mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78725 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			9228 lines
		
	
	
		
			357 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			9228 lines
		
	
	
		
			357 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the interfaces that X86 uses to lower LLVM code into a
 | |
| // selection DAG.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "X86.h"
 | |
| #include "X86InstrBuilder.h"
 | |
| #include "X86ISelLowering.h"
 | |
| #include "X86TargetMachine.h"
 | |
| #include "llvm/CallingConv.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/GlobalAlias.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/ADT/BitVector.h"
 | |
| #include "llvm/ADT/VectorExtras.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/PseudoSourceValue.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Target/TargetLoweringObjectFile.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<bool>
 | |
| DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
 | |
| 
 | |
| // Forward declarations.
 | |
| static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
 | |
|                        SDValue V2);
 | |
| 
 | |
| static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
 | |
|   switch (TM.getSubtarget<X86Subtarget>().TargetType) {
 | |
|   default: llvm_unreachable("unknown subtarget type");
 | |
|   case X86Subtarget::isDarwin:
 | |
|     return new TargetLoweringObjectFileMachO();
 | |
|   case X86Subtarget::isELF:
 | |
|     return new TargetLoweringObjectFileELF();
 | |
|   case X86Subtarget::isMingw:
 | |
|   case X86Subtarget::isCygwin:
 | |
|   case X86Subtarget::isWindows:
 | |
|     return new TargetLoweringObjectFileCOFF();
 | |
|   }
 | |
|   
 | |
| }
 | |
| 
 | |
| X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
 | |
|   : TargetLowering(TM, createTLOF(TM)) {
 | |
|   Subtarget = &TM.getSubtarget<X86Subtarget>();
 | |
|   X86ScalarSSEf64 = Subtarget->hasSSE2();
 | |
|   X86ScalarSSEf32 = Subtarget->hasSSE1();
 | |
|   X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
 | |
| 
 | |
|   RegInfo = TM.getRegisterInfo();
 | |
|   TD = getTargetData();
 | |
| 
 | |
|   // Set up the TargetLowering object.
 | |
| 
 | |
|   // X86 is weird, it always uses i8 for shift amounts and setcc results.
 | |
|   setShiftAmountType(MVT::i8);
 | |
|   setBooleanContents(ZeroOrOneBooleanContent);
 | |
|   setSchedulingPreference(SchedulingForRegPressure);
 | |
|   setStackPointerRegisterToSaveRestore(X86StackPtr);
 | |
| 
 | |
|   if (Subtarget->isTargetDarwin()) {
 | |
|     // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
 | |
|     setUseUnderscoreSetJmp(false);
 | |
|     setUseUnderscoreLongJmp(false);
 | |
|   } else if (Subtarget->isTargetMingw()) {
 | |
|     // MS runtime is weird: it exports _setjmp, but longjmp!
 | |
|     setUseUnderscoreSetJmp(true);
 | |
|     setUseUnderscoreLongJmp(false);
 | |
|   } else {
 | |
|     setUseUnderscoreSetJmp(true);
 | |
|     setUseUnderscoreLongJmp(true);
 | |
|   }
 | |
| 
 | |
|   // Set up the register classes.
 | |
|   addRegisterClass(MVT::i8, X86::GR8RegisterClass);
 | |
|   addRegisterClass(MVT::i16, X86::GR16RegisterClass);
 | |
|   addRegisterClass(MVT::i32, X86::GR32RegisterClass);
 | |
|   if (Subtarget->is64Bit())
 | |
|     addRegisterClass(MVT::i64, X86::GR64RegisterClass);
 | |
| 
 | |
|   setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
 | |
| 
 | |
|   // We don't accept any truncstore of integer registers.
 | |
|   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
 | |
|   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
 | |
|   setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
 | |
|   setTruncStoreAction(MVT::i32, MVT::i16, Expand);
 | |
|   setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
 | |
|   setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
 | |
| 
 | |
|   // SETOEQ and SETUNE require checking two conditions.
 | |
|   setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
 | |
|   setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
 | |
|   setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
 | |
|   setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
 | |
|   setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
 | |
|   setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
 | |
| 
 | |
|   // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
 | |
|   // operation.
 | |
|   setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
 | |
|   setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
 | |
|   setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
 | |
| 
 | |
|   if (Subtarget->is64Bit()) {
 | |
|     setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
 | |
|     setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
 | |
|   } else if (!UseSoftFloat) {
 | |
|     if (X86ScalarSSEf64) {
 | |
|       // We have an impenetrably clever algorithm for ui64->double only.
 | |
|       setOperationAction(ISD::UINT_TO_FP   , MVT::i64  , Custom);
 | |
|     }
 | |
|     // We have an algorithm for SSE2, and we turn this into a 64-bit
 | |
|     // FILD for other targets.
 | |
|     setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Custom);
 | |
|   }
 | |
| 
 | |
|   // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
 | |
|   // this operation.
 | |
|   setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
 | |
|   setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
 | |
| 
 | |
|   if (!UseSoftFloat) {
 | |
|     // SSE has no i16 to fp conversion, only i32
 | |
|     if (X86ScalarSSEf32) {
 | |
|       setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
 | |
|       // f32 and f64 cases are Legal, f80 case is not
 | |
|       setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
 | |
|     } else {
 | |
|       setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
 | |
|       setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
 | |
|     }
 | |
|   } else {
 | |
|     setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
 | |
|     setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
 | |
|   }
 | |
| 
 | |
|   // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
 | |
|   // are Legal, f80 is custom lowered.
 | |
|   setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
 | |
|   setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
 | |
| 
 | |
|   // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
 | |
|   // this operation.
 | |
|   setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
 | |
|   setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
 | |
| 
 | |
|   if (X86ScalarSSEf32) {
 | |
|     setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
 | |
|     // f32 and f64 cases are Legal, f80 case is not
 | |
|     setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
 | |
|   } else {
 | |
|     setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
 | |
|     setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
 | |
|   }
 | |
| 
 | |
|   // Handle FP_TO_UINT by promoting the destination to a larger signed
 | |
|   // conversion.
 | |
|   setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
 | |
|   setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
 | |
|   setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
 | |
| 
 | |
|   if (Subtarget->is64Bit()) {
 | |
|     setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
 | |
|     setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
 | |
|   } else if (!UseSoftFloat) {
 | |
|     if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
 | |
|       // Expand FP_TO_UINT into a select.
 | |
|       // FIXME: We would like to use a Custom expander here eventually to do
 | |
|       // the optimal thing for SSE vs. the default expansion in the legalizer.
 | |
|       setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
 | |
|     else
 | |
|       // With SSE3 we can use fisttpll to convert to a signed i64; without
 | |
|       // SSE, we're stuck with a fistpll.
 | |
|       setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
 | |
|   }
 | |
| 
 | |
|   // TODO: when we have SSE, these could be more efficient, by using movd/movq.
 | |
|   if (!X86ScalarSSEf64) {
 | |
|     setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
 | |
|     setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
 | |
|   }
 | |
| 
 | |
|   // Scalar integer divide and remainder are lowered to use operations that
 | |
|   // produce two results, to match the available instructions. This exposes
 | |
|   // the two-result form to trivial CSE, which is able to combine x/y and x%y
 | |
|   // into a single instruction.
 | |
|   //
 | |
|   // Scalar integer multiply-high is also lowered to use two-result
 | |
|   // operations, to match the available instructions. However, plain multiply
 | |
|   // (low) operations are left as Legal, as there are single-result
 | |
|   // instructions for this in x86. Using the two-result multiply instructions
 | |
|   // when both high and low results are needed must be arranged by dagcombine.
 | |
|   setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
 | |
|   setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
 | |
|   setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
 | |
|   setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
 | |
|   setOperationAction(ISD::SREM            , MVT::i8    , Expand);
 | |
|   setOperationAction(ISD::UREM            , MVT::i8    , Expand);
 | |
|   setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
 | |
|   setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
 | |
|   setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
 | |
|   setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
 | |
|   setOperationAction(ISD::SREM            , MVT::i16   , Expand);
 | |
|   setOperationAction(ISD::UREM            , MVT::i16   , Expand);
 | |
|   setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
 | |
|   setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
 | |
|   setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
 | |
|   setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
 | |
|   setOperationAction(ISD::SREM            , MVT::i32   , Expand);
 | |
|   setOperationAction(ISD::UREM            , MVT::i32   , Expand);
 | |
|   setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
 | |
|   setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
 | |
|   setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
 | |
|   setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
 | |
|   setOperationAction(ISD::SREM            , MVT::i64   , Expand);
 | |
|   setOperationAction(ISD::UREM            , MVT::i64   , Expand);
 | |
| 
 | |
|   setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
 | |
|   setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
 | |
|   setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
 | |
|   setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
 | |
|   if (Subtarget->is64Bit())
 | |
|     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
 | |
|   setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
 | |
|   setOperationAction(ISD::FREM             , MVT::f32  , Expand);
 | |
|   setOperationAction(ISD::FREM             , MVT::f64  , Expand);
 | |
|   setOperationAction(ISD::FREM             , MVT::f80  , Expand);
 | |
|   setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
 | |
| 
 | |
|   setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
 | |
|   setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
 | |
|   setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
 | |
|   setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
 | |
|   setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
 | |
|   setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
 | |
|   setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
 | |
|   setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
 | |
|   setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
 | |
|   if (Subtarget->is64Bit()) {
 | |
|     setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
 | |
|     setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
 | |
|     setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
 | |
|   }
 | |
| 
 | |
|   setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
 | |
|   setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
 | |
| 
 | |
|   // These should be promoted to a larger select which is supported.
 | |
|   setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
 | |
|   setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
 | |
|   // X86 wants to expand cmov itself.
 | |
|   setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
 | |
|   setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
 | |
|   setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
 | |
|   setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
 | |
|   setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
 | |
|   setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
 | |
|   setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
 | |
|   setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
 | |
|   setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
 | |
|   setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
 | |
|   setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
 | |
|   if (Subtarget->is64Bit()) {
 | |
|     setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
 | |
|     setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
 | |
|   }
 | |
|   setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
 | |
| 
 | |
|   // Darwin ABI issue.
 | |
|   setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
 | |
|   setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
 | |
|   setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
 | |
|   setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
 | |
|   if (Subtarget->is64Bit())
 | |
|     setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
 | |
|   if (Subtarget->is64Bit()) {
 | |
|     setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
 | |
|     setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
 | |
|     setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
 | |
|     setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
 | |
|   }
 | |
|   // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
 | |
|   setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
 | |
|   setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
 | |
|   setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
 | |
|   if (Subtarget->is64Bit()) {
 | |
|     setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
 | |
|     setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
 | |
|     setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
 | |
|   }
 | |
| 
 | |
|   if (Subtarget->hasSSE1())
 | |
|     setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
 | |
| 
 | |
|   if (!Subtarget->hasSSE2())
 | |
|     setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
 | |
| 
 | |
|   // Expand certain atomics
 | |
|   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
 | |
|   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
 | |
|   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
 | |
|   setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
 | |
|   setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
 | |
| 
 | |
|   if (!Subtarget->is64Bit()) {
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
 | |
|     setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
 | |
|   }
 | |
| 
 | |
|   // Use the default ISD::DBG_STOPPOINT, ISD::DECLARE expansion.
 | |
|   setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
 | |
|   // FIXME - use subtarget debug flags
 | |
|   if (!Subtarget->isTargetDarwin() &&
 | |
|       !Subtarget->isTargetELF() &&
 | |
|       !Subtarget->isTargetCygMing()) {
 | |
|     setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand);
 | |
|     setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
 | |
|   }
 | |
| 
 | |
|   setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
 | |
|   setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
 | |
|   if (Subtarget->is64Bit()) {
 | |
|     setExceptionPointerRegister(X86::RAX);
 | |
|     setExceptionSelectorRegister(X86::RDX);
 | |
|   } else {
 | |
|     setExceptionPointerRegister(X86::EAX);
 | |
|     setExceptionSelectorRegister(X86::EDX);
 | |
|   }
 | |
|   setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::TRAP, MVT::Other, Legal);
 | |
| 
 | |
|   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
 | |
|   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
 | |
|   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
 | |
|   if (Subtarget->is64Bit()) {
 | |
|     setOperationAction(ISD::VAARG           , MVT::Other, Custom);
 | |
|     setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
 | |
|   } else {
 | |
|     setOperationAction(ISD::VAARG           , MVT::Other, Expand);
 | |
|     setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
 | |
|   }
 | |
| 
 | |
|   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
 | |
|   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
 | |
|   if (Subtarget->is64Bit())
 | |
|     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
 | |
|   if (Subtarget->isTargetCygMing())
 | |
|     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
 | |
|   else
 | |
|     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
 | |
| 
 | |
|   if (!UseSoftFloat && X86ScalarSSEf64) {
 | |
|     // f32 and f64 use SSE.
 | |
|     // Set up the FP register classes.
 | |
|     addRegisterClass(MVT::f32, X86::FR32RegisterClass);
 | |
|     addRegisterClass(MVT::f64, X86::FR64RegisterClass);
 | |
| 
 | |
|     // Use ANDPD to simulate FABS.
 | |
|     setOperationAction(ISD::FABS , MVT::f64, Custom);
 | |
|     setOperationAction(ISD::FABS , MVT::f32, Custom);
 | |
| 
 | |
|     // Use XORP to simulate FNEG.
 | |
|     setOperationAction(ISD::FNEG , MVT::f64, Custom);
 | |
|     setOperationAction(ISD::FNEG , MVT::f32, Custom);
 | |
| 
 | |
|     // Use ANDPD and ORPD to simulate FCOPYSIGN.
