dl, MVT::Flag, LHS, RHS);
 | |
| }
 | |
| 
 | |
| /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
 | |
| SDValue
 | |
| ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
 | |
|                              DebugLoc dl) const {
 | |
|   SDValue Cmp;
 | |
|   if (!isFloatingPointZero(RHS))
 | |
|     Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Flag, LHS, RHS);
 | |
|   else
 | |
|     Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Flag, LHS);
 | |
|   return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Flag, Cmp);
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDValue LHS = Op.getOperand(0);
 | |
|   SDValue RHS = Op.getOperand(1);
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
 | |
|   SDValue TrueVal = Op.getOperand(2);
 | |
|   SDValue FalseVal = Op.getOperand(3);
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   if (LHS.getValueType() == MVT::i32) {
 | |
|     SDValue ARMcc;
 | |
|     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
 | |
|     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
 | |
|     return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
 | |
|   }
 | |
| 
 | |
|   ARMCC::CondCodes CondCode, CondCode2;
 | |
|   FPCCToARMCC(CC, CondCode, CondCode2);
 | |
| 
 | |
|   SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
 | |
|   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
 | |
|   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
 | |
|   SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
 | |
|                                ARMcc, CCR, Cmp);
 | |
|   if (CondCode2 != ARMCC::AL) {
 | |
|     SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
 | |
|     // FIXME: Needs another CMP because flag can have but one use.
 | |
|     SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
 | |
|     Result = DAG.getNode(ARMISD::CMOV, dl, VT,
 | |
|                          Result, TrueVal, ARMcc2, CCR, Cmp2);
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// canChangeToInt - Given the fp compare operand, return true if it is suitable
 | |
| /// to morph to an integer compare sequence.
 | |
| static bool canChangeToInt(SDValue Op, bool &SeenZero,
 | |
|                            const ARMSubtarget *Subtarget) {
 | |
|   SDNode *N = Op.getNode();
 | |
|   if (!N->hasOneUse())
 | |
|     // Otherwise it requires moving the value from fp to integer registers.
 | |
|     return false;
 | |
|   if (!N->getNumValues())
 | |
|     return false;
 | |
|   EVT VT = Op.getValueType();
 | |
|   if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
 | |
|     // f32 case is generally profitable. f64 case only makes sense when vcmpe +
 | |
|     // vmrs are very slow, e.g. cortex-a8.
 | |
|     return false;
 | |
| 
 | |
|   if (isFloatingPointZero(Op)) {
 | |
|     SeenZero = true;
 | |
|     return true;
 | |
|   }
 | |
|   return ISD::isNormalLoad(N);
 | |
| }
 | |
| 
 | |
| static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
 | |
|   if (isFloatingPointZero(Op))
 | |
|     return DAG.getConstant(0, MVT::i32);
 | |
| 
 | |
|   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
 | |
|     return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
 | |
|                        Ld->getChain(), Ld->getBasePtr(),
 | |
|                        Ld->getSrcValue(), Ld->getSrcValueOffset(),
 | |
|                        Ld->isVolatile(), Ld->isNonTemporal(),
 | |
|                        Ld->getAlignment());
 | |
| 
 | |
|   llvm_unreachable("Unknown VFP cmp argument!");
 | |
| }
 | |
| 
 | |
| static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
 | |
|                            SDValue &RetVal1, SDValue &RetVal2) {
 | |
|   if (isFloatingPointZero(Op)) {
 | |
|     RetVal1 = DAG.getConstant(0, MVT::i32);
 | |
|     RetVal2 = DAG.getConstant(0, MVT::i32);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
 | |
|     SDValue Ptr = Ld->getBasePtr();
 | |
|     RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
 | |
|                           Ld->getChain(), Ptr,
 | |
|                           Ld->getSrcValue(), Ld->getSrcValueOffset(),
 | |
|                           Ld->isVolatile(), Ld->isNonTemporal(),
 | |
|                           Ld->getAlignment());
 | |
| 
 | |
|     EVT PtrType = Ptr.getValueType();
 | |
|     unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
 | |
|     SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
 | |
|                                  PtrType, Ptr, DAG.getConstant(4, PtrType));
 | |
|     RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
 | |
|                           Ld->getChain(), NewPtr,
 | |
|                           Ld->getSrcValue(), Ld->getSrcValueOffset() + 4,
 | |
|                           Ld->isVolatile(), Ld->isNonTemporal(),
 | |
|                           NewAlign);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Unknown VFP cmp argument!");
 | |
| }
 | |
| 
 | |
| /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
 | |
| /// f32 and even f64 comparisons to integer ones.
 | |
| SDValue
 | |
| ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
 | |
|   SDValue LHS = Op.getOperand(2);
 | |
|   SDValue RHS = Op.getOperand(3);
 | |
|   SDValue Dest = Op.getOperand(4);
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   bool SeenZero = false;
 | |
|   if (canChangeToInt(LHS, SeenZero, Subtarget) &&
 | |
|       canChangeToInt(RHS, SeenZero, Subtarget) &&
 | |
|       // If one of the operand is zero, it's safe to ignore the NaN case since
 | |
|       // we only care about equality comparisons.
 | |
|       (SeenZero || (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS)))) {
 | |
|     // If unsafe fp math optimization is enabled and there are no othter uses of
 | |
|     // the CMP operands, and the condition code is EQ oe NE, we can optimize it
 | |
|     // to an integer comparison.
 | |
|     if (CC == ISD::SETOEQ)
 | |
|       CC = ISD::SETEQ;
 | |
|     else if (CC == ISD::SETUNE)
 | |
|       CC = ISD::SETNE;
 | |
| 
 | |
|     SDValue ARMcc;
 | |
|     if (LHS.getValueType() == MVT::f32) {
 | |
|       LHS = bitcastf32Toi32(LHS, DAG);
 | |
|       RHS = bitcastf32Toi32(RHS, DAG);
 | |
|       SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
 | |
|       SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
 | |
|       return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
 | |
|                          Chain, Dest, ARMcc, CCR, Cmp);
 | |
|     }
 | |
| 
 | |
|     SDValue LHS1, LHS2;
 | |
|     SDValue RHS1, RHS2;
 | |
|     expandf64Toi32(LHS, DAG, LHS1, LHS2);
 | |
|     expandf64Toi32(RHS, DAG, RHS1, RHS2);
 | |
|     ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
 | |
|     ARMcc = DAG.getConstant(CondCode, MVT::i32);
 | |
|     SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
 | |
|     SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
 | |
|     return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
 | |
|   SDValue LHS = Op.getOperand(2);
 | |
|   SDValue RHS = Op.getOperand(3);
 | |
|   SDValue Dest = Op.getOperand(4);
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   if (LHS.getValueType() == MVT::i32) {
 | |
|     SDValue ARMcc;
 | |
|     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
 | |
|     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
 | |
|     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
 | |
|                        Chain, Dest, ARMcc, CCR, Cmp);
 | |
|   }
 | |
| 
 | |
|   assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
 | |
| 
 | |
|   if (UnsafeFPMath &&
 | |
|       (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
 | |
|        CC == ISD::SETNE || CC == ISD::SETUNE)) {
 | |
|     SDValue Result = OptimizeVFPBrcond(Op, DAG);
 | |
|     if (Result.getNode())
 | |
|       return Result;
 | |
|   }
 | |
| 
 | |
|   ARMCC::CondCodes CondCode, CondCode2;
 | |
|   FPCCToARMCC(CC, CondCode, CondCode2);
 | |
| 
 | |
|   SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
 | |
|   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
 | |
|   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
 | |
|   SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
 | |
|   SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
 | |
|   SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
 | |
|   if (CondCode2 != ARMCC::AL) {
 | |
|     ARMcc = DAG.getConstant(CondCode2, MVT::i32);
 | |
|     SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
 | |
|     Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
 | |
|   }
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   SDValue Table = Op.getOperand(1);
 | |
|   SDValue Index = Op.getOperand(2);
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   EVT PTy = getPointerTy();
 | |
|   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
 | |
|   ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
 | |
|   SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
 | |
|   SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
 | |
|   Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
 | |
|   Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
 | |
|   SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
 | |
|   if (Subtarget->isThumb2()) {
 | |
|     // Thumb2 uses a two-level jump. That is, it jumps into the jump table
 | |
|     // which does another jump to the destination. This also makes it easier
 | |
|     // to translate it to TBB / TBH later.
 | |
|     // FIXME: This might not work if the function is extremely large.
 | |
|     return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
 | |
|                        Addr, Op.getOperand(2), JTI, UId);
 | |
|   }
 | |
|   if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
 | |
|     Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
 | |
|                        PseudoSourceValue::getJumpTable(), 0,
 | |
|                        false, false, 0);
 | |
|     Chain = Addr.getValue(1);
 | |
|     Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
 | |
|     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
 | |
|   } else {
 | |
|     Addr = DAG.getLoad(PTy, dl, Chain, Addr,
 | |
|                        PseudoSourceValue::getJumpTable(), 0, false, false, 0);
 | |
|     Chain = Addr.getValue(1);
 | |
|     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   unsigned Opc;
 | |
| 
 | |
|   switch (Op.getOpcode()) {
 | |
|   default:
 | |
|     assert(0 && "Invalid opcode!");
 | |
|   case ISD::FP_TO_SINT:
 | |
|     Opc = ARMISD::FTOSI;
 | |
|     break;
 | |
|   case ISD::FP_TO_UINT:
 | |
|     Opc = ARMISD::FTOUI;
 | |
|     break;
 | |
|   }
 | |
|   Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
 | |
|   return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
 | |
| }
 | |
| 
 | |
| static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
 | |
|   EVT VT = Op.getValueType();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   unsigned Opc;
 | |
| 
 | |
|   switch (Op.getOpcode()) {
 | |
|   default:
 | |
|     assert(0 && "Invalid opcode!");
 | |
|   case ISD::SINT_TO_FP:
 | |
|     Opc = ARMISD::SITOF;
 | |
|     break;
 | |
|   case ISD::UINT_TO_FP:
 | |
|     Opc = ARMISD::UITOF;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Op.getOperand(0));
 | |
|   return DAG.getNode(Opc, dl, VT, Op);
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
 | |
|   // Implement fcopysign with a fabs and a conditional fneg.
 | |
|   SDValue Tmp0 = Op.getOperand(0);
 | |
|   SDValue Tmp1 = Op.getOperand(1);
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   EVT VT = Op.getValueType();
 | |
|   EVT SrcVT = Tmp1.getValueType();
 | |
|   SDValue AbsVal = DAG.getNode(ISD::FABS, dl, VT, Tmp0);
 | |
|   SDValue ARMcc = DAG.getConstant(ARMCC::LT, MVT::i32);
 | |
|   SDValue FP0 = DAG.getConstantFP(0.0, SrcVT);
 | |
|   SDValue Cmp = getVFPCmp(Tmp1, FP0, DAG, dl);
 | |
|   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
 | |
|   return DAG.getNode(ARMISD::CNEG, dl, VT, AbsVal, AbsVal, ARMcc, CCR, Cmp);
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
|   MFI->setReturnAddressIsTaken(true);
 | |
| 
 | |
|   EVT VT = Op.getValueType();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
|   if (Depth) {
 | |
|     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
 | |
|     SDValue Offset = DAG.getConstant(4, MVT::i32);
 | |
|     return DAG.getLoad(VT, dl, DAG.getEntryNode(),
 | |
|                        DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
 | |
|                        NULL, 0, false, false, 0);
 | |
|   }
 | |
| 
 | |
|   // Return LR, which contains the return address. Mark it an implicit live-in.
 | |
|   unsigned Reg = MF.addLiveIn(ARM::LR, ARM::GPRRegisterClass); 
 | |
|   return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
 | |
|   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
 | |
|   MFI->setFrameAddressIsTaken(true);
 | |
| 
 | |
|   EVT VT = Op.getValueType();
 | |
|   DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
 | |
|   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
|   unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
 | |
|     ? ARM::R7 : ARM::R11;
 | |
|   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
 | |
|   while (Depth--)
 | |
|     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0,
 | |
|                             false, false, 0);
 | |
|   return FrameAddr;
 | |
| }
 | |
| 
 | |
| /// ExpandBIT_CONVERT - If the target supports VFP, this function is called to
 | |
| /// expand a bit convert where either the source or destination type is i64 to
 | |
| /// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
 | |
| /// operand type is illegal (e.g., v2f32 for a target that doesn't support
 | |
| /// vectors), since the legalizer won't know what to do with that.
 | |
| static SDValue ExpandBIT_CONVERT(SDNode *N, SelectionDAG &DAG) {
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   DebugLoc dl = N->getDebugLoc();
 | |
|   SDValue Op = N->getOperand(0);
 | |
| 
 | |
|   // This function is only supposed to be called for i64 types, either as the
 | |
|   // source or destination of the bit convert.
 | |
|   EVT SrcVT = Op.getValueType();
 | |
|   EVT DstVT = N->getValueType(0);
 | |
|   assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
 | |
|          "ExpandBIT_CONVERT called for non-i64 type");
 | |
| 
 | |
|   // Turn i64->f64 into VMOVDRR.
 | |
|   if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
 | |
|     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
 | |
|                              DAG.getConstant(0, MVT::i32));
 | |
|     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
 | |
|                              DAG.getConstant(1, MVT::i32));
 | |
|     return DAG.getNode(ISD::BIT_CONVERT, dl, DstVT,
 | |
|                        DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
 | |
|   }
 | |
| 
 | |
|   // Turn f64->i64 into VMOVRRD.
 | |
|   if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
 | |
|     SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
 | |
|                               DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
 | |
|     // Merge the pieces into a single i64 value.
 | |
|     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// getZeroVector - Returns a vector of specified type with all zero elements.
 | |
| /// Zero vectors are used to represent vector negation and in those cases
 | |
| /// will be implemented with the NEON VNEG instruction.  However, VNEG does
 | |
| /// not support i64 elements, so sometimes the zero vectors will need to be
 | |
| /// explicitly constructed.  Regardless, use a canonical VMOV to create the
 | |
| /// zero vector.
 | |
| static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
 | |
|   assert(VT.isVector() && "Expected a vector type");
 | |
|   // The canonical modified immediate encoding of a zero vector is....0!
 | |
|   SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
 | |
|   EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
 | |
|   SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
 | |
|   return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vmov);
 | |
| }
 | |
| 
 | |
| /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
 | |
| /// i32 values and take a 2 x i32 value to shift plus a shift amount.
