mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108387 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1938 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1938 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the X86-specific support for the FastISel class. Much
 | 
						|
// of the target-specific code is generated by tablegen in the file
 | 
						|
// X86GenFastISel.inc, which is #included here.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "X86.h"
 | 
						|
#include "X86InstrBuilder.h"
 | 
						|
#include "X86RegisterInfo.h"
 | 
						|
#include "X86Subtarget.h"
 | 
						|
#include "X86TargetMachine.h"
 | 
						|
#include "llvm/CallingConv.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/GlobalVariable.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/IntrinsicInst.h"
 | 
						|
#include "llvm/CodeGen/Analysis.h"
 | 
						|
#include "llvm/CodeGen/FastISel.h"
 | 
						|
#include "llvm/CodeGen/FunctionLoweringInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineConstantPool.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/Support/CallSite.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
  
 | 
						|
class X86FastISel : public FastISel {
 | 
						|
  /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
 | 
						|
  /// make the right decision when generating code for different targets.
 | 
						|
  const X86Subtarget *Subtarget;
 | 
						|
 | 
						|
  /// StackPtr - Register used as the stack pointer.
 | 
						|
  ///
 | 
						|
  unsigned StackPtr;
 | 
						|
 | 
						|
  /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87 
 | 
						|
  /// floating point ops.
 | 
						|
  /// When SSE is available, use it for f32 operations.
 | 
						|
  /// When SSE2 is available, use it for f64 operations.
 | 
						|
  bool X86ScalarSSEf64;
 | 
						|
  bool X86ScalarSSEf32;
 | 
						|
 | 
						|
public:
 | 
						|
  explicit X86FastISel(FunctionLoweringInfo &funcInfo) : FastISel(funcInfo) {
 | 
						|
    Subtarget = &TM.getSubtarget<X86Subtarget>();
 | 
						|
    StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
 | 
						|
    X86ScalarSSEf64 = Subtarget->hasSSE2();
 | 
						|
    X86ScalarSSEf32 = Subtarget->hasSSE1();
 | 
						|
  }
 | 
						|
 | 
						|
  virtual bool TargetSelectInstruction(const Instruction *I);
 | 
						|
 | 
						|
#include "X86GenFastISel.inc"
 | 
						|
 | 
						|
private:
 | 
						|
  bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT);
 | 
						|
  
 | 
						|
  bool X86FastEmitLoad(EVT VT, const X86AddressMode &AM, unsigned &RR);
 | 
						|
 | 
						|
  bool X86FastEmitStore(EVT VT, const Value *Val,
 | 
						|
                        const X86AddressMode &AM);
 | 
						|
  bool X86FastEmitStore(EVT VT, unsigned Val,
 | 
						|
                        const X86AddressMode &AM);
 | 
						|
 | 
						|
  bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
 | 
						|
                         unsigned &ResultReg);
 | 
						|
  
 | 
						|
  bool X86SelectAddress(const Value *V, X86AddressMode &AM);
 | 
						|
  bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
 | 
						|
 | 
						|
  bool X86SelectLoad(const Instruction *I);
 | 
						|
  
 | 
						|
  bool X86SelectStore(const Instruction *I);
 | 
						|
 | 
						|
  bool X86SelectRet(const Instruction *I);
 | 
						|
 | 
						|
  bool X86SelectCmp(const Instruction *I);
 | 
						|
 | 
						|
  bool X86SelectZExt(const Instruction *I);
 | 
						|
 | 
						|
  bool X86SelectBranch(const Instruction *I);
 | 
						|
 | 
						|
  bool X86SelectShift(const Instruction *I);
 | 
						|
 | 
						|
  bool X86SelectSelect(const Instruction *I);
 | 
						|
 | 
						|
  bool X86SelectTrunc(const Instruction *I);
 | 
						|
 
 | 
						|
  bool X86SelectFPExt(const Instruction *I);
 | 
						|
  bool X86SelectFPTrunc(const Instruction *I);
 | 
						|
 | 
						|
  bool X86SelectExtractValue(const Instruction *I);
 | 
						|
 | 
						|
  bool X86VisitIntrinsicCall(const IntrinsicInst &I);
 | 
						|
  bool X86SelectCall(const Instruction *I);
 | 
						|
 | 
						|
  CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool isTailCall = false);
 | 
						|
  CCAssignFn *CCAssignFnForRet(CallingConv::ID CC, bool isTailCall = false);
 | 
						|
 | 
						|
  const X86InstrInfo *getInstrInfo() const {
 | 
						|
    return getTargetMachine()->getInstrInfo();
 | 
						|
  }
 | 
						|
  const X86TargetMachine *getTargetMachine() const {
 | 
						|
    return static_cast<const X86TargetMachine *>(&TM);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned TargetMaterializeConstant(const Constant *C);
 | 
						|
 | 
						|
  unsigned TargetMaterializeAlloca(const AllocaInst *C);
 | 
						|
 | 
						|
  /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
 | 
						|
  /// computed in an SSE register, not on the X87 floating point stack.
 | 
						|
  bool isScalarFPTypeInSSEReg(EVT VT) const {
 | 
						|
    return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
 | 
						|
      (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
 | 
						|
  }
 | 
						|
 | 
						|
  bool isTypeLegal(const Type *Ty, EVT &VT, bool AllowI1 = false);
 | 
						|
};
 | 
						|
  
 | 
						|
} // end anonymous namespace.
 | 
						|
 | 
						|
bool X86FastISel::isTypeLegal(const Type *Ty, EVT &VT, bool AllowI1) {
 | 
						|
  VT = TLI.getValueType(Ty, /*HandleUnknown=*/true);
 | 
						|
  if (VT == MVT::Other || !VT.isSimple())
 | 
						|
    // Unhandled type. Halt "fast" selection and bail.
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // For now, require SSE/SSE2 for performing floating-point operations,
 | 
						|
  // since x87 requires additional work.
 | 
						|
  if (VT == MVT::f64 && !X86ScalarSSEf64)
 | 
						|
     return false;
 | 
						|
  if (VT == MVT::f32 && !X86ScalarSSEf32)
 | 
						|
     return false;
 | 
						|
  // Similarly, no f80 support yet.
 | 
						|
  if (VT == MVT::f80)
 | 
						|
    return false;
 | 
						|
  // We only handle legal types. For example, on x86-32 the instruction
 | 
						|
  // selector contains all of the 64-bit instructions from x86-64,
 | 
						|
  // under the assumption that i64 won't be used if the target doesn't
 | 
						|
  // support it.
 | 
						|
  return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
 | 
						|
}
 | 
						|
 | 
						|
#include "X86GenCallingConv.inc"
 | 
						|
 | 
						|
/// CCAssignFnForCall - Selects the correct CCAssignFn for a given calling
 | 
						|
/// convention.
 | 
						|
CCAssignFn *X86FastISel::CCAssignFnForCall(CallingConv::ID CC,
 | 
						|
                                           bool isTaillCall) {
 | 
						|
  if (Subtarget->is64Bit()) {
 | 
						|
    if (CC == CallingConv::GHC)
 | 
						|
      return CC_X86_64_GHC;
 | 
						|
    else if (Subtarget->isTargetWin64())
 | 
						|
      return CC_X86_Win64_C;
 | 
						|
    else
 | 
						|
      return CC_X86_64_C;
 | 
						|
  }
 | 
						|
 | 
						|
  if (CC == CallingConv::X86_FastCall)
 | 
						|
    return CC_X86_32_FastCall;
 | 
						|
  else if (CC == CallingConv::X86_ThisCall)
 | 
						|
    return CC_X86_32_ThisCall;
 | 
						|
  else if (CC == CallingConv::Fast)
 | 
						|
    return CC_X86_32_FastCC;
 | 
						|
  else if (CC == CallingConv::GHC)
 | 
						|
    return CC_X86_32_GHC;
 | 
						|
  else
 | 
						|
    return CC_X86_32_C;
 | 
						|
}
 | 
						|
 | 
						|
/// CCAssignFnForRet - Selects the correct CCAssignFn for a given calling
 | 
						|
/// convention.
 | 
						|
CCAssignFn *X86FastISel::CCAssignFnForRet(CallingConv::ID CC,
 | 
						|
                                          bool isTaillCall) {
 | 
						|
  if (Subtarget->is64Bit()) {
 | 
						|
    if (Subtarget->isTargetWin64())
 | 
						|
      return RetCC_X86_Win64_C;
 | 
						|
    else
 | 
						|
      return RetCC_X86_64_C;
 | 
						|
  }
 | 
						|
 | 
						|
  return RetCC_X86_32_C;
 | 
						|
}
 | 
						|
 | 
						|
/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
 | 
						|
/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
 | 
						|
/// Return true and the result register by reference if it is possible.
 | 
						|
bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM,
 | 
						|
                                  unsigned &ResultReg) {
 | 
						|
  // Get opcode and regclass of the output for the given load instruction.
 | 
						|
  unsigned Opc = 0;
 | 
						|
  const TargetRegisterClass *RC = NULL;
 | 
						|
  switch (VT.getSimpleVT().SimpleTy) {
 | 
						|
  default: return false;
 | 
						|
  case MVT::i1:
 | 
						|
  case MVT::i8:
 | 
						|
    Opc = X86::MOV8rm;
 | 
						|
    RC  = X86::GR8RegisterClass;
 | 
						|
    break;
 | 
						|
  case MVT::i16:
 | 
						|
    Opc = X86::MOV16rm;
 | 
						|
    RC  = X86::GR16RegisterClass;
 | 
						|
    break;
 | 
						|
  case MVT::i32:
 | 
						|
    Opc = X86::MOV32rm;
 | 
						|
    RC  = X86::GR32RegisterClass;
 | 
						|
    break;
 | 
						|
  case MVT::i64:
 | 
						|
    // Must be in x86-64 mode.
 | 
						|
    Opc = X86::MOV64rm;
 | 
						|
    RC  = X86::GR64RegisterClass;
 | 
						|
    break;
 | 
						|
  case MVT::f32:
 | 
						|
    if (Subtarget->hasSSE1()) {
 | 
						|
      Opc = X86::MOVSSrm;
 | 
						|
      RC  = X86::FR32RegisterClass;
 | 
						|
    } else {
 | 
						|
      Opc = X86::LD_Fp32m;
 | 
						|
      RC  = X86::RFP32RegisterClass;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case MVT::f64:
 | 
						|
    if (Subtarget->hasSSE2()) {
 | 
						|
      Opc = X86::MOVSDrm;
 | 
						|
      RC  = X86::FR64RegisterClass;
 | 
						|
    } else {
 | 
						|
      Opc = X86::LD_Fp64m;
 | 
						|
      RC  = X86::RFP64RegisterClass;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case MVT::f80:
 | 
						|
    // No f80 support yet.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  ResultReg = createResultReg(RC);
 | 
						|
  addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
 | 
						|
                         DL, TII.get(Opc), ResultReg), AM);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// X86FastEmitStore - Emit a machine instruction to store a value Val of
 | 
						|
/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
 | 
						|
/// and a displacement offset, or a GlobalAddress,
 | 
						|
/// i.e. V. Return true if it is possible.
 | 
						|
bool
 | 
						|
X86FastISel::X86FastEmitStore(EVT VT, unsigned Val,
 | 
						|
                              const X86AddressMode &AM) {
 | 
						|
  // Get opcode and regclass of the output for the given store instruction.
 | 
						|
  unsigned Opc = 0;
 | 
						|
  switch (VT.getSimpleVT().SimpleTy) {
 | 
						|
  case MVT::f80: // No f80 support yet.
 | 
						|
  default: return false;
 | 
						|
  case MVT::i1: {
 | 
						|
    // Mask out all but lowest bit.
 | 
						|
    unsigned AndResult = createResultReg(X86::GR8RegisterClass);
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
 | 
						|
            TII.get(X86::AND8ri), AndResult).addReg(Val).addImm(1);
 | 
						|
    Val = AndResult;
 | 
						|
  }
 | 
						|
  // FALLTHROUGH, handling i1 as i8.
 | 
						|
  case MVT::i8:  Opc = X86::MOV8mr;  break;
 | 
						|
  case MVT::i16: Opc = X86::MOV16mr; break;
 | 
						|
  case MVT::i32: Opc = X86::MOV32mr; break;
 | 
						|
  case MVT::i64: Opc = X86::MOV64mr; break; // Must be in x86-64 mode.
 | 
						|
  case MVT::f32:
 | 
						|
    Opc = Subtarget->hasSSE1() ? X86::MOVSSmr : X86::ST_Fp32m;
 | 
						|
    break;
 | 
						|
  case MVT::f64:
 | 
						|
    Opc = Subtarget->hasSSE2() ? X86::MOVSDmr : X86::ST_Fp64m;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  
 | 
						|
  addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
 | 
						|
                         DL, TII.get(Opc)), AM).addReg(Val);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
 | 
						|
                                   const X86AddressMode &AM) {
 | 
						|
  // Handle 'null' like i32/i64 0.
 | 
						|
  if (isa<ConstantPointerNull>(Val))
 | 
						|
    Val = Constant::getNullValue(TD.getIntPtrType(Val->getContext()));
 | 
						|
  