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
 | |
| 
 | |
|     // We don't support sin/cos/fmod
 | |
|     setOperationAction(ISD::FSIN , MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FCOS , MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FSIN , MVT::f32, Expand);
 | |
|     setOperationAction(ISD::FCOS , MVT::f32, Expand);
 | |
| 
 | |
|     // Expand FP immediates into loads from the stack, except for the special
 | |
|     // cases we handle.
 | |
|     addLegalFPImmediate(APFloat(+0.0)); // xorpd
 | |
|     addLegalFPImmediate(APFloat(+0.0f)); // xorps
 | |
|   } else if (!UseSoftFloat && X86ScalarSSEf32) {
 | |
|     // Use SSE for f32, x87 for f64.
 | |
|     // Set up the FP register classes.
 | |
|     addRegisterClass(MVT::f32, X86::FR32RegisterClass);
 | |
|     addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
 | |
| 
 | |
|     // Use ANDPS to simulate FABS.
 | |
|     setOperationAction(ISD::FABS , MVT::f32, Custom);
 | |
| 
 | |
|     // Use XORP to simulate FNEG.
 | |
|     setOperationAction(ISD::FNEG , MVT::f32, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
 | |
| 
 | |
|     // Use ANDPS and ORPS to simulate FCOPYSIGN.
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
 | |
| 
 | |
|     // We don't support sin/cos/fmod
 | |
|     setOperationAction(ISD::FSIN , MVT::f32, Expand);
 | |
|     setOperationAction(ISD::FCOS , MVT::f32, Expand);
 | |
| 
 | |
|     // Special cases we handle for FP constants.
 | |
|     addLegalFPImmediate(APFloat(+0.0f)); // xorps
 | |
|     addLegalFPImmediate(APFloat(+0.0)); // FLD0
 | |
|     addLegalFPImmediate(APFloat(+1.0)); // FLD1
 | |
|     addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
 | |
|     addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
 | |
| 
 | |
|     if (!UnsafeFPMath) {
 | |
|       setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
 | |
|       setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
 | |
|     }
 | |
|   } else if (!UseSoftFloat) {
 | |
|     // f32 and f64 in x87.
 | |
|     // Set up the FP register classes.
 | |
|     addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
 | |
|     addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
 | |
| 
 | |
|     setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
 | |
|     setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
 | |
| 
 | |
|     if (!UnsafeFPMath) {
 | |
|       setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
 | |
|       setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
 | |
|     }
 | |
|     addLegalFPImmediate(APFloat(+0.0)); // FLD0
 | |
|     addLegalFPImmediate(APFloat(+1.0)); // FLD1
 | |
|     addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
 | |
|     addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
 | |
|     addLegalFPImmediate(APFloat(+0.0f)); // FLD0
 | |
|     addLegalFPImmediate(APFloat(+1.0f)); // FLD1
 | |
|     addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
 | |
|     addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
 | |
|   }
 | |
| 
 | |
|   // Long double always uses X87.
 | |
|   if (!UseSoftFloat) {
 | |
|     addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
 | |
|     setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
 | |
|     {
 | |
|       bool ignored;
 | |
|       APFloat TmpFlt(+0.0);
 | |
|       TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
 | |
|                      &ignored);
 | |
|       addLegalFPImmediate(TmpFlt);  // FLD0
 | |
|       TmpFlt.changeSign();
 | |
|       addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
 | |
|       APFloat TmpFlt2(+1.0);
 | |
|       TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
 | |
|                       &ignored);
 | |
|       addLegalFPImmediate(TmpFlt2);  // FLD1
 | |
|       TmpFlt2.changeSign();
 | |
|       addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
 | |
|     }
 | |
| 
 | |
|     if (!UnsafeFPMath) {
 | |
|       setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
 | |
|       setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Always use a library call for pow.
 | |
|   setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
 | |
|   setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
 | |
|   setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
 | |
| 
 | |
|   setOperationAction(ISD::FLOG, MVT::f80, Expand);
 | |
|   setOperationAction(ISD::FLOG2, MVT::f80, Expand);
 | |
|   setOperationAction(ISD::FLOG10, MVT::f80, Expand);
 | |
|   setOperationAction(ISD::FEXP, MVT::f80, Expand);
 | |
|   setOperationAction(ISD::FEXP2, MVT::f80, Expand);
 | |
| 
 | |
|   // First set operation action for all vector types to either promote
 | |
|   // (for widening) or expand (for scalarization). Then we will selectively
 | |
|   // turn on ones that can be effectively codegen'd.
 | |
|   for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
 | |
|        VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
 | |
|     setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
 | |
|     setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
 | |
|     setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
 | |
|   }
 | |
| 
 | |
|   // FIXME: In order to prevent SSE instructions being expanded to MMX ones
 | |
|   // with -msoft-float, disable use of MMX as well.
 | |
|   if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
 | |
|     addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
 | |
|     addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
 | |
|     addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
 | |
|     addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
 | |
|     addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
 | |
| 
 | |
|     setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
 | |
|     setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
 | |
|     setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
 | |
|     setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
 | |
| 
 | |
|     setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
 | |
|     setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
 | |
|     setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
 | |
|     setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
 | |
| 
 | |
|     setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
 | |
|     setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
 | |
| 
 | |
|     setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
 | |
|     AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
 | |
|     setOperationAction(ISD::AND,                MVT::v4i16, Promote);
 | |
|     AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
 | |
|     setOperationAction(ISD::AND,                MVT::v2i32, Promote);
 | |
|     AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
 | |
|     setOperationAction(ISD::AND,                MVT::v1i64, Legal);
 | |
| 
 | |
|     setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
 | |
|     AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
 | |
|     setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
 | |
|     AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
 | |
|     setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
 | |
|     AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
 | |
|     setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
 | |
| 
 | |
|     setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
 | |
|     AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
 | |
|     setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
 | |
|     AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
 | |
|     setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
 | |
|     AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
 | |
|     setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
 | |
| 
 | |
|     setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
 | |
|     AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
 | |
|     setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
 | |
|     AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
 | |
|     setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
 | |
|     AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
 | |
|     setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
 | |
|     AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
 | |
|     setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
 | |
| 
 | |
|     setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
 | |
|     setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
 | |
|     setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
 | |
|     setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
 | |
|     setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
 | |
|     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
 | |
|     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
 | |
|     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
 | |
|     setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
 | |
|     setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
 | |
|     setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
 | |
| 
 | |
|     setTruncStoreAction(MVT::v8i16,             MVT::v8i8, Expand);
 | |
|     setOperationAction(ISD::TRUNCATE,           MVT::v8i8, Expand);
 | |
|     setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
 | |
|     setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
 | |
|     setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
 | |
|     setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
 | |
|     setOperationAction(ISD::VSETCC,             MVT::v8i8, Custom);
 | |
|     setOperationAction(ISD::VSETCC,             MVT::v4i16, Custom);
 | |
|     setOperationAction(ISD::VSETCC,             MVT::v2i32, Custom);
 | |
|   }
 | |
| 
 | |
|   if (!UseSoftFloat && Subtarget->hasSSE1()) {
 | |
|     addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
 | |
| 
 | |
|     setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
 | |
|     setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
 | |
|     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
 | |
|     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
 | |
|     setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
 | |
|     setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
 | |
|   }
 | |
| 
 | |
|   if (!UseSoftFloat && Subtarget->hasSSE2()) {
 | |
|     addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
 | |
| 
 | |
|     // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
 | |
|     // registers cannot be used even for integer operations.
 | |
|     addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
 | |
|     addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
 | |
|     addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
 | |
|     addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
 | |
| 
 | |
|     setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
 | |
|     setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
 | |
|     setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
 | |
|     setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
 | |
|     setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
 | |
|     setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
 | |
|     setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
 | |
|     setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
 | |
|     setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
 | |
|     setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
 | |
|     setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
 | |
|     setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
 | |
|     setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
 | |
|     setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
 | |
|     setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
 | |
|     setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
 | |
|     setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
 | |
|     setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
 | |
|     setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
 | |
|     setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
 | |
|     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
 | |
|     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
 | |
|     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
 | |
| 
 | |
|     // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
 | |
|     for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
 | |
|       EVT VT = (MVT::SimpleValueType)i;
 | |
|       // Do not attempt to custom lower non-power-of-2 vectors
 | |
|       if (!isPowerOf2_32(VT.getVectorNumElements()))
 | |
|         continue;
 | |
|       // Do not attempt to custom lower non-128-bit vectors
 | |
|       if (!VT.is128BitVector())
 | |
|         continue;
 | |
|       setOperationAction(ISD::BUILD_VECTOR,
 | |
|                          VT.getSimpleVT().SimpleTy, Custom);
 | |
|       setOperationAction(ISD::VECTOR_SHUFFLE,
 | |
|                          VT.getSimpleVT().SimpleTy, Custom);
 | |
|       setOperationAction(ISD::EXTRACT_VECTOR_ELT,
 | |
|                          VT.getSimpleVT().SimpleTy, Custom);
 | |
|     }
 | |
| 
 | |
|     setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
 | |
|     setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
 | |
|     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
 | |
|     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
 | |
|     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
 | |
|     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
 | |
| 
 | |
|     if (Subtarget->is64Bit()) {
 | |
|       setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
 | |
|       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
 | |
|     }
 | |
| 
 | |
|     // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
 | |
|     for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
 | |
|       MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
 | |
|       EVT VT = SVT;
 | |
| 
 | |
|       // Do not attempt to promote non-128-bit vectors
 | |
|       if (!VT.is128BitVector()) {
 | |
|         continue;
 | |
|       }
 | |
|       setOperationAction(ISD::AND,    SVT, Promote);
 | |
|       AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
 | |
|       setOperationAction(ISD::OR,     SVT, Promote);
 | |
|       AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
 | |
|       setOperationAction(ISD::XOR,    SVT, Promote);
 | |
|       AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
 | |
|       setOperationAction(ISD::LOAD,   SVT, Promote);
 | |
|       AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
 | |
|       setOperationAction(ISD::SELECT, SVT, Promote);
 | |
|       AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
 | |
|     }
 | |
| 
 | |
|     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
 | |
| 
 | |
|     // Custom lower v2i64 and v2f64 selects.
 | |
|     setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
 | |
|     setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
 | |
|     setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
 | |
|     setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
 | |
|     setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
 | |
|     if (!DisableMMX && Subtarget->hasMMX()) {
 | |
|       setOperationAction(ISD::FP_TO_SINT,         MVT::v2i32, Custom);
 | |
|       setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Subtarget->hasSSE41()) {
 | |
|     // FIXME: Do we need to handle scalar-to-vector here?
 | |
|     setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
 | |
| 
 | |
|     // i8 and i16 vectors are custom , because the source register and source
 | |
|     // source memory operand types are not the same width.  f32 vectors are
 | |
|     // custom since the immediate controlling the insert encodes additional
 | |
|     // information.
 | |
|     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
 | |
|     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
 | |
|     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
 | |
|     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
 | |
|     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
 | |
|     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
 | |
|     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
 | |
| 
 | |
|     if (Subtarget->is64Bit()) {
 | |
|       setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
 | |
|       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Subtarget->hasSSE42()) {
 | |
|     setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
 | |
|   }
 | |
| 
 | |
|   if (!UseSoftFloat && Subtarget->hasAVX()) {
 | |
|     addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
 | |
|     addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
 | |
|     addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
 | |
|     addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
 | |
| 
 | |
|     setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
 | |
|     setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
 | |
|     setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
 | |
|     setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
 | |
|     setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
 | |
|     setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
 | |
|     setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
 | |
|     setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
 | |
|     setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
 | |
|     setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
 | |
|     //setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
 | |
|     //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
 | |
|     //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
 | |
|     //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
 | |
|     //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
 | |
| 
 | |
|     // Operations to consider commented out -v16i16 v32i8
 | |
|     //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
 | |
|     setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
 | |
|     setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
 | |
|     //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
 | |
|     //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
 | |
|     setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
 | |
|     setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
 | |
|     //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
 | |
|     setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
 | |
|     setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
 | |
|     setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
 | |
|     setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
 | |
|     setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
 | |
|     setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
 | |
|     // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
 | |
|     // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
 | |
|     setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
 | |
| 
 | |
|     // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
 | |
|     // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
 | |
|     // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
 | |
|     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
 | |
|     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
 | |
|     setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
 | |
|     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
 | |
|     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
 | |
|     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
 | |
|     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
 | |
| 
 | |
| #if 0
 | |
|     // Not sure we want to do this since there are no 256-bit integer
 | |
|     // operations in AVX
 | |
| 
 | |
|     // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
 | |
|     // This includes 256-bit vectors
 | |
|     for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
 | |
|       EVT VT = (MVT::SimpleValueType)i;
 | |
| 
 | |
|       // Do not attempt to custom lower non-power-of-2 vectors
 | |
|       if (!isPowerOf2_32(VT.getVectorNumElements()))
 | |
|         continue;
 | |
| 
 | |
|       setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
 | |
|       setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
 | |
|       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
 | |
|     }
 | |
| 
 | |
|     if (Subtarget->is64Bit()) {
 | |
|       setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
 | |
|       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
 | |
|     }    
 | |
| #endif
 | |
| 
 | |
| #if 0
 | |
|     // Not sure we want to do this since there are no 256-bit integer
 | |
|     // operations in AVX
 | |
| 
 | |
|     // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
 | |
|     // Including 256-bit vectors
 | |
|     for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
 | |
|       EVT VT = (MVT::SimpleValueType)i;
 | |
| 
 | |
|       if (!VT.is256BitVector()) {
 | |
|         continue;
 | |
|       }
 | |
|       setOperationAction(ISD::AND,    VT, Promote);
 | |
|       AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
 | |
|       setOperationAction(ISD::OR,     VT, Promote);
 | |
|       AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
 | |
|       setOperationAction(ISD::XOR,    VT, Promote);
 | |
|       AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
 | |
|       setOperationAction(ISD::LOAD,   VT, Promote);
 | |
|       AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
 | |
|       setOperationAction(ISD::SELECT, VT, Promote);
 | |
|       AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
 | |
|     }
 | |
| 
 | |
|     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   // We want to custom lower some of our intrinsics.
 | |
|   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
 | |
| 
 | |
|   // Add/Sub/Mul with overflow operations are custom lowered.
 | |
|   setOperationAction(ISD::SADDO, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::SADDO, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::UADDO, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::UADDO, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::SSUBO, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::SSUBO, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::USUBO, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::USUBO, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::SMULO, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::SMULO, MVT::i64, Custom);
 | |
| 
 | |
|   if (!Subtarget->is64Bit()) {
 | |
|     // These libcalls are not available in 32-bit.