 | |
| SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
 | |
|                                                 SelectionDAG &DAG) const {
 | |
|   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
 | |
|   EVT VT = Op.getValueType();
 | |
|   unsigned VTBits = VT.getSizeInBits();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   SDValue ShOpLo = Op.getOperand(0);
 | |
|   SDValue ShOpHi = Op.getOperand(1);
 | |
|   SDValue ShAmt  = Op.getOperand(2);
 | |
|   SDValue ARMcc;
 | |
|   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
 | |
| 
 | |
|   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
 | |
| 
 | |
|   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
 | |
|                                  DAG.getConstant(VTBits, MVT::i32), ShAmt);
 | |
|   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
 | |
|   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
 | |
|                                    DAG.getConstant(VTBits, MVT::i32));
 | |
|   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
 | |
|   SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
 | |
|   SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
 | |
| 
 | |
|   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
 | |
|   SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
 | |
|                           ARMcc, DAG, dl);
 | |
|   SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
 | |
|   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
 | |
|                            CCR, Cmp);
 | |
| 
 | |
|   SDValue Ops[2] = { Lo, Hi };
 | |
|   return DAG.getMergeValues(Ops, 2, dl);
 | |
| }
 | |
| 
 | |
| /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
 | |
| /// i32 values and take a 2 x i32 value to shift plus a shift amount.
 | |
| SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
 | |
|                                                SelectionDAG &DAG) const {
 | |
|   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
 | |
|   EVT VT = Op.getValueType();
 | |
|   unsigned VTBits = VT.getSizeInBits();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   SDValue ShOpLo = Op.getOperand(0);
 | |
|   SDValue ShOpHi = Op.getOperand(1);
 | |
|   SDValue ShAmt  = Op.getOperand(2);
 | |
|   SDValue ARMcc;
 | |
| 
 | |
|   assert(Op.getOpcode() == ISD::SHL_PARTS);
 | |
|   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
 | |
|                                  DAG.getConstant(VTBits, MVT::i32), ShAmt);
 | |
|   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
 | |
|   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
 | |
|                                    DAG.getConstant(VTBits, MVT::i32));
 | |
|   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
 | |
|   SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
 | |
| 
 | |
|   SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
 | |
|   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
 | |
|   SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
 | |
|                           ARMcc, DAG, dl);
 | |
|   SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
 | |
|   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
 | |
|                            CCR, Cmp);
 | |
| 
 | |
|   SDValue Ops[2] = { Lo, Hi };
 | |
|   return DAG.getMergeValues(Ops, 2, dl);
 | |
| }
 | |
| 
 | |
| static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
 | |
|                          const ARMSubtarget *ST) {
 | |
|   EVT VT = N->getValueType(0);
 | |
|   DebugLoc dl = N->getDebugLoc();
 | |
| 
 | |
|   if (!ST->hasV6T2Ops())
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
 | |
|   return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
 | |
| }
 | |
| 
 | |
| static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
 | |
|                           const ARMSubtarget *ST) {
 | |
|   EVT VT = N->getValueType(0);
 | |
|   DebugLoc dl = N->getDebugLoc();
 | |
| 
 | |
|   // Lower vector shifts on NEON to use VSHL.
 | |
|   if (VT.isVector()) {
 | |
|     assert(ST->hasNEON() && "unexpected vector shift");
 | |
| 
 | |
|     // Left shifts translate directly to the vshiftu intrinsic.
 | |
|     if (N->getOpcode() == ISD::SHL)
 | |
|       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
 | |
|                          DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
 | |
|                          N->getOperand(0), N->getOperand(1));
 | |
| 
 | |
|     assert((N->getOpcode() == ISD::SRA ||
 | |
|             N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
 | |
| 
 | |
|     // NEON uses the same intrinsics for both left and right shifts.  For
 | |
|     // right shifts, the shift amounts are negative, so negate the vector of
 | |
|     // shift amounts.
 | |
|     EVT ShiftVT = N->getOperand(1).getValueType();
 | |
|     SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
 | |
|                                        getZeroVector(ShiftVT, DAG, dl),
 | |
|                                        N->getOperand(1));
 | |
|     Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
 | |
|                                Intrinsic::arm_neon_vshifts :
 | |
|                                Intrinsic::arm_neon_vshiftu);
 | |
|     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
 | |
|                        DAG.getConstant(vshiftInt, MVT::i32),
 | |
|                        N->getOperand(0), NegatedCount);
 | |
|   }
 | |
| 
 | |
|   // We can get here for a node like i32 = ISD::SHL i32, i64
 | |
|   if (VT != MVT::i64)
 | |
|     return SDValue();
 | |
| 
 | |
|   assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
 | |
|          "Unknown shift to lower!");
 | |
| 
 | |
|   // We only lower SRA, SRL of 1 here, all others use generic lowering.
 | |
|   if (!isa<ConstantSDNode>(N->getOperand(1)) ||
 | |
|       cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
 | |
|     return SDValue();
 | |
| 
 | |
|   // If we are in thumb mode, we don't have RRX.
 | |
|   if (ST->isThumb1Only()) return SDValue();
 | |
| 
 | |
|   // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
 | |
|   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
 | |
|                            DAG.getConstant(0, MVT::i32));
 | |
|   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
 | |
|                            DAG.getConstant(1, MVT::i32));
 | |
| 
 | |
|   // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
 | |
|   // captures the result into a carry flag.
 | |
|   unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
 | |
|   Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Flag), &Hi, 1);
 | |
| 
 | |
|   // The low part is an ARMISD::RRX operand, which shifts the carry in.
 | |
|   Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
 | |
| 
 | |
|   // Merge the pieces into a single i64 value.
 | |
|  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
 | |
| }
 | |
| 
 | |
| static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
 | |
|   SDValue TmpOp0, TmpOp1;
 | |
|   bool Invert = false;
 | |
|   bool Swap = false;
 | |
|   unsigned Opc = 0;
 | |
| 
 | |
|   SDValue Op0 = Op.getOperand(0);
 | |
|   SDValue Op1 = Op.getOperand(1);
 | |
|   SDValue CC = Op.getOperand(2);
 | |
|   EVT VT = Op.getValueType();
 | |
|   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   if (Op.getOperand(1).getValueType().isFloatingPoint()) {
 | |
|     switch (SetCCOpcode) {
 | |
|     default: llvm_unreachable("Illegal FP comparison"); break;
 | |
|     case ISD::SETUNE:
 | |
|     case ISD::SETNE:  Invert = true; // Fallthrough
 | |
|     case ISD::SETOEQ:
 | |
|     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
 | |
|     case ISD::SETOLT:
 | |
|     case ISD::SETLT: Swap = true; // Fallthrough
 | |
|     case ISD::SETOGT:
 | |
|     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
 | |
|     case ISD::SETOLE:
 | |
|     case ISD::SETLE:  Swap = true; // Fallthrough
 | |
|     case ISD::SETOGE:
 | |
|     case ISD::SETGE: Opc = ARMISD::VCGE; break;
 | |
|     case ISD::SETUGE: Swap = true; // Fallthrough
 | |
|     case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
 | |
|     case ISD::SETUGT: Swap = true; // Fallthrough
 | |
|     case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
 | |
|     case ISD::SETUEQ: Invert = true; // Fallthrough
 | |
|     case ISD::SETONE:
 | |
|       // Expand this to (OLT | OGT).
 | |
|       TmpOp0 = Op0;
 | |
|       TmpOp1 = Op1;
 | |
|       Opc = ISD::OR;
 | |
|       Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
 | |
|       Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
 | |
|       break;
 | |
|     case ISD::SETUO: Invert = true; // Fallthrough
 | |
|     case ISD::SETO:
 | |
|       // Expand this to (OLT | OGE).
 | |
|       TmpOp0 = Op0;
 | |
|       TmpOp1 = Op1;
 | |
|       Opc = ISD::OR;
 | |
|       Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
 | |
|       Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
 | |
|       break;
 | |
|     }
 | |
|   } else {
 | |
|     // Integer comparisons.
 | |
|     switch (SetCCOpcode) {
 | |
|     default: llvm_unreachable("Illegal integer comparison"); break;
 | |
|     case ISD::SETNE:  Invert = true;
 | |
|     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
 | |
|     case ISD::SETLT:  Swap = true;
 | |
|     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
 | |
|     case ISD::SETLE:  Swap = true;
 | |
|     case ISD::SETGE:  Opc = ARMISD::VCGE; break;
 | |
|     case ISD::SETULT: Swap = true;
 | |
|     case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
 | |
|     case ISD::SETULE: Swap = true;
 | |
|     case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
 | |
|     }
 | |
| 
 | |
|     // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
 | |
|     if (Opc == ARMISD::VCEQ) {
 | |
| 
 | |
|       SDValue AndOp;
 | |
|       if (ISD::isBuildVectorAllZeros(Op1.getNode()))
 | |
|         AndOp = Op0;
 | |
|       else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
 | |
|         AndOp = Op1;
 | |
| 
 | |
|       // Ignore bitconvert.
 | |
|       if (AndOp.getNode() && AndOp.getOpcode() == ISD::BIT_CONVERT)
 | |
|         AndOp = AndOp.getOperand(0);
 | |
| 
 | |
|       if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
 | |
|         Opc = ARMISD::VTST;
 | |
|         Op0 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(0));
 | |
|         Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(1));
 | |
|         Invert = !Invert;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Swap)
 | |
|     std::swap(Op0, Op1);
 | |
| 
 | |
|   SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
 | |
| 
 | |
|   if (Invert)
 | |
|     Result = DAG.getNOT(dl, Result, VT);
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// isNEONModifiedImm - Check if the specified splat value corresponds to a
 | |
| /// valid vector constant for a NEON instruction with a "modified immediate"
 | |
| /// operand (e.g., VMOV).  If so, return the encoded value.
 | |
| static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
 | |
|                                  unsigned SplatBitSize, SelectionDAG &DAG,
 | |
|                                  EVT &VT, bool is128Bits, bool isVMOV) {
 | |
|   unsigned OpCmode, Imm;
 | |
| 
 | |
|   // SplatBitSize is set to the smallest size that splats the vector, so a
 | |
|   // zero vector will always have SplatBitSize == 8.  However, NEON modified
 | |
|   // immediate instructions others than VMOV do not support the 8-bit encoding
 | |
|   // of a zero vector, and the default encoding of zero is supposed to be the
 | |
|   // 32-bit version.
 | |
|   if (SplatBits == 0)
 | |
|     SplatBitSize = 32;
 | |
| 
 | |
|   switch (SplatBitSize) {
 | |
|   case 8:
 | |
|     if (!isVMOV)
 | |
|       return SDValue();
 | |
|     // Any 1-byte value is OK.  Op=0, Cmode=1110.
 | |
|     assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
 | |
|     OpCmode = 0xe;
 | |
|     Imm = SplatBits;
 | |
|     VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
 | |
|     break;
 | |
| 
 | |
|   case 16:
 | |
|     // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
 | |
|     VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
 | |
|     if ((SplatBits & ~0xff) == 0) {
 | |
|       // Value = 0x00nn: Op=x, Cmode=100x.
 | |
|       OpCmode = 0x8;
 | |
|       Imm = SplatBits;
 | |
|       break;
 | |
|     }
 | |
|     if ((SplatBits & ~0xff00) == 0) {
 | |
|       // Value = 0xnn00: Op=x, Cmode=101x.
 | |
|       OpCmode = 0xa;
 | |
|       Imm = SplatBits >> 8;
 | |
|       break;
 | |
|     }
 | |
|     return SDValue();
 | |
| 
 | |
|   case 32:
 | |
|     // NEON's 32-bit VMOV supports splat values where:
 | |
|     // * only one byte is nonzero, or
 | |
|     // * the least significant byte is 0xff and the second byte is nonzero, or
 | |
|     // * the least significant 2 bytes are 0xff and the third is nonzero.
 | |
|     VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
 | |
|     if ((SplatBits & ~0xff) == 0) {
 | |
|       // Value = 0x000000nn: Op=x, Cmode=000x.
 | |
|       OpCmode = 0;
 | |
|       Imm = SplatBits;
 | |
|       break;
 | |
|     }
 | |
|     if ((SplatBits & ~0xff00) == 0) {
 | |
|       // Value = 0x0000nn00: Op=x, Cmode=001x.
 | |
|       OpCmode = 0x2;
 | |
|       Imm = SplatBits >> 8;
 | |
|       break;
 | |
|     }
 | |
|     if ((SplatBits & ~0xff0000) == 0) {
 | |
|       // Value = 0x00nn0000: Op=x, Cmode=010x.
 | |
|       OpCmode = 0x4;
 | |
|       Imm = SplatBits >> 16;
 | |
|       break;
 | |
|     }
 | |
|     if ((SplatBits & ~0xff000000) == 0) {
 | |
|       // Value = 0xnn000000: Op=x, Cmode=011x.
 | |
|       OpCmode = 0x6;
 | |
|       Imm = SplatBits >> 24;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if ((SplatBits & ~0xffff) == 0 &&
 | |
|         ((SplatBits | SplatUndef) & 0xff) == 0xff) {
 | |
|       // Value = 0x0000nnff: Op=x, Cmode=1100.
 | |
|       OpCmode = 0xc;
 | |
|       Imm = SplatBits >> 8;
 | |
|       SplatBits |= 0xff;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if ((SplatBits & ~0xffffff) == 0 &&
 | |
|         ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
 | |
|       // Value = 0x00nnffff: Op=x, Cmode=1101.
 | |
|       OpCmode = 0xd;
 | |
|       Imm = SplatBits >> 16;
 | |
|       SplatBits |= 0xffff;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Note: there are a few 32-bit splat values (specifically: 00ffff00,
 | |
|     // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
 | |
|     // VMOV.I32.  A (very) minor optimization would be to replicate the value
 | |
|     // and fall through here to test for a valid 64-bit splat.  But, then the
 | |
|     // caller would also need to check and handle the change in size.
 | |
|     return SDValue();
 | |
| 
 | |
|   case 64: {
 | |
|     if (!isVMOV)
 | |
|       return SDValue();
 | |
|     // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
 | |
|     uint64_t BitMask = 0xff;
 | |
|     uint64_t Val = 0;
 | |
|     unsigned ImmMask = 1;
 | |
|     Imm = 0;
 | |
|     for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
 | |
|       if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
 | |
|         Val |= BitMask;
 | |
|         Imm |= ImmMask;
 | |
|       } else if ((SplatBits & BitMask) != 0) {
 | |
|         return SDValue();
 | |
|       }
 | |
|       BitMask <<= 8;
 | |
|       ImmMask <<= 1;
 | |
|     }
 | |
|     // Op=1, Cmode=1110.
 | |
|     OpCmode = 0x1e;
 | |
|     SplatBits = Val;
 | |
|     VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   default:
 | |
|     llvm_unreachable("unexpected size for isNEONModifiedImm");
 | |
|     return SDValue();
 | |
|   }
 | |
| 
 | |
|   unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
 | |
|   return DAG.getTargetConstant(EncodedVal, MVT::i32);
 | |
| }
 | |
| 
 | |
| static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT,
 | |
|                        bool &ReverseVEXT, unsigned &Imm) {
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   ReverseVEXT = false;
 | |
|   Imm = M[0];
 | |
| 
 | |
|   // If this is a VEXT shuffle, the immediate value is the index of the first
 | |
|   // element.  The other shuffle indices must be the successive elements after
 | |
|   // the first one.