 | 
						|
  // If this is a store of a simple constant, fold the constant into the store.
 | 
						|
  if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
 | 
						|
    unsigned Opc = 0;
 | 
						|
    bool Signed = true;
 | 
						|
    switch (VT.getSimpleVT().SimpleTy) {
 | 
						|
    default: break;
 | 
						|
    case MVT::i1:  Signed = false;     // FALLTHROUGH to handle as i8.
 | 
						|
    case MVT::i8:  Opc = X86::MOV8mi;  break;
 | 
						|
    case MVT::i16: Opc = X86::MOV16mi; break;
 | 
						|
    case MVT::i32: Opc = X86::MOV32mi; break;
 | 
						|
    case MVT::i64:
 | 
						|
      // Must be a 32-bit sign extended value.
 | 
						|
      if ((int)CI->getSExtValue() == CI->getSExtValue())
 | 
						|
        Opc = X86::MOV64mi32;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (Opc) {
 | 
						|
      addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
 | 
						|
                             DL, TII.get(Opc)), AM)
 | 
						|
                             .addImm(Signed ? (uint64_t) CI->getSExtValue() :
 | 
						|
                                              CI->getZExtValue());
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  unsigned ValReg = getRegForValue(Val);
 | 
						|
  if (ValReg == 0)
 | 
						|
    return false;    
 | 
						|
 
 | 
						|
  return X86FastEmitStore(VT, ValReg, AM);
 | 
						|
}
 | 
						|
 | 
						|
/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
 | 
						|
/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
 | 
						|
/// ISD::SIGN_EXTEND).
 | 
						|
bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
 | 
						|
                                    unsigned Src, EVT SrcVT,
 | 
						|
                                    unsigned &ResultReg) {
 | 
						|
  unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
 | 
						|
                           Src, /*TODO: Kill=*/false);
 | 
						|
  
 | 
						|
  if (RR != 0) {
 | 
						|
    ResultReg = RR;
 | 
						|
    return true;
 | 
						|
  } else
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
/// X86SelectAddress - Attempt to fill in an address from the given value.
 | 
						|
///
 | 
						|
bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
 | 
						|
  const User *U = NULL;
 | 
						|
  unsigned Opcode = Instruction::UserOp1;
 | 
						|
  if (const Instruction *I = dyn_cast<Instruction>(V)) {
 | 
						|
    // Don't walk into other basic blocks; it's possible we haven't
 | 
						|
    // visited them yet, so the instructions may not yet be assigned
 | 
						|
    // virtual registers.
 | 
						|
    if (FuncInfo.MBBMap[I->getParent()] != FuncInfo.MBB)
 | 
						|
      return false;
 | 
						|
 | 
						|
    Opcode = I->getOpcode();
 | 
						|
    U = I;
 | 
						|
  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
 | 
						|
    Opcode = C->getOpcode();
 | 
						|
    U = C;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const PointerType *Ty = dyn_cast<PointerType>(V->getType()))
 | 
						|
    if (Ty->getAddressSpace() > 255)
 | 
						|
      // Fast instruction selection doesn't support the special
 | 
						|
      // address spaces.
 | 
						|
      return false;
 | 
						|
 | 
						|
  switch (Opcode) {
 | 
						|
  default: break;
 | 
						|
  case Instruction::BitCast:
 | 
						|
    // Look past bitcasts.
 | 
						|
    return X86SelectAddress(U->getOperand(0), AM);
 | 
						|
 | 
						|
  case Instruction::IntToPtr:
 | 
						|
    // Look past no-op inttoptrs.
 | 
						|
    if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
 | 
						|
      return X86SelectAddress(U->getOperand(0), AM);
 | 
						|
    break;
 | 
						|
 | 
						|
  case Instruction::PtrToInt:
 | 
						|
    // Look past no-op ptrtoints.
 | 
						|
    if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
 | 
						|
      return X86SelectAddress(U->getOperand(0), AM);
 | 
						|
    break;
 | 
						|
 | 
						|
  case Instruction::Alloca: {
 | 
						|
    // Do static allocas.
 | 
						|
    const AllocaInst *A = cast<AllocaInst>(V);
 | 
						|
    DenseMap<const AllocaInst*, int>::iterator SI =
 | 
						|
      FuncInfo.StaticAllocaMap.find(A);
 | 
						|
    if (SI != FuncInfo.StaticAllocaMap.end()) {
 | 
						|
      AM.BaseType = X86AddressMode::FrameIndexBase;
 | 
						|
      AM.Base.FrameIndex = SI->second;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Instruction::Add: {
 | 
						|
    // Adds of constants are common and easy enough.
 | 
						|
    if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
 | 
						|
      uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
 | 
						|
      // They have to fit in the 32-bit signed displacement field though.
 | 
						|
      if (isInt<32>(Disp)) {
 | 
						|
        AM.Disp = (uint32_t)Disp;
 | 
						|
        return X86SelectAddress(U->getOperand(0), AM);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Instruction::GetElementPtr: {
 | 
						|
    X86AddressMode SavedAM = AM;
 | 
						|
 | 
						|
    // Pattern-match simple GEPs.
 | 
						|
    uint64_t Disp = (int32_t)AM.Disp;
 | 
						|
    unsigned IndexReg = AM.IndexReg;
 | 
						|
    unsigned Scale = AM.Scale;
 | 
						|
    gep_type_iterator GTI = gep_type_begin(U);
 | 
						|
    // Iterate through the indices, folding what we can. Constants can be
 | 
						|
    // folded, and one dynamic index can be handled, if the scale is supported.
 | 
						|
    for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
 | 
						|
         i != e; ++i, ++GTI) {
 | 
						|
      const Value *Op = *i;
 | 
						|
      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
 | 
						|
        const StructLayout *SL = TD.getStructLayout(STy);
 | 
						|
        unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
 | 
						|
        Disp += SL->getElementOffset(Idx);
 | 
						|
      } else {
 | 
						|
        uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
 | 
						|
        SmallVector<const Value *, 4> Worklist;
 | 
						|
        Worklist.push_back(Op);
 | 
						|
        do {
 | 
						|
          Op = Worklist.pop_back_val();
 | 
						|
          if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
 | 
						|
            // Constant-offset addressing.
 | 
						|
            Disp += CI->getSExtValue() * S;
 | 
						|
          } else if (isa<AddOperator>(Op) &&
 | 
						|
                     isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
 | 
						|
            // An add with a constant operand. Fold the constant.
 | 
						|
            ConstantInt *CI =
 | 
						|
              cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
 | 
						|
            Disp += CI->getSExtValue() * S;
 | 
						|
            // Add the other operand back to the work list.
 | 
						|
            Worklist.push_back(cast<AddOperator>(Op)->getOperand(0));
 | 
						|
          } else if (IndexReg == 0 &&
 | 
						|
                     (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
 | 
						|
                     (S == 1 || S == 2 || S == 4 || S == 8)) {
 | 
						|
            // Scaled-index addressing.
 | 
						|
            Scale = S;
 | 
						|
            IndexReg = getRegForGEPIndex(Op).first;
 | 
						|
            if (IndexReg == 0)
 | 
						|
              return false;
 | 
						|
          } else
 | 
						|
            // Unsupported.
 | 
						|
            goto unsupported_gep;
 | 
						|
        } while (!Worklist.empty());
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // Check for displacement overflow.
 | 
						|
    if (!isInt<32>(Disp))
 | 
						|
      break;
 | 
						|
    // Ok, the GEP indices were covered by constant-offset and scaled-index
 | 
						|
    // addressing. Update the address state and move on to examining the base.
 | 
						|
    AM.IndexReg = IndexReg;
 | 
						|
    AM.Scale = Scale;
 | 
						|
    AM.Disp = (uint32_t)Disp;
 | 
						|
    if (X86SelectAddress(U->getOperand(0), AM))
 | 
						|
      return true;
 | 
						|
    
 | 
						|
    // If we couldn't merge the sub value into this addr mode, revert back to
 | 
						|
    // our address and just match the value instead of completely failing.
 | 
						|
    AM = SavedAM;
 | 
						|
    break;
 | 
						|
  unsupported_gep:
 | 
						|
    // Ok, the GEP indices weren't all covered.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle constant address.
 | 
						|
  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
 | 
						|
    // Can't handle alternate code models yet.
 | 
						|
    if (TM.getCodeModel() != CodeModel::Small)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // RIP-relative addresses can't have additional register operands.
 | 
						|
    if (Subtarget->isPICStyleRIPRel() &&
 | 
						|
        (AM.Base.Reg != 0 || AM.IndexReg != 0))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Can't handle TLS yet.
 | 
						|
    if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
 | 
						|
      if (GVar->isThreadLocal())
 | 
						|
        return false;
 | 
						|
 | 
						|
    // Okay, we've committed to selecting this global. Set up the basic address.
 | 
						|
    AM.GV = GV;
 | 
						|
    