 | |
|     setLibcallName(RTLIB::SHL_I128, 0);
 | |
|     setLibcallName(RTLIB::SRL_I128, 0);
 | |
|     setLibcallName(RTLIB::SRA_I128, 0);
 | |
|   }
 | |
| 
 | |
|   // We have target-specific dag combine patterns for the following nodes:
 | |
|   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
 | |
|   setTargetDAGCombine(ISD::BUILD_VECTOR);
 | |
|   setTargetDAGCombine(ISD::SELECT);
 | |
|   setTargetDAGCombine(ISD::SHL);
 | |
|   setTargetDAGCombine(ISD::SRA);
 | |
|   setTargetDAGCombine(ISD::SRL);
 | |
|   setTargetDAGCombine(ISD::STORE);
 | |
|   setTargetDAGCombine(ISD::MEMBARRIER);
 | |
|   if (Subtarget->is64Bit())
 | |
|     setTargetDAGCombine(ISD::MUL);
 | |
| 
 | |
|   computeRegisterProperties();
 | |
| 
 | |
|   // FIXME: These should be based on subtarget info. Plus, the values should
 | |
|   // be smaller when we are in optimizing for size mode.
 | |
|   maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
 | |
|   maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
 | |
|   maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
 | |
|   allowUnalignedMemoryAccesses = true; // x86 supports it!
 | |
|   setPrefLoopAlignment(16);
 | |
|   benefitFromCodePlacementOpt = true;
 | |
| }
 | |
| 
 | |
| 
 | |
| MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
 | |
|   return MVT::i8;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
 | |
| /// the desired ByVal argument alignment.
 | |
| static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
 | |
|   if (MaxAlign == 16)
 | |
|     return;
 | |
|   if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
 | |
|     if (VTy->getBitWidth() == 128)
 | |
|       MaxAlign = 16;
 | |
|   } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
 | |
|     unsigned EltAlign = 0;
 | |
|     getMaxByValAlign(ATy->getElementType(), EltAlign);
 | |
|     if (EltAlign > MaxAlign)
 | |
|       MaxAlign = EltAlign;
 | |
|   } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
 | |
|     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
 | |
|       unsigned EltAlign = 0;
 | |
|       getMaxByValAlign(STy->getElementType(i), EltAlign);
 | |
|       if (EltAlign > MaxAlign)
 | |
|         MaxAlign = EltAlign;
 | |
|       if (MaxAlign == 16)
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
 | |
| /// function arguments in the caller parameter area. For X86, aggregates
 | |
| /// that contain SSE vectors are placed at 16-byte boundaries while the rest
 | |
| /// are at 4-byte boundaries.
 | |
| unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
 | |
|   if (Subtarget->is64Bit()) {
 | |
|     // Max of 8 and alignment of type.
 | |
|     unsigned TyAlign = TD->getABITypeAlignment(Ty);
 | |
|     if (TyAlign > 8)
 | |
|       return TyAlign;
 | |
|     return 8;
 | |
|   }
 | |
| 
 | |
|   unsigned Align = 4;
 | |
|   if (Subtarget->hasSSE1())
 | |
|     getMaxByValAlign(Ty, Align);
 | |
|   return Align;
 | |
| }
 | |
| 
 | |
| /// getOptimalMemOpType - Returns the target specific optimal type for load
 | |
| /// and store operations as a result of memset, memcpy, and memmove
 | |
| /// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
 | |
| /// determining it.
 | |
| EVT
 | |
| X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
 | |
|                                        bool isSrcConst, bool isSrcStr,
 | |
|                                        SelectionDAG &DAG) const {
 | |
|   // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
 | |
|   // linux.  This is because the stack realignment code can't handle certain
 | |
|   // cases like PR2962.  This should be removed when PR2962 is fixed.
 | |
|   const Function *F = DAG.getMachineFunction().getFunction();
 | |
|   bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
 | |
|   if (!NoImplicitFloatOps && Subtarget->getStackAlignment() >= 16) {
 | |
|     if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
 | |
|       return MVT::v4i32;
 | |
|     if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
 | |
|       return MVT::v4f32;
 | |
|   }
 | |
|   if (Subtarget->is64Bit() && Size >= 8)
 | |
|     return MVT::i64;
 | |
|   return MVT::i32;
 | |
| }
 | |
| 
 | |
| /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
 | |
| /// jumptable.
 | |
| SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
 | |
|                                                       SelectionDAG &DAG) const {
 | |
|   if (usesGlobalOffsetTable())
 | |
|     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
 | |
|   if (!Subtarget->is64Bit())
 | |
|     // This doesn't have DebugLoc associated with it, but is not really the
 | |
|     // same as a Register.
 | |
|     return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc::getUnknownLoc(),
 | |
|                        getPointerTy());
 | |
|   return Table;
 | |
| }
 | |
| 
 | |
| /// getFunctionAlignment - Return the Log2 alignment of this function.
 | |
| unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
 | |
|   return F->hasFnAttr(Attribute::OptimizeForSize) ? 1 : 4;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //               Return Value Calling Convention Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "X86GenCallingConv.inc"
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::LowerReturn(SDValue Chain,
 | |
|                                unsigned CallConv, bool isVarArg,
 | |
|                                const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                                DebugLoc dl, SelectionDAG &DAG) {
 | |
| 
 | |
|   SmallVector<CCValAssign, 16> RVLocs;
 | |
|   CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
 | |
|                  RVLocs, *DAG.getContext());
 | |
|   CCInfo.AnalyzeReturn(Outs, RetCC_X86);
 | |
| 
 | |
|   // If this is the first return lowered for this function, add the regs to the
 | |
|   // liveout set for the function.
 | |
|   if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
 | |
|     for (unsigned i = 0; i != RVLocs.size(); ++i)
 | |
|       if (RVLocs[i].isRegLoc())
 | |
|         DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
 | |
|   }
 | |
| 
 | |
|   SDValue Flag;
 | |
| 
 | |
|   SmallVector<SDValue, 6> RetOps;
 | |
|   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
 | |
|   // Operand #1 = Bytes To Pop
 | |
|   RetOps.push_back(DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
 | |
| 
 | |
|   // Copy the result values into the output registers.
 | |
|   for (unsigned i = 0; i != RVLocs.size(); ++i) {
 | |
|     CCValAssign &VA = RVLocs[i];
 | |
|     assert(VA.isRegLoc() && "Can only return in registers!");
 | |
|     SDValue ValToCopy = Outs[i].Val;
 | |
| 
 | |
|     // Returns in ST0/ST1 are handled specially: these are pushed as operands to
 | |
|     // the RET instruction and handled by the FP Stackifier.
 | |
|     if (VA.getLocReg() == X86::ST0 ||
 | |
|         VA.getLocReg() == X86::ST1) {
 | |
|       // If this is a copy from an xmm register to ST(0), use an FPExtend to
 | |
|       // change the value to the FP stack register class.
 | |
|       if (isScalarFPTypeInSSEReg(VA.getValVT()))
 | |
|         ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
 | |
|       RetOps.push_back(ValToCopy);
 | |
|       // Don't emit a copytoreg.
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
 | |
|     // which is returned in RAX / RDX.
 | |
|     if (Subtarget->is64Bit()) {
 | |
|       EVT ValVT = ValToCopy.getValueType();
 | |
|       if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
 | |
|         ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
 | |
|         if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
 | |
|           ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
 | |
|     Flag = Chain.getValue(1);
 | |
|   }
 | |
| 
 | |
|   // The x86-64 ABI for returning structs by value requires that we copy
 | |
|   // the sret argument into %rax for the return. We saved the argument into
 | |
|   // a virtual register in the entry block, so now we copy the value out
 | |
|   // and into %rax.
 | |
|   if (Subtarget->is64Bit() &&
 | |
|       DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
 | |
|     MachineFunction &MF = DAG.getMachineFunction();
 | |
|     X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
 | |
|     unsigned Reg = FuncInfo->getSRetReturnReg();
 | |
|     if (!Reg) {
 | |
|       Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
 | |
|       FuncInfo->setSRetReturnReg(Reg);
 | |
|     }
 | |
|     SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
 | |
| 
 | |
|     Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
 | |
|     Flag = Chain.getValue(1);
 | |
|   }
 | |
| 
 | |
|   RetOps[0] = Chain;  // Update chain.
 | |
| 
 | |
|   // Add the flag if we have it.
 | |
|   if (Flag.getNode())
 | |
|     RetOps.push_back(Flag);
 | |
| 
 | |
|   return DAG.getNode(X86ISD::RET_FLAG, dl,
 | |
|                      MVT::Other, &RetOps[0], RetOps.size());
 | |
| }
 | |
| 
 | |
| /// LowerCallResult - Lower the result values of a call into the
 | |
| /// appropriate copies out of appropriate physical registers.
 | |
| ///
 | |
| SDValue
 | |
| X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
 | |
|                                    unsigned CallConv, bool isVarArg,
 | |
|                                    const SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                                    DebugLoc dl, SelectionDAG &DAG,
 | |
|                                    SmallVectorImpl<SDValue> &InVals) {
 | |
| 
 | |
|   // Assign locations to each value returned by this call.
 | |
|   SmallVector<CCValAssign, 16> RVLocs;
 | |
|   bool Is64Bit = Subtarget->is64Bit();
 | |
|   CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
 | |
|                  RVLocs, *DAG.getContext());
 | |
|   CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
 | |
| 
 | |
|   // Copy all of the result registers out of their specified physreg.
 | |
|   for (unsigned i = 0; i != RVLocs.size(); ++i) {
 | |
|     CCValAssign &VA = RVLocs[i];
 | |
|     EVT CopyVT = VA.getValVT();
 | |
| 
 | |
|     // If this is x86-64, and we disabled SSE, we can't return FP values
 | |
|     if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
 | |
|         ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
 | |
|       llvm_report_error("SSE register return with SSE disabled");
 | |
|     }
 | |
| 
 | |
|     // If this is a call to a function that returns an fp value on the floating
 | |
|     // point stack, but where we prefer to use the value in xmm registers, copy
 | |
|     // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
 | |
|     if ((VA.getLocReg() == X86::ST0 ||
 | |
|          VA.getLocReg() == X86::ST1) &&
 | |
|         isScalarFPTypeInSSEReg(VA.getValVT())) {
 | |
|       CopyVT = MVT::f80;
 | |
|     }
 | |
| 
 | |
|     SDValue Val;
 | |
|     if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
 | |
|       // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
 | |
|       if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
 | |
|         Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
 | |
|                                    MVT::v2i64, InFlag).getValue(1);
 | |
|         Val = Chain.getValue(0);
 | |
|         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
 | |
|                           Val, DAG.getConstant(0, MVT::i64));
 | |
|       } else {
 | |
|         Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
 | |
|                                    MVT::i64, InFlag).getValue(1);
 | |
|         Val = Chain.getValue(0);
 | |
|       }
 | |
|       Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
 | |
|     } else {
 | |
|       Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
 | |
|                                  CopyVT, InFlag).getValue(1);
 | |
|       Val = Chain.getValue(0);
 | |
|     }
 | |
|     InFlag = Chain.getValue(2);
 | |
| 
 | |
|     if (CopyVT != VA.getValVT()) {
 | |
|       // Round the F80 the right size, which also moves to the appropriate xmm
 | |
|       // register.
 | |
|       Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
 | |
|                         // This truncation won't change the value.
 | |
|                         DAG.getIntPtrConstant(1));
 | |
|     }
 | |
| 
 | |
|     InVals.push_back(Val);
 | |
|   }
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                C & StdCall & Fast Calling Convention implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  StdCall calling convention seems to be standard for many Windows' API
 | |
| //  routines and around. It differs from C calling convention just a little:
 | |
| //  callee should clean up the stack, not caller. Symbols should be also
 | |
| //  decorated in some fancy way :) It doesn't support any vector arguments.
 | |
| //  For info on fast calling convention see Fast Calling Convention (tail call)
 | |
| //  implementation LowerX86_32FastCCCallTo.
 | |
| 
 | |
| /// CallIsStructReturn - Determines whether a call uses struct return
 | |
| /// semantics.
 | |
| static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
 | |
|   if (Outs.empty())
 | |
|     return false;
 | |
| 
 | |
|   return Outs[0].Flags.isSRet();
 | |
| }
 | |
| 
 | |
| /// ArgsAreStructReturn - Determines whether a function uses struct
 | |
| /// return semantics.
 | |
| static bool
 | |
| ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
 | |
|   if (Ins.empty())
 | |
|     return false;
 | |
| 
 | |
|   return Ins[0].Flags.isSRet();
 | |
| }
 | |
| 
 | |
| /// IsCalleePop - Determines whether the callee is required to pop its
 | |
| /// own arguments. Callee pop is necessary to support tail calls.
 | |
| bool X86TargetLowering::IsCalleePop(bool IsVarArg, unsigned CallingConv) {
 | |
|   if (IsVarArg)
 | |
|     return false;
 | |
| 
 | |
|   switch (CallingConv) {
 | |
|   default:
 | |
|     return false;
 | |
|   case CallingConv::X86_StdCall:
 | |
|     return !Subtarget->is64Bit();
 | |
|   case CallingConv::X86_FastCall:
 | |
|     return !Subtarget->is64Bit();
 | |
|   case CallingConv::Fast:
 | |
|     return PerformTailCallOpt;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CCAssignFnForNode - Selects the correct CCAssignFn for a the
 | |
| /// given CallingConvention value.
 | |
| CCAssignFn *X86TargetLowering::CCAssignFnForNode(unsigned CC) const {
 | |
|   if (Subtarget->is64Bit()) {
 | |
|     if (Subtarget->isTargetWin64())
 | |
|       return CC_X86_Win64_C;
 | |
|     else
 | |
|       return CC_X86_64_C;
 | |
|   }
 | |
| 
 | |
|   if (CC == CallingConv::X86_FastCall)
 | |
|     return CC_X86_32_FastCall;
 | |
|   else if (CC == CallingConv::Fast)
 | |
|     return CC_X86_32_FastCC;
 | |
|   else
 | |
|     return CC_X86_32_C;
 | |
| }
 | |
| 
 | |
| /// NameDecorationForCallConv - Selects the appropriate decoration to
 | |
| /// apply to a MachineFunction containing a given calling convention.