 | |
|   unsigned ExpectedElt = Imm;
 | |
|   for (unsigned i = 1; i < NumElts; ++i) {
 | |
|     // Increment the expected index.  If it wraps around, it may still be
 | |
|     // a VEXT but the source vectors must be swapped.
 | |
|     ExpectedElt += 1;
 | |
|     if (ExpectedElt == NumElts * 2) {
 | |
|       ExpectedElt = 0;
 | |
|       ReverseVEXT = true;
 | |
|     }
 | |
| 
 | |
|     if (ExpectedElt != static_cast<unsigned>(M[i]))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Adjust the index value if the source operands will be swapped.
 | |
|   if (ReverseVEXT)
 | |
|     Imm -= NumElts;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isVREVMask - Check if a vector shuffle corresponds to a VREV
 | |
| /// instruction with the specified blocksize.  (The order of the elements
 | |
| /// within each block of the vector is reversed.)
 | |
| static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT,
 | |
|                        unsigned BlockSize) {
 | |
|   assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
 | |
|          "Only possible block sizes for VREV are: 16, 32, 64");
 | |
| 
 | |
|   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
 | |
|   if (EltSz == 64)
 | |
|     return false;
 | |
| 
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   unsigned BlockElts = M[0] + 1;
 | |
| 
 | |
|   if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned i = 0; i < NumElts; ++i) {
 | |
|     if ((unsigned) M[i] !=
 | |
|         (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT,
 | |
|                        unsigned &WhichResult) {
 | |
|   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
 | |
|   if (EltSz == 64)
 | |
|     return false;
 | |
| 
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   WhichResult = (M[0] == 0 ? 0 : 1);
 | |
|   for (unsigned i = 0; i < NumElts; i += 2) {
 | |
|     if ((unsigned) M[i] != i + WhichResult ||
 | |
|         (unsigned) M[i+1] != i + NumElts + WhichResult)
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
 | |
| /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
 | |
| /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
 | |
| static bool isVTRN_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
 | |
|                                 unsigned &WhichResult) {
 | |
|   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
 | |
|   if (EltSz == 64)
 | |
|     return false;
 | |
| 
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   WhichResult = (M[0] == 0 ? 0 : 1);
 | |
|   for (unsigned i = 0; i < NumElts; i += 2) {
 | |
|     if ((unsigned) M[i] != i + WhichResult ||
 | |
|         (unsigned) M[i+1] != i + WhichResult)
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT,
 | |
|                        unsigned &WhichResult) {
 | |
|   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
 | |
|   if (EltSz == 64)
 | |
|     return false;
 | |
| 
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   WhichResult = (M[0] == 0 ? 0 : 1);
 | |
|   for (unsigned i = 0; i != NumElts; ++i) {
 | |
|     if ((unsigned) M[i] != 2 * i + WhichResult)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
 | |
|   if (VT.is64BitVector() && EltSz == 32)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
 | |
| /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
 | |
| /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
 | |
| static bool isVUZP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
 | |
|                                 unsigned &WhichResult) {
 | |
|   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
 | |
|   if (EltSz == 64)
 | |
|     return false;
 | |
| 
 | |
|   unsigned Half = VT.getVectorNumElements() / 2;
 | |
|   WhichResult = (M[0] == 0 ? 0 : 1);
 | |
|   for (unsigned j = 0; j != 2; ++j) {
 | |
|     unsigned Idx = WhichResult;
 | |
|     for (unsigned i = 0; i != Half; ++i) {
 | |
|       if ((unsigned) M[i + j * Half] != Idx)
 | |
|         return false;
 | |
|       Idx += 2;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
 | |
|   if (VT.is64BitVector() && EltSz == 32)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT,
 | |
|                        unsigned &WhichResult) {
 | |
|   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
 | |
|   if (EltSz == 64)
 | |
|     return false;
 | |
| 
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   WhichResult = (M[0] == 0 ? 0 : 1);
 | |
|   unsigned Idx = WhichResult * NumElts / 2;
 | |
|   for (unsigned i = 0; i != NumElts; i += 2) {
 | |
|     if ((unsigned) M[i] != Idx ||
 | |
|         (unsigned) M[i+1] != Idx + NumElts)
 | |
|       return false;
 | |
|     Idx += 1;
 | |
|   }
 | |
| 
 | |
|   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
 | |
|   if (VT.is64BitVector() && EltSz == 32)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
 | |
| /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
 | |
| /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
 | |
| static bool isVZIP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
 | |
|                                 unsigned &WhichResult) {
 | |
|   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
 | |
|   if (EltSz == 64)
 | |
|     return false;
 | |
| 
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   WhichResult = (M[0] == 0 ? 0 : 1);
 | |
|   unsigned Idx = WhichResult * NumElts / 2;
 | |
|   for (unsigned i = 0; i != NumElts; i += 2) {
 | |
|     if ((unsigned) M[i] != Idx ||
 | |
|         (unsigned) M[i+1] != Idx)
 | |
|       return false;
 | |
|     Idx += 1;
 | |
|   }
 | |
| 
 | |
|   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
 | |
|   if (VT.is64BitVector() && EltSz == 32)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // If this is a case we can't handle, return null and let the default
 | |
| // expansion code take care of it.
 | |
| static SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
 | |
|   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   EVT VT = Op.getValueType();
 | |
| 
 | |
|   APInt SplatBits, SplatUndef;
 | |
|   unsigned SplatBitSize;
 | |
|   bool HasAnyUndefs;
 | |
|   if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
 | |
|     if (SplatBitSize <= 64) {
 | |
|       // Check if an immediate VMOV works.
 | |
|       EVT VmovVT;
 | |
|       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
 | |
|                                       SplatUndef.getZExtValue(), SplatBitSize,
 | |
|                                       DAG, VmovVT, VT.is128BitVector(), true);
 | |
|       if (Val.getNode()) {
 | |
|         SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
 | |
|         return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vmov);
 | |
|       }
 | |
| 
 | |
|       // Try an immediate VMVN.
 | |
|       uint64_t NegatedImm = (SplatBits.getZExtValue() ^
 | |
|                              ((1LL << SplatBitSize) - 1));
 | |
|       Val = isNEONModifiedImm(NegatedImm,
 | |
|                                       SplatUndef.getZExtValue(), SplatBitSize,
 | |
|                                       DAG, VmovVT, VT.is128BitVector(), false);
 | |
|       if (Val.getNode()) {
 | |
|         SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
 | |
|         return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vmov);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Scan through the operands to see if only one value is used.
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   bool isOnlyLowElement = true;
 | |
|   bool usesOnlyOneValue = true;
 | |
|   bool isConstant = true;
 | |
|   SDValue Value;
 | |
|   for (unsigned i = 0; i < NumElts; ++i) {
 | |
|     SDValue V = Op.getOperand(i);
 | |
|     if (V.getOpcode() == ISD::UNDEF)
 | |
|       continue;
 | |
|     if (i > 0)
 | |
|       isOnlyLowElement = false;
 | |
|     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
 | |
|       isConstant = false;
 | |
| 
 | |
|     if (!Value.getNode())
 | |
|       Value = V;
 | |
|     else if (V != Value)
 | |
|       usesOnlyOneValue = false;
 | |
|   }
 | |
| 
 | |
|   if (!Value.getNode())
 | |
|     return DAG.getUNDEF(VT);
 | |
| 
 | |
|   if (isOnlyLowElement)
 | |
|     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
 | |
| 
 | |
|   // If all elements are constants, fall back to the default expansion, which
 | |
|   // will generate a load from the constant pool.
 | |
|   if (isConstant)
 | |
|     return SDValue();
 | |
| 
 | |
|   // Use VDUP for non-constant splats.
 | |
|   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
 | |
|   if (usesOnlyOneValue && EltSize <= 32)
 | |
|     return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
 | |
| 
 | |
|   // Vectors with 32- or 64-bit elements can be built by directly assigning
 | |
|   // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
 | |
|   // will be legalized.
 | |
|   if (EltSize >= 32) {
 | |
|     // Do the expansion with floating-point types, since that is what the VFP
 | |
|     // registers are defined to use, and since i64 is not legal.
 | |
|     EVT EltVT = EVT::getFloatingPointVT(EltSize);
 | |
|     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
 | |
|     SmallVector<SDValue, 8> Ops;
 | |
|     for (unsigned i = 0; i < NumElts; ++i)
 | |
|       Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, dl, EltVT, Op.getOperand(i)));
 | |
|     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
 | |
|     return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Val);
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// isShuffleMaskLegal - Targets can use this to indicate that they only
 | |
| /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
 | |
| /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
 | |
| /// are assumed to be legal.
 | |
| bool
 | |
| ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
 | |
|                                       EVT VT) const {
 | |
|   if (VT.getVectorNumElements() == 4 &&
 | |
|       (VT.is128BitVector() || VT.is64BitVector())) {
 | |
|     unsigned PFIndexes[4];
 | |
|     for (unsigned i = 0; i != 4; ++i) {
 | |
|       if (M[i] < 0)
 | |
|         PFIndexes[i] = 8;
 | |
|       else
 | |
|         PFIndexes[i] = M[i];
 | |
|     }
 | |
| 
 | |
|     // Compute the index in the perfect shuffle table.
 | |
|     unsigned PFTableIndex =
 | |
|       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
 | |
|     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
 | |
|     unsigned Cost = (PFEntry >> 30);
 | |
| 
 | |
|     if (Cost <= 4)
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   bool ReverseVEXT;
 | |
|   unsigned Imm, WhichResult;
 | |
| 
 | |
|   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
 | |
|   return (EltSize >= 32 ||
 | |
|           ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
 | |
|           isVREVMask(M, VT, 64) ||
 | |
|           isVREVMask(M, VT, 32) ||
 | |
|           isVREVMask(M, VT, 16) ||
 | |
|           isVEXTMask(M, VT, ReverseVEXT, Imm) ||
 | |
|           isVTRNMask(M, VT, WhichResult) ||
 | |
|           isVUZPMask(M, VT, WhichResult) ||
 | |
|           isVZIPMask(M, VT, WhichResult) ||
 | |
|           isVTRN_v_undef_Mask(M, VT, WhichResult) ||
 | |
|           isVUZP_v_undef_Mask(M, VT, WhichResult) ||
 | |
|           isVZIP_v_undef_Mask(M, VT, WhichResult));
 | |
| }
 | |
| 
 | |
| /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
 | |
| /// the specified operations to build the shuffle.
 | |
| static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
 | |
|                                       SDValue RHS, SelectionDAG &DAG,
 | |
|                                       DebugLoc dl) {
 | |
|   unsigned OpNum = (PFEntry >> 26) & 0x0F;
 | |
|   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
 | |
|   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
 | |
| 
 | |
|   enum {
 | |
|     OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
 | |
|     OP_VREV,
 | |
|     OP_VDUP0,
 | |
|     OP_VDUP1,
 | |
|     OP_VDUP2,
 | |
|     OP_VDUP3,
 | |
|     OP_VEXT1,
 | |
|     OP_VEXT2,
 | |
|     OP_VEXT3,
 | |
|     OP_VUZPL, // VUZP, left result
 | |
|     OP_VUZPR, // VUZP, right result
 | |
|     OP_VZIPL, // VZIP, left result
 | |
|     OP_VZIPR, // VZIP, right result
 | |
|     OP_VTRNL, // VTRN, left result
 | |
|     OP_VTRNR  // VTRN, right result
 | |
|   };
 | |
| 
 | |
|   if (OpNum == OP_COPY) {
 | |
|     if (LHSID == (1*9+2)*9+3) return LHS;
 | |
|     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
 | |
|     return RHS;
 | |
|   }
 | |
| 
 | |
|   SDValue OpLHS, OpRHS;
 | |
|   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
 | |
|   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
 | |
|   EVT VT = OpLHS.getValueType();
 | |
| 
 | |
|   switch (OpNum) {
 | |
|   default: llvm_unreachable("Unknown shuffle opcode!");
 | |
|   case OP_VREV:
 | |
|     return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
 | |
|   case OP_VDUP0:
 | |
|   case OP_VDUP1:
 | |
|   case OP_VDUP2:
 | |
|   case OP_VDUP3:
 | |
|     return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
 | |
|                        OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
 | |
|   case OP_VEXT1:
 | |
|   case OP_VEXT2:
 | |
|   case OP_VEXT3:
 | |
|     return DAG.getNode(ARMISD::VEXT, dl, VT,
 | |
|                        OpLHS, OpRHS,
 | |
|                        DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
 | |
|   case OP_VUZPL:
 | |
|   case OP_VUZPR:
 | |
|     return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
 | |
|                        OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
 | |
|   case OP_VZIPL:
 | |
|   case OP_VZIPR:
 | |
|     return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
 | |
|                        OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
 | |
|   case OP_VTRNL:
 | |
|   case OP_VTRNR:
 | |
|     return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
 | |
|                        OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
 | |
|   SDValue V1 = Op.getOperand(0);
 | |
|   SDValue V2 = Op.getOperand(1);
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   EVT VT = Op.getValueType();
 | |
|   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
 | |
|   SmallVector<int, 8> ShuffleMask;
 | |
| 
 | |
|   // Convert shuffles that are directly supported on NEON to target-specific
 | |
|   // DAG nodes, instead of keeping them as shuffles and matching them again
 | |
|   // during code selection.  This is more efficient and avoids the possibility
 | |
|   // of inconsistencies between legalization and selection.
 | |
|   // FIXME: floating-point vectors should be canonicalized to integer vectors
 | |
|   // of the same time so that they get CSEd properly.
 | |
|   SVN->getMask(ShuffleMask);
 | |
| 
 | |
|   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
 | |
|   if (EltSize <= 32) {
 | |
|     if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
 | |
|       int Lane = SVN->getSplatIndex();
 | |
|       // If this is undef splat, generate it via "just" vdup, if possible.
 | |
|       if (Lane == -1) Lane = 0;
 | |
| 
 | |
|       if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
 | |
|         return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
 | |
|       }
 | |
|       return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
 | |
|                          DAG.getConstant(Lane, MVT::i32));
 | |
|     }
 | |
| 
 | |
|     bool ReverseVEXT;
 | |
|     unsigned Imm;
 | |
|     if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
 | |
|       if (ReverseVEXT)
 | |
|         std::swap(V1, V2);
 | |
|       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
 | |
|                          DAG.getConstant(Imm, MVT::i32));
 | |
|     }
 | |
| 
 | |
|     if (isVREVMask(ShuffleMask, VT, 64))
 | |
|       return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
 | |
|     if (isVREVMask(ShuffleMask, VT, 32))
 | |
|       return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
 | |
|     if (isVREVMask(ShuffleMask, VT, 16))
 | |
|       return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
 | |
| 
 | |
|     // Check for Neon shuffles that modify both input vectors in place.
 | |
|     // If both results are used, i.e., if there are two shuffles with the same
 | |
|     // source operands and with masks corresponding to both results of one of
 | |
|     // these operations, DAG memoization will ensure that a single node is
 | |
|     // used for both shuffles.
 | |
|     unsigned WhichResult;
 | |
|     if (isVTRNMask(ShuffleMask, VT, WhichResult))
 | |
|       return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
 | |
|                          V1, V2).getValue(WhichResult);
 | |
|     if (isVUZPMask(ShuffleMask, VT, WhichResult))
 | |
|       return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
 | |
|                          V1, V2).getValue(WhichResult);
 | |
|     if (isVZIPMask(ShuffleMask, VT, WhichResult))
 | |
|       return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
 | |
|                          V1, V2).getValue(WhichResult);
 | |
| 
 | |
|     if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
 | |
|       return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
 | |
|                          V1, V1).getValue(WhichResult);
 | |
|     if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
 | |
|       return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
 | |
|                          V1, V1).getValue(WhichResult);
 | |
|     if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
 | |
|       return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
 | |
|                          V1, V1).getValue(WhichResult);
 | |
|   }
 | |
| 
 | |
|   // If the shuffle is not directly supported and it has 4 elements, use
 | |
|   // the PerfectShuffle-generated table to synthesize it from other shuffles.