 | 
						|
    // Allow the subtarget to classify the global.
 | 
						|
    unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM);
 | 
						|
 | 
						|
    // If this reference is relative to the pic base, set it now.
 | 
						|
    if (isGlobalRelativeToPICBase(GVFlags)) {
 | 
						|
      // FIXME: How do we know Base.Reg is free??
 | 
						|
      AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Unless the ABI requires an extra load, return a direct reference to
 | 
						|
    // the global.
 | 
						|
    if (!isGlobalStubReference(GVFlags)) {
 | 
						|
      if (Subtarget->isPICStyleRIPRel()) {
 | 
						|
        // Use rip-relative addressing if we can.  Above we verified that the
 | 
						|
        // base and index registers are unused.
 | 
						|
        assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
 | 
						|
        AM.Base.Reg = X86::RIP;
 | 
						|
      }
 | 
						|
      AM.GVOpFlags = GVFlags;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Ok, we need to do a load from a stub.  If we've already loaded from this
 | 
						|
    // stub, reuse the loaded pointer, otherwise emit the load now.
 | 
						|
    DenseMap<const Value*, unsigned>::iterator I = LocalValueMap.find(V);
 | 
						|
    unsigned LoadReg;
 | 
						|
    if (I != LocalValueMap.end() && I->second != 0) {
 | 
						|
      LoadReg = I->second;
 | 
						|
    } else {
 | 
						|
      // Issue load from stub.
 | 
						|
      unsigned Opc = 0;
 | 
						|
      const TargetRegisterClass *RC = NULL;
 | 
						|
      X86AddressMode StubAM;
 | 
						|
      StubAM.Base.Reg = AM.Base.Reg;
 | 
						|
      StubAM.GV = GV;
 | 
						|
      StubAM.GVOpFlags = GVFlags;
 | 
						|
 | 
						|
      // Prepare for inserting code in the local-value area.
 | 
						|
      SavePoint SaveInsertPt = enterLocalValueArea();
 | 
						|
 | 
						|
      if (TLI.getPointerTy() == MVT::i64) {
 | 
						|
        Opc = X86::MOV64rm;
 | 
						|
        RC  = X86::GR64RegisterClass;
 | 
						|
        
 | 
						|
        if (Subtarget->isPICStyleRIPRel())
 | 
						|
          StubAM.Base.Reg = X86::RIP;
 | 
						|
      } else {
 | 
						|
        Opc = X86::MOV32rm;
 | 
						|
        RC  = X86::GR32RegisterClass;
 | 
						|
      }
 | 
						|
      
 | 
						|
      LoadReg = createResultReg(RC);
 | 
						|
      MachineInstrBuilder LoadMI =
 | 
						|
        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), LoadReg);
 | 
						|
      addFullAddress(LoadMI, StubAM);
 | 
						|
 | 
						|
      // Ok, back to normal mode.
 | 
						|
      leaveLocalValueArea(SaveInsertPt);
 | 
						|
 | 
						|
      // Prevent loading GV stub multiple times in same MBB.
 | 
						|
      LocalValueMap[V] = LoadReg;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Now construct the final address. Note that the Disp, Scale,
 | 
						|
    // and Index values may already be set here.
 | 
						|
    AM.Base.Reg = LoadReg;
 | 
						|
    AM.GV = 0;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If all else fails, try to materialize the value in a register.
 | 
						|
  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
 | 
						|
    if (AM.Base.Reg == 0) {
 | 
						|
      AM.Base.Reg = getRegForValue(V);
 | 
						|
      return AM.Base.Reg != 0;
 | 
						|
    }
 | 
						|
    if (AM.IndexReg == 0) {
 | 
						|
      assert(AM.Scale == 1 && "Scale with no index!");
 | 
						|
      AM.IndexReg = getRegForValue(V);
 | 
						|
      return AM.IndexReg != 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// X86SelectCallAddress - Attempt to fill in an address from the given value.
 | 
						|
///
 | 
						|
bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
 | 
						|
  const User *U = NULL;
 | 
						|
  unsigned Opcode = Instruction::UserOp1;
 | 
						|
  if (const Instruction *I = dyn_cast<Instruction>(V)) {
 | 
						|
    Opcode = I->getOpcode();
 | 
						|
    U = I;
 | 
						|
  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
 | 
						|
    Opcode = C->getOpcode();
 | 
						|
    U = C;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (Opcode) {
 | 
						|
  default: break;
 | 
						|
  case Instruction::BitCast:
 | 
						|
    // Look past bitcasts.
 | 
						|
    return X86SelectCallAddress(U->getOperand(0), AM);
 | 
						|
 | 
						|
  case Instruction::IntToPtr:
 | 
						|
    // Look past no-op inttoptrs.
 | 
						|
    if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
 | 
						|
      return X86SelectCallAddress(U->getOperand(0), AM);
 | 
						|
    break;
 | 
						|
 | 
						|
  case Instruction::PtrToInt:
 | 
						|
    // Look past no-op ptrtoints.
 | 
						|
    if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
 | 
						|
      return X86SelectCallAddress(U->getOperand(0), AM);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle constant address.
 | 
						|
  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
 | 
						|
    // Can't handle alternate code models yet.
 | 
						|
    if (TM.getCodeModel() != CodeModel::Small)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // RIP-relative addresses can't have additional register operands.
 | 
						|
    if (Subtarget->isPICStyleRIPRel() &&
 | 
						|
        (AM.Base.Reg != 0 || AM.IndexReg != 0))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Can't handle TLS or DLLImport.
 | 
						|
    if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
 | 
						|
      if (GVar->isThreadLocal() || GVar->hasDLLImportLinkage())
 | 
						|
        return false;
 | 
						|
 | 
						|
    // Okay, we've committed to selecting this global. Set up the basic address.
 | 
						|
    AM.GV = GV;
 | 
						|
    
 | 
						|
    // No ABI requires an extra load for anything other than DLLImport, which
 | 
						|
    // we rejected above. Return a direct reference to the global.
 | 
						|
    if (Subtarget->isPICStyleRIPRel()) {
 | 
						|
      // Use rip-relative addressing if we can.  Above we verified that the
 | 
						|
      // base and index registers are unused.
 | 
						|
      assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
 | 
						|
      AM.Base.Reg = X86::RIP;
 | 
						|
    } else if (Subtarget->isPICStyleStubPIC()) {
 | 
						|
      AM.GVOpFlags = X86II::MO_PIC_BASE_OFFSET;
 | 
						|
    } else if (Subtarget->isPICStyleGOT()) {
 | 
						|
      AM.GVOpFlags = X86II::MO_GOTOFF;
 | 
						|
    }
 | 
						|
    
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If all else fails, try to materialize the value in a register.
 | 
						|
  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
 | 
						|
    if (AM.Base.Reg == 0) {
 | 
						|
      AM.Base.Reg = getRegForValue(V);
 | 
						|
      return AM.Base.Reg != 0;
 | 
						|
    }
 | 
						|
    if (AM.IndexReg == 0) {
 | 
						|
      assert(AM.Scale == 1 && "Scale with no index!");
 | 
						|
      AM.IndexReg = getRegForValue(V);
 | 
						|
      return AM.IndexReg != 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// X86SelectStore - Select and emit code to implement store instructions.
 | 
						|
bool X86FastISel::X86SelectStore(const Instruction *I) {
 | 
						|
  EVT VT;
 | 
						|
  if (!isTypeLegal(I->getOperand(0)->getType(), VT, /*AllowI1=*/true))
 | 
						|
    return false;
 | 
						|
 | 
						|
  X86AddressMode AM;
 | 
						|
  if (!X86SelectAddress(I->getOperand(1), AM))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return X86FastEmitStore(VT, I->getOperand(0), AM);
 | 
						|
}
 | 
						|
 | 
						|
/// X86SelectRet - Select and emit code to implement ret instructions.
 | 
						|
bool X86FastISel::X86SelectRet(const Instruction *I) {
 | 
						|
  const ReturnInst *Ret = cast<ReturnInst>(I);
 | 
						|
  const Function &F = *I->getParent()->getParent();
 | 
						|
 | 
						|
  if (!FuncInfo.CanLowerReturn)
 | 
						|
    return false;
 | 
						|
 | 
						|
  CallingConv::ID CC = F.getCallingConv();
 | 
						|
  if (CC != CallingConv::C &&
 | 
						|
      CC != CallingConv::Fast &&
 | 
						|
      CC != CallingConv::X86_FastCall)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Subtarget->isTargetWin64())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Don't handle popping bytes on return for now.
 | 
						|
  if (FuncInfo.MF->getInfo<X86MachineFunctionInfo>()
 | 
						|
        ->getBytesToPopOnReturn() != 0)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // fastcc with -tailcallopt is intended to provide a guaranteed
 | 
						|
  // tail call optimization. Fastisel doesn't know how to do that.
 | 
						|
  if (CC == CallingConv::Fast && GuaranteedTailCallOpt)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Let SDISel handle vararg functions.
 | 
						|
  if (F.isVarArg())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Ret->getNumOperands() > 0) {
 | 
						|
    SmallVector<ISD::OutputArg, 4> Outs;
 | 
						|
    GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
 | 
						|
                  Outs, TLI);
 | 
						|
 | 
						|
    // Analyze operands of the call, assigning locations to each operand.
 | 
						|
    SmallVector<CCValAssign, 16> ValLocs;
 | 
						|
    CCState CCInfo(CC, F.isVarArg(), TM, ValLocs, I->getContext());
 | 
						|
    CCInfo.AnalyzeReturn(Outs, CCAssignFnForRet(CC));
 | 
						|
 | 
						|
    const Value *RV = Ret->getOperand(0);
 | 
						|
    unsigned Reg = getRegForValue(RV);
 | 
						|
    if (Reg == 0)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Only handle a single return value for now.
 | 
						|
    if (ValLocs.size() != 1)
 | 
						|
      return false;
 | 
						|
 | 
						|
    CCValAssign &VA = ValLocs[0];
 | 
						|
  