 | |
| NameDecorationStyle
 | |
| X86TargetLowering::NameDecorationForCallConv(unsigned CallConv) {
 | |
|   if (CallConv == CallingConv::X86_FastCall)
 | |
|     return FastCall;
 | |
|   else if (CallConv == CallingConv::X86_StdCall)
 | |
|     return StdCall;
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
 | |
| /// by "Src" to address "Dst" with size and alignment information specified by
 | |
| /// the specific parameter attribute. The copy will be passed as a byval
 | |
| /// function parameter.
 | |
| static SDValue
 | |
| CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
 | |
|                           ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
 | |
|                           DebugLoc dl) {
 | |
|   SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
 | |
|   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
 | |
|                        /*AlwaysInline=*/true, NULL, 0, NULL, 0);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::LowerMemArgument(SDValue Chain,
 | |
|                                     unsigned CallConv,
 | |
|                                     const SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                                     DebugLoc dl, SelectionDAG &DAG,
 | |
|                                     const CCValAssign &VA,
 | |
|                                     MachineFrameInfo *MFI,
 | |
|                                     unsigned i) {
 | |
| 
 | |
|   // Create the nodes corresponding to a load from this parameter slot.
 | |
|   ISD::ArgFlagsTy Flags = Ins[i].Flags;
 | |
|   bool AlwaysUseMutable = (CallConv==CallingConv::Fast) && PerformTailCallOpt;
 | |
|   bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
 | |
| 
 | |
|   // FIXME: For now, all byval parameter objects are marked mutable. This can be
 | |
|   // changed with more analysis.
 | |
|   // In case of tail call optimization mark all arguments mutable. Since they
 | |
|   // could be overwritten by lowering of arguments in case of a tail call.
 | |
|   int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8,
 | |
|                                   VA.getLocMemOffset(), isImmutable);
 | |
|   SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
 | |
|   if (Flags.isByVal())
 | |
|     return FIN;
 | |
|   return DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
 | |
|                      PseudoSourceValue::getFixedStack(FI), 0);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::LowerFormalArguments(SDValue Chain,
 | |
|                                         unsigned CallConv,
 | |
|                                         bool isVarArg,
 | |
|                                       const SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                                         DebugLoc dl,
 | |
|                                         SelectionDAG &DAG,
 | |
|                                         SmallVectorImpl<SDValue> &InVals) {
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
 | |
| 
 | |
|   const Function* Fn = MF.getFunction();
 | |
|   if (Fn->hasExternalLinkage() &&
 | |
|       Subtarget->isTargetCygMing() &&
 | |
|       Fn->getName() == "main")
 | |
|     FuncInfo->setForceFramePointer(true);
 | |
| 
 | |
|   // Decorate the function name.
 | |
|   FuncInfo->setDecorationStyle(NameDecorationForCallConv(CallConv));
 | |
| 
 | |
|   MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
|   bool Is64Bit = Subtarget->is64Bit();
 | |
|   bool IsWin64 = Subtarget->isTargetWin64();
 | |
| 
 | |
|   assert(!(isVarArg && CallConv == CallingConv::Fast) &&
 | |
|          "Var args not supported with calling convention fastcc");
 | |
| 
 | |
|   // Assign locations to all of the incoming arguments.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
 | |
|                  ArgLocs, *DAG.getContext());
 | |
|   CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
 | |
| 
 | |
|   unsigned LastVal = ~0U;
 | |
|   SDValue ArgValue;
 | |
|   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | |
|     CCValAssign &VA = ArgLocs[i];
 | |
|     // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
 | |
|     // places.
 | |
|     assert(VA.getValNo() != LastVal &&
 | |
|            "Don't support value assigned to multiple locs yet");
 | |
|     LastVal = VA.getValNo();
 | |
| 
 | |
|     if (VA.isRegLoc()) {
 | |
|       EVT RegVT = VA.getLocVT();
 | |
|       TargetRegisterClass *RC = NULL;
 | |
|       if (RegVT == MVT::i32)
 | |
|         RC = X86::GR32RegisterClass;
 | |
|       else if (Is64Bit && RegVT == MVT::i64)
 | |
|         RC = X86::GR64RegisterClass;
 | |
|       else if (RegVT == MVT::f32)
 | |
|         RC = X86::FR32RegisterClass;
 | |
|       else if (RegVT == MVT::f64)
 | |
|         RC = X86::FR64RegisterClass;
 | |
|       else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
 | |
|         RC = X86::VR128RegisterClass;
 | |
|       else if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
 | |
|         RC = X86::VR64RegisterClass;
 | |
|       else
 | |
|         llvm_unreachable("Unknown argument type!");
 | |
| 
 | |
|       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
 | |
|       ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
 | |
| 
 | |
|       // If this is an 8 or 16-bit value, it is really passed promoted to 32
 | |
|       // bits.  Insert an assert[sz]ext to capture this, then truncate to the
 | |
|       // right size.
 | |
|       if (VA.getLocInfo() == CCValAssign::SExt)
 | |
|         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
 | |
|                                DAG.getValueType(VA.getValVT()));
 | |
|       else if (VA.getLocInfo() == CCValAssign::ZExt)
 | |
|         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
 | |
|                                DAG.getValueType(VA.getValVT()));
 | |
|       else if (VA.getLocInfo() == CCValAssign::BCvt)
 | |
|         ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
 | |
| 
 | |
|       if (VA.isExtInLoc()) {
 | |
|         // Handle MMX values passed in XMM regs.
 | |
|         if (RegVT.isVector()) {
 | |
|           ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
 | |
|                                  ArgValue, DAG.getConstant(0, MVT::i64));
 | |
|           ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
 | |
|         } else
 | |
|           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
 | |
|       }
 | |
|     } else {
 | |
|       assert(VA.isMemLoc());
 | |
|       ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
 | |
|     }
 | |
| 
 | |
|     // If value is passed via pointer - do a load.
 | |
|     if (VA.getLocInfo() == CCValAssign::Indirect)
 | |
|       ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0);
 | |
| 
 | |
|     InVals.push_back(ArgValue);
 | |
|   }
 | |
| 
 | |
|   // The x86-64 ABI for returning structs by value requires that we copy
 | |
|   // the sret argument into %rax for the return. Save the argument into
 | |
|   // a virtual register so that we can access it from the return points.
 | |
|   if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
 | |
|     X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
 | |
|     unsigned Reg = FuncInfo->getSRetReturnReg();
 | |
|     if (!Reg) {
 | |
|       Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
 | |
|       FuncInfo->setSRetReturnReg(Reg);
 | |
|     }
 | |
|     SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
 | |
|   }
 | |
| 
 | |
|   unsigned StackSize = CCInfo.getNextStackOffset();
 | |
|   // align stack specially for tail calls
 | |
|   if (PerformTailCallOpt && CallConv == CallingConv::Fast)
 | |
|     StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
 | |
| 
 | |
|   // If the function takes variable number of arguments, make a frame index for
 | |
|   // the start of the first vararg value... for expansion of llvm.va_start.
 | |
|   if (isVarArg) {
 | |
|     if (Is64Bit || CallConv != CallingConv::X86_FastCall) {
 | |
|       VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
 | |
|     }
 | |
|     if (Is64Bit) {
 | |
|       unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
 | |
| 
 | |
|       // FIXME: We should really autogenerate these arrays
 | |
|       static const unsigned GPR64ArgRegsWin64[] = {
 | |
|         X86::RCX, X86::RDX, X86::R8,  X86::R9
 | |
|       };
 | |
|       static const unsigned XMMArgRegsWin64[] = {
 | |
|         X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
 | |
|       };
 | |
|       static const unsigned GPR64ArgRegs64Bit[] = {
 | |
|         X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
 | |
|       };
 | |
|       static const unsigned XMMArgRegs64Bit[] = {
 | |
|         X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
 | |
|         X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
 | |
|       };
 | |
|       const unsigned *GPR64ArgRegs, *XMMArgRegs;
 | |
| 
 | |
|       if (IsWin64) {
 | |
|         TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
 | |
|         GPR64ArgRegs = GPR64ArgRegsWin64;
 | |
|         XMMArgRegs = XMMArgRegsWin64;
 | |
|       } else {
 | |
|         TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
 | |
|         GPR64ArgRegs = GPR64ArgRegs64Bit;
 | |
|         XMMArgRegs = XMMArgRegs64Bit;
 | |
|       }
 | |
|       unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
 | |
|                                                        TotalNumIntRegs);
 | |
|       unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
 | |
|                                                        TotalNumXMMRegs);
 | |
| 
 | |
|       bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
 | |
|       assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
 | |
|              "SSE register cannot be used when SSE is disabled!");
 | |
|       assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
 | |
|              "SSE register cannot be used when SSE is disabled!");
 | |
|       if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
 | |
|         // Kernel mode asks for SSE to be disabled, so don't push them
 | |
|         // on the stack.
 | |
|         TotalNumXMMRegs = 0;
 | |
| 
 | |
|       // For X86-64, if there are vararg parameters that are passed via
 | |
|       // registers, then we must store them to their spots on the stack so they
 | |
|       // may be loaded by deferencing the result of va_next.
 | |
|       VarArgsGPOffset = NumIntRegs * 8;
 | |
|       VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
 | |
|       RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
 | |
|                                                  TotalNumXMMRegs * 16, 16);
 | |
| 
 | |
|       // Store the integer parameter registers.
 | |
|       SmallVector<SDValue, 8> MemOps;
 | |
|       SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
 | |
|       SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
 | |
|                                   DAG.getIntPtrConstant(VarArgsGPOffset));
 | |
|       for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
 | |
|         unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
 | |
|                                      X86::GR64RegisterClass);
 | |
|         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
 | |
|         SDValue Store =
 | |
|           DAG.getStore(Val.getValue(1), dl, Val, FIN,
 | |
|                        PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
 | |
|         MemOps.push_back(Store);
 | |
|         FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
 | |
|                           DAG.getIntPtrConstant(8));
 | |
|       }
 | |
| 
 | |
|       // Now store the XMM (fp + vector) parameter registers.
 | |
|       FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
 | |
|                         DAG.getIntPtrConstant(VarArgsFPOffset));
 | |
|       for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
 | |
|         unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
 | |
|                                      X86::VR128RegisterClass);
 | |
|         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
 | |
|         SDValue Store =
 | |
|           DAG.getStore(Val.getValue(1), dl, Val, FIN,
 | |
|                        PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
 | |
|         MemOps.push_back(Store);
 | |
|         FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
 | |
|                           DAG.getIntPtrConstant(16));
 | |
|       }
 | |
|       if (!MemOps.empty())
 | |
|           Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | |
|                              &MemOps[0], MemOps.size());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Some CCs need callee pop.
 | |
|   if (IsCalleePop(isVarArg, CallConv)) {
 | |
|     BytesToPopOnReturn  = StackSize; // Callee pops everything.
 | |
|     BytesCallerReserves = 0;
 | |
|   } else {
 | |
|     BytesToPopOnReturn  = 0; // Callee pops nothing.
 | |
|     // If this is an sret function, the return should pop the hidden pointer.
 | |
|     if (!Is64Bit && CallConv != CallingConv::Fast && ArgsAreStructReturn(Ins))
 | |
|       BytesToPopOnReturn = 4;
 | |
|     BytesCallerReserves = StackSize;
 | |
|   }
 | |
| 
 | |
|   if (!Is64Bit) {
 | |
|     RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
 | |
|     if (CallConv == CallingConv::X86_FastCall)
 | |
|       VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
 | |
|   }
 | |
| 
 | |
|   FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
 | |
|                                     SDValue StackPtr, SDValue Arg,
 | |
|                                     DebugLoc dl, SelectionDAG &DAG,
 | |
|                                     const CCValAssign &VA,
 | |
|                                     ISD::ArgFlagsTy Flags) {
 | |
|   const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
 | |
|   unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
 | |
|   SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
 | |
|   PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
 | |
|   if (Flags.isByVal()) {
 | |
|     return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
 | |
|   }
 | |
|   return DAG.getStore(Chain, dl, Arg, PtrOff,
 | |
|                       PseudoSourceValue::getStack(), LocMemOffset);
 | |
| }
 | |
| 
 | |
| /// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
 | |
| /// optimization is performed and it is required.
 | |
| SDValue
 | |
| X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
 | |
|                                            SDValue &OutRetAddr,
 | |
|                                            SDValue Chain,
 | |
|                                            bool IsTailCall,
 | |
|                                            bool Is64Bit,
 | |
|                                            int FPDiff,
 | |
|                                            DebugLoc dl) {
 | |
|   if (!IsTailCall || FPDiff==0) return Chain;
 | |
| 
 | |
|   // Adjust the Return address stack slot.
 | |
|   EVT VT = getPointerTy();
 | |
|   OutRetAddr = getReturnAddressFrameIndex(DAG);
 | |
| 
 | |
|   // Load the "old" Return address.
 | |
|   OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0);
 | |
|   return SDValue(OutRetAddr.getNode(), 1);
 | |
| }
 | |
| 
 | |
| /// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
 | |
| /// optimization is performed and it is required (FPDiff!=0).
 | |
| static SDValue
 | |
| EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
 | |
|                          SDValue Chain, SDValue RetAddrFrIdx,
 | |
|                          bool Is64Bit, int FPDiff, DebugLoc dl) {
 | |
|   // Store the return address to the appropriate stack slot.
 | |
|   if (!FPDiff) return Chain;
 | |
|   // Calculate the new stack slot for the return address.
 | |
|   int SlotSize = Is64Bit ? 8 : 4;
 | |
|   int NewReturnAddrFI =
 | |
|     MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
 | |
|   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
 | |
|   SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
 | |
|   Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
 | |
|                        PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0);
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
 | |
|                              unsigned CallConv, bool isVarArg, bool isTailCall,
 | |
|                              const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                              const SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                              DebugLoc dl, SelectionDAG &DAG,
 | |
|                              SmallVectorImpl<SDValue> &InVals) {
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   bool Is64Bit        = Subtarget->is64Bit();
 | |
|   bool IsStructRet    = CallIsStructReturn(Outs);
 | |
| 
 | |
|   assert((!isTailCall ||
 | |
|           (CallConv == CallingConv::Fast && PerformTailCallOpt)) &&
 | |
|          "IsEligibleForTailCallOptimization missed a case!");
 | |
|   assert(!(isVarArg && CallConv == CallingConv::Fast) &&
 | |
|          "Var args not supported with calling convention fastcc");
 | |
| 
 | |
|   // Analyze operands of the call, assigning locations to each operand.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
 | |
|                  ArgLocs, *DAG.getContext());
 | |
|   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
 | |
| 
 | |
|   // Get a count of how many bytes are to be pushed on the stack.