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   if (NumElts == 4) {
 | |
|     unsigned PFIndexes[4];
 | |
|     for (unsigned i = 0; i != 4; ++i) {
 | |
|       if (ShuffleMask[i] < 0)
 | |
|         PFIndexes[i] = 8;
 | |
|       else
 | |
|         PFIndexes[i] = ShuffleMask[i];
 | |
|     }
 | |
| 
 | |
|     // Compute the index in the perfect shuffle table.
 | |
|     unsigned PFTableIndex =
 | |
|       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
 | |
|     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
 | |
|     unsigned Cost = (PFEntry >> 30);
 | |
| 
 | |
|     if (Cost <= 4)
 | |
|       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
 | |
|   }
 | |
| 
 | |
|   // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
 | |
|   if (EltSize >= 32) {
 | |
|     // Do the expansion with floating-point types, since that is what the VFP
 | |
|     // registers are defined to use, and since i64 is not legal.
 | |
|     EVT EltVT = EVT::getFloatingPointVT(EltSize);
 | |
|     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
 | |
|     V1 = DAG.getNode(ISD::BIT_CONVERT, dl, VecVT, V1);
 | |
|     V2 = DAG.getNode(ISD::BIT_CONVERT, dl, VecVT, V2);
 | |
|     SmallVector<SDValue, 8> Ops;
 | |
|     for (unsigned i = 0; i < NumElts; ++i) {
 | |
|       if (ShuffleMask[i] < 0)
 | |
|         Ops.push_back(DAG.getUNDEF(EltVT));
 | |
|       else
 | |
|         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
 | |
|                                   ShuffleMask[i] < (int)NumElts ? V1 : V2,
 | |
|                                   DAG.getConstant(ShuffleMask[i] & (NumElts-1),
 | |
|                                                   MVT::i32)));
 | |
|     }
 | |
|     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
 | |
|     return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Val);
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
 | |
|   EVT VT = Op.getValueType();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   SDValue Vec = Op.getOperand(0);
 | |
|   SDValue Lane = Op.getOperand(1);
 | |
|   assert(VT == MVT::i32 &&
 | |
|          Vec.getValueType().getVectorElementType().getSizeInBits() < 32 &&
 | |
|          "unexpected type for custom-lowering vector extract");
 | |
|   return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
 | |
| }
 | |
| 
 | |
| static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
 | |
|   // The only time a CONCAT_VECTORS operation can have legal types is when
 | |
|   // two 64-bit vectors are concatenated to a 128-bit vector.
 | |
|   assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
 | |
|          "unexpected CONCAT_VECTORS");
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   SDValue Val = DAG.getUNDEF(MVT::v2f64);
 | |
|   SDValue Op0 = Op.getOperand(0);
 | |
|   SDValue Op1 = Op.getOperand(1);
 | |
|   if (Op0.getOpcode() != ISD::UNDEF)
 | |
|     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
 | |
|                       DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op0),
 | |
|                       DAG.getIntPtrConstant(0));
 | |
|   if (Op1.getOpcode() != ISD::UNDEF)
 | |
|     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
 | |
|                       DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op1),
 | |
|                       DAG.getIntPtrConstant(1));
 | |
|   return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Val);
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
 | |
|   switch (Op.getOpcode()) {
 | |
|   default: llvm_unreachable("Don't know how to custom lower this!");
 | |
|   case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
 | |
|   case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
 | |
|   case ISD::GlobalAddress:
 | |
|     return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
 | |
|       LowerGlobalAddressELF(Op, DAG);
 | |
|   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
 | |
|   case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
 | |
|   case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
 | |
|   case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
 | |
|   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
 | |
|   case ISD::VASTART:       return LowerVASTART(Op, DAG);
 | |
|   case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
 | |
|   case ISD::SINT_TO_FP:
 | |
|   case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
 | |
|   case ISD::FP_TO_SINT:
 | |
|   case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
 | |
|   case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
 | |
|   case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
 | |
|   case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
 | |
|   case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
 | |
|   case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
 | |
|   case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
 | |
|   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
 | |
|                                                                Subtarget);
 | |
|   case ISD::BIT_CONVERT:   return ExpandBIT_CONVERT(Op.getNode(), DAG);
 | |
|   case ISD::SHL:
 | |
|   case ISD::SRL:
 | |
|   case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
 | |
|   case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
 | |
|   case ISD::SRL_PARTS:
 | |
|   case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
 | |
|   case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
 | |
|   case ISD::VSETCC:        return LowerVSETCC(Op, DAG);
 | |
|   case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG);
 | |
|   case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
 | |
|   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
 | |
|   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// ReplaceNodeResults - Replace the results of node with an illegal result
 | |
| /// type with new values built out of custom code.
 | |
| void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
 | |
|                                            SmallVectorImpl<SDValue>&Results,
 | |
|                                            SelectionDAG &DAG) const {
 | |
|   SDValue Res;
 | |
|   switch (N->getOpcode()) {
 | |
|   default:
 | |
|     llvm_unreachable("Don't know how to custom expand this!");
 | |
|     break;
 | |
|   case ISD::BIT_CONVERT:
 | |
|     Res = ExpandBIT_CONVERT(N, DAG);
 | |
|     break;
 | |
|   case ISD::SRL:
 | |
|   case ISD::SRA:
 | |
|     Res = LowerShift(N, DAG, Subtarget);
 | |
|     break;
 | |
|   }
 | |
|   if (Res.getNode())
 | |
|     Results.push_back(Res);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           ARM Scheduler Hooks
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| MachineBasicBlock *
 | |
| ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
 | |
|                                      MachineBasicBlock *BB,
 | |
|                                      unsigned Size) const {
 | |
|   unsigned dest    = MI->getOperand(0).getReg();
 | |
|   unsigned ptr     = MI->getOperand(1).getReg();
 | |
|   unsigned oldval  = MI->getOperand(2).getReg();
 | |
|   unsigned newval  = MI->getOperand(3).getReg();
 | |
|   unsigned scratch = BB->getParent()->getRegInfo()
 | |
|     .createVirtualRegister(ARM::GPRRegisterClass);
 | |
|   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | |
|   DebugLoc dl = MI->getDebugLoc();
 | |
|   bool isThumb2 = Subtarget->isThumb2();
 | |
| 
 | |
|   unsigned ldrOpc, strOpc;
 | |
|   switch (Size) {
 | |
|   default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
 | |
|   case 1:
 | |
|     ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
 | |
|     strOpc = isThumb2 ? ARM::t2LDREXB : ARM::STREXB;
 | |
|     break;
 | |
|   case 2:
 | |
|     ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
 | |
|     strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
 | |
|     break;
 | |
|   case 4:
 | |
|     ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
 | |
|     strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   MachineFunction *MF = BB->getParent();
 | |
|   const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | |
|   MachineFunction::iterator It = BB;
 | |
|   ++It; // insert the new blocks after the current block
 | |
| 
 | |
|   MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MF->insert(It, loop1MBB);
 | |
|   MF->insert(It, loop2MBB);
 | |
|   MF->insert(It, exitMBB);
 | |
| 
 | |
|   // Transfer the remainder of BB and its successor edges to exitMBB.
 | |
|   exitMBB->splice(exitMBB->begin(), BB,
 | |
|                   llvm::next(MachineBasicBlock::iterator(MI)),
 | |
|                   BB->end());
 | |
|   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
 | |
| 
 | |
|   //  thisMBB:
 | |
|   //   ...
 | |
|   //   fallthrough --> loop1MBB
 | |
|   BB->addSuccessor(loop1MBB);
 | |
| 
 | |
|   // loop1MBB:
 | |
|   //   ldrex dest, [ptr]
 | |
|   //   cmp dest, oldval
 | |
|   //   bne exitMBB
 | |
|   BB = loop1MBB;
 | |
|   AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
 | |
|   AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
 | |
|                  .addReg(dest).addReg(oldval));
 | |
|   BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
 | |
|     .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
 | |
|   BB->addSuccessor(loop2MBB);
 | |
|   BB->addSuccessor(exitMBB);
 | |
| 
 | |
|   // loop2MBB:
 | |
|   //   strex scratch, newval, [ptr]
 | |
|   //   cmp scratch, #0
 | |
|   //   bne loop1MBB
 | |
|   BB = loop2MBB;
 | |
|   AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval)
 | |
|                  .addReg(ptr));
 | |
|   AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
 | |
|                  .addReg(scratch).addImm(0));
 | |
|   BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
 | |
|     .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
 | |
|   BB->addSuccessor(loop1MBB);
 | |
|   BB->addSuccessor(exitMBB);
 | |
| 
 | |
|   //  exitMBB:
 | |
|   //   ...
 | |
|   BB = exitMBB;
 | |
| 
 | |
|   MI->eraseFromParent();   // The instruction is gone now.
 | |
| 
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *
 | |
| ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
 | |
|                                     unsigned Size, unsigned BinOpcode) const {
 | |
|   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
 | |
|   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | |
| 
 | |
|   const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | |
|   MachineFunction *MF = BB->getParent();
 | |
|   MachineFunction::iterator It = BB;
 | |
|   ++It;
 | |
| 
 | |
|   unsigned dest = MI->getOperand(0).getReg();
 | |
|   unsigned ptr = MI->getOperand(1).getReg();
 | |
|   unsigned incr = MI->getOperand(2).getReg();
 | |
|   DebugLoc dl = MI->getDebugLoc();
 | |
| 
 | |
|   bool isThumb2 = Subtarget->isThumb2();
 | |
|   unsigned ldrOpc, strOpc;
 | |
|   switch (Size) {
 | |
|   default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
 | |
|   case 1:
 | |
|     ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
 | |
|     strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
 | |
|     break;
 | |
|   case 2:
 | |
|     ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
 | |
|     strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
 | |
|     break;
 | |
|   case 4:
 | |
|     ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
 | |
|     strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MF->insert(It, loopMBB);
 | |
|   MF->insert(It, exitMBB);
 | |
| 
 | |
|   // Transfer the remainder of BB and its successor edges to exitMBB.
 | |
|   exitMBB->splice(exitMBB->begin(), BB,
 | |
|                   llvm::next(MachineBasicBlock::iterator(MI)),
 | |
|                   BB->end());
 | |
|   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
 | |
| 
 | |
|   MachineRegisterInfo &RegInfo = MF->getRegInfo();
 | |
|   unsigned scratch = RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
 | |
|   unsigned scratch2 = (!BinOpcode) ? incr :
 | |
|     RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
 | |
| 
 | |
|   //  thisMBB:
 | |
|   //   ...
 | |
|   //   fallthrough --> loopMBB
 | |
|   BB->addSuccessor(loopMBB);
 | |
| 
 | |
|   //  loopMBB:
 | |
|   //   ldrex dest, ptr
 | |
|   //   <binop> scratch2, dest, incr
 | |
|   //   strex scratch, scratch2, ptr
 | |
|   //   cmp scratch, #0
 | |
|   //   bne- loopMBB
 | |
|   //   fallthrough --> exitMBB
 | |
|   BB = loopMBB;
 | |
|   AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
 | |
|   if (BinOpcode) {
 | |
|     // operand order needs to go the other way for NAND
 | |
|     if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
 | |
|       AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
 | |
|                      addReg(incr).addReg(dest)).addReg(0);
 | |
|     else
 | |
|       AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
 | |
|                      addReg(dest).addReg(incr)).addReg(0);
 | |
|   }
 | |
| 
 | |
|   AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2)
 | |
|                  .addReg(ptr));
 | |
|   AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
 | |
|                  .addReg(scratch).addImm(0));
 | |
|   BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
 | |
|     .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
 | |
| 
 | |
|   BB->addSuccessor(loopMBB);
 | |
|   BB->addSuccessor(exitMBB);
 | |
| 
 | |
|   //  exitMBB:
 | |
|   //   ...
 | |
|   BB = exitMBB;
 | |
| 
 | |
|   MI->eraseFromParent();   // The instruction is gone now.
 | |
| 
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| static
 | |
| MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
 | |
|   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
 | |
|        E = MBB->succ_end(); I != E; ++I)
 | |
|     if (*I != Succ)
 | |
|       return *I;
 | |
|   llvm_unreachable("Expecting a BB with two successors!");
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *
 | |
| ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
 | |
|                                                MachineBasicBlock *BB) const {
 | |
|   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | |
|   DebugLoc dl = MI->getDebugLoc();
 | |
|   bool isThumb2 = Subtarget->isThumb2();
 | |
|   switch (MI->getOpcode()) {
 | |
|   default:
 | |
|     MI->dump();
 | |
|     llvm_unreachable("Unexpected instr type to insert");
 | |
| 
 | |
|   case ARM::ATOMIC_LOAD_ADD_I8:
 | |
|      return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
 | |
|   case ARM::ATOMIC_LOAD_ADD_I16:
 | |
|      return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
 | |
|   case ARM::ATOMIC_LOAD_ADD_I32:
 | |
|      return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
 | |
| 
 | |
|   case ARM::ATOMIC_LOAD_AND_I8:
 | |
|      return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
 | |
|   case ARM::ATOMIC_LOAD_AND_I16:
 | |
|      return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
 | |
|   case ARM::ATOMIC_LOAD_AND_I32:
 | |
|      return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
 | |
| 
 | |
|   case ARM::ATOMIC_LOAD_OR_I8:
 | |
|      return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
 | |
|   case ARM::ATOMIC_LOAD_OR_I16:
 | |
|      return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
 | |
|   case ARM::ATOMIC_LOAD_OR_I32:
 | |
|      return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
 | |
| 
 | |
|   case ARM::ATOMIC_LOAD_XOR_I8:
 | |
|      return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
 | |
|   case ARM::ATOMIC_LOAD_XOR_I16:
 | |
|      return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
 | |
|   case ARM::ATOMIC_LOAD_XOR_I32:
 | |
|      return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
 | |
| 
 | |
|   case ARM::ATOMIC_LOAD_NAND_I8:
 | |
|      return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
 | |
|   case ARM::ATOMIC_LOAD_NAND_I16:
 | |
|      return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
 | |
|   case ARM::ATOMIC_LOAD_NAND_I32:
 | |
|      return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
 | |
| 
 | |
|   case ARM::ATOMIC_LOAD_SUB_I8:
 | |
|      return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
 | |
|   case ARM::ATOMIC_LOAD_SUB_I16:
 | |
|      return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
 | |
|   case ARM::ATOMIC_LOAD_SUB_I32:
 | |
|      return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
 | |
| 
 | |
|   case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
 | |
|   case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
 | |
|   case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
 | |
| 
 | |
|   case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
 | |
|   case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
 | |
|   case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
 | |
| 
 | |
|   case ARM::tMOVCCr_pseudo: {
 | |
|     // To "insert" a SELECT_CC instruction, we actually have to insert the
 | |
|     // diamond control-flow pattern.  The incoming instruction knows the
 | |
|     // destination vreg to set, the condition code register to branch on, the
 | |
|     // true/false values to select between, and a branch opcode to use.