 | 
						|
    // Don't bother handling odd stuff for now.
 | 
						|
    if (VA.getLocInfo() != CCValAssign::Full)
 | 
						|
      return false;
 | 
						|
    // Only handle register returns for now.
 | 
						|
    if (!VA.isRegLoc())
 | 
						|
      return false;
 | 
						|
    // TODO: For now, don't try to handle cases where getLocInfo()
 | 
						|
    // says Full but the types don't match.
 | 
						|
    if (VA.getValVT() != TLI.getValueType(RV->getType()))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // The calling-convention tables for x87 returns don't tell
 | 
						|
    // the whole story.
 | 
						|
    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Make the copy.
 | 
						|
    unsigned SrcReg = Reg + VA.getValNo();
 | 
						|
    unsigned DstReg = VA.getLocReg();
 | 
						|
    const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
 | 
						|
    // Avoid a cross-class copy. This is very unlikely.
 | 
						|
    if (!SrcRC->contains(DstReg))
 | 
						|
      return false;
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
 | 
						|
            DstReg).addReg(SrcReg);
 | 
						|
 | 
						|
    // Mark the register as live out of the function.
 | 
						|
    MRI.addLiveOut(VA.getLocReg());
 | 
						|
  }
 | 
						|
 | 
						|
  // Now emit the RET.
 | 
						|
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::RET));
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// X86SelectLoad - Select and emit code to implement load instructions.
 | 
						|
///
 | 
						|
bool X86FastISel::X86SelectLoad(const Instruction *I)  {
 | 
						|
  EVT VT;
 | 
						|
  if (!isTypeLegal(I->getType(), VT, /*AllowI1=*/true))
 | 
						|
    return false;
 | 
						|
 | 
						|
  X86AddressMode AM;
 | 
						|
  if (!X86SelectAddress(I->getOperand(0), AM))
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned ResultReg = 0;
 | 
						|
  if (X86FastEmitLoad(VT, AM, ResultReg)) {
 | 
						|
    UpdateValueMap(I, ResultReg);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
 | 
						|
  switch (VT.getSimpleVT().SimpleTy) {
 | 
						|
  default:       return 0;
 | 
						|
  case MVT::i8:  return X86::CMP8rr;
 | 
						|
  case MVT::i16: return X86::CMP16rr;
 | 
						|
  case MVT::i32: return X86::CMP32rr;
 | 
						|
  case MVT::i64: return X86::CMP64rr;
 | 
						|
  case MVT::f32: return Subtarget->hasSSE1() ? X86::UCOMISSrr : 0;
 | 
						|
  case MVT::f64: return Subtarget->hasSSE2() ? X86::UCOMISDrr : 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// X86ChooseCmpImmediateOpcode - If we have a comparison with RHS as the RHS
 | 
						|
/// of the comparison, return an opcode that works for the compare (e.g.
 | 
						|
/// CMP32ri) otherwise return 0.
 | 
						|
static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
 | 
						|
  switch (VT.getSimpleVT().SimpleTy) {
 | 
						|
  // Otherwise, we can't fold the immediate into this comparison.
 | 
						|
  default: return 0;
 | 
						|
  case MVT::i8: return X86::CMP8ri;
 | 
						|
  case MVT::i16: return X86::CMP16ri;
 | 
						|
  case MVT::i32: return X86::CMP32ri;
 | 
						|
  case MVT::i64:
 | 
						|
    // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
 | 
						|
    // field.
 | 
						|
    if ((int)RHSC->getSExtValue() == RHSC->getSExtValue())
 | 
						|
      return X86::CMP64ri32;
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1,
 | 
						|
                                     EVT VT) {
 | 
						|
  unsigned Op0Reg = getRegForValue(Op0);
 | 
						|
  if (Op0Reg == 0) return false;
 | 
						|
  
 | 
						|
  // Handle 'null' like i32/i64 0.
 | 
						|
  if (isa<ConstantPointerNull>(Op1))
 | 
						|
    Op1 = Constant::getNullValue(TD.getIntPtrType(Op0->getContext()));
 | 
						|
  
 | 
						|
  // We have two options: compare with register or immediate.  If the RHS of
 | 
						|
  // the compare is an immediate that we can fold into this compare, use
 | 
						|
  // CMPri, otherwise use CMPrr.
 | 
						|
  if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
 | 
						|
    if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
 | 
						|
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CompareImmOpc))
 | 
						|
        .addReg(Op0Reg)
 | 
						|
        .addImm(Op1C->getSExtValue());
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
 | 
						|
  if (CompareOpc == 0) return false;
 | 
						|
    
 | 
						|
  unsigned Op1Reg = getRegForValue(Op1);
 | 
						|
  if (Op1Reg == 0) return false;
 | 
						|
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CompareOpc))
 | 
						|
    .addReg(Op0Reg)
 | 
						|
    .addReg(Op1Reg);
 | 
						|
  
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool X86FastISel::X86SelectCmp(const Instruction *I) {
 | 
						|
  const CmpInst *CI = cast<CmpInst>(I);
 | 
						|
 | 
						|
  EVT VT;
 | 
						|
  if (!isTypeLegal(I->getOperand(0)->getType(), VT))
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned ResultReg = createResultReg(&X86::GR8RegClass);
 | 
						|
  unsigned SetCCOpc;
 | 
						|
  bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
 | 
						|
  switch (CI->getPredicate()) {
 | 
						|
  case CmpInst::FCMP_OEQ: {
 | 
						|
    if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
 | 
						|
      return false;
 | 
						|
    
 | 
						|
    unsigned EReg = createResultReg(&X86::GR8RegClass);
 | 
						|
    unsigned NPReg = createResultReg(&X86::GR8RegClass);
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETEr), EReg);
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
 | 
						|
            TII.get(X86::SETNPr), NPReg);
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 
 | 
						|
            TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg);
 | 
						|
    UpdateValueMap(I, ResultReg);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case CmpInst::FCMP_UNE: {
 | 
						|
    if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
 | 
						|
      return false;
 | 
						|
 | 
						|
    unsigned NEReg = createResultReg(&X86::GR8RegClass);
 | 
						|
    unsigned PReg = createResultReg(&X86::GR8RegClass);
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
 | 
						|
            TII.get(X86::SETNEr), NEReg);
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
 | 
						|
            TII.get(X86::SETPr), PReg);
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
 | 
						|
            TII.get(X86::OR8rr), ResultReg)
 | 
						|
      .addReg(PReg).addReg(NEReg);
 | 
						|
    UpdateValueMap(I, ResultReg);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case CmpInst::FCMP_OGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
 | 
						|
  case CmpInst::FCMP_OGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
 | 
						|
  case CmpInst::FCMP_OLT: SwapArgs = true;  SetCCOpc = X86::SETAr;  break;
 | 
						|
  case CmpInst::FCMP_OLE: SwapArgs = true;  SetCCOpc = X86::SETAEr; break;
 | 
						|
  case CmpInst::FCMP_ONE: SwapArgs = false; SetCCOpc = X86::SETNEr; break;
 | 
						|
  case CmpInst::FCMP_ORD: SwapArgs = false; SetCCOpc = X86::SETNPr; break;
 | 
						|
  case CmpInst::FCMP_UNO: SwapArgs = false; SetCCOpc = X86::SETPr;  break;
 | 
						|
  case CmpInst::FCMP_UEQ: SwapArgs = false; SetCCOpc = X86::SETEr;  break;
 | 
						|
  case CmpInst::FCMP_UGT: SwapArgs = true;  SetCCOpc = X86::SETBr;  break;
 | 
						|
  case CmpInst::FCMP_UGE: SwapArgs = true;  SetCCOpc = X86::SETBEr; break;
 | 
						|
  case CmpInst::FCMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
 | 
						|
  case CmpInst::FCMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
 | 
						|
  
 | 
						|
  case CmpInst::ICMP_EQ:  SwapArgs = false; SetCCOpc = X86::SETEr;  break;
 | 
						|
  case CmpInst::ICMP_NE:  SwapArgs = false; SetCCOpc = X86::SETNEr; break;
 | 
						|
  case CmpInst::ICMP_UGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
 | 
						|
  case CmpInst::ICMP_UGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
 | 
						|
  case CmpInst::ICMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
 | 
						|
  case CmpInst::ICMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
 | 
						|
  case CmpInst::ICMP_SGT: SwapArgs = false; SetCCOpc = X86::SETGr;  break;
 | 
						|
  case CmpInst::ICMP_SGE: SwapArgs = false; SetCCOpc = X86::SETGEr; break;
 | 
						|
  case CmpInst::ICMP_SLT: SwapArgs = false; SetCCOpc = X86::SETLr;  break;
 | 
						|
  case CmpInst::ICMP_SLE: SwapArgs = false; SetCCOpc = X86::SETLEr; break;
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  const Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
 | 
						|
  if (SwapArgs)
 | 
						|
    std::swap(Op0, Op1);
 | 
						|
 | 
						|
  // Emit a compare of Op0/Op1.
 | 
						|
  if (!X86FastEmitCompare(Op0, Op1, VT))
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(SetCCOpc), ResultReg);
 | 
						|
  UpdateValueMap(I, ResultReg);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool X86FastISel::X86SelectZExt(const Instruction *I) {
 | 
						|
  // Handle zero-extension from i1 to i8, which is common.
 | 
						|
  if (I->getType()->isIntegerTy(8) &&
 | 
						|
      I->getOperand(0)->getType()->isIntegerTy(1)) {
 | 
						|
    unsigned ResultReg = getRegForValue(I->getOperand(0));
 | 
						|
    if (ResultReg == 0) return false;
 | 
						|
    // Set the high bits to zero.
 | 
						|
    ResultReg = FastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
 | 
						|
    if (ResultReg == 0) return false;
 | 
						|
    UpdateValueMap(I, ResultReg);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool X86FastISel::X86SelectBranch(const Instruction *I) {
 | 
						|
  // Unconditional branches are selected by tablegen-generated code.
 | 
						|
  // Handle a conditional branch.
 | 
						|
  const BranchInst *BI = cast<BranchInst>(I);
 | 
						|
  MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
 | 
						|
  MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
 | 
						|
 | 
						|
  // Fold the common case of a conditional branch with a comparison.
 | 
						|
  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
 | 
						|
    if (CI->hasOneUse()) {
 | 
						|
      EVT VT = TLI.getValueType(CI->getOperand(0)->getType());
 | 
						|
 | 
						|
      // Try to take advantage of fallthrough opportunities.
 | 
						|
      CmpInst::Predicate Predicate = CI->getPredicate();
 | 
						|
      if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
 | 
						|
        std::swap(TrueMBB, FalseMBB);
 | 
						|
        Predicate = CmpInst::getInversePredicate(Predicate);
 | 
						|
      }
 | 
						|
 | 
						|
      bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
 | 
						|
      unsigned BranchOpc; // Opcode to jump on, e.g. "X86::JA"
 | 
						|
 | 
						|
      switch (Predicate) {
 | 
						|
      case CmpInst::FCMP_OEQ:
 | 
						|
        std::swap(TrueMBB, FalseMBB);
 | 
						|
        Predicate = CmpInst::FCMP_UNE;
 | 
						|
        // FALL THROUGH
 | 
						|
      case CmpInst::FCMP_UNE: SwapArgs = false; BranchOpc = X86::JNE_4; break;
 | 
						|
      case CmpInst::FCMP_OGT: SwapArgs = false; BranchOpc = X86::JA_4;  break;
 | 
						|
      case CmpInst::FCMP_OGE: SwapArgs = false; BranchOpc = X86::JAE_4; break;
 | 
						|
      case CmpInst::FCMP_OLT: SwapArgs = true;  BranchOpc = X86::JA_4;  break;
 | 
						|
      case CmpInst::FCMP_OLE: SwapArgs = true;  BranchOpc = X86::JAE_4; break;
 | 
						|
      case CmpInst::FCMP_ONE: SwapArgs = false; BranchOpc = X86::JNE_4; break;
 | 
						|
      case CmpInst::FCMP_ORD: SwapArgs = false; BranchOpc = X86::JNP_4; break;
 | 
						|
      case CmpInst::FCMP_UNO: SwapArgs = false; BranchOpc = X86::JP_4;  break;
 | 
						|
      case CmpInst::FCMP_UEQ: SwapArgs = false; BranchOpc = X86::JE_4;  break;
 | 
						|
      case CmpInst::FCMP_UGT: SwapArgs = true;  BranchOpc = X86::JB_4;  break;
 | 
						|
      case CmpInst::FCMP_UGE: SwapArgs = true;  BranchOpc = X86::JBE_4; break;
 | 
						|
      case CmpInst::FCMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4;  break;
 | 
						|
      case CmpInst::FCMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break;
 | 
						|
          