 | |
|   unsigned NumBytes = CCInfo.getNextStackOffset();
 | |
|   if (PerformTailCallOpt && CallConv == CallingConv::Fast)
 | |
|     NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
 | |
| 
 | |
|   int FPDiff = 0;
 | |
|   if (isTailCall) {
 | |
|     // Lower arguments at fp - stackoffset + fpdiff.
 | |
|     unsigned NumBytesCallerPushed =
 | |
|       MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
 | |
|     FPDiff = NumBytesCallerPushed - NumBytes;
 | |
| 
 | |
|     // Set the delta of movement of the returnaddr stackslot.
 | |
|     // But only set if delta is greater than previous delta.
 | |
|     if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
 | |
|       MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
 | |
|   }
 | |
| 
 | |
|   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
 | |
| 
 | |
|   SDValue RetAddrFrIdx;
 | |
|   // Load return adress for tail calls.
 | |
|   Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall, Is64Bit,
 | |
|                                   FPDiff, dl);
 | |
| 
 | |
|   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
 | |
|   SmallVector<SDValue, 8> MemOpChains;
 | |
|   SDValue StackPtr;
 | |
| 
 | |
|   // Walk the register/memloc assignments, inserting copies/loads.  In the case
 | |
|   // of tail call optimization arguments are handle later.
 | |
|   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | |
|     CCValAssign &VA = ArgLocs[i];
 | |
|     EVT RegVT = VA.getLocVT();
 | |
|     SDValue Arg = Outs[i].Val;
 | |
|     ISD::ArgFlagsTy Flags = Outs[i].Flags;
 | |
|     bool isByVal = Flags.isByVal();
 | |
| 
 | |
|     // Promote the value if needed.
 | |
|     switch (VA.getLocInfo()) {
 | |
|     default: llvm_unreachable("Unknown loc info!");
 | |
|     case CCValAssign::Full: break;
 | |
|     case CCValAssign::SExt:
 | |
|       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
 | |
|       break;
 | |
|     case CCValAssign::ZExt:
 | |
|       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
 | |
|       break;
 | |
|     case CCValAssign::AExt:
 | |
|       if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
 | |
|         // Special case: passing MMX values in XMM registers.
 | |
|         Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
 | |
|         Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
 | |
|         Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
 | |
|       } else
 | |
|         Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
 | |
|       break;
 | |
|     case CCValAssign::BCvt:
 | |
|       Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
 | |
|       break;
 | |
|     case CCValAssign::Indirect: {
 | |
|       // Store the argument.
 | |
|       SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
 | |
|       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
 | |
|       Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
 | |
|                            PseudoSourceValue::getFixedStack(FI), 0);
 | |
|       Arg = SpillSlot;
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
| 
 | |
|     if (VA.isRegLoc()) {
 | |
|       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
 | |
|     } else {
 | |
|       if (!isTailCall || (isTailCall && isByVal)) {
 | |
|         assert(VA.isMemLoc());
 | |
|         if (StackPtr.getNode() == 0)
 | |
|           StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
 | |
| 
 | |
|         MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
 | |
|                                                dl, DAG, VA, Flags));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!MemOpChains.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | |
|                         &MemOpChains[0], MemOpChains.size());
 | |
| 
 | |
|   // Build a sequence of copy-to-reg nodes chained together with token chain
 | |
|   // and flag operands which copy the outgoing args into registers.
 | |
|   SDValue InFlag;
 | |
|   // Tail call byval lowering might overwrite argument registers so in case of
 | |
|   // tail call optimization the copies to registers are lowered later.
 | |
|   if (!isTailCall)
 | |
|     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | |
|       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
 | |
|                                RegsToPass[i].second, InFlag);
 | |
|       InFlag = Chain.getValue(1);
 | |
|     }
 | |
| 
 | |
|   
 | |
|   if (Subtarget->isPICStyleGOT()) {
 | |
|     // ELF / PIC requires GOT in the EBX register before function calls via PLT
 | |
|     // GOT pointer.
 | |
|     if (!isTailCall) {
 | |
|       Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
 | |
|                                DAG.getNode(X86ISD::GlobalBaseReg,
 | |
|                                            DebugLoc::getUnknownLoc(),
 | |
|                                            getPointerTy()),
 | |
|                                InFlag);
 | |
|       InFlag = Chain.getValue(1);
 | |
|     } else {
 | |
|       // If we are tail calling and generating PIC/GOT style code load the
 | |
|       // address of the callee into ECX. The value in ecx is used as target of
 | |
|       // the tail jump. This is done to circumvent the ebx/callee-saved problem
 | |
|       // for tail calls on PIC/GOT architectures. Normally we would just put the
 | |
|       // address of GOT into ebx and then call target@PLT. But for tail calls
 | |
|       // ebx would be restored (since ebx is callee saved) before jumping to the
 | |
|       // target@PLT.
 | |
| 
 | |
|       // Note: The actual moving to ECX is done further down.
 | |
|       GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
 | |
|       if (G && !G->getGlobal()->hasHiddenVisibility() &&
 | |
|           !G->getGlobal()->hasProtectedVisibility())
 | |
|         Callee = LowerGlobalAddress(Callee, DAG);
 | |
|       else if (isa<ExternalSymbolSDNode>(Callee))
 | |
|         Callee = LowerExternalSymbol(Callee, DAG);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Is64Bit && isVarArg) {
 | |
|     // From AMD64 ABI document:
 | |
|     // For calls that may call functions that use varargs or stdargs
 | |
|     // (prototype-less calls or calls to functions containing ellipsis (...) in
 | |
|     // the declaration) %al is used as hidden argument to specify the number
 | |
|     // of SSE registers used. The contents of %al do not need to match exactly
 | |
|     // the number of registers, but must be an ubound on the number of SSE
 | |
|     // registers used and is in the range 0 - 8 inclusive.
 | |
| 
 | |
|     // FIXME: Verify this on Win64
 | |
|     // Count the number of XMM registers allocated.
 | |
|     static const unsigned XMMArgRegs[] = {
 | |
|       X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
 | |
|       X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
 | |
|     };
 | |
|     unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
 | |
|     assert((Subtarget->hasSSE1() || !NumXMMRegs)
 | |
|            && "SSE registers cannot be used when SSE is disabled");
 | |
| 
 | |
|     Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
 | |
|                              DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
 | |
|     InFlag = Chain.getValue(1);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // For tail calls lower the arguments to the 'real' stack slot.
 | |
|   if (isTailCall) {
 | |
|     // Force all the incoming stack arguments to be loaded from the stack
 | |
|     // before any new outgoing arguments are stored to the stack, because the
 | |
|     // outgoing stack slots may alias the incoming argument stack slots, and
 | |
|     // the alias isn't otherwise explicit. This is slightly more conservative
 | |
|     // than necessary, because it means that each store effectively depends
 | |
|     // on every argument instead of just those arguments it would clobber.
 | |
|     SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
 | |
| 
 | |
|     SmallVector<SDValue, 8> MemOpChains2;
 | |
|     SDValue FIN;
 | |
|     int FI = 0;
 | |
|     // Do not flag preceeding copytoreg stuff together with the following stuff.
 | |
|     InFlag = SDValue();
 | |
|     for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | |
|       CCValAssign &VA = ArgLocs[i];
 | |
|       if (!VA.isRegLoc()) {
 | |
|         assert(VA.isMemLoc());
 | |
|         SDValue Arg = Outs[i].Val;
 | |
|         ISD::ArgFlagsTy Flags = Outs[i].Flags;
 | |
|         // Create frame index.
 | |
|         int32_t Offset = VA.getLocMemOffset()+FPDiff;
 | |
|         uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
 | |
|         FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
 | |
|         FIN = DAG.getFrameIndex(FI, getPointerTy());
 | |
| 
 | |
|         if (Flags.isByVal()) {
 | |
|           // Copy relative to framepointer.
 | |
|           SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
 | |
|           if (StackPtr.getNode() == 0)
 | |
|             StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
 | |
|                                           getPointerTy());
 | |
|           Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
 | |
| 
 | |
|           MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
 | |
|                                                            ArgChain,
 | |
|                                                            Flags, DAG, dl));
 | |
|         } else {
 | |
|           // Store relative to framepointer.
 | |
|           MemOpChains2.push_back(
 | |
|             DAG.getStore(ArgChain, dl, Arg, FIN,
 | |
|                          PseudoSourceValue::getFixedStack(FI), 0));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!MemOpChains2.empty())
 | |
|       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | |
|                           &MemOpChains2[0], MemOpChains2.size());
 | |
| 
 | |
|     // Copy arguments to their registers.
 | |
|     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | |
|       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
 | |
|                                RegsToPass[i].second, InFlag);
 | |
|       InFlag = Chain.getValue(1);
 | |
|     }
 | |
|     InFlag =SDValue();
 | |
| 
 | |
|     // Store the return address to the appropriate stack slot.
 | |
|     Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
 | |
|                                      FPDiff, dl);
 | |
|   }
 | |
| 
 | |
|   // If the callee is a GlobalAddress node (quite common, every direct call is)
 | |
|   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
 | |
|   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
 | |
|     // We should use extra load for direct calls to dllimported functions in
 | |
|     // non-JIT mode.
 | |
|     GlobalValue *GV = G->getGlobal();
 | |
|     if (!GV->hasDLLImportLinkage()) {
 | |
|       unsigned char OpFlags = 0;
 | |
|     
 | |
|       // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
 | |
|       // external symbols most go through the PLT in PIC mode.  If the symbol
 | |
|       // has hidden or protected visibility, or if it is static or local, then
 | |
|       // we don't need to use the PLT - we can directly call it.
 | |
|       if (Subtarget->isTargetELF() &&
 | |
|           getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
 | |
|           GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
 | |
|         OpFlags = X86II::MO_PLT;
 | |
|       } else if (Subtarget->isPICStyleStubAny() &&
 | |
|                (GV->isDeclaration() || GV->isWeakForLinker()) &&
 | |
|                Subtarget->getDarwinVers() < 9) {
 | |
|         // PC-relative references to external symbols should go through $stub,
 | |
|         // unless we're building with the leopard linker or later, which
 | |
|         // automatically synthesizes these stubs.
 | |
|         OpFlags = X86II::MO_DARWIN_STUB;
 | |
|       }
 | |
| 
 | |
|       Callee = DAG.getTargetGlobalAddress(GV, getPointerTy(),
 | |
|                                           G->getOffset(), OpFlags);
 | |
|     }
 | |
|   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
 | |
|     unsigned char OpFlags = 0;
 | |
| 
 | |
|     // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
 | |
|     // symbols should go through the PLT.
 | |
|     if (Subtarget->isTargetELF() &&
 | |
|         getTargetMachine().getRelocationModel() == Reloc::PIC_) {
 | |
|       OpFlags = X86II::MO_PLT;
 | |
|     } else if (Subtarget->isPICStyleStubAny() &&
 | |
|              Subtarget->getDarwinVers() < 9) {
 | |
|       // PC-relative references to external symbols should go through $stub,
 | |
|       // unless we're building with the leopard linker or later, which
 | |
|       // automatically synthesizes these stubs.
 | |
|       OpFlags = X86II::MO_DARWIN_STUB;
 | |
|     }
 | |
|       
 | |
|     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
 | |
|                                          OpFlags);
 | |
|   } else if (isTailCall) {
 | |
|     unsigned Opc = Is64Bit ? X86::R11 : X86::EAX;
 | |
| 
 | |
|     Chain = DAG.getCopyToReg(Chain,  dl,
 | |
|                              DAG.getRegister(Opc, getPointerTy()),
 | |
|                              Callee,InFlag);
 | |
|     Callee = DAG.getRegister(Opc, getPointerTy());
 | |
|     // Add register as live out.
 | |
|     MF.getRegInfo().addLiveOut(Opc);
 | |
|   }
 | |
| 
 | |
|   // Returns a chain & a flag for retval copy to use.
 | |
|   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
| 
 | |
|   if (isTailCall) {
 | |
|     Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
 | |
|                            DAG.getIntPtrConstant(0, true), InFlag);
 | |
|     InFlag = Chain.getValue(1);
 | |
|   }
 | |
| 
 | |
|   Ops.push_back(Chain);
 | |
|   Ops.push_back(Callee);
 | |
| 
 | |
|   if (isTailCall)
 | |
|     Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
 | |
| 
 | |
|   // Add argument registers to the end of the list so that they are known live
 | |
|   // into the call.
 | |
|   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
 | |
|     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
 | |
|                                   RegsToPass[i].second.getValueType()));
 | |
| 
 | |
|   // Add an implicit use GOT pointer in EBX.
 | |
|   if (!isTailCall && Subtarget->isPICStyleGOT())
 | |
|     Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
 | |
| 
 | |
|   // Add an implicit use of AL for x86 vararg functions.
 | |
|   if (Is64Bit && isVarArg)
 | |
|     Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
 | |
| 
 | |
|   if (InFlag.getNode())
 | |
|     Ops.push_back(InFlag);
 | |
| 
 | |
|   if (isTailCall) {
 | |
|     // If this is the first return lowered for this function, add the regs
 | |
|     // to the liveout set for the function.