 | |
|     const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | |
|     MachineFunction::iterator It = BB;
 | |
|     ++It;
 | |
| 
 | |
|     //  thisMBB:
 | |
|     //  ...
 | |
|     //   TrueVal = ...
 | |
|     //   cmpTY ccX, r1, r2
 | |
|     //   bCC copy1MBB
 | |
|     //   fallthrough --> copy0MBB
 | |
|     MachineBasicBlock *thisMBB  = BB;
 | |
|     MachineFunction *F = BB->getParent();
 | |
|     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     F->insert(It, copy0MBB);
 | |
|     F->insert(It, sinkMBB);
 | |
| 
 | |
|     // Transfer the remainder of BB and its successor edges to sinkMBB.
 | |
|     sinkMBB->splice(sinkMBB->begin(), BB,
 | |
|                     llvm::next(MachineBasicBlock::iterator(MI)),
 | |
|                     BB->end());
 | |
|     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
 | |
| 
 | |
|     BB->addSuccessor(copy0MBB);
 | |
|     BB->addSuccessor(sinkMBB);
 | |
| 
 | |
|     BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
 | |
|       .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
 | |
| 
 | |
|     //  copy0MBB:
 | |
|     //   %FalseValue = ...
 | |
|     //   # fallthrough to sinkMBB
 | |
|     BB = copy0MBB;
 | |
| 
 | |
|     // Update machine-CFG edges
 | |
|     BB->addSuccessor(sinkMBB);
 | |
| 
 | |
|     //  sinkMBB:
 | |
|     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
 | |
|     //  ...
 | |
|     BB = sinkMBB;
 | |
|     BuildMI(*BB, BB->begin(), dl,
 | |
|             TII->get(ARM::PHI), MI->getOperand(0).getReg())
 | |
|       .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
 | |
|       .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
 | |
| 
 | |
|     MI->eraseFromParent();   // The pseudo instruction is gone now.
 | |
|     return BB;
 | |
|   }
 | |
| 
 | |
|   case ARM::BCCi64:
 | |
|   case ARM::BCCZi64: {
 | |
|     // Compare both parts that make up the double comparison separately for
 | |
|     // equality.
 | |
|     bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
 | |
| 
 | |
|     unsigned LHS1 = MI->getOperand(1).getReg();
 | |
|     unsigned LHS2 = MI->getOperand(2).getReg();
 | |
|     if (RHSisZero) {
 | |
|       AddDefaultPred(BuildMI(BB, dl,
 | |
|                              TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
 | |
|                      .addReg(LHS1).addImm(0));
 | |
|       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
 | |
|         .addReg(LHS2).addImm(0)
 | |
|         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
 | |
|     } else {
 | |
|       unsigned RHS1 = MI->getOperand(3).getReg();
 | |
|       unsigned RHS2 = MI->getOperand(4).getReg();
 | |
|       AddDefaultPred(BuildMI(BB, dl,
 | |
|                              TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
 | |
|                      .addReg(LHS1).addReg(RHS1));
 | |
|       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
 | |
|         .addReg(LHS2).addReg(RHS2)
 | |
|         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
 | |
|     }
 | |
| 
 | |
|     MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
 | |
|     MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
 | |
|     if (MI->getOperand(0).getImm() == ARMCC::NE)
 | |
|       std::swap(destMBB, exitMBB);
 | |
| 
 | |
|     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
 | |
|       .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
 | |
|     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2B : ARM::B))
 | |
|       .addMBB(exitMBB);
 | |
| 
 | |
|     MI->eraseFromParent();   // The pseudo instruction is gone now.
 | |
|     return BB;
 | |
|   }
 | |
| 
 | |
|   case ARM::tANDsp:
 | |
|   case ARM::tADDspr_:
 | |
|   case ARM::tSUBspi_:
 | |
|   case ARM::t2SUBrSPi_:
 | |
|   case ARM::t2SUBrSPi12_:
 | |
|   case ARM::t2SUBrSPs_: {
 | |
|     MachineFunction *MF = BB->getParent();
 | |
|     unsigned DstReg = MI->getOperand(0).getReg();
 | |
|     unsigned SrcReg = MI->getOperand(1).getReg();
 | |
|     bool DstIsDead = MI->getOperand(0).isDead();
 | |
|     bool SrcIsKill = MI->getOperand(1).isKill();
 | |
| 
 | |
|     if (SrcReg != ARM::SP) {
 | |
|       // Copy the source to SP from virtual register.
 | |
|       const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(SrcReg);
 | |
|       unsigned CopyOpc = (RC == ARM::tGPRRegisterClass)
 | |
|         ? ARM::tMOVtgpr2gpr : ARM::tMOVgpr2gpr;
 | |
|       BuildMI(*BB, MI, dl, TII->get(CopyOpc), ARM::SP)
 | |
|         .addReg(SrcReg, getKillRegState(SrcIsKill));
 | |
|     }
 | |
| 
 | |
|     unsigned OpOpc = 0;
 | |
|     bool NeedPred = false, NeedCC = false, NeedOp3 = false;
 | |
|     switch (MI->getOpcode()) {
 | |
|     default:
 | |
|       llvm_unreachable("Unexpected pseudo instruction!");
 | |
|     case ARM::tANDsp:
 | |
|       OpOpc = ARM::tAND;
 | |
|       NeedPred = true;
 | |
|       break;
 | |
|     case ARM::tADDspr_:
 | |
|       OpOpc = ARM::tADDspr;
 | |
|       break;
 | |
|     case ARM::tSUBspi_:
 | |
|       OpOpc = ARM::tSUBspi;
 | |
|       break;
 | |
|     case ARM::t2SUBrSPi_:
 | |
|       OpOpc = ARM::t2SUBrSPi;
 | |
|       NeedPred = true; NeedCC = true;
 | |
|       break;
 | |
|     case ARM::t2SUBrSPi12_:
 | |
|       OpOpc = ARM::t2SUBrSPi12;
 | |
|       NeedPred = true;
 | |
|       break;
 | |
|     case ARM::t2SUBrSPs_:
 | |
|       OpOpc = ARM::t2SUBrSPs;
 | |
|       NeedPred = true; NeedCC = true; NeedOp3 = true;
 | |
|       break;
 | |
|     }
 | |
|     MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(OpOpc), ARM::SP);
 | |
|     if (OpOpc == ARM::tAND)
 | |
|       AddDefaultT1CC(MIB);
 | |
|     MIB.addReg(ARM::SP);
 | |
|     MIB.addOperand(MI->getOperand(2));
 | |
|     if (NeedOp3)
 | |
|       MIB.addOperand(MI->getOperand(3));
 | |
|     if (NeedPred)
 | |
|       AddDefaultPred(MIB);
 | |
|     if (NeedCC)
 | |
|       AddDefaultCC(MIB);
 | |
| 
 | |
|     // Copy the result from SP to virtual register.
 | |
|     const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(DstReg);
 | |
|     unsigned CopyOpc = (RC == ARM::tGPRRegisterClass)
 | |
|       ? ARM::tMOVgpr2tgpr : ARM::tMOVgpr2gpr;
 | |
|     BuildMI(*BB, MI, dl, TII->get(CopyOpc))
 | |
|       .addReg(DstReg, getDefRegState(true) | getDeadRegState(DstIsDead))
 | |
|       .addReg(ARM::SP);
 | |
|     MI->eraseFromParent();   // The pseudo instruction is gone now.
 | |
|     return BB;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           ARM Optimization Hooks
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static
 | |
| SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
 | |
|                             TargetLowering::DAGCombinerInfo &DCI) {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   EVT VT = N->getValueType(0);
 | |
|   unsigned Opc = N->getOpcode();
 | |
|   bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
 | |
|   SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
 | |
|   SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
 | |
|   ISD::CondCode CC = ISD::SETCC_INVALID;
 | |
| 
 | |
|   if (isSlctCC) {
 | |
|     CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
 | |
|   } else {
 | |
|     SDValue CCOp = Slct.getOperand(0);
 | |
|     if (CCOp.getOpcode() == ISD::SETCC)
 | |
|       CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
 | |
|   }
 | |
| 
 | |
|   bool DoXform = false;
 | |
|   bool InvCC = false;
 | |
|   assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
 | |
|           "Bad input!");
 | |
| 
 | |
|   if (LHS.getOpcode() == ISD::Constant &&
 | |
|       cast<ConstantSDNode>(LHS)->isNullValue()) {
 | |
|     DoXform = true;
 | |
|   } else if (CC != ISD::SETCC_INVALID &&
 | |
|              RHS.getOpcode() == ISD::Constant &&
 | |
|              cast<ConstantSDNode>(RHS)->isNullValue()) {
 | |
|     std::swap(LHS, RHS);
 | |
|     SDValue Op0 = Slct.getOperand(0);
 | |
|     EVT OpVT = isSlctCC ? Op0.getValueType() :
 | |
|                           Op0.getOperand(0).getValueType();
 | |
|     bool isInt = OpVT.isInteger();
 | |
|     CC = ISD::getSetCCInverse(CC, isInt);
 | |
| 
 | |
|     if (!TLI.isCondCodeLegal(CC, OpVT))
 | |
|       return SDValue();         // Inverse operator isn't legal.
 | |
| 
 | |
|     DoXform = true;
 | |
|     InvCC = true;
 | |
|   }
 | |
| 
 | |
|   if (DoXform) {
 | |
|     SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
 | |
|     if (isSlctCC)
 | |
|       return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
 | |
|                              Slct.getOperand(0), Slct.getOperand(1), CC);
 | |
|     SDValue CCOp = Slct.getOperand(0);
 | |
|     if (InvCC)
 | |
|       CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
 | |
|                           CCOp.getOperand(0), CCOp.getOperand(1), CC);
 | |
|     return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
 | |
|                        CCOp, OtherOp, Result);
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
 | |
| static SDValue PerformADDCombine(SDNode *N,
 | |
|                                  TargetLowering::DAGCombinerInfo &DCI) {
 | |
|   // added by evan in r37685 with no testcase.
 | |
|   SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
 | |
| 
 | |
|   // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
 | |
|   if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
 | |
|     SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
 | |
|     if (Result.getNode()) return Result;
 | |
|   }
 | |
|   if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
 | |
|     SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
 | |
|     if (Result.getNode()) return Result;
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
 | |
| static SDValue PerformSUBCombine(SDNode *N,
 | |
|                                  TargetLowering::DAGCombinerInfo &DCI) {
 | |
|   // added by evan in r37685 with no testcase.
 | |
|   SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
 | |
| 
 | |
|   // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
 | |
|   if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
 | |
|     SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
 | |
|     if (Result.getNode()) return Result;
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static SDValue PerformMULCombine(SDNode *N,
 | |
|                                  TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                  const ARMSubtarget *Subtarget) {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
| 
 | |
|   if (Subtarget->isThumb1Only())
 | |
|     return SDValue();
 | |
| 
 | |
|   if (DAG.getMachineFunction().
 | |
|       getFunction()->hasFnAttr(Attribute::OptimizeForSize))
 | |
|     return SDValue();
 | |
| 
 | |
|   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
 | |
|     return SDValue();
 | |
| 
 | |
|   EVT VT = N->getValueType(0);
 | |
|   if (VT != MVT::i32)
 | |
|     return SDValue();
 | |
| 
 | |
|   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
 | |
|   if (!C)
 | |
|     return SDValue();
 | |
| 
 | |
|   uint64_t MulAmt = C->getZExtValue();
 | |
|   unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
 | |
|   ShiftAmt = ShiftAmt & (32 - 1);
 | |
|   SDValue V = N->getOperand(0);
 | |
|   DebugLoc DL = N->getDebugLoc();
 | |
| 
 | |
|   SDValue Res;
 | |
|   MulAmt >>= ShiftAmt;
 | |
|   if (isPowerOf2_32(MulAmt - 1)) {
 | |
|     // (mul x, 2^N + 1) => (add (shl x, N), x)
 | |
|     Res = DAG.getNode(ISD::ADD, DL, VT,
 | |
|                       V, DAG.getNode(ISD::SHL, DL, VT,
 | |
|                                      V, DAG.getConstant(Log2_32(MulAmt-1),
 | |
|                                                         MVT::i32)));
 | |
|   } else if (isPowerOf2_32(MulAmt + 1)) {
 | |
|     // (mul x, 2^N - 1) => (sub (shl x, N), x)
 | |
|     Res = DAG.getNode(ISD::SUB, DL, VT,
 | |
|                       DAG.getNode(ISD::SHL, DL, VT,
 | |
|                                   V, DAG.getConstant(Log2_32(MulAmt+1),
 | |
|                                                      MVT::i32)),
 | |
|                                                      V);
 | |
|   } else
 | |
|     return SDValue();
 | |
| 
 | |
|   if (ShiftAmt != 0)
 | |
|     Res = DAG.getNode(ISD::SHL, DL, VT, Res,
 | |
|                       DAG.getConstant(ShiftAmt, MVT::i32));
 | |
| 
 | |
|   // Do not add new nodes to DAG combiner worklist.
 | |
|   DCI.CombineTo(N, Res, false);
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
 | |
| /// ARMISD::VMOVRRD.
 | |
| static SDValue PerformVMOVRRDCombine(SDNode *N,
 | |
|                                    TargetLowering::DAGCombinerInfo &DCI) {
 | |
|   // fmrrd(fmdrr x, y) -> x,y
 | |
|   SDValue InDouble = N->getOperand(0);
 | |
|   if (InDouble.getOpcode() == ARMISD::VMOVDRR)
 | |
|     return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// PerformVDUPLANECombine - Target-specific dag combine xforms for
 | |
| /// ARMISD::VDUPLANE.
 | |
| static SDValue PerformVDUPLANECombine(SDNode *N,
 | |
|                                       TargetLowering::DAGCombinerInfo &DCI) {
 | |
|   // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
 | |
|   // redundant.
 | |
|   SDValue Op = N->getOperand(0);
 | |
|   EVT VT = N->getValueType(0);
 | |
| 
 | |
|   // Ignore bit_converts.