 | 
						|
      case CmpInst::ICMP_EQ:  SwapArgs = false; BranchOpc = X86::JE_4;  break;
 | 
						|
      case CmpInst::ICMP_NE:  SwapArgs = false; BranchOpc = X86::JNE_4; break;
 | 
						|
      case CmpInst::ICMP_UGT: SwapArgs = false; BranchOpc = X86::JA_4;  break;
 | 
						|
      case CmpInst::ICMP_UGE: SwapArgs = false; BranchOpc = X86::JAE_4; break;
 | 
						|
      case CmpInst::ICMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4;  break;
 | 
						|
      case CmpInst::ICMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break;
 | 
						|
      case CmpInst::ICMP_SGT: SwapArgs = false; BranchOpc = X86::JG_4;  break;
 | 
						|
      case CmpInst::ICMP_SGE: SwapArgs = false; BranchOpc = X86::JGE_4; break;
 | 
						|
      case CmpInst::ICMP_SLT: SwapArgs = false; BranchOpc = X86::JL_4;  break;
 | 
						|
      case CmpInst::ICMP_SLE: SwapArgs = false; BranchOpc = X86::JLE_4; break;
 | 
						|
      default:
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      
 | 
						|
      const Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
 | 
						|
      if (SwapArgs)
 | 
						|
        std::swap(Op0, Op1);
 | 
						|
 | 
						|
      // Emit a compare of the LHS and RHS, setting the flags.
 | 
						|
      if (!X86FastEmitCompare(Op0, Op1, VT))
 | 
						|
        return false;
 | 
						|
      
 | 
						|
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BranchOpc))
 | 
						|
        .addMBB(TrueMBB);
 | 
						|
 | 
						|
      if (Predicate == CmpInst::FCMP_UNE) {
 | 
						|
        // X86 requires a second branch to handle UNE (and OEQ,
 | 
						|
        // which is mapped to UNE above).
 | 
						|
        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::JP_4))
 | 
						|
          .addMBB(TrueMBB);
 | 
						|
      }
 | 
						|
 | 
						|
      FastEmitBranch(FalseMBB, DL);
 | 
						|
      FuncInfo.MBB->addSuccessor(TrueMBB);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  } else if (ExtractValueInst *EI =
 | 
						|
             dyn_cast<ExtractValueInst>(BI->getCondition())) {
 | 
						|
    // Check to see if the branch instruction is from an "arithmetic with
 | 
						|
    // overflow" intrinsic. The main way these intrinsics are used is:
 | 
						|
    //
 | 
						|
    //   %t = call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %v1, i32 %v2)
 | 
						|
    //   %sum = extractvalue { i32, i1 } %t, 0
 | 
						|
    //   %obit = extractvalue { i32, i1 } %t, 1
 | 
						|
    //   br i1 %obit, label %overflow, label %normal
 | 
						|
    //
 | 
						|
    // The %sum and %obit are converted in an ADD and a SETO/SETB before
 | 
						|
    // reaching the branch. Therefore, we search backwards through the MBB
 | 
						|
    // looking for the SETO/SETB instruction. If an instruction modifies the
 | 
						|
    // EFLAGS register before we reach the SETO/SETB instruction, then we can't
 | 
						|
    // convert the branch into a JO/JB instruction.
 | 
						|
    if (const IntrinsicInst *CI =
 | 
						|
          dyn_cast<IntrinsicInst>(EI->getAggregateOperand())){
 | 
						|
      if (CI->getIntrinsicID() == Intrinsic::sadd_with_overflow ||
 | 
						|
          CI->getIntrinsicID() == Intrinsic::uadd_with_overflow) {
 | 
						|
        const MachineInstr *SetMI = 0;
 | 
						|
        unsigned Reg = getRegForValue(EI);
 | 
						|
 | 
						|
        for (MachineBasicBlock::const_reverse_iterator
 | 
						|
               RI = FuncInfo.MBB->rbegin(), RE = FuncInfo.MBB->rend();
 | 
						|
             RI != RE; ++RI) {
 | 
						|
          const MachineInstr &MI = *RI;
 | 
						|
 | 
						|
          if (MI.definesRegister(Reg)) {
 | 
						|
            unsigned Src, Dst, SrcSR, DstSR;
 | 
						|
 | 
						|
            if (getInstrInfo()->isMoveInstr(MI, Src, Dst, SrcSR, DstSR)) {
 | 
						|
              Reg = Src;
 | 
						|
              continue;
 | 
						|
            }
 | 
						|
 | 
						|
            SetMI = &MI;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
 | 
						|
          const TargetInstrDesc &TID = MI.getDesc();
 | 
						|
          if (TID.hasUnmodeledSideEffects() ||
 | 
						|
              TID.hasImplicitDefOfPhysReg(X86::EFLAGS))
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        if (SetMI) {
 | 
						|
          unsigned OpCode = SetMI->getOpcode();
 | 
						|
 | 
						|
          if (OpCode == X86::SETOr || OpCode == X86::SETBr) {
 | 
						|
            BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
 | 
						|
                    TII.get(OpCode == X86::SETOr ?  X86::JO_4 : X86::JB_4))
 | 
						|
              .addMBB(TrueMBB);
 | 
						|
            FastEmitBranch(FalseMBB, DL);
 | 
						|
            FuncInfo.MBB->addSuccessor(TrueMBB);
 | 
						|
            return true;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise do a clumsy setcc and re-test it.
 | 
						|
  unsigned OpReg = getRegForValue(BI->getCondition());
 | 
						|
  if (OpReg == 0) return false;
 | 
						|
 | 
						|
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TEST8rr))
 | 
						|
    .addReg(OpReg).addReg(OpReg);
 | 
						|
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::JNE_4))
 | 
						|
    .addMBB(TrueMBB);
 | 
						|
  FastEmitBranch(FalseMBB, DL);
 | 
						|
  FuncInfo.MBB->addSuccessor(TrueMBB);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool X86FastISel::X86SelectShift(const Instruction *I) {
 | 
						|
  unsigned CReg = 0, OpReg = 0, OpImm = 0;
 | 
						|
  const TargetRegisterClass *RC = NULL;
 | 
						|
  if (I->getType()->isIntegerTy(8)) {
 | 
						|
    CReg = X86::CL;
 | 
						|
    RC = &X86::GR8RegClass;
 | 
						|
    switch (I->getOpcode()) {
 | 
						|
    case Instruction::LShr: OpReg = X86::SHR8rCL; OpImm = X86::SHR8ri; break;
 | 
						|
    case Instruction::AShr: OpReg = X86::SAR8rCL; OpImm = X86::SAR8ri; break;
 | 
						|
    case Instruction::Shl:  OpReg = X86::SHL8rCL; OpImm = X86::SHL8ri; break;
 | 
						|
    default: return false;
 | 
						|
    }
 | 
						|
  } else if (I->getType()->isIntegerTy(16)) {
 | 
						|
    CReg = X86::CX;
 | 
						|
    RC = &X86::GR16RegClass;
 | 
						|
    switch (I->getOpcode()) {
 | 
						|
    case Instruction::LShr: OpReg = X86::SHR16rCL; OpImm = X86::SHR16ri; break;
 | 
						|
    case Instruction::AShr: OpReg = X86::SAR16rCL; OpImm = X86::SAR16ri; break;
 | 
						|
    case Instruction::Shl:  OpReg = X86::SHL16rCL; OpImm = X86::SHL16ri; break;
 | 
						|
    default: return false;
 | 
						|
    }
 | 
						|
  } else if (I->getType()->isIntegerTy(32)) {
 | 
						|
    CReg = X86::ECX;
 | 
						|
    RC = &X86::GR32RegClass;
 | 
						|
    switch (I->getOpcode()) {
 | 
						|
    case Instruction::LShr: OpReg = X86::SHR32rCL; OpImm = X86::SHR32ri; break;
 | 
						|
    case Instruction::AShr: OpReg = X86::SAR32rCL; OpImm = X86::SAR32ri; break;
 | 
						|
    case Instruction::Shl:  OpReg = X86::SHL32rCL; OpImm = X86::SHL32ri; break;
 | 
						|
    default: return false;
 | 
						|
    }
 | 
						|
  } else if (I->getType()->isIntegerTy(64)) {
 | 
						|
    CReg = X86::RCX;
 | 
						|
    RC = &X86::GR64RegClass;
 | 
						|
    switch (I->getOpcode()) {
 | 
						|
    case Instruction::LShr: OpReg = X86::SHR64rCL; OpImm = X86::SHR64ri; break;
 | 
						|
    case Instruction::AShr: OpReg = X86::SAR64rCL; OpImm = X86::SAR64ri; break;
 | 
						|
    case Instruction::Shl:  OpReg = X86::SHL64rCL; OpImm = X86::SHL64ri; break;
 | 
						|
    default: return false;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  EVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
 | 
						|
  if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned Op0Reg = getRegForValue(I->getOperand(0));
 | 
						|
  if (Op0Reg == 0) return false;
 | 
						|
  