 | |
|     if (MF.getRegInfo().liveout_empty()) {
 | |
|       SmallVector<CCValAssign, 16> RVLocs;
 | |
|       CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
 | |
|                      *DAG.getContext());
 | |
|       CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
 | |
|       for (unsigned i = 0; i != RVLocs.size(); ++i)
 | |
|         if (RVLocs[i].isRegLoc())
 | |
|           MF.getRegInfo().addLiveOut(RVLocs[i].getLocReg());
 | |
|     }
 | |
| 
 | |
|     assert(((Callee.getOpcode() == ISD::Register &&
 | |
|                (cast<RegisterSDNode>(Callee)->getReg() == X86::EAX ||
 | |
|                 cast<RegisterSDNode>(Callee)->getReg() == X86::R9)) ||
 | |
|               Callee.getOpcode() == ISD::TargetExternalSymbol ||
 | |
|               Callee.getOpcode() == ISD::TargetGlobalAddress) &&
 | |
|              "Expecting an global address, external symbol, or register");
 | |
| 
 | |
|     return DAG.getNode(X86ISD::TC_RETURN, dl,
 | |
|                        NodeTys, &Ops[0], Ops.size());
 | |
|   }
 | |
| 
 | |
|   Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
 | |
|   InFlag = Chain.getValue(1);
 | |
| 
 | |
|   // Create the CALLSEQ_END node.
 | |
|   unsigned NumBytesForCalleeToPush;
 | |
|   if (IsCalleePop(isVarArg, CallConv))
 | |
|     NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
 | |
|   else if (!Is64Bit && CallConv != CallingConv::Fast && IsStructRet)
 | |
|     // If this is is a call to a struct-return function, the callee
 | |
|     // pops the hidden struct pointer, so we have to push it back.
 | |
|     // This is common for Darwin/X86, Linux & Mingw32 targets.
 | |
|     NumBytesForCalleeToPush = 4;
 | |
|   else
 | |
|     NumBytesForCalleeToPush = 0;  // Callee pops nothing.
 | |
| 
 | |
|   // Returns a flag for retval copy to use.
 | |
|   Chain = DAG.getCALLSEQ_END(Chain,
 | |
|                              DAG.getIntPtrConstant(NumBytes, true),
 | |
|                              DAG.getIntPtrConstant(NumBytesForCalleeToPush,
 | |
|                                                    true),
 | |
|                              InFlag);
 | |
|   InFlag = Chain.getValue(1);
 | |
| 
 | |
|   // Handle result values, copying them out of physregs into vregs that we
 | |
|   // return.
 | |
|   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
 | |
|                          Ins, dl, DAG, InVals);
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                Fast Calling Convention (tail call) implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| //  Like std call, callee cleans arguments, convention except that ECX is
 | |
| //  reserved for storing the tail called function address. Only 2 registers are
 | |
| //  free for argument passing (inreg). Tail call optimization is performed
 | |
| //  provided:
 | |
| //                * tailcallopt is enabled
 | |
| //                * caller/callee are fastcc
 | |
| //  On X86_64 architecture with GOT-style position independent code only local
 | |
| //  (within module) calls are supported at the moment.
 | |
| //  To keep the stack aligned according to platform abi the function
 | |
| //  GetAlignedArgumentStackSize ensures that argument delta is always multiples
 | |
| //  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
 | |
| //  If a tail called function callee has more arguments than the caller the
 | |
| //  caller needs to make sure that there is room to move the RETADDR to. This is
 | |
| //  achieved by reserving an area the size of the argument delta right after the
 | |
| //  original REtADDR, but before the saved framepointer or the spilled registers
 | |
| //  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
 | |
| //  stack layout:
 | |
| //    arg1
 | |
| //    arg2
 | |
| //    RETADDR
 | |
| //    [ new RETADDR
 | |
| //      move area ]
 | |
| //    (possible EBP)
 | |
| //    ESI
 | |
| //    EDI
 | |
| //    local1 ..
 | |
| 
 | |
| /// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
 | |
| /// for a 16 byte align requirement.
 | |
| unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
 | |
|                                                         SelectionDAG& DAG) {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   const TargetMachine &TM = MF.getTarget();
 | |
|   const TargetFrameInfo &TFI = *TM.getFrameInfo();
 | |
|   unsigned StackAlignment = TFI.getStackAlignment();
 | |
|   uint64_t AlignMask = StackAlignment - 1;
 | |
|   int64_t Offset = StackSize;
 | |
|   uint64_t SlotSize = TD->getPointerSize();
 | |
|   if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
 | |
|     // Number smaller than 12 so just add the difference.
 | |
|     Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
 | |
|   } else {
 | |
|     // Mask out lower bits, add stackalignment once plus the 12 bytes.
 | |
|     Offset = ((~AlignMask) & Offset) + StackAlignment +
 | |
|       (StackAlignment-SlotSize);
 | |
|   }
 | |
|   return Offset;
 | |
| }
 | |
| 
 | |
| /// IsEligibleForTailCallOptimization - Check whether the call is eligible
 | |
| /// for tail call optimization. Targets which want to do tail call
 | |
| /// optimization should implement this function.
 | |
| bool
 | |
| X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
 | |
|                                                      unsigned CalleeCC,
 | |
|                                                      bool isVarArg,
 | |
|                                       const SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                                                      SelectionDAG& DAG) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   unsigned CallerCC = MF.getFunction()->getCallingConv();
 | |
|   return CalleeCC == CallingConv::Fast && CallerCC == CalleeCC;
 | |
| }
 | |
| 
 | |
| FastISel *
 | |
| X86TargetLowering::createFastISel(MachineFunction &mf,
 | |
|                                   MachineModuleInfo *mmo,
 | |
|                                   DwarfWriter *dw,
 | |
|                                   DenseMap<const Value *, unsigned> &vm,
 | |
|                                   DenseMap<const BasicBlock *,
 | |
|                                            MachineBasicBlock *> &bm,
 | |
|                                   DenseMap<const AllocaInst *, int> &am
 | |
| #ifndef NDEBUG
 | |
|                                   , SmallSet<Instruction*, 8> &cil
 | |
| #endif
 | |
|                                   ) {
 | |
|   return X86::createFastISel(mf, mmo, dw, vm, bm, am
 | |
| #ifndef NDEBUG
 | |
|                              , cil
 | |
| #endif
 | |
|                              );
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           Other Lowering Hooks
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| 
 | |
| SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
 | |
|   int ReturnAddrIndex = FuncInfo->getRAIndex();
 | |
| 
 | |
|   if (ReturnAddrIndex == 0) {
 | |
|     // Set up a frame object for the return address.
 | |
|     uint64_t SlotSize = TD->getPointerSize();
 | |
|     ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize);
 | |
|     FuncInfo->setRAIndex(ReturnAddrIndex);
 | |
|   }
 | |
| 
 | |
|   return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
 | |
| }
 | |
| 
 | |
| 
 | |
| bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
 | |
|                                        bool hasSymbolicDisplacement) {
 | |
|   // Offset should fit into 32 bit immediate field.
 | |
|   if (!isInt32(Offset))
 | |
|     return false;
 | |
| 
 | |
|   // If we don't have a symbolic displacement - we don't have any extra
 | |
|   // restrictions.
 | |
|   if (!hasSymbolicDisplacement)
 | |
|     return true;
 | |
| 
 | |
|   // FIXME: Some tweaks might be needed for medium code model.
 | |
|   if (M != CodeModel::Small && M != CodeModel::Kernel)
 | |
|     return false;
 | |
| 
 | |
|   // For small code model we assume that latest object is 16MB before end of 31
 | |
|   // bits boundary. We may also accept pretty large negative constants knowing
 | |
|   // that all objects are in the positive half of address space.
 | |
|   if (M == CodeModel::Small && Offset < 16*1024*1024)
 | |
|     return true;
 | |
| 
 | |
|   // For kernel code model we know that all object resist in the negative half
 | |
|   // of 32bits address space. We may not accept negative offsets, since they may
 | |
|   // be just off and we may accept pretty large positive ones.
 | |
|   if (M == CodeModel::Kernel && Offset > 0)
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
 | |
| /// specific condition code, returning the condition code and the LHS/RHS of the
 | |
| /// comparison to make.
 | |
| static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
 | |
|                                SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
 | |
|   if (!isFP) {
 | |
|     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
 | |
|       if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
 | |
|         // X > -1   -> X == 0, jump !sign.
 | |
|         RHS = DAG.getConstant(0, RHS.getValueType());
 | |
|         return X86::COND_NS;
 | |
|       } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
 | |
|         // X < 0   -> X == 0, jump on sign.
 | |
|         return X86::COND_S;
 | |
|       } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
 | |
|         // X < 1   -> X <= 0
 | |
|         RHS = DAG.getConstant(0, RHS.getValueType());
 | |
|         return X86::COND_LE;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     switch (SetCCOpcode) {
 | |
|     default: llvm_unreachable("Invalid integer condition!");
 | |
|     case ISD::SETEQ:  return X86::COND_E;
 | |
|     case ISD::SETGT:  return X86::COND_G;
 | |
|     case ISD::SETGE:  return X86::COND_GE;
 | |
|     case ISD::SETLT:  return X86::COND_L;
 | |
|     case ISD::SETLE:  return X86::COND_LE;
 | |
|     case ISD::SETNE:  return X86::COND_NE;
 | |
|     case ISD::SETULT: return X86::COND_B;
 | |
|     case ISD::SETUGT: return X86::COND_A;
 | |
|     case ISD::SETULE: return X86::COND_BE;
 | |
|     case ISD::SETUGE: return X86::COND_AE;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // First determine if it is required or is profitable to flip the operands.
 | |
| 
 | |
|   // If LHS is a foldable load, but RHS is not, flip the condition.
 | |
|   if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
 | |
|       !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
 | |
|     SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
 | |
|     std::swap(LHS, RHS);
 | |
|   }
 | |
| 
 | |
|   switch (SetCCOpcode) {
 | |
|   default: break;
 | |
|   case ISD::SETOLT:
 | |
|   case ISD::SETOLE:
 | |
|   case ISD::SETUGT:
 | |
|   case ISD::SETUGE:
 | |
|     std::swap(LHS, RHS);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // On a floating point condition, the flags are set as follows:
 | |
|   // ZF  PF  CF   op
 | |
|   //  0 | 0 | 0 | X > Y
 | |
|   //  0 | 0 | 1 | X < Y
 | |
|   //  1 | 0 | 0 | X == Y
 | |
|   //  1 | 1 | 1 | unordered
 | |
|   switch (SetCCOpcode) {
 | |
|   default: llvm_unreachable("Condcode should be pre-legalized away");
 | |
|   case ISD::SETUEQ:
 | |
|   case ISD::SETEQ:   return X86::COND_E;
 | |
|   case ISD::SETOLT:              // flipped
 | |
|   case ISD::SETOGT:
 | |
|   case ISD::SETGT:   return X86::COND_A;
 | |
|   case ISD::SETOLE:              // flipped
 | |
|   case ISD::SETOGE:
 | |
|   case ISD::SETGE:   return X86::COND_AE;
 | |
|   case ISD::SETUGT:              // flipped
 | |
|   case ISD::SETULT:
 | |
|   case ISD::SETLT:   return X86::COND_B;
 | |
|   case ISD::SETUGE:              // flipped
 | |
|   case ISD::SETULE:
 | |
|   case ISD::SETLE:   return X86::COND_BE;
 | |
|   case ISD::SETONE:
 | |
|   case ISD::SETNE:   return X86::COND_NE;
 | |
|   case ISD::SETUO:   return X86::COND_P;
 | |
|   case ISD::SETO:    return X86::COND_NP;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// hasFPCMov - is there a floating point cmov for the specific X86 condition
 | |
| /// code. Current x86 isa includes the following FP cmov instructions:
 | |
| /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
 | |
| static bool hasFPCMov(unsigned X86CC) {
 | |
|   switch (X86CC) {
 | |
|   default:
 | |
|     return false;
 | |
|   case X86::COND_B:
 | |
|   case X86::COND_BE:
 | |
|   case X86::COND_E:
 | |
|   case X86::COND_P:
 | |
|   case X86::COND_A:
 | |
|   case X86::COND_AE:
 | |
|   case X86::COND_NE:
 | |
|   case X86::COND_NP:
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isUndefOrInRange - Return true if Val is undef or if its value falls within
 | |
| /// the specified range (L, H].
 | |
| static bool isUndefOrInRange(int Val, int Low, int Hi) {
 | |
|   return (Val < 0) || (Val >= Low && Val < Hi);
 | |
| }
 | |
| 
 | |
| /// isUndefOrEqual - Val is either less than zero (undef) or equal to the
 | |
| /// specified value.
 | |
| static bool isUndefOrEqual(int Val, int CmpVal) {
 | |
|   if (Val < 0 || Val == CmpVal)
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
 | |
| /// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
 | |
| /// the second operand.
 | |
| static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
 | |
|   if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
 | |
|     return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
 | |
|   if (VT == MVT::v2f64 || VT == MVT::v2i64)
 | |
|     return (Mask[0] < 2 && Mask[1] < 2);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
 | |
|   SmallVector<int, 8> M; 
 | |
|   N->getMask(M);
 | |
|   return ::isPSHUFDMask(M, N->getValueType(0));
 | |
| }
 | |
| 
 | |
| /// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
 | |
| /// is suitable for input to PSHUFHW.
 | |
| static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
 | |
|   if (VT != MVT::v8i16)
 | |
|     return false;
 | |
|   
 | |
|   // Lower quadword copied in order or undef.
 | |
|   for (int i = 0; i != 4; ++i)
 | |
|     if (Mask[i] >= 0 && Mask[i] != i)
 | |
|       return false;
 | |
|   
 | |
|   // Upper quadword shuffled.
 | |
|   for (int i = 4; i != 8; ++i)
 | |
|     if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
 | |
|       return false;
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
 | |
|   SmallVector<int, 8> M; 
 | |
|   N->getMask(M);
 | |
|   return ::isPSHUFHWMask(M, N->getValueType(0));
 | |
| }
 | |
| 
 | |
| /// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
 | |
| /// is suitable for input to PSHUFLW.
 | |
| static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
 | |
|   if (VT != MVT::v8i16)
 | |
|     return false;
 | |
|   
 | |
|   // Upper quadword copied in order.
 | |
|   for (int i = 4; i != 8; ++i)
 | |
|     if (Mask[i] >= 0 && Mask[i] != i)
 | |
|       return false;
 | |
|   
 | |
|   // Lower quadword shuffled.