 | |
|   while (Op.getOpcode() == ISD::BIT_CONVERT)
 | |
|     Op = Op.getOperand(0);
 | |
|   if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
 | |
|     return SDValue();
 | |
| 
 | |
|   // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
 | |
|   unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
 | |
|   // The canonical VMOV for a zero vector uses a 32-bit element size.
 | |
|   unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
|   unsigned EltBits;
 | |
|   if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
 | |
|     EltSize = 8;
 | |
|   if (EltSize > VT.getVectorElementType().getSizeInBits())
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue Res = DCI.DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
 | |
|   return DCI.CombineTo(N, Res, false);
 | |
| }
 | |
| 
 | |
| /// getVShiftImm - Check if this is a valid build_vector for the immediate
 | |
| /// operand of a vector shift operation, where all the elements of the
 | |
| /// build_vector must have the same constant integer value.
 | |
| static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
 | |
|   // Ignore bit_converts.
 | |
|   while (Op.getOpcode() == ISD::BIT_CONVERT)
 | |
|     Op = Op.getOperand(0);
 | |
|   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
 | |
|   APInt SplatBits, SplatUndef;
 | |
|   unsigned SplatBitSize;
 | |
|   bool HasAnyUndefs;
 | |
|   if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
 | |
|                                       HasAnyUndefs, ElementBits) ||
 | |
|       SplatBitSize > ElementBits)
 | |
|     return false;
 | |
|   Cnt = SplatBits.getSExtValue();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isVShiftLImm - Check if this is a valid build_vector for the immediate
 | |
| /// operand of a vector shift left operation.  That value must be in the range:
 | |
| ///   0 <= Value < ElementBits for a left shift; or
 | |
| ///   0 <= Value <= ElementBits for a long left shift.
 | |
| static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
 | |
|   assert(VT.isVector() && "vector shift count is not a vector type");
 | |
|   unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
 | |
|   if (! getVShiftImm(Op, ElementBits, Cnt))
 | |
|     return false;
 | |
|   return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
 | |
| }
 | |
| 
 | |
| /// isVShiftRImm - Check if this is a valid build_vector for the immediate
 | |
| /// operand of a vector shift right operation.  For a shift opcode, the value
 | |
| /// is positive, but for an intrinsic the value count must be negative. The
 | |
| /// absolute value must be in the range:
 | |
| ///   1 <= |Value| <= ElementBits for a right shift; or
 | |
| ///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
 | |
| static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
 | |
|                          int64_t &Cnt) {
 | |
|   assert(VT.isVector() && "vector shift count is not a vector type");
 | |
|   unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
 | |
|   if (! getVShiftImm(Op, ElementBits, Cnt))
 | |
|     return false;
 | |
|   if (isIntrinsic)
 | |
|     Cnt = -Cnt;
 | |
|   return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
 | |
| }
 | |
| 
 | |
| /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
 | |
| static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
 | |
|   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
 | |
|   switch (IntNo) {
 | |
|   default:
 | |
|     // Don't do anything for most intrinsics.
 | |
|     break;
 | |
| 
 | |
|   // Vector shifts: check for immediate versions and lower them.
 | |
|   // Note: This is done during DAG combining instead of DAG legalizing because
 | |
|   // the build_vectors for 64-bit vector element shift counts are generally
 | |
|   // not legal, and it is hard to see their values after they get legalized to
 | |
|   // loads from a constant pool.
 | |
|   case Intrinsic::arm_neon_vshifts:
 | |
|   case Intrinsic::arm_neon_vshiftu:
 | |
|   case Intrinsic::arm_neon_vshiftls:
 | |
|   case Intrinsic::arm_neon_vshiftlu:
 | |
|   case Intrinsic::arm_neon_vshiftn:
 | |
|   case Intrinsic::arm_neon_vrshifts:
 | |
|   case Intrinsic::arm_neon_vrshiftu:
 | |
|   case Intrinsic::arm_neon_vrshiftn:
 | |
|   case Intrinsic::arm_neon_vqshifts:
 | |
|   case Intrinsic::arm_neon_vqshiftu:
 | |
|   case Intrinsic::arm_neon_vqshiftsu:
 | |
|   case Intrinsic::arm_neon_vqshiftns:
 | |
|   case Intrinsic::arm_neon_vqshiftnu:
 | |
|   case Intrinsic::arm_neon_vqshiftnsu:
 | |
|   case Intrinsic::arm_neon_vqrshiftns:
 | |
|   case Intrinsic::arm_neon_vqrshiftnu:
 | |
|   case Intrinsic::arm_neon_vqrshiftnsu: {
 | |
|     EVT VT = N->getOperand(1).getValueType();
 | |
|     int64_t Cnt;
 | |
|     unsigned VShiftOpc = 0;
 | |
| 
 | |
|     switch (IntNo) {
 | |
|     case Intrinsic::arm_neon_vshifts:
 | |
|     case Intrinsic::arm_neon_vshiftu:
 | |
|       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
 | |
|         VShiftOpc = ARMISD::VSHL;
 | |
|         break;
 | |
|       }
 | |
|       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
 | |
|         VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
 | |
|                      ARMISD::VSHRs : ARMISD::VSHRu);
 | |
|         break;
 | |
|       }
 | |
|       return SDValue();
 | |
| 
 | |
|     case Intrinsic::arm_neon_vshiftls:
 | |
|     case Intrinsic::arm_neon_vshiftlu:
 | |
|       if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
 | |
|         break;
 | |
|       llvm_unreachable("invalid shift count for vshll intrinsic");
 | |
| 
 | |
|     case Intrinsic::arm_neon_vrshifts:
 | |
|     case Intrinsic::arm_neon_vrshiftu:
 | |
|       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
 | |
|         break;
 | |
|       return SDValue();
 | |
| 
 | |
|     case Intrinsic::arm_neon_vqshifts:
 | |
|     case Intrinsic::arm_neon_vqshiftu:
 | |
|       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
 | |
|         break;
 | |
|       return SDValue();
 | |
| 
 | |
|     case Intrinsic::arm_neon_vqshiftsu:
 | |
|       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
 | |
|         break;
 | |
|       llvm_unreachable("invalid shift count for vqshlu intrinsic");
 | |
| 
 | |
|     case Intrinsic::arm_neon_vshiftn:
 | |
|     case Intrinsic::arm_neon_vrshiftn:
 | |
|     case Intrinsic::arm_neon_vqshiftns:
 | |
|     case Intrinsic::arm_neon_vqshiftnu:
 | |
|     case Intrinsic::arm_neon_vqshiftnsu:
 | |
|     case Intrinsic::arm_neon_vqrshiftns:
 | |
|     case Intrinsic::arm_neon_vqrshiftnu:
 | |
|     case Intrinsic::arm_neon_vqrshiftnsu:
 | |
|       // Narrowing shifts require an immediate right shift.
 | |
|       if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
 | |
|         break;
 | |
|       llvm_unreachable("invalid shift count for narrowing vector shift "
 | |
|                        "intrinsic");
 | |
| 
 | |
|     default:
 | |
|       llvm_unreachable("unhandled vector shift");
 | |
|     }
 | |
| 
 | |
|     switch (IntNo) {
 | |
|     case Intrinsic::arm_neon_vshifts:
 | |
|     case Intrinsic::arm_neon_vshiftu:
 | |
|       // Opcode already set above.
 | |
|       break;
 | |
|     case Intrinsic::arm_neon_vshiftls:
 | |
|     case Intrinsic::arm_neon_vshiftlu:
 | |
|       if (Cnt == VT.getVectorElementType().getSizeInBits())
 | |
|         VShiftOpc = ARMISD::VSHLLi;
 | |
|       else
 | |
|         VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
 | |
|                      ARMISD::VSHLLs : ARMISD::VSHLLu);
 | |
|       break;
 | |
|     case Intrinsic::arm_neon_vshiftn:
 | |
|       VShiftOpc = ARMISD::VSHRN; break;
 | |
|     case Intrinsic::arm_neon_vrshifts:
 | |
|       VShiftOpc = ARMISD::VRSHRs; break;
 | |
|     case Intrinsic::arm_neon_vrshiftu:
 | |
|       VShiftOpc = ARMISD::VRSHRu; break;
 | |
|     case Intrinsic::arm_neon_vrshiftn:
 | |
|       VShiftOpc = ARMISD::VRSHRN; break;
 | |
|     case Intrinsic::arm_neon_vqshifts:
 | |
|       VShiftOpc = ARMISD::VQSHLs; break;
 | |
|     case Intrinsic::arm_neon_vqshiftu:
 | |
|       VShiftOpc = ARMISD::VQSHLu; break;
 | |
|     case Intrinsic::arm_neon_vqshiftsu:
 | |
|       VShiftOpc = ARMISD::VQSHLsu; break;
 | |
|     case Intrinsic::arm_neon_vqshiftns:
 | |
|       VShiftOpc = ARMISD::VQSHRNs; break;
 | |
|     case Intrinsic::arm_neon_vqshiftnu:
 | |
|       VShiftOpc = ARMISD::VQSHRNu; break;
 | |
|     case Intrinsic::arm_neon_vqshiftnsu:
 | |
|       VShiftOpc = ARMISD::VQSHRNsu; break;
 | |
|     case Intrinsic::arm_neon_vqrshiftns:
 | |
|       VShiftOpc = ARMISD::VQRSHRNs; break;
 | |
|     case Intrinsic::arm_neon_vqrshiftnu:
 | |
|       VShiftOpc = ARMISD::VQRSHRNu; break;
 | |
|     case Intrinsic::arm_neon_vqrshiftnsu:
 | |
|       VShiftOpc = ARMISD::VQRSHRNsu; break;
 | |
|     }
 | |
| 
 | |
|     return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
 | |
|                        N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::arm_neon_vshiftins: {
 | |
|     EVT VT = N->getOperand(1).getValueType();
 | |
|     int64_t Cnt;
 | |
|     unsigned VShiftOpc = 0;
 | |
| 
 | |
|     if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
 | |
|       VShiftOpc = ARMISD::VSLI;
 | |
|     else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
 | |
|       VShiftOpc = ARMISD::VSRI;
 | |
|     else {
 | |
|       llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
 | |
|     }
 | |
| 
 | |
|     return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
 | |
|                        N->getOperand(1), N->getOperand(2),
 | |
|                        DAG.getConstant(Cnt, MVT::i32));
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::arm_neon_vqrshifts:
 | |
|   case Intrinsic::arm_neon_vqrshiftu:
 | |
|     // No immediate versions of these to check for.
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// PerformShiftCombine - Checks for immediate versions of vector shifts and
 | |
| /// lowers them.  As with the vector shift intrinsics, this is done during DAG
 | |
| /// combining instead of DAG legalizing because the build_vectors for 64-bit
 | |
| /// vector element shift counts are generally not legal, and it is hard to see
 | |
| /// their values after they get legalized to loads from a constant pool.
 | |
| static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
 | |
|                                    const ARMSubtarget *ST) {
 | |
|   EVT VT = N->getValueType(0);
 | |
| 
 | |
|   // Nothing to be done for scalar shifts.
 | |
|   if (! VT.isVector())
 | |
|     return SDValue();
 | |
| 
 | |
|   assert(ST->hasNEON() && "unexpected vector shift");
 | |
|   int64_t Cnt;
 | |
| 
 | |
|   switch (N->getOpcode()) {
 | |
|   default: llvm_unreachable("unexpected shift opcode");
 | |
| 
 | |
|   case ISD::SHL:
 | |
|     if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
 | |
|       return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
 | |
|                          DAG.getConstant(Cnt, MVT::i32));
 | |
|     break;
 | |
| 
 | |
|   case ISD::SRA:
 | |
|   case ISD::SRL:
 | |
|     if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
 | |
|       unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
 | |
|                             ARMISD::VSHRs : ARMISD::VSHRu);
 | |
|       return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
 | |
|                          DAG.getConstant(Cnt, MVT::i32));
 | |
|     }
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
 | |
| /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
 | |
| static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
 | |
|                                     const ARMSubtarget *ST) {
 | |
|   SDValue N0 = N->getOperand(0);
 | |
| 
 | |
|   // Check for sign- and zero-extensions of vector extract operations of 8-
 | |
|   // and 16-bit vector elements.  NEON supports these directly.  They are
 | |
|   // handled during DAG combining because type legalization will promote them
 | |
|   // to 32-bit types and it is messy to recognize the operations after that.
 | |
|   if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
 | |
|     SDValue Vec = N0.getOperand(0);
 | |
|     SDValue Lane = N0.getOperand(1);
 | |
|     EVT VT = N->getValueType(0);
 | |
|     EVT EltVT = N0.getValueType();
 | |
|     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
| 
 | |
|     if (VT == MVT::i32 &&
 | |
|         (EltVT == MVT::i8 || EltVT == MVT::i16) &&
 | |
|         TLI.isTypeLegal(Vec.getValueType())) {
 | |
| 
 | |
|       unsigned Opc = 0;
 | |
|       switch (N->getOpcode()) {
 | |
|       default: llvm_unreachable("unexpected opcode");
 | |
|       case ISD::SIGN_EXTEND:
 | |
|         Opc = ARMISD::VGETLANEs;
 | |
|         break;
 | |
|       case ISD::ZERO_EXTEND:
 | |
|       case ISD::ANY_EXTEND:
 | |
|         Opc = ARMISD::VGETLANEu;
 | |
|         break;
 | |
|       }
 | |
|       return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
 | |
| /// to match f32 max/min patterns to use NEON vmax/vmin instructions.
 | |
| static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
 | |
|                                        const ARMSubtarget *ST) {
 | |
|   // If the target supports NEON, try to use vmax/vmin instructions for f32
 | |
|   // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
 | |
|   // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
 | |
|   // a NaN; only do the transformation when it matches that behavior.
 | |
| 
 | |
|   // For now only do this when using NEON for FP operations; if using VFP, it
 | |
|   // is not obvious that the benefit outweighs the cost of switching to the
 | |
|   // NEON pipeline.
 | |
|   if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
 | |
|       N->getValueType(0) != MVT::f32)
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue CondLHS = N->getOperand(0);
 | |
|   SDValue CondRHS = N->getOperand(1);
 | |
|   SDValue LHS = N->getOperand(2);
 | |
|   SDValue RHS = N->getOperand(3);
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
 | |
| 
 | |
|   unsigned Opcode = 0;
 | |
|   bool IsReversed;
 | |
|   if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
 | |
|     IsReversed = false; // x CC y ? x : y
 | |
|   } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
 | |
|     IsReversed = true ; // x CC y ? y : x
 | |
|   } else {
 | |
|     return SDValue();
 | |
|   }
 | |
| 
 | |
|   bool IsUnordered;
 | |
|   switch (CC) {
 | |
|   default: break;
 | |
|   case ISD::SETOLT:
 | |
|   case ISD::SETOLE:
 | |
|   case ISD::SETLT:
 | |
|   case ISD::SETLE:
 | |
|   case ISD::SETULT:
 | |
|   case ISD::SETULE:
 | |
|     // If LHS is NaN, an ordered comparison will be false and the result will
 | |
|     // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
 | |
|     // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
 | |
|     IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
 | |
|     if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
 | |
|       break;
 | |
|     // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
 | |
|     // will return -0, so vmin can only be used for unsafe math or if one of
 | |
|     // the operands is known to be nonzero.