 | 
						|
  // Fold immediate in shl(x,3).
 | 
						|
  if (const ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | 
						|
    unsigned ResultReg = createResultReg(RC);
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpImm), 
 | 
						|
            ResultReg).addReg(Op0Reg).addImm(CI->getZExtValue() & 0xff);
 | 
						|
    UpdateValueMap(I, ResultReg);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  unsigned Op1Reg = getRegForValue(I->getOperand(1));
 | 
						|
  if (Op1Reg == 0) return false;
 | 
						|
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
 | 
						|
          CReg).addReg(Op1Reg);
 | 
						|
 | 
						|
  // The shift instruction uses X86::CL. If we defined a super-register
 | 
						|
  // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
 | 
						|
  if (CReg != X86::CL)
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
 | 
						|
            TII.get(TargetOpcode::KILL), X86::CL)
 | 
						|
      .addReg(CReg, RegState::Kill);
 | 
						|
 | 
						|
  unsigned ResultReg = createResultReg(RC);
 | 
						|
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpReg), ResultReg)
 | 
						|
    .addReg(Op0Reg);
 | 
						|
  UpdateValueMap(I, ResultReg);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool X86FastISel::X86SelectSelect(const Instruction *I) {
 | 
						|
  EVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
 | 
						|
  if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  unsigned Opc = 0;
 | 
						|
  const TargetRegisterClass *RC = NULL;
 | 
						|
  if (VT.getSimpleVT() == MVT::i16) {
 | 
						|
    Opc = X86::CMOVE16rr;
 | 
						|
    RC = &X86::GR16RegClass;
 | 
						|
  } else if (VT.getSimpleVT() == MVT::i32) {
 | 
						|
    Opc = X86::CMOVE32rr;
 | 
						|
    RC = &X86::GR32RegClass;
 | 
						|
  } else if (VT.getSimpleVT() == MVT::i64) {
 | 
						|
    Opc = X86::CMOVE64rr;
 | 
						|
    RC = &X86::GR64RegClass;
 | 
						|
  } else {
 | 
						|
    return false; 
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Op0Reg = getRegForValue(I->getOperand(0));
 | 
						|
  if (Op0Reg == 0) return false;
 | 
						|
  unsigned Op1Reg = getRegForValue(I->getOperand(1));
 | 
						|
  if (Op1Reg == 0) return false;
 | 
						|
  unsigned Op2Reg = getRegForValue(I->getOperand(2));
 | 
						|
  if (Op2Reg == 0) return false;
 | 
						|
 | 
						|
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TEST8rr))
 | 
						|
    .addReg(Op0Reg).addReg(Op0Reg);
 | 
						|
  unsigned ResultReg = createResultReg(RC);
 | 
						|
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
 | 
						|
    .addReg(Op1Reg).addReg(Op2Reg);
 | 
						|
  UpdateValueMap(I, ResultReg);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool X86FastISel::X86SelectFPExt(const Instruction *I) {
 | 
						|
  // fpext from float to double.
 | 
						|
  if (Subtarget->hasSSE2() &&
 | 
						|
      I->getType()->isDoubleTy()) {
 | 
						|
    const Value *V = I->getOperand(0);
 | 
						|
    if (V->getType()->isFloatTy()) {
 | 
						|
      unsigned OpReg = getRegForValue(V);
 | 
						|
      if (OpReg == 0) return false;
 | 
						|
      unsigned ResultReg = createResultReg(X86::FR64RegisterClass);
 | 
						|
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
 | 
						|
              TII.get(X86::CVTSS2SDrr), ResultReg)
 | 
						|
        .addReg(OpReg);
 | 
						|
      UpdateValueMap(I, ResultReg);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
 | 
						|
  if (Subtarget->hasSSE2()) {
 | 
						|
    if (I->getType()->isFloatTy()) {
 | 
						|
      const Value *V = I->getOperand(0);
 | 
						|
      if (V->getType()->isDoubleTy()) {
 | 
						|
        unsigned OpReg = getRegForValue(V);
 | 
						|
        if (OpReg == 0) return false;
 | 
						|
        unsigned ResultReg = createResultReg(X86::FR32RegisterClass);
 | 
						|
        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
 | 
						|
                TII.get(X86::CVTSD2SSrr), ResultReg)
 | 
						|
          .addReg(OpReg);
 | 
						|
        UpdateValueMap(I, ResultReg);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool X86FastISel::X86SelectTrunc(const Instruction *I) {
 | 
						|
  if (Subtarget->is64Bit())
 | 
						|
    // All other cases should be handled by the tblgen generated code.
 | 
						|
    return false;
 | 
						|
  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
 | 
						|
  EVT DstVT = TLI.getValueType(I->getType());
 | 
						|
  
 | 
						|
  // This code only handles truncation to byte right now.
 | 
						|
  if (DstVT != MVT::i8 && DstVT != MVT::i1)
 | 
						|
    // All other cases should be handled by the tblgen generated code.
 | 
						|
    return false;
 | 
						|
  if (SrcVT != MVT::i16 && SrcVT != MVT::i32)
 | 
						|
    // All other cases should be handled by the tblgen generated code.
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned InputReg = getRegForValue(I->getOperand(0));
 | 
						|
  if (!InputReg)
 | 
						|
    // Unhandled operand.  Halt "fast" selection and bail.
 | 
						|
    return false;
 | 
						|
 | 
						|
  // First issue a copy to GR16_ABCD or GR32_ABCD.
 | 
						|
  const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16)
 | 
						|
    ? X86::GR16_ABCDRegisterClass : X86::GR32_ABCDRegisterClass;
 | 
						|
  unsigned CopyReg = createResultReg(CopyRC);
 | 
						|
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
 | 
						|
          CopyReg).addReg(InputReg);
 | 
						|
 | 
						|
  // Then issue an extract_subreg.
 | 
						|
  unsigned ResultReg = FastEmitInst_extractsubreg(MVT::i8,
 | 
						|
                                                  CopyReg, /*Kill=*/true,
 | 
						|
                                                  X86::sub_8bit);
 | 
						|
  if (!ResultReg)
 | 
						|
    return false;
 | 
						|
 | 
						|
  UpdateValueMap(I, ResultReg);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool X86FastISel::X86SelectExtractValue(const Instruction *I) {
 | 
						|
  const ExtractValueInst *EI = cast<ExtractValueInst>(I);
 | 
						|
  const Value *Agg = EI->getAggregateOperand();
 | 
						|
 | 
						|
  if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(Agg)) {
 | 
						|
    switch (CI->getIntrinsicID()) {
 | 
						|
    default: break;
 | 
						|
    case Intrinsic::sadd_with_overflow:
 | 
						|
    case Intrinsic::uadd_with_overflow: {
 | 
						|
      // Cheat a little. We know that the registers for "add" and "seto" are
 | 
						|
      // allocated sequentially. However, we only keep track of the register
 | 
						|
      // for "add" in the value map. Use extractvalue's index to get the
 | 
						|
      // correct register for "seto".
 | 
						|
      unsigned OpReg = getRegForValue(Agg);
 | 
						|
      if (OpReg == 0)
 | 
						|
        return false;
 | 
						|
      UpdateValueMap(I, OpReg + *EI->idx_begin());
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) {
 | 
						|
  // FIXME: Handle more intrinsics.
 | 
						|
  switch (I.getIntrinsicID()) {
 | 
						|
  default: return false;
 | 
						|
  case Intrinsic::stackprotector: {
 | 
						|
    // Emit code inline code to store the stack guard onto the stack.
 | 
						|
    EVT PtrTy = TLI.getPointerTy();
 | 
						|
 | 
						|
    const Value *Op1 = I.getArgOperand(0); // The guard's value.
 | 
						|
    const AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
 | 
						|
 | 
						|
    // Grab the frame index.
 | 
						|
    X86AddressMode AM;
 | 
						|
    if (!X86SelectAddress(Slot, AM)) return false;
 | 
						|
    
 | 
						|
    if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
 | 
						|
    
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case Intrinsic::objectsize: {
 | 
						|
    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
 | 
						|
    const Type *Ty = I.getCalledFunction()->getReturnType();
 | 
						|
    
 | 
						|
    assert(CI && "Non-constant type in Intrinsic::objectsize?");
 | 
						|
    
 | 
						|
    EVT VT;
 | 
						|
    if (!isTypeLegal(Ty, VT))
 | 
						|
      return false;
 | 
						|
    
 | 
						|
    unsigned OpC = 0;
 | 
						|
    if (VT == MVT::i32)
 | 
						|
      OpC = X86::MOV32ri;
 | 
						|
    else if (VT == MVT::i64)
 | 
						|
      OpC = X86::MOV64ri;
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
    
 | 
						|
    unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpC), ResultReg).
 | 
						|
                                  addImm(CI->isZero() ? -1ULL : 0);
 | 
						|
    UpdateValueMap(&I, ResultReg);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case Intrinsic::dbg_declare: {
 | 
						|
    const DbgDeclareInst *DI = cast<DbgDeclareInst>(&I);
 | 
						|
    X86AddressMode AM;
 | 
						|
    assert(DI->getAddress() && "Null address should be checked earlier!");
 | 
						|
    if (!X86SelectAddress(DI->getAddress(), AM))
 | 
						|
      return false;
 | 
						|
    const TargetInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
 | 
						|
    // FIXME may need to add RegState::Debug to any registers produced,
 | 
						|
    // although ESP/EBP should be the only ones at the moment.
 | 
						|
    addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II), AM).
 | 
						|
      addImm(0).addMetadata(DI->getVariable());
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case Intrinsic::trap: {
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TRAP));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case Intrinsic::sadd_with_overflow:
 | 
						|
  case Intrinsic::uadd_with_overflow: {
 | 
						|
    // Replace "add with overflow" intrinsics with an "add" instruction followed
 | 
						|
    // by a seto/setc instruction. Later on, when the "extractvalue"
 | 
						|
    // instructions are encountered, we use the fact that two registers were
 | 
						|
    // created sequentially to get the correct registers for the "sum" and the
 | 
						|
    // "overflow bit".
 | 
						|
    const Function *Callee = I.getCalledFunction();
 | 
						|
    const Type *RetTy =
 | 
						|
      cast<StructType>(Callee->getReturnType())->getTypeAtIndex(unsigned(0));
 | 
						|
 | 
						|
    EVT VT;
 | 
						|
    if (!isTypeLegal(RetTy, VT))
 | 
						|
      return false;
 | 
						|
 | 
						|
    const Value *Op1 = I.getArgOperand(0);
 | 
						|
    const Value *Op2 = I.getArgOperand(1);
 | 
						|
    unsigned Reg1 = getRegForValue(Op1);
 | 
						|
    unsigned Reg2 = getRegForValue(Op2);
 | 
						|
 | 
						|
    if (Reg1 == 0 || Reg2 == 0)
 | 
						|
      // FIXME: Handle values *not* in registers.
 | 
						|
      return false;
 | 
						|
 | 
						|
    unsigned OpC = 0;
 | 
						|
    if (VT == MVT::i32)
 | 
						|
      OpC = X86::ADD32rr;
 | 
						|
    else if (VT == MVT::i64)
 | 
						|
      OpC = X86::ADD64rr;
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
 | 
						|
    unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpC), ResultReg)
 | 
						|
      .addReg(Reg1).addReg(Reg2);
 | 
						|
    unsigned DestReg1 = UpdateValueMap(&I, ResultReg);
 | 
						|
 | 
						|
    // If the add with overflow is an intra-block value then we just want to
 | 
						|
    // create temporaries for it like normal.  If it is a cross-block value then
 | 
						|
    // UpdateValueMap will return the cross-block register used.  Since we
 | 
						|
    // *really* want the value to be live in the register pair known by
 | 
						|
    // UpdateValueMap, we have to use DestReg1+1 as the destination register in
 | 
						|
    // the cross block case.  In the non-cross-block case, we should just make
 | 
						|
    // another register for the value.
 | 
						|
    if (DestReg1 != ResultReg)
 | 
						|
      ResultReg = DestReg1+1;
 | 
						|
    else
 | 
						|
      ResultReg = createResultReg(TLI.getRegClassFor(MVT::i8));
 | 
						|
    