 | |
|   for (int i = 0; i != 4; ++i)
 | |
|     if (Mask[i] >= 4)
 | |
|       return false;
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
 | |
|   SmallVector<int, 8> M; 
 | |
|   N->getMask(M);
 | |
|   return ::isPSHUFLWMask(M, N->getValueType(0));
 | |
| }
 | |
| 
 | |
| /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
 | |
| /// specifies a shuffle of elements that is suitable for input to SHUFP*.
 | |
| static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
 | |
|   int NumElems = VT.getVectorNumElements();
 | |
|   if (NumElems != 2 && NumElems != 4)
 | |
|     return false;
 | |
|   
 | |
|   int Half = NumElems / 2;
 | |
|   for (int i = 0; i < Half; ++i)
 | |
|     if (!isUndefOrInRange(Mask[i], 0, NumElems))
 | |
|       return false;
 | |
|   for (int i = Half; i < NumElems; ++i)
 | |
|     if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
 | |
|       return false;
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
 | |
|   SmallVector<int, 8> M;
 | |
|   N->getMask(M);
 | |
|   return ::isSHUFPMask(M, N->getValueType(0));
 | |
| }
 | |
| 
 | |
| /// isCommutedSHUFP - Returns true if the shuffle mask is exactly
 | |
| /// the reverse of what x86 shuffles want. x86 shuffles requires the lower
 | |
| /// half elements to come from vector 1 (which would equal the dest.) and
 | |
| /// the upper half to come from vector 2.
 | |
| static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
 | |
|   int NumElems = VT.getVectorNumElements();
 | |
|   
 | |
|   if (NumElems != 2 && NumElems != 4) 
 | |
|     return false;
 | |
|   
 | |
|   int Half = NumElems / 2;
 | |
|   for (int i = 0; i < Half; ++i)
 | |
|     if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
 | |
|       return false;
 | |
|   for (int i = Half; i < NumElems; ++i)
 | |
|     if (!isUndefOrInRange(Mask[i], 0, NumElems))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
 | |
|   SmallVector<int, 8> M;
 | |
|   N->getMask(M);
 | |
|   return isCommutedSHUFPMask(M, N->getValueType(0));
 | |
| }
 | |
| 
 | |
| /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
 | |
| /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
 | |
| bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
 | |
|   if (N->getValueType(0).getVectorNumElements() != 4)
 | |
|     return false;
 | |
| 
 | |
|   // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
 | |
|   return isUndefOrEqual(N->getMaskElt(0), 6) &&
 | |
|          isUndefOrEqual(N->getMaskElt(1), 7) &&
 | |
|          isUndefOrEqual(N->getMaskElt(2), 2) &&
 | |
|          isUndefOrEqual(N->getMaskElt(3), 3);
 | |
| }
 | |
| 
 | |
| /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
 | |
| /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
 | |
| bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
 | |
|   unsigned NumElems = N->getValueType(0).getVectorNumElements();
 | |
| 
 | |
|   if (NumElems != 2 && NumElems != 4)
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned i = 0; i < NumElems/2; ++i)
 | |
|     if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
 | |
|       return false;
 | |
| 
 | |
|   for (unsigned i = NumElems/2; i < NumElems; ++i)
 | |
|     if (!isUndefOrEqual(N->getMaskElt(i), i))
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
 | |
| /// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
 | |
| /// and MOVLHPS.
 | |
| bool X86::isMOVHPMask(ShuffleVectorSDNode *N) {
 | |
|   unsigned NumElems = N->getValueType(0).getVectorNumElements();
 | |
| 
 | |
|   if (NumElems != 2 && NumElems != 4)
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned i = 0; i < NumElems/2; ++i)
 | |
|     if (!isUndefOrEqual(N->getMaskElt(i), i))
 | |
|       return false;
 | |
| 
 | |
|   for (unsigned i = 0; i < NumElems/2; ++i)
 | |
|     if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
 | |
| /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
 | |
| /// <2, 3, 2, 3>
 | |
| bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
 | |
|   unsigned NumElems = N->getValueType(0).getVectorNumElements();
 | |
|   
 | |
|   if (NumElems != 4)
 | |
|     return false;
 | |
|   
 | |
|   return isUndefOrEqual(N->getMaskElt(0), 2) && 
 | |
|          isUndefOrEqual(N->getMaskElt(1), 3) &&
 | |
|          isUndefOrEqual(N->getMaskElt(2), 2) && 
 | |
|          isUndefOrEqual(N->getMaskElt(3), 3);
 | |
| }
 | |
| 
 | |
| /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
 | |
| /// specifies a shuffle of elements that is suitable for input to UNPCKL.
 | |
| static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
 | |
|                          bool V2IsSplat = false) {
 | |
|   int NumElts = VT.getVectorNumElements();
 | |
|   if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
 | |
|     return false;
 | |
|   
 | |
|   for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
 | |
|     int BitI  = Mask[i];
 | |
|     int BitI1 = Mask[i+1];
 | |
|     if (!isUndefOrEqual(BitI, j))
 | |
|       return false;
 | |
|     if (V2IsSplat) {
 | |
|       if (!isUndefOrEqual(BitI1, NumElts))
 | |
|         return false;
 | |
|     } else {
 | |
|       if (!isUndefOrEqual(BitI1, j + NumElts))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
 | |
|   SmallVector<int, 8> M;
 | |
|   N->getMask(M);
 | |
|   return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
 | |
| }
 | |
| 
 | |
| /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
 | |
| /// specifies a shuffle of elements that is suitable for input to UNPCKH.
 | |
| static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT, 
 | |
|                          bool V2IsSplat = false) {
 | |
|   int NumElts = VT.getVectorNumElements();
 | |
|   if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
 | |
|     return false;
 | |
|   
 | |
|   for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
 | |
|     int BitI  = Mask[i];
 | |
|     int BitI1 = Mask[i+1];
 | |
|     if (!isUndefOrEqual(BitI, j + NumElts/2))
 | |
|       return false;
 | |
|     if (V2IsSplat) {
 | |
|       if (isUndefOrEqual(BitI1, NumElts))
 | |
|         return false;
 | |
|     } else {
 | |
|       if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
 | |
|   SmallVector<int, 8> M;
 | |
|   N->getMask(M);
 | |
|   return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
 | |
| }
 | |
| 
 | |
| /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
 | |
| /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
 | |
| /// <0, 0, 1, 1>
 | |
| static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
 | |
|   int NumElems = VT.getVectorNumElements();
 | |
|   if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
 | |
|     return false;
 | |
|   
 | |
|   for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
 | |
|     int BitI  = Mask[i];
 | |
|     int BitI1 = Mask[i+1];
 | |
|     if (!isUndefOrEqual(BitI, j))
 | |
|       return false;
 | |
|     if (!isUndefOrEqual(BitI1, j))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
 | |
|   SmallVector<int, 8> M;
 | |
|   N->getMask(M);
 | |
|   return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
 | |
| }
 | |
| 
 | |
| /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
 | |
| /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
 | |
| /// <2, 2, 3, 3>
 | |
| static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
 | |
|   int NumElems = VT.getVectorNumElements();
 | |
|   if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
 | |
|     return false;
 | |
|   
 | |
|   for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
 | |
|     int BitI  = Mask[i];
 | |
|     int BitI1 = Mask[i+1];
 | |
|     if (!isUndefOrEqual(BitI, j))
 | |
|       return false;
 | |
|     if (!isUndefOrEqual(BitI1, j))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
 | |
|   SmallVector<int, 8> M;
 | |
|   N->getMask(M);
 | |
|   return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
 | |
| }
 | |
| 
 | |
| /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
 | |
| /// specifies a shuffle of elements that is suitable for input to MOVSS,
 | |
| /// MOVSD, and MOVD, i.e. setting the lowest element.
 | |
| static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
 | |
|   if (VT.getVectorElementType().getSizeInBits() < 32)
 | |
|     return false;
 | |
| 
 | |
|   int NumElts = VT.getVectorNumElements();
 | |
|   
 | |
|   if (!isUndefOrEqual(Mask[0], NumElts))
 | |
|     return false;
 | |
|   
 | |
|   for (int i = 1; i < NumElts; ++i)
 | |
|     if (!isUndefOrEqual(Mask[i], i))
 | |
|       return false;
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
 | |
|   SmallVector<int, 8> M;
 | |
|   N->getMask(M);
 | |
|   return ::isMOVLMask(M, N->getValueType(0));
 | |
| }
 | |
| 
 | |
| /// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
 | |
| /// of what x86 movss want. X86 movs requires the lowest  element to be lowest
 | |
| /// element of vector 2 and the other elements to come from vector 1 in order.
 | |
| static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
 | |
|                                bool V2IsSplat = false, bool V2IsUndef = false) {
 | |
|   int NumOps = VT.getVectorNumElements();
 | |
|   if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
 | |
|     return false;
 | |
|   
 | |
|   if (!isUndefOrEqual(Mask[0], 0))
 | |
|     return false;
 | |
|   
 | |
|   for (int i = 1; i < NumOps; ++i)
 | |
|     if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
 | |
|           (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
 | |
|           (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
 | |
|       return false;
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
 | |
|                            bool V2IsUndef = false) {
 | |
|   SmallVector<int, 8> M;
 | |
|   N->getMask(M);
 | |
|   return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
 | |
| }
 | |
| 
 | |
| /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
 | |
| /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
 | |
| bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
 | |
|   if (N->getValueType(0).getVectorNumElements() != 4)
 | |
|     return false;
 | |
| 
 | |
|   // Expect 1, 1, 3, 3
 | |
|   for (unsigned i = 0; i < 2; ++i) {
 | |
|     int Elt = N->getMaskElt(i);
 | |
|     if (Elt >= 0 && Elt != 1)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   bool HasHi = false;
 | |
|   for (unsigned i = 2; i < 4; ++i) {
 | |
|     int Elt = N->getMaskElt(i);
 | |
|     if (Elt >= 0 && Elt != 3)
 | |
|       return false;
 | |
|     if (Elt == 3)
 | |
|       HasHi = true;
 | |
|   }
 | |
|   // Don't use movshdup if it can be done with a shufps.
 | |
|   // FIXME: verify that matching u, u, 3, 3 is what we want.
 | |
|   return HasHi;
 | |
| }
 | |
| 
 | |
| /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
 | |
| /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
 | |
| bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
 | |
|   if (N->getValueType(0).getVectorNumElements() != 4)
 | |
|     return false;
 | |
| 
 | |
|   // Expect 0, 0, 2, 2
 | |
|   for (unsigned i = 0; i < 2; ++i)
 | |
|     if (N->getMaskElt(i) > 0)
 | |
|       return false;
 | |
| 
 | |
|   bool HasHi = false;
 | |
|   for (unsigned i = 2; i < 4; ++i) {
 | |
|     int Elt = N->getMaskElt(i);
 | |
|     if (Elt >= 0 && Elt != 2)
 | |
|       return false;
 | |
|     if (Elt == 2)
 | |
|       HasHi = true;
 | |
|   }
 | |
|   // Don't use movsldup if it can be done with a shufps.
 | |
|   return HasHi;
 | |
| }
 | |
| 
 | |
| /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
 | |
| /// specifies a shuffle of elements that is suitable for input to MOVDDUP.
 | |
| bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
 | |
|   int e = N->getValueType(0).getVectorNumElements() / 2;
 | |
|   
 | |
|   for (int i = 0; i < e; ++i)
 | |
|     if (!isUndefOrEqual(N->getMaskElt(i), i))
 | |
|       return false;
 | |
|   for (int i = 0; i < e; ++i)
 | |
|     if (!isUndefOrEqual(N->getMaskElt(e+i), i))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
 | |
| /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
 | |
| /// instructions.
 | |
| unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
 | |
|   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
 | |
|   int NumOperands = SVOp->getValueType(0).getVectorNumElements();
 | |
| 
 | |
|   unsigned Shift = (NumOperands == 4) ? 2 : 1;
 | |
|   unsigned Mask = 0;
 | |
|   for (int i = 0; i < NumOperands; ++i) {
 | |
|     int Val = SVOp->getMaskElt(NumOperands-i-1);
 | |
|     if (Val < 0) Val = 0;
 | |
|     if (Val >= NumOperands) Val -= NumOperands;
 | |
|     Mask |= Val;
 | |
|     if (i != NumOperands - 1)
 | |
|       Mask <<= Shift;
 | |
|   }
 | |
|   return Mask;
 | |
| }
 | |
| 
 | |
| /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
 | |
| /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
 | |
| /// instructions.
 | |
| unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
 | |
|   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
 | |
|   unsigned Mask = 0;
 | |
|   // 8 nodes, but we only care about the last 4.
 | |
|   for (unsigned i = 7; i >= 4; --i) {
 | |
|     int Val = SVOp->getMaskElt(i);
 | |
|     if (Val >= 0)
 | |
|       Mask |= (Val - 4);
 | |
|     if (i != 4)
 | |
|       Mask <<= 2;
 | |
|   }
 | |
|   return Mask;
 | |
| }
 | |
| 
 | |
| /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
 | |
| /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
 | |
| /// instructions.
 | |
| unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
 | |
|   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
 | |
|   unsigned Mask = 0;
 | |
|   // 8 nodes, but we only care about the first 4.
 | |
|   for (int i = 3; i >= 0; --i) {
 | |
|     int Val = SVOp->getMaskElt(i);
 | |
|     if (Val >= 0)
 | |
|       Mask |= Val;
 | |
|     if (i != 0)
 | |
|       Mask <<= 2;
 | |
|   }
 | |
|   return Mask;
 | |
| }
 | |
| 
 | |
| /// isZeroNode - Returns true if Elt is a constant zero or a floating point
 | |
| /// constant +0.0.
 | |
| bool X86::isZeroNode(SDValue Elt) {
 | |
|   return ((isa<ConstantSDNode>(Elt) &&
 | |
|            cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
 | |
|           (isa<ConstantFPSDNode>(Elt) &&
 | |
|            cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
 | |
| }
 | |
| 
 | |
| /// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
 | |
| /// their permute mask.