 | |
|     if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
 | |
|         !UnsafeFPMath &&
 | |
|         !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
 | |
|       break;
 | |
|     Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
 | |
|     break;
 | |
| 
 | |
|   case ISD::SETOGT:
 | |
|   case ISD::SETOGE:
 | |
|   case ISD::SETGT:
 | |
|   case ISD::SETGE:
 | |
|   case ISD::SETUGT:
 | |
|   case ISD::SETUGE:
 | |
|     // If LHS is NaN, an ordered comparison will be false and the result will
 | |
|     // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
 | |
|     // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
 | |
|     IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
 | |
|     if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
 | |
|       break;
 | |
|     // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
 | |
|     // will return +0, so vmax can only be used for unsafe math or if one of
 | |
|     // the operands is known to be nonzero.
 | |
|     if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
 | |
|         !UnsafeFPMath &&
 | |
|         !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
 | |
|       break;
 | |
|     Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (!Opcode)
 | |
|     return SDValue();
 | |
|   return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
 | |
| }
 | |
| 
 | |
| SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
 | |
|                                              DAGCombinerInfo &DCI) const {
 | |
|   switch (N->getOpcode()) {
 | |
|   default: break;
 | |
|   case ISD::ADD:        return PerformADDCombine(N, DCI);
 | |
|   case ISD::SUB:        return PerformSUBCombine(N, DCI);
 | |
|   case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
 | |
|   case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
 | |
|   case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
 | |
|   case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
 | |
|   case ISD::SHL:
 | |
|   case ISD::SRA:
 | |
|   case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
 | |
|   case ISD::SIGN_EXTEND:
 | |
|   case ISD::ZERO_EXTEND:
 | |
|   case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
 | |
|   case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
 | |
|   if (!Subtarget->hasV6Ops())
 | |
|     // Pre-v6 does not support unaligned mem access.
 | |
|     return false;
 | |
| 
 | |
|   // v6+ may or may not support unaligned mem access depending on the system
 | |
|   // configuration.
 | |
|   // FIXME: This is pretty conservative. Should we provide cmdline option to
 | |
|   // control the behaviour?
 | |
|   if (!Subtarget->isTargetDarwin())
 | |
|     return false;
 | |
| 
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default:
 | |
|     return false;
 | |
|   case MVT::i8:
 | |
|   case MVT::i16:
 | |
|   case MVT::i32:
 | |
|     return true;
 | |
|   // FIXME: VLD1 etc with standard alignment is legal.
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
 | |
|   if (V < 0)
 | |
|     return false;
 | |
| 
 | |
|   unsigned Scale = 1;
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default: return false;
 | |
|   case MVT::i1:
 | |
|   case MVT::i8:
 | |
|     // Scale == 1;
 | |
|     break;
 | |
|   case MVT::i16:
 | |
|     // Scale == 2;
 | |
|     Scale = 2;
 | |
|     break;
 | |
|   case MVT::i32:
 | |
|     // Scale == 4;
 | |
|     Scale = 4;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if ((V & (Scale - 1)) != 0)
 | |
|     return false;
 | |
|   V /= Scale;
 | |
|   return V == (V & ((1LL << 5) - 1));
 | |
| }
 | |
| 
 | |
| static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
 | |
|                                       const ARMSubtarget *Subtarget) {
 | |
|   bool isNeg = false;
 | |
|   if (V < 0) {
 | |
|     isNeg = true;
 | |
|     V = - V;
 | |
|   }
 | |
| 
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default: return false;
 | |
|   case MVT::i1:
 | |
|   case MVT::i8:
 | |
|   case MVT::i16:
 | |
|   case MVT::i32:
 | |
|     // + imm12 or - imm8
 | |
|     if (isNeg)
 | |
|       return V == (V & ((1LL << 8) - 1));
 | |
|     return V == (V & ((1LL << 12) - 1));
 | |
|   case MVT::f32:
 | |
|   case MVT::f64:
 | |
|     // Same as ARM mode. FIXME: NEON?
 | |
|     if (!Subtarget->hasVFP2())
 | |
|       return false;
 | |
|     if ((V & 3) != 0)
 | |
|       return false;
 | |
|     V >>= 2;
 | |
|     return V == (V & ((1LL << 8) - 1));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isLegalAddressImmediate - Return true if the integer value can be used
 | |
| /// as the offset of the target addressing mode for load / store of the
 | |
| /// given type.
 | |
| static bool isLegalAddressImmediate(int64_t V, EVT VT,
 | |
|                                     const ARMSubtarget *Subtarget) {
 | |
|   if (V == 0)
 | |
|     return true;
 | |
| 
 | |
|   if (!VT.isSimple())
 | |
|     return false;
 | |
| 
 | |
|   if (Subtarget->isThumb1Only())
 | |
|     return isLegalT1AddressImmediate(V, VT);
 | |
|   else if (Subtarget->isThumb2())
 | |
|     return isLegalT2AddressImmediate(V, VT, Subtarget);
 | |
| 
 | |
|   // ARM mode.
 | |
|   if (V < 0)
 | |
|     V = - V;
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default: return false;
 | |
|   case MVT::i1:
 | |
|   case MVT::i8:
 | |
|   case MVT::i32:
 | |
|     // +- imm12
 | |
|     return V == (V & ((1LL << 12) - 1));
 | |
|   case MVT::i16:
 | |
|     // +- imm8
 | |
|     return V == (V & ((1LL << 8) - 1));
 | |
|   case MVT::f32:
 | |
|   case MVT::f64:
 | |
|     if (!Subtarget->hasVFP2()) // FIXME: NEON?
 | |
|       return false;
 | |
|     if ((V & 3) != 0)
 | |
|       return false;
 | |
|     V >>= 2;
 | |
|     return V == (V & ((1LL << 8) - 1));
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
 | |
|                                                       EVT VT) const {
 | |
|   int Scale = AM.Scale;
 | |
|   if (Scale < 0)
 | |
|     return false;
 | |
| 
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default: return false;
 | |
|   case MVT::i1:
 | |
|   case MVT::i8:
 | |
|   case MVT::i16:
 | |
|   case MVT::i32:
 | |
|     if (Scale == 1)
 | |
|       return true;
 | |
|     // r + r << imm
 | |
|     Scale = Scale & ~1;
 | |
|     return Scale == 2 || Scale == 4 || Scale == 8;
 | |
|   case MVT::i64:
 | |
|     // r + r
 | |
|     if (((unsigned)AM.HasBaseReg + Scale) <= 2)
 | |
|       return true;
 | |
|     return false;
 | |
|   case MVT::isVoid:
 | |
|     // Note, we allow "void" uses (basically, uses that aren't loads or
 | |
|     // stores), because arm allows folding a scale into many arithmetic
 | |
|     // operations.  This should be made more precise and revisited later.
 | |
| 
 | |
|     // Allow r << imm, but the imm has to be a multiple of two.
 | |
|     if (Scale & 1) return false;
 | |
|     return isPowerOf2_32(Scale);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isLegalAddressingMode - Return true if the addressing mode represented
 | |
| /// by AM is legal for this target, for a load/store of the specified type.
 | |
| bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
 | |
|                                               const Type *Ty) const {
 | |
|   EVT VT = getValueType(Ty, true);
 | |
|   if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
 | |
|     return false;
 | |
| 
 | |
|   // Can never fold addr of global into load/store.
 | |
|   if (AM.BaseGV)
 | |
|     return false;
 | |
| 
 | |
|   switch (AM.Scale) {
 | |
|   case 0:  // no scale reg, must be "r+i" or "r", or "i".
 | |
|     break;
 | |
|   case 1:
 | |
|     if (Subtarget->isThumb1Only())
 | |
|       return false;
 | |
|     // FALL THROUGH.
 | |
|   default:
 | |
|     // ARM doesn't support any R+R*scale+imm addr modes.
 | |
|     if (AM.BaseOffs)
 | |
|       return false;
 | |
| 
 | |
|     if (!VT.isSimple())
 | |
|       return false;
 | |
| 
 | |
|     if (Subtarget->isThumb2())
 | |
|       return isLegalT2ScaledAddressingMode(AM, VT);
 | |
| 
 | |
|     int Scale = AM.Scale;
 | |
|     switch (VT.getSimpleVT().SimpleTy) {
 | |
|     default: return false;
 | |
|     case MVT::i1:
 | |
|     case MVT::i8:
 | |
|     case MVT::i32:
 | |
|       if (Scale < 0) Scale = -Scale;
 | |
|       if (Scale == 1)
 | |
|         return true;
 | |
|       // r + r << imm
 | |
|       return isPowerOf2_32(Scale & ~1);
 | |
|     case MVT::i16:
 | |
|     case MVT::i64:
 | |
|       // r + r
 | |
|       if (((unsigned)AM.HasBaseReg + Scale) <= 2)
 | |
|         return true;
 | |
|       return false;
 | |
| 
 | |
|     case MVT::isVoid:
 | |
|       // Note, we allow "void" uses (basically, uses that aren't loads or
 | |
|       // stores), because arm allows folding a scale into many arithmetic
 | |
|       // operations.  This should be made more precise and revisited later.
 | |
| 
 | |
|       // Allow r << imm, but the imm has to be a multiple of two.
 | |
|       if (Scale & 1) return false;
 | |
|       return isPowerOf2_32(Scale);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isLegalICmpImmediate - Return true if the specified immediate is legal
 | |
| /// icmp immediate, that is the target has icmp instructions which can compare
 | |
| /// a register against the immediate without having to materialize the
 | |
| /// immediate into a register.
 | |
| bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
 | |
|   if (!Subtarget->isThumb())
 | |
|     return ARM_AM::getSOImmVal(Imm) != -1;
 | |
|   if (Subtarget->isThumb2())
 | |
|     return ARM_AM::getT2SOImmVal(Imm) != -1; 
 | |
|   return Imm >= 0 && Imm <= 255;
 | |
| }
 | |
| 
 | |
| static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
 | |
|                                       bool isSEXTLoad, SDValue &Base,
 | |
|                                       SDValue &Offset, bool &isInc,
 | |
|                                       SelectionDAG &DAG) {
 | |
|   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
 | |
|     return false;
 | |
| 
 | |
|   if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
 | |
|     // AddressingMode 3
 | |
|     Base = Ptr->getOperand(0);
 | |
|     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
 | |
|       int RHSC = (int)RHS->getZExtValue();
 | |
|       if (RHSC < 0 && RHSC > -256) {
 | |
|         assert(Ptr->getOpcode() == ISD::ADD);
 | |
|         isInc = false;
 | |
|         Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|     isInc = (Ptr->getOpcode() == ISD::ADD);
 | |
|     Offset = Ptr->getOperand(1);
 | |
|     return true;
 | |
|   } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
 | |
|     // AddressingMode 2
 | |
|     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
 | |
|       int RHSC = (int)RHS->getZExtValue();
 | |
|       if (RHSC < 0 && RHSC > -0x1000) {
 | |
|         assert(Ptr->getOpcode() == ISD::ADD);
 | |
|         isInc = false;
 | |
|         Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
 | |
|         Base = Ptr->getOperand(0);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Ptr->getOpcode() == ISD::ADD) {
 | |
|       isInc = true;
 | |
|       ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
 | |
|       if (ShOpcVal != ARM_AM::no_shift) {
 | |
|         Base = Ptr->getOperand(1);
 | |
|         Offset = Ptr->getOperand(0);
 | |
|       } else {
 | |
|         Base = Ptr->getOperand(0);
 | |
|         Offset = Ptr->getOperand(1);
 | |
|       }
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     isInc = (Ptr->getOpcode() == ISD::ADD);
 | |
|     Base = Ptr->getOperand(0);
 | |
|     Offset = Ptr->getOperand(1);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
 | |
|                                      bool isSEXTLoad, SDValue &Base,
 | |
|                                      SDValue &Offset, bool &isInc,
 | |
|                                      SelectionDAG &DAG) {
 | |
|   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
 | |
|     return false;
 | |
| 
 | |
|   Base = Ptr->getOperand(0);
 | |
|   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
 | |
|     int RHSC = (int)RHS->getZExtValue();
 | |
|     if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
 | |
|       assert(Ptr->getOpcode() == ISD::ADD);
 | |
|       isInc = false;
 | |
|       Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
 | |
|       return true;
 | |
|     } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
 | |
|       isInc = Ptr->getOpcode() == ISD::ADD;
 | |
|       Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getPreIndexedAddressParts - returns true by value, base pointer and
 | |
| /// offset pointer and addressing mode by reference if the node's address
 | |
| /// can be legally represented as pre-indexed load / store address.
 | |
| bool
 | |
| ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
 | |
|                                              SDValue &Offset,
 | |
|                                              ISD::MemIndexedMode &AM,
 | |
|                                              SelectionDAG &DAG) const {
 | |
|   if (Subtarget->isThumb1Only())
 | |
|     return false;
 | |
| 
 | |
|   EVT VT;
 | |
|   SDValue Ptr;
 | |
|   bool isSEXTLoad = false;
 | |
|   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
 | |
|     Ptr = LD->getBasePtr();
 | |
|     VT  = LD->getMemoryVT();
 | |
|     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
 | |
|   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
 | |
|     Ptr = ST->getBasePtr();
 | |
|     VT  = ST->getMemoryVT();
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   bool isInc;
 | |
|   bool isLegal = false;
 | |
|   if (Subtarget->isThumb2())
 | |
|     isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
 | |
|                                        Offset, isInc, DAG);
 | |
|   else
 | |
|     isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
 | |
|                                         Offset, isInc, DAG);
 | |
|   if (!isLegal)
 | |
|     return false;
 | |
| 
 | |
|   AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// getPostIndexedAddressParts - returns true by value, base pointer and
 | |
| /// offset pointer and addressing mode by reference if this node can be
 | |
| /// combined with a load / store to form a post-indexed load / store.
 | |
| bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
 | |
|                                                    SDValue &Base,
 | |
|                                                    SDValue &Offset,
 | |
|                                                    ISD::MemIndexedMode &AM,
 | |
|                                                    SelectionDAG &DAG) const {
 | |
|   if (Subtarget->isThumb1Only())
 | |
|     return false;
 | |
| 
 | |
|   EVT VT;
 | |
|   SDValue Ptr;
 | |
|   bool isSEXTLoad = false;
 | |
|   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
 | |
|     VT  = LD->getMemoryVT();
 | |
|     Ptr = LD->getBasePtr();
 | |
|     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
 | |
|   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
 | |
|     VT  = ST->getMemoryVT();
 | |
|     Ptr = ST->getBasePtr();
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   bool isInc;
 | |
|   bool isLegal = false;
 | |
|   if (Subtarget->isThumb2())
 | |
|     isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
 | |
|                                        isInc, DAG);
 | |
|   else
 | |
|     isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
 | |
|                                         isInc, DAG);
 | |
|   if (!isLegal)
 | |
|     return false;
 | |
| 
 | |
|   if (Ptr != Base) {
 | |
|     // Swap base ptr and offset to catch more post-index load / store when
 | |
|     // it's legal. In Thumb2 mode, offset must be an immediate.