 | 
						|
    unsigned Opc = X86::SETBr;
 | 
						|
    if (I.getIntrinsicID() == Intrinsic::sadd_with_overflow)
 | 
						|
      Opc = X86::SETOr;
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool X86FastISel::X86SelectCall(const Instruction *I) {
 | 
						|
  const CallInst *CI = cast<CallInst>(I);
 | 
						|
  const Value *Callee = CI->getCalledValue();
 | 
						|
 | 
						|
  // Can't handle inline asm yet.
 | 
						|
  if (isa<InlineAsm>(Callee))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Handle intrinsic calls.
 | 
						|
  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI))
 | 
						|
    return X86VisitIntrinsicCall(*II);
 | 
						|
 | 
						|
  // Handle only C and fastcc calling conventions for now.
 | 
						|
  ImmutableCallSite CS(CI);
 | 
						|
  CallingConv::ID CC = CS.getCallingConv();
 | 
						|
  if (CC != CallingConv::C &&
 | 
						|
      CC != CallingConv::Fast &&
 | 
						|
      CC != CallingConv::X86_FastCall)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // fastcc with -tailcallopt is intended to provide a guaranteed
 | 
						|
  // tail call optimization. Fastisel doesn't know how to do that.
 | 
						|
  if (CC == CallingConv::Fast && GuaranteedTailCallOpt)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Let SDISel handle vararg functions.
 | 
						|
  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
 | 
						|
  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
 | 
						|
  if (FTy->isVarArg())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Fast-isel doesn't know about callee-pop yet.
 | 
						|
  if (Subtarget->IsCalleePop(FTy->isVarArg(), CC))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Handle *simple* calls for now.
 | 
						|
  const Type *RetTy = CS.getType();
 | 
						|
  EVT RetVT;
 | 
						|
  if (RetTy->isVoidTy())
 | 
						|
    RetVT = MVT::isVoid;
 | 
						|
  else if (!isTypeLegal(RetTy, RetVT, true))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Materialize callee address in a register. FIXME: GV address can be
 | 
						|
  // handled with a CALLpcrel32 instead.
 | 
						|
  X86AddressMode CalleeAM;
 | 
						|
  if (!X86SelectCallAddress(Callee, CalleeAM))
 | 
						|
    return false;
 | 
						|
  unsigned CalleeOp = 0;
 | 
						|
  const GlobalValue *GV = 0;
 | 
						|
  if (CalleeAM.GV != 0) {
 | 
						|
    GV = CalleeAM.GV;
 | 
						|
  } else if (CalleeAM.Base.Reg != 0) {
 | 
						|
    CalleeOp = CalleeAM.Base.Reg;
 | 
						|
  } else
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Allow calls which produce i1 results.
 | 
						|
  bool AndToI1 = false;
 | 
						|
  if (RetVT == MVT::i1) {
 | 
						|
    RetVT = MVT::i8;
 | 
						|
    AndToI1 = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Deal with call operands first.
 | 
						|
  SmallVector<const Value *, 8> ArgVals;
 | 
						|
  SmallVector<unsigned, 8> Args;
 | 
						|
  SmallVector<EVT, 8> ArgVTs;
 | 
						|
  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
 | 
						|
  Args.reserve(CS.arg_size());
 | 
						|
  ArgVals.reserve(CS.arg_size());
 | 
						|
  ArgVTs.reserve(CS.arg_size());
 | 
						|
  ArgFlags.reserve(CS.arg_size());
 | 
						|
  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
 | 
						|
       i != e; ++i) {
 | 
						|
    unsigned Arg = getRegForValue(*i);
 | 
						|
    if (Arg == 0)
 | 
						|
      return false;
 | 
						|
    ISD::ArgFlagsTy Flags;
 | 
						|
    unsigned AttrInd = i - CS.arg_begin() + 1;
 | 
						|
    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
 | 
						|
      Flags.setSExt();
 | 
						|
    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
 | 
						|
      Flags.setZExt();
 | 
						|
 | 
						|
    // FIXME: Only handle *easy* calls for now.
 | 
						|
    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
 | 
						|
        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
 | 
						|
        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
 | 
						|
        CS.paramHasAttr(AttrInd, Attribute::ByVal))
 | 
						|
      return false;
 | 
						|
 | 
						|
    const Type *ArgTy = (*i)->getType();
 | 
						|
    EVT ArgVT;
 | 
						|
    if (!isTypeLegal(ArgTy, ArgVT))
 | 
						|
      return false;
 | 
						|
    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
 | 
						|
    Flags.setOrigAlign(OriginalAlignment);
 | 
						|
 | 
						|
    Args.push_back(Arg);
 | 
						|
    ArgVals.push_back(*i);
 | 
						|
    ArgVTs.push_back(ArgVT);
 | 
						|
    ArgFlags.push_back(Flags);
 | 
						|
  }
 | 
						|
 | 
						|
  // Analyze operands of the call, assigning locations to each operand.
 | 
						|
  SmallVector<CCValAssign, 16> ArgLocs;
 | 
						|
  CCState CCInfo(CC, false, TM, ArgLocs, I->getParent()->getContext());
 | 
						|
  
 | 
						|
  // Allocate shadow area for Win64
 | 
						|
  if (Subtarget->isTargetWin64()) {  
 | 
						|
    CCInfo.AllocateStack(32, 8); 
 | 
						|
  }
 | 
						|
 | 
						|
  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC));
 | 
						|
 | 
						|
  // Get a count of how many bytes are to be pushed on the stack.
 | 
						|
  unsigned NumBytes = CCInfo.getNextStackOffset();
 | 
						|
 | 
						|
  // Issue CALLSEQ_START
 | 
						|
  unsigned AdjStackDown = TM.getRegisterInfo()->getCallFrameSetupOpcode();
 | 
						|
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackDown))
 | 
						|
    .addImm(NumBytes);
 | 
						|
 | 
						|
  // Process argument: walk the register/memloc assignments, inserting
 | 
						|
  // copies / loads.
 | 
						|
  SmallVector<unsigned, 4> RegArgs;
 | 
						|
  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | 
						|
    CCValAssign &VA = ArgLocs[i];
 | 
						|
    unsigned Arg = Args[VA.getValNo()];
 | 
						|
    EVT ArgVT = ArgVTs[VA.getValNo()];
 | 
						|
  
 | 
						|
    // Promote the value if needed.
 | 
						|
    switch (VA.getLocInfo()) {
 | 
						|
    default: llvm_unreachable("Unknown loc info!");
 | 
						|
    case CCValAssign::Full: break;
 | 
						|
    case CCValAssign::SExt: {
 | 
						|
      bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
 | 
						|
                                       Arg, ArgVT, Arg);
 | 
						|
      assert(Emitted && "Failed to emit a sext!"); Emitted=Emitted;
 | 
						|
      Emitted = true;
 | 
						|
      ArgVT = VA.getLocVT();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case CCValAssign::ZExt: {
 | 
						|
      bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
 | 
						|
                                       Arg, ArgVT, Arg);
 | 
						|
      assert(Emitted && "Failed to emit a zext!"); Emitted=Emitted;
 | 
						|
      Emitted = true;
 | 
						|
      ArgVT = VA.getLocVT();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case CCValAssign::AExt: {
 | 
						|
      bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
 | 
						|
                                       Arg, ArgVT, Arg);
 | 
						|
      if (!Emitted)
 | 
						|
        Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
 | 
						|
                                    Arg, ArgVT, Arg);
 | 
						|
      if (!Emitted)
 | 
						|
        Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
 | 
						|
                                    Arg, ArgVT, Arg);
 | 
						|
      
 | 
						|
      assert(Emitted && "Failed to emit a aext!"); Emitted=Emitted;
 | 
						|
      ArgVT = VA.getLocVT();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case CCValAssign::BCvt: {
 | 
						|
      unsigned BC = FastEmit_r(ArgVT.getSimpleVT(), VA.getLocVT().getSimpleVT(),
 | 
						|
                               ISD::BIT_CONVERT, Arg, /*TODO: Kill=*/false);
 | 
						|
      assert(BC != 0 && "Failed to emit a bitcast!");
 | 
						|
      Arg = BC;
 | 
						|
      ArgVT = VA.getLocVT();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (VA.isRegLoc()) {
 | 
						|
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
 | 
						|
              VA.getLocReg()).addReg(Arg);
 | 
						|
      RegArgs.push_back(VA.getLocReg());
 | 
						|
    } else {
 | 
						|
      unsigned LocMemOffset = VA.getLocMemOffset();
 | 
						|
      X86AddressMode AM;
 | 
						|
      AM.Base.Reg = StackPtr;
 | 
						|
      AM.Disp = LocMemOffset;
 | 
						|
      const Value *ArgVal = ArgVals[VA.getValNo()];
 | 
						|
      
 | 
						|
      // If this is a really simple value, emit this with the Value* version of
 | 
						|
      // X86FastEmitStore.  If it isn't simple, we don't want to do this, as it
 | 
						|
      // can cause us to reevaluate the argument.
 | 
						|
      if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal))
 | 
						|
        X86FastEmitStore(ArgVT, ArgVal, AM);
 | 
						|
      else
 | 
						|
        X86FastEmitStore(ArgVT, Arg, AM);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // ELF / PIC requires GOT in the EBX register before function calls via PLT
 | 
						|
  // GOT pointer.  
 | 
						|
  if (Subtarget->isPICStyleGOT()) {
 | 
						|
    unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
 | 
						|
            X86::EBX).addReg(Base);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Issue the call.
 | 
						|
  MachineInstrBuilder MIB;
 | 
						|
  if (CalleeOp) {
 | 
						|
    // Register-indirect call.
 | 
						|
    unsigned CallOpc = Subtarget->is64Bit() ? X86::CALL64r : X86::CALL32r;
 | 
						|
    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc))
 | 
						|
      .addReg(CalleeOp);
 | 
						|
    
 | 
						|
  } else {
 | 
						|
    // Direct call.
 | 
						|
    assert(GV && "Not a direct call");
 | 
						|
    unsigned CallOpc =
 | 
						|
      Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32;
 | 
						|
    
 | 
						|
    // See if we need any target-specific flags on the GV operand.
 | 
						|
    unsigned char OpFlags = 0;
 | 
						|
    
 | 
						|
    // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
 | 
						|
    // external symbols most go through the PLT in PIC mode.  If the symbol
 | 
						|
    // has hidden or protected visibility, or if it is static or local, then
 | 
						|
    // we don't need to use the PLT - we can directly call it.
 | 
						|
    if (Subtarget->isTargetELF() &&
 | 
						|
        TM.getRelocationModel() == Reloc::PIC_ &&
 | 
						|
        GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
 | 
						|
      OpFlags = X86II::MO_PLT;
 | 
						|
    } else if (Subtarget->isPICStyleStubAny() &&
 | 
						|
               (GV->isDeclaration() || GV->isWeakForLinker()) &&
 | 
						|
               Subtarget->getDarwinVers() < 9) {
 | 
						|
      // PC-relative references to external symbols should go through $stub,
 | 
						|
      // unless we're building with the leopard linker or later, which
 | 
						|
      // automatically synthesizes these stubs.
 | 
						|
      OpFlags = X86II::MO_DARWIN_STUB;
 | 
						|
    }
 | 
						|
    