 | |
| static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
 | |
|                                     SelectionDAG &DAG) {
 | |
|   EVT VT = SVOp->getValueType(0);
 | |
|   unsigned NumElems = VT.getVectorNumElements();
 | |
|   SmallVector<int, 8> MaskVec;
 | |
|   
 | |
|   for (unsigned i = 0; i != NumElems; ++i) {
 | |
|     int idx = SVOp->getMaskElt(i);
 | |
|     if (idx < 0)
 | |
|       MaskVec.push_back(idx);
 | |
|     else if (idx < (int)NumElems)
 | |
|       MaskVec.push_back(idx + NumElems);
 | |
|     else
 | |
|       MaskVec.push_back(idx - NumElems);
 | |
|   }
 | |
|   return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
 | |
|                               SVOp->getOperand(0), &MaskVec[0]);
 | |
| }
 | |
| 
 | |
| /// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
 | |
| /// the two vector operands have swapped position.
 | |
| static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
 | |
|   unsigned NumElems = VT.getVectorNumElements();
 | |
|   for (unsigned i = 0; i != NumElems; ++i) {
 | |
|     int idx = Mask[i];
 | |
|     if (idx < 0)
 | |
|       continue;
 | |
|     else if (idx < (int)NumElems)
 | |
|       Mask[i] = idx + NumElems;
 | |
|     else
 | |
|       Mask[i] = idx - NumElems;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ShouldXformToMOVHLPS - Return true if the node should be transformed to
 | |
| /// match movhlps. The lower half elements should come from upper half of
 | |
| /// V1 (and in order), and the upper half elements should come from the upper
 | |
| /// half of V2 (and in order).
 | |
| static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
 | |
|   if (Op->getValueType(0).getVectorNumElements() != 4)
 | |
|     return false;
 | |
|   for (unsigned i = 0, e = 2; i != e; ++i)
 | |
|     if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
 | |
|       return false;
 | |
|   for (unsigned i = 2; i != 4; ++i)
 | |
|     if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isScalarLoadToVector - Returns true if the node is a scalar load that
 | |
| /// is promoted to a vector. It also returns the LoadSDNode by reference if
 | |
| /// required.
 | |
| static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
 | |
|   if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
 | |
|     return false;
 | |
|   N = N->getOperand(0).getNode();
 | |
|   if (!ISD::isNON_EXTLoad(N))
 | |
|     return false;
 | |
|   if (LD)
 | |
|     *LD = cast<LoadSDNode>(N);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
 | |
| /// match movlp{s|d}. The lower half elements should come from lower half of
 | |
| /// V1 (and in order), and the upper half elements should come from the upper
 | |
| /// half of V2 (and in order). And since V1 will become the source of the
 | |
| /// MOVLP, it must be either a vector load or a scalar load to vector.
 | |
| static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
 | |
|                                ShuffleVectorSDNode *Op) {
 | |
|   if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
 | |
|     return false;
 | |
|   // Is V2 is a vector load, don't do this transformation. We will try to use
 | |
|   // load folding shufps op.
 | |
|   if (ISD::isNON_EXTLoad(V2))
 | |
|     return false;
 | |
| 
 | |
|   unsigned NumElems = Op->getValueType(0).getVectorNumElements();
 | |
|   
 | |
|   if (NumElems != 2 && NumElems != 4)
 | |
|     return false;
 | |
|   for (unsigned i = 0, e = NumElems/2; i != e; ++i)
 | |
|     if (!isUndefOrEqual(Op->getMaskElt(i), i))
 | |
|       return false;
 | |
|   for (unsigned i = NumElems/2; i != NumElems; ++i)
 | |
|     if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
 | |
| /// all the same.
 | |
| static bool isSplatVector(SDNode *N) {
 | |
|   if (N->getOpcode() != ISD::BUILD_VECTOR)
 | |
|     return false;
 | |
| 
 | |
|   SDValue SplatValue = N->getOperand(0);
 | |
|   for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
 | |
|     if (N->getOperand(i) != SplatValue)
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
 | |
| /// to an zero vector. 
 | |
| /// FIXME: move to dag combiner / method on ShuffleVectorSDNode
 | |
| static bool isZeroShuffle(ShuffleVectorSDNode *N) {
 | |
|   SDValue V1 = N->getOperand(0);
 | |
|   SDValue V2 = N->getOperand(1);
 | |
|   unsigned NumElems = N->getValueType(0).getVectorNumElements();
 | |
|   for (unsigned i = 0; i != NumElems; ++i) {
 | |
|     int Idx = N->getMaskElt(i);
 | |
|     if (Idx >= (int)NumElems) {
 | |
|       unsigned Opc = V2.getOpcode();
 | |
|       if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
 | |
|         continue;
 | |
|       if (Opc != ISD::BUILD_VECTOR ||
 | |
|           !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
 | |
|         return false;
 | |
|     } else if (Idx >= 0) {
 | |
|       unsigned Opc = V1.getOpcode();
 | |
|       if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
 | |
|         continue;
 | |
|       if (Opc != ISD::BUILD_VECTOR ||
 | |
|           !X86::isZeroNode(V1.getOperand(Idx)))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// getZeroVector - Returns a vector of specified type with all zero elements.
 | |
| ///
 | |
| static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
 | |
|                              DebugLoc dl) {
 | |
|   assert(VT.isVector() && "Expected a vector type");
 | |
| 
 | |
|   // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
 | |
|   // type.  This ensures they get CSE'd.
 | |
|   SDValue Vec;
 | |
|   if (VT.getSizeInBits() == 64) { // MMX
 | |
|     SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
 | |
|     Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
 | |
|   } else if (HasSSE2) {  // SSE2
 | |
|     SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
 | |
|     Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
 | |
|   } else { // SSE1
 | |
|     SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
 | |
|     Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
 | |
|   }
 | |
|   return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
 | |
| }
 | |
| 
 | |
| /// getOnesVector - Returns a vector of specified type with all bits set.
 | |
| ///
 | |
| static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
 | |
|   assert(VT.isVector() && "Expected a vector type");
 | |
| 
 | |
|   // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
 | |
|   // type.  This ensures they get CSE'd.
 | |
|   SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
 | |
|   SDValue Vec;
 | |
|   if (VT.getSizeInBits() == 64)  // MMX
 | |
|     Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
 | |
|   else                                              // SSE
 | |
|     Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
 | |
|   return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
 | |
| /// that point to V2 points to its first element.
 | |
| static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
 | |
|   EVT VT = SVOp->getValueType(0);
 | |
|   unsigned NumElems = VT.getVectorNumElements();
 | |
|   
 | |
|   bool Changed = false;
 | |
|   SmallVector<int, 8> MaskVec;
 | |
|   SVOp->getMask(MaskVec);
 | |
|   
 | |
|   for (unsigned i = 0; i != NumElems; ++i) {
 | |
|     if (MaskVec[i] > (int)NumElems) {
 | |
|       MaskVec[i] = NumElems;
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
|   if (Changed)
 | |
|     return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
 | |
|                                 SVOp->getOperand(1), &MaskVec[0]);
 | |
|   return SDValue(SVOp, 0);
 | |
| }
 | |
| 
 | |
| /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
 | |
| /// operation of specified width.
 | |
| static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
 | |
|                        SDValue V2) {
 | |
|   unsigned NumElems = VT.getVectorNumElements();
 | |
|   SmallVector<int, 8> Mask;
 | |
|   Mask.push_back(NumElems);
 | |
|   for (unsigned i = 1; i != NumElems; ++i)
 | |
|     Mask.push_back(i);
 | |
|   return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
 | |
| }
 | |
| 
 | |
| /// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
 | |
| static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
 | |
|                           SDValue V2) {
 | |
|   unsigned NumElems = VT.getVectorNumElements();
 | |
|   SmallVector<int, 8> Mask;
 | |
|   for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
 | |
|     Mask.push_back(i);
 | |
|     Mask.push_back(i + NumElems);
 | |
|   }
 | |
|   return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
 | |
| }
 | |
| 
 | |
| /// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
 | |
| static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
 | |
|                           SDValue V2) {
 | |
|   unsigned NumElems = VT.getVectorNumElements();
 | |
|   unsigned Half = NumElems/2;
 | |
|   SmallVector<int, 8> Mask;
 | |
|   for (unsigned i = 0; i != Half; ++i) {
 | |
|     Mask.push_back(i + Half);
 | |
|     Mask.push_back(i + NumElems + Half);
 | |
|   }
 | |
|   return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
 | |
| }
 | |
| 
 | |
| /// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
 | |
| static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG, 
 | |
|                             bool HasSSE2) {
 | |
|   if (SV->getValueType(0).getVectorNumElements() <= 4)
 | |
|     return SDValue(SV, 0);
 | |
|   
 | |
|   EVT PVT = MVT::v4f32;
 | |
|   EVT VT = SV->getValueType(0);
 | |
|   DebugLoc dl = SV->getDebugLoc();
 | |
|   SDValue V1 = SV->getOperand(0);
 | |
|   int NumElems = VT.getVectorNumElements();
 | |
|   int EltNo = SV->getSplatIndex();
 | |
| 
 | |
|   // unpack elements to the correct location
 | |
|   while (NumElems > 4) {
 | |
|     if (EltNo < NumElems/2) {
 | |
|       V1 = getUnpackl(DAG, dl, VT, V1, V1);
 | |
|     } else {
 | |
|       V1 = getUnpackh(DAG, dl, VT, V1, V1);
 | |
|       EltNo -= NumElems/2;
 | |
|     }
 | |
|     NumElems >>= 1;
 | |
|   }
 | |
|   
 | |
|   // Perform the splat.
 | |
|   int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
 | |
|   V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
 | |
|   V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
 | |
|   return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
 | |
| }
 | |
| 
 | |
| /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
 | |
| /// vector of zero or undef vector.  This produces a shuffle where the low
 | |
| /// element of V2 is swizzled into the zero/undef vector, landing at element
 | |
| /// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
 | |
| static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
 | |
|                                              bool isZero, bool HasSSE2,
 | |
|                                              SelectionDAG &DAG) {
 | |
|   EVT VT = V2.getValueType();
 | |
|   SDValue V1 = isZero
 | |
|     ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
 | |
|   unsigned NumElems = VT.getVectorNumElements();
 | |
|   SmallVector<int, 16> MaskVec;
 | |
|   for (unsigned i = 0; i != NumElems; ++i)
 | |
|     // If this is the insertion idx, put the low elt of V2 here.
 | |
|     MaskVec.push_back(i == Idx ? NumElems : i);
 | |
|   return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
 | |
| }
 | |
| 
 | |
| /// getNumOfConsecutiveZeros - Return the number of elements in a result of
 | |
| /// a shuffle that is zero.
 | |
| static
 | |
| unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
 | |
|                                   bool Low, SelectionDAG &DAG) {
 | |
|   unsigned NumZeros = 0;
 | |
|   for (int i = 0; i < NumElems; ++i) {
 | |
|     unsigned Index = Low ? i : NumElems-i-1;
 | |
|     int Idx = SVOp->getMaskElt(Index);
 | |
|     if (Idx < 0) {
 | |
|       ++NumZeros;
 | |
|       continue;
 | |
|     }
 | |
|     SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
 | |
|     if (Elt.getNode() && X86::isZeroNode(Elt))
 | |
|       ++NumZeros;
 | |
|     else
 | |
|       break;
 | |
|   }
 | |
|   return NumZeros;
 | |
| }
 | |
| 
 | |
| /// isVectorShift - Returns true if the shuffle can be implemented as a
 | |
| /// logical left or right shift of a vector.
 | |
| /// FIXME: split into pslldqi, psrldqi, palignr variants.
 | |
| static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
 | |
|                           bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
 | |
|   int NumElems = SVOp->getValueType(0).getVectorNumElements();
 | |
| 
 | |
|   isLeft = true;
 | |
|   unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
 | |
|   if (!NumZeros) {
 | |
|     isLeft = false;
 | |
|     NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
 | |
|     if (!NumZeros)
 | |
|       return false;
 | |
|   }
 | |
|   bool SeenV1 = false;
 | |
|   bool SeenV2 = false;
 | |
|   for (int i = NumZeros; i < NumElems; ++i) {
 | |
|     int Val = isLeft ? (i - NumZeros) : i;
 | |
|     int Idx = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
 | |
|     if (Idx < 0)
 | |
|       continue;
 | |
|     if (Idx < NumElems)
 | |
|       SeenV1 = true;
 | |
|     else {
 | |
|       Idx -= NumElems;
 | |
|       SeenV2 = true;
 | |
|     }
 | |
|     if (Idx != Val)
 | |
|       return false;
 | |
|   }
 | |
|   if (SeenV1 && SeenV2)
 | |
|     return false;
 | |
| 
 | |
|   ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
 | |
|   ShAmt = NumZeros;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
 | |
| ///
 | |
| static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
 | |
|                                        unsigned NumNonZero, unsigned NumZero,
 | |
|                                        SelectionDAG &DAG, TargetLowering &TLI) {
 | |
|   if (NumNonZero > 8)
 | |
|     return SDValue();
 | |
| 
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   SDValue V(0, 0);
 | |
|   bool First = true;
 | |
|   for (unsigned i = 0; i < 16; ++i) {
 | |
|     bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
 | |
|     if (ThisIsNonZero && First) {
 | |
|       if (NumZero)
 | |
|         V = getZeroVector(MVT::v8i16, true, DAG, dl);
 | |
|       else
 | |
|         V = DAG.getUNDEF(MVT::v8i16);
 | |
|       First = false;
 | |
|     }
 | |
| 
 | |
|     if ((i & 1) != 0) {
 | |
|       SDValue ThisElt(0, 0), LastElt(0, 0);
 | |
|       bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
 | |
|       if (LastIsNonZero) {
 | |
|         LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
 | |
|                               MVT::i16, Op.getOperand(i-1));
 | |
|       }
 | |
|       if (ThisIsNonZero) {
 | |
|         ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
 | |
|         ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
 | |
|                               ThisElt, DAG.getConstant(8, MVT::i8));
 | |
|         if (LastIsNonZero)
 | |
|           ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
 | |
|       } else
 | |
|         ThisElt = LastElt;
 | |
| 
 | |
|       if (ThisElt.getNode())
 | |
|         V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
 | |
|                         DAG.getIntPtrConstant(i/2));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
 | |
| }
 | |
| 
 | |
| /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
 | |
| ///
 | |
| static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
 | |
|                                        unsigned NumNonZero, unsigned NumZero,