 | |
|     if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
 | |
|         !Subtarget->isThumb2())
 | |
|       std::swap(Base, Offset);
 | |
| 
 | |
|     // Post-indexed load / store update the base pointer.
 | |
|     if (Ptr != Base)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
 | |
|                                                        const APInt &Mask,
 | |
|                                                        APInt &KnownZero,
 | |
|                                                        APInt &KnownOne,
 | |
|                                                        const SelectionDAG &DAG,
 | |
|                                                        unsigned Depth) const {
 | |
|   KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
 | |
|   switch (Op.getOpcode()) {
 | |
|   default: break;
 | |
|   case ARMISD::CMOV: {
 | |
|     // Bits are known zero/one if known on the LHS and RHS.
 | |
|     DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
 | |
|     if (KnownZero == 0 && KnownOne == 0) return;
 | |
| 
 | |
|     APInt KnownZeroRHS, KnownOneRHS;
 | |
|     DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
 | |
|                           KnownZeroRHS, KnownOneRHS, Depth+1);
 | |
|     KnownZero &= KnownZeroRHS;
 | |
|     KnownOne  &= KnownOneRHS;
 | |
|     return;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           ARM Inline Assembly Support
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// getConstraintType - Given a constraint letter, return the type of
 | |
| /// constraint it is for this target.
 | |
| ARMTargetLowering::ConstraintType
 | |
| ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
 | |
|   if (Constraint.size() == 1) {
 | |
|     switch (Constraint[0]) {
 | |
|     default:  break;
 | |
|     case 'l': return C_RegisterClass;
 | |
|     case 'w': return C_RegisterClass;
 | |
|     }
 | |
|   }
 | |
|   return TargetLowering::getConstraintType(Constraint);
 | |
| }
 | |
| 
 | |
| std::pair<unsigned, const TargetRegisterClass*>
 | |
| ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
 | |
|                                                 EVT VT) const {
 | |
|   if (Constraint.size() == 1) {
 | |
|     // GCC ARM Constraint Letters
 | |
|     switch (Constraint[0]) {
 | |
|     case 'l':
 | |
|       if (Subtarget->isThumb())
 | |
|         return std::make_pair(0U, ARM::tGPRRegisterClass);
 | |
|       else
 | |
|         return std::make_pair(0U, ARM::GPRRegisterClass);
 | |
|     case 'r':
 | |
|       return std::make_pair(0U, ARM::GPRRegisterClass);
 | |
|     case 'w':
 | |
|       if (VT == MVT::f32)
 | |
|         return std::make_pair(0U, ARM::SPRRegisterClass);
 | |
|       if (VT.getSizeInBits() == 64)
 | |
|         return std::make_pair(0U, ARM::DPRRegisterClass);
 | |
|       if (VT.getSizeInBits() == 128)
 | |
|         return std::make_pair(0U, ARM::QPRRegisterClass);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if (StringRef("{cc}").equals_lower(Constraint))
 | |
|     return std::make_pair(unsigned(ARM::CPSR), ARM::CCRRegisterClass);
 | |
| 
 | |
|   return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
 | |
| }
 | |
| 
 | |
| std::vector<unsigned> ARMTargetLowering::
 | |
| getRegClassForInlineAsmConstraint(const std::string &Constraint,
 | |
|                                   EVT VT) const {
 | |
|   if (Constraint.size() != 1)
 | |
|     return std::vector<unsigned>();
 | |
| 
 | |
|   switch (Constraint[0]) {      // GCC ARM Constraint Letters
 | |
|   default: break;
 | |
|   case 'l':
 | |
|     return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
 | |
|                                  ARM::R4, ARM::R5, ARM::R6, ARM::R7,
 | |
|                                  0);
 | |
|   case 'r':
 | |
|     return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
 | |
|                                  ARM::R4, ARM::R5, ARM::R6, ARM::R7,
 | |
|                                  ARM::R8, ARM::R9, ARM::R10, ARM::R11,
 | |
|                                  ARM::R12, ARM::LR, 0);
 | |
|   case 'w':
 | |
|     if (VT == MVT::f32)
 | |
|       return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3,
 | |
|                                    ARM::S4, ARM::S5, ARM::S6, ARM::S7,
 | |
|                                    ARM::S8, ARM::S9, ARM::S10, ARM::S11,
 | |
|                                    ARM::S12,ARM::S13,ARM::S14,ARM::S15,
 | |
|                                    ARM::S16,ARM::S17,ARM::S18,ARM::S19,
 | |
|                                    ARM::S20,ARM::S21,ARM::S22,ARM::S23,
 | |
|                                    ARM::S24,ARM::S25,ARM::S26,ARM::S27,
 | |
|                                    ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0);
 | |
|     if (VT.getSizeInBits() == 64)
 | |
|       return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3,
 | |
|                                    ARM::D4, ARM::D5, ARM::D6, ARM::D7,
 | |
|                                    ARM::D8, ARM::D9, ARM::D10,ARM::D11,
 | |
|                                    ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0);
 | |
|     if (VT.getSizeInBits() == 128)
 | |
|       return make_vector<unsigned>(ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3,
 | |
|                                    ARM::Q4, ARM::Q5, ARM::Q6, ARM::Q7, 0);
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   return std::vector<unsigned>();
 | |
| }
 | |
| 
 | |
| /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
 | |
| /// vector.  If it is invalid, don't add anything to Ops.
 | |
| void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
 | |
|                                                      char Constraint,
 | |
|                                                      std::vector<SDValue>&Ops,
 | |
|                                                      SelectionDAG &DAG) const {
 | |
|   SDValue Result(0, 0);
 | |
| 
 | |
|   switch (Constraint) {
 | |
|   default: break;
 | |
|   case 'I': case 'J': case 'K': case 'L':
 | |
|   case 'M': case 'N': case 'O':
 | |
|     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
 | |
|     if (!C)
 | |
|       return;
 | |
| 
 | |
|     int64_t CVal64 = C->getSExtValue();
 | |
|     int CVal = (int) CVal64;
 | |
|     // None of these constraints allow values larger than 32 bits.  Check
 | |
|     // that the value fits in an int.
 | |
|     if (CVal != CVal64)
 | |
|       return;
 | |
| 
 | |
|     switch (Constraint) {
 | |
|       case 'I':
 | |
|         if (Subtarget->isThumb1Only()) {
 | |
|           // This must be a constant between 0 and 255, for ADD
 | |
|           // immediates.
 | |
|           if (CVal >= 0 && CVal <= 255)
 | |
|             break;
 | |
|         } else if (Subtarget->isThumb2()) {
 | |
|           // A constant that can be used as an immediate value in a
 | |
|           // data-processing instruction.
 | |
|           if (ARM_AM::getT2SOImmVal(CVal) != -1)
 | |
|             break;
 | |
|         } else {
 | |
|           // A constant that can be used as an immediate value in a
 | |
|           // data-processing instruction.
 | |
|           if (ARM_AM::getSOImmVal(CVal) != -1)
 | |
|             break;
 | |
|         }
 | |
|         return;
 | |
| 
 | |
|       case 'J':
 | |
|         if (Subtarget->isThumb()) {  // FIXME thumb2
 | |
|           // This must be a constant between -255 and -1, for negated ADD
 | |
|           // immediates. This can be used in GCC with an "n" modifier that
 | |
|           // prints the negated value, for use with SUB instructions. It is
 | |
|           // not useful otherwise but is implemented for compatibility.
 | |
|           if (CVal >= -255 && CVal <= -1)
 | |
|             break;
 | |
|         } else {
 | |
|           // This must be a constant between -4095 and 4095. It is not clear
 | |
|           // what this constraint is intended for. Implemented for
 | |
|           // compatibility with GCC.
 | |
|           if (CVal >= -4095 && CVal <= 4095)
 | |
|             break;
 | |
|         }
 | |
|         return;
 | |
| 
 | |
|       case 'K':
 | |
|         if (Subtarget->isThumb1Only()) {
 | |
|           // A 32-bit value where only one byte has a nonzero value. Exclude
 | |
|           // zero to match GCC. This constraint is used by GCC internally for
 | |
|           // constants that can be loaded with a move/shift combination.
 | |
|           // It is not useful otherwise but is implemented for compatibility.
 | |
|           if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
 | |
|             break;
 | |
|         } else if (Subtarget->isThumb2()) {
 | |
|           // A constant whose bitwise inverse can be used as an immediate
 | |
|           // value in a data-processing instruction. This can be used in GCC
 | |
|           // with a "B" modifier that prints the inverted value, for use with
 | |
|           // BIC and MVN instructions. It is not useful otherwise but is
 | |
|           // implemented for compatibility.
 | |
|           if (ARM_AM::getT2SOImmVal(~CVal) != -1)
 | |
|             break;
 | |
|         } else {
 | |
|           // A constant whose bitwise inverse can be used as an immediate
 | |
|           // value in a data-processing instruction. This can be used in GCC
 | |
|           // with a "B" modifier that prints the inverted value, for use with
 | |
|           // BIC and MVN instructions. It is not useful otherwise but is
 | |
|           // implemented for compatibility.
 | |
|           if (ARM_AM::getSOImmVal(~CVal) != -1)
 | |
|             break;
 | |
|         }
 | |
|         return;
 | |
| 
 | |
|       case 'L':
 | |
|         if (Subtarget->isThumb1Only()) {
 | |
|           // This must be a constant between -7 and 7,
 | |
|           // for 3-operand ADD/SUB immediate instructions.
 | |
|           if (CVal >= -7 && CVal < 7)
 | |
|             break;
 | |
|         } else if (Subtarget->isThumb2()) {
 | |
|           // A constant whose negation can be used as an immediate value in a
 | |
|           // data-processing instruction. This can be used in GCC with an "n"
 | |
|           // modifier that prints the negated value, for use with SUB
 | |
|           // instructions. It is not useful otherwise but is implemented for
 | |
|           // compatibility.
 | |
|           if (ARM_AM::getT2SOImmVal(-CVal) != -1)
 | |
|             break;
 | |
|         } else {
 | |
|           // A constant whose negation can be used as an immediate value in a
 | |
|           // data-processing instruction. This can be used in GCC with an "n"
 | |
|           // modifier that prints the negated value, for use with SUB
 | |
|           // instructions. It is not useful otherwise but is implemented for
 | |
|           // compatibility.
 | |
|           if (ARM_AM::getSOImmVal(-CVal) != -1)
 | |
|             break;
 | |
|         }
 | |
|         return;
 | |
| 
 | |
|       case 'M':
 | |
|         if (Subtarget->isThumb()) { // FIXME thumb2
 | |
|           // This must be a multiple of 4 between 0 and 1020, for
 | |
|           // ADD sp + immediate.
 | |
|           if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
 | |
|             break;
 | |
|         } else {
 | |
|           // A power of two or a constant between 0 and 32.  This is used in
 | |
|           // GCC for the shift amount on shifted register operands, but it is
 | |
|           // useful in general for any shift amounts.
 | |
|           if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
 | |
|             break;
 | |
|         }
 | |
|         return;
 | |
| 
 | |
|       case 'N':
 | |
|         if (Subtarget->isThumb()) {  // FIXME thumb2
 | |
|           // This must be a constant between 0 and 31, for shift amounts.
 | |
|           if (CVal >= 0 && CVal <= 31)
 | |
|             break;
 | |
|         }
 | |
|         return;
 | |
| 
 | |
|       case 'O':
 | |
|         if (Subtarget->isThumb()) {  // FIXME thumb2
 | |
|           // This must be a multiple of 4 between -508 and 508, for
 | |
|           // ADD/SUB sp = sp + immediate.
 | |
|           if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
 | |
|             break;
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
|     Result = DAG.getTargetConstant(CVal, Op.getValueType());
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (Result.getNode()) {
 | |
|     Ops.push_back(Result);
 | |
|     return;
 | |
|   }
 | |
|   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
 | |
| }
 | |
| 
 | |
| bool
 | |
| ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
 | |
|   // The ARM target isn't yet aware of offsets.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| int ARM::getVFPf32Imm(const APFloat &FPImm) {
 | |
|   APInt Imm = FPImm.bitcastToAPInt();
 | |
|   uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
 | |
|   int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
 | |
|   int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
 | |
| 
 | |
|   // We can handle 4 bits of mantissa.
 | |
|   // mantissa = (16+UInt(e:f:g:h))/16.
 | |
|   if (Mantissa & 0x7ffff)
 | |
|     return -1;
 | |
|   Mantissa >>= 19;
 | |
|   if ((Mantissa & 0xf) != Mantissa)
 | |
|     return -1;
 | |
| 
 | |
|   // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
 | |
|   if (Exp < -3 || Exp > 4)
 | |
|     return -1;
 | |
|   Exp = ((Exp+3) & 0x7) ^ 4;
 | |
| 
 | |
|   return ((int)Sign << 7) | (Exp << 4) | Mantissa;
 | |
| }
 | |
| 
 | |
| int ARM::getVFPf64Imm(const APFloat &FPImm) {
 | |
|   APInt Imm = FPImm.bitcastToAPInt();
 | |
|   uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
 | |
|   int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023;   // -1022 to 1023
 | |
|   uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffLL;
 | |
| 
 | |
|   // We can handle 4 bits of mantissa.
 | |
|   // mantissa = (16+UInt(e:f:g:h))/16.
 | |
|   if (Mantissa & 0xffffffffffffLL)
 | |
|     return -1;
 | |
|   Mantissa >>= 48;
 | |
|   if ((Mantissa & 0xf) != Mantissa)
 | |
|     return -1;
 | |
| 
 | |
|   // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
 | |
|   if (Exp < -3 || Exp > 4)
 | |
|     return -1;
 | |
|   Exp = ((Exp+3) & 0x7) ^ 4;
 | |
| 
 | |
|   return ((int)Sign << 7) | (Exp << 4) | Mantissa;
 | |
| }
 | |
| 
 | |
| /// isFPImmLegal - Returns true if the target can instruction select the
 | |
| /// specified FP immediate natively. If false, the legalizer will
 | |
| /// materialize the FP immediate as a load from a constant pool.
 | |
| bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
 | |
|   if (!Subtarget->hasVFP3())
 | |
|     return false;
 | |
|   if (VT == MVT::f32)
 | |
|     return ARM::getVFPf32Imm(Imm) != -1;
 | |
|   if (VT == MVT::f64)
 | |
|     return ARM::getVFPf64Imm(Imm) != -1;
 | |
|   return false;
 | |
| }
 |