 | 
						|
    
 | 
						|
    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc))
 | 
						|
      .addGlobalAddress(GV, 0, OpFlags);
 | 
						|
  }
 | 
						|
 | 
						|
  // Add an implicit use GOT pointer in EBX.
 | 
						|
  if (Subtarget->isPICStyleGOT())
 | 
						|
    MIB.addReg(X86::EBX);
 | 
						|
 | 
						|
  // Add implicit physical register uses to the call.
 | 
						|
  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
 | 
						|
    MIB.addReg(RegArgs[i]);
 | 
						|
 | 
						|
  // Issue CALLSEQ_END
 | 
						|
  unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode();
 | 
						|
  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackUp))
 | 
						|
    .addImm(NumBytes).addImm(0);
 | 
						|
 | 
						|
  // Now handle call return value (if any).
 | 
						|
  SmallVector<unsigned, 4> UsedRegs;
 | 
						|
  if (RetVT.getSimpleVT().SimpleTy != MVT::isVoid) {
 | 
						|
    SmallVector<CCValAssign, 16> RVLocs;
 | 
						|
    CCState CCInfo(CC, false, TM, RVLocs, I->getParent()->getContext());
 | 
						|
    CCInfo.AnalyzeCallResult(RetVT, RetCC_X86);
 | 
						|
 | 
						|
    // Copy all of the result registers out of their specified physreg.
 | 
						|
    assert(RVLocs.size() == 1 && "Can't handle multi-value calls!");
 | 
						|
    EVT CopyVT = RVLocs[0].getValVT();
 | 
						|
    TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
 | 
						|
    
 | 
						|
    // If this is a call to a function that returns an fp value on the x87 fp
 | 
						|
    // stack, but where we prefer to use the value in xmm registers, copy it
 | 
						|
    // out as F80 and use a truncate to move it from fp stack reg to xmm reg.
 | 
						|
    if ((RVLocs[0].getLocReg() == X86::ST0 ||
 | 
						|
         RVLocs[0].getLocReg() == X86::ST1) &&
 | 
						|
        isScalarFPTypeInSSEReg(RVLocs[0].getValVT())) {
 | 
						|
      CopyVT = MVT::f80;
 | 
						|
      DstRC = X86::RFP80RegisterClass;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned ResultReg = createResultReg(DstRC);
 | 
						|
    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
 | 
						|
            ResultReg).addReg(RVLocs[0].getLocReg());
 | 
						|
    UsedRegs.push_back(RVLocs[0].getLocReg());
 | 
						|
 | 
						|
    if (CopyVT != RVLocs[0].getValVT()) {
 | 
						|
      // Round the F80 the right size, which also moves to the appropriate xmm
 | 
						|
      // register. This is accomplished by storing the F80 value in memory and
 | 
						|
      // then loading it back. Ewww...
 | 
						|
      EVT ResVT = RVLocs[0].getValVT();
 | 
						|
      unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
 | 
						|
      unsigned MemSize = ResVT.getSizeInBits()/8;
 | 
						|
      int FI = MFI.CreateStackObject(MemSize, MemSize, false);
 | 
						|
      addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
 | 
						|
                                TII.get(Opc)), FI)
 | 
						|
        .addReg(ResultReg);
 | 
						|
      DstRC = ResVT == MVT::f32
 | 
						|
        ? X86::FR32RegisterClass : X86::FR64RegisterClass;
 | 
						|
      Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
 | 
						|
      ResultReg = createResultReg(DstRC);
 | 
						|
      addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
 | 
						|
                                TII.get(Opc), ResultReg), FI);
 | 
						|
    }
 | 
						|
 | 
						|
    if (AndToI1) {
 | 
						|
      // Mask out all but lowest bit for some call which produces an i1.
 | 
						|
      unsigned AndResult = createResultReg(X86::GR8RegisterClass);
 | 
						|
      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 
 | 
						|
              TII.get(X86::AND8ri), AndResult).addReg(ResultReg).addImm(1);
 | 
						|
      ResultReg = AndResult;
 | 
						|
    }
 | 
						|
 | 
						|
    UpdateValueMap(I, ResultReg);
 | 
						|
  }
 | 
						|
 | 
						|
  // Set all unused physreg defs as dead.
 | 
						|
  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool
 | 
						|
X86FastISel::TargetSelectInstruction(const Instruction *I)  {
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  default: break;
 | 
						|
  case Instruction::Load:
 | 
						|
    return X86SelectLoad(I);
 | 
						|
  case Instruction::Store:
 | 
						|
    return X86SelectStore(I);
 | 
						|
  case Instruction::Ret:
 | 
						|
    return X86SelectRet(I);
 | 
						|
  case Instruction::ICmp:
 | 
						|
  case Instruction::FCmp:
 | 
						|
    return X86SelectCmp(I);
 | 
						|
  case Instruction::ZExt:
 | 
						|
    return X86SelectZExt(I);
 | 
						|
  case Instruction::Br:
 | 
						|
    return X86SelectBranch(I);
 | 
						|
  case Instruction::Call:
 | 
						|
    return X86SelectCall(I);
 | 
						|
  case Instruction::LShr:
 | 
						|
  case Instruction::AShr:
 | 
						|
  case Instruction::Shl:
 | 
						|
    return X86SelectShift(I);
 | 
						|
  case Instruction::Select:
 | 
						|
    return X86SelectSelect(I);
 | 
						|
  case Instruction::Trunc:
 | 
						|
    return X86SelectTrunc(I);
 | 
						|
  case Instruction::FPExt:
 | 
						|
    return X86SelectFPExt(I);
 | 
						|
  case Instruction::FPTrunc:
 | 
						|
    return X86SelectFPTrunc(I);
 | 
						|
  case Instruction::ExtractValue:
 | 
						|
    return X86SelectExtractValue(I);
 | 
						|
  case Instruction::IntToPtr: // Deliberate fall-through.
 | 
						|
  case Instruction::PtrToInt: {
 | 
						|
    EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
 | 
						|
    EVT DstVT = TLI.getValueType(I->getType());
 | 
						|
    if (DstVT.bitsGT(SrcVT))
 | 
						|
      return X86SelectZExt(I);
 | 
						|
    if (DstVT.bitsLT(SrcVT))
 | 
						|
      return X86SelectTrunc(I);
 | 
						|
    unsigned Reg = getRegForValue(I->getOperand(0));
 | 
						|
    if (Reg == 0) return false;
 | 
						|
    UpdateValueMap(I, Reg);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) {
 | 
						|
  EVT VT;
 | 
						|
  if (!isTypeLegal(C->getType(), VT))
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // Get opcode and regclass of the output for the given load instruction.
 | 
						|
  unsigned Opc = 0;
 | 
						|
  const TargetRegisterClass *RC = NULL;
 | 
						|
  switch (VT.getSimpleVT().SimpleTy) {
 | 
						|
  default: return false;
 | 
						|
  case MVT::i8:
 | 
						|
    Opc = X86::MOV8rm;
 | 
						|
    RC  = X86::GR8RegisterClass;
 | 
						|
    break;
 | 
						|
  case MVT::i16:
 | 
						|
    Opc = X86::MOV16rm;
 | 
						|
    RC  = X86::GR16RegisterClass;
 | 
						|
    break;
 | 
						|
  case MVT::i32:
 | 
						|
    Opc = X86::MOV32rm;
 | 
						|
    RC  = X86::GR32RegisterClass;
 | 
						|
    break;
 | 
						|
  case MVT::i64:
 | 
						|
    // Must be in x86-64 mode.
 | 
						|
    Opc = X86::MOV64rm;
 | 
						|
    RC  = X86::GR64RegisterClass;
 | 
						|
    break;
 | 
						|
  case MVT::f32:
 | 
						|
    if (Subtarget->hasSSE1()) {
 | 
						|
      Opc = X86::MOVSSrm;
 | 
						|
      RC  = X86::FR32RegisterClass;
 | 
						|
    } else {
 | 
						|
      Opc = X86::LD_Fp32m;
 | 
						|
      RC  = X86::RFP32RegisterClass;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case MVT::f64:
 | 
						|
    if (Subtarget->hasSSE2()) {
 | 
						|
      Opc = X86::MOVSDrm;
 | 
						|
      RC  = X86::FR64RegisterClass;
 | 
						|
    } else {
 | 
						|
      Opc = X86::LD_Fp64m;
 | 
						|
      RC  = X86::RFP64RegisterClass;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case MVT::f80:
 | 
						|
    // No f80 support yet.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Materialize addresses with LEA instructions.
 | 
						|
  if (isa<GlobalValue>(C)) {
 | 
						|
    X86AddressMode AM;
 | 
						|
    if (X86SelectAddress(C, AM)) {
 | 
						|
      if (TLI.getPointerTy() == MVT::i32)
 | 
						|
        Opc = X86::LEA32r;
 | 
						|
      else
 | 
						|
        Opc = X86::LEA64r;
 | 
						|
      unsigned ResultReg = createResultReg(RC);
 | 
						|
      addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
 | 
						|
                             TII.get(Opc), ResultReg), AM);
 | 
						|
      return ResultReg;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // MachineConstantPool wants an explicit alignment.
 | 
						|
  unsigned Align = TD.getPrefTypeAlignment(C->getType());
 | 
						|
  if (Align == 0) {
 | 
						|
    // Alignment of vector types.  FIXME!
 | 
						|
    Align = TD.getTypeAllocSize(C->getType());
 | 
						|
  }
 | 
						|
  
 | 
						|
  // x86-32 PIC requires a PIC base register for constant pools.
 | 
						|
  unsigned PICBase = 0;
 | 
						|
  unsigned char OpFlag = 0;
 | 
						|
  if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic
 | 
						|
    OpFlag = X86II::MO_PIC_BASE_OFFSET;
 | 
						|
    PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
 | 
						|
  } else if (Subtarget->isPICStyleGOT()) {
 | 
						|
    OpFlag = X86II::MO_GOTOFF;
 | 
						|
    PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
 | 
						|
  } else if (Subtarget->isPICStyleRIPRel() &&
 | 
						|
             TM.getCodeModel() == CodeModel::Small) {
 | 
						|
    PICBase = X86::RIP;
 | 
						|
  }
 | 
						|
 | 
						|
  // Create the load from the constant pool.
 | 
						|
  unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align);
 | 
						|
  unsigned ResultReg = createResultReg(RC);
 | 
						|
  addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
 | 
						|
                                   TII.get(Opc), ResultReg),
 | 
						|
                           MCPOffset, PICBase, OpFlag);
 | 
						|
 | 
						|
  return ResultReg;
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86FastISel::TargetMaterializeAlloca(const AllocaInst *C) {
 | 
						|
  // Fail on dynamic allocas. At this point, getRegForValue has already
 | 
						|
  // checked its CSE maps, so if we're here trying to handle a dynamic
 | 
						|
  // alloca, we're not going to succeed. X86SelectAddress has a
 | 
						|
  // check for dynamic allocas, because it's called directly from
 | 
						|
  // various places, but TargetMaterializeAlloca also needs a check
 | 
						|
  // in order to avoid recursion between getRegForValue,
 | 
						|
  // X86SelectAddrss, and TargetMaterializeAlloca.
 | 
						|
  if (!FuncInfo.StaticAllocaMap.count(C))
 | 
						|
    return 0;
 | 
						|
 | 
						|
  X86AddressMode AM;
 | 
						|
  if (!X86SelectAddress(C, AM))
 | 
						|
    return 0;
 | 
						|
  unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
 | 
						|
  TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy());
 | 
						|
  unsigned ResultReg = createResultReg(RC);
 | 
						|
  addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
 | 
						|
                         TII.get(Opc), ResultReg), AM);
 | 
						|
  return ResultReg;
 | 
						|
}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  llvm::FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo) {
 | 
						|
    return new X86FastISel(funcInfo);
 | 
						|
  }
 | 
						|
}
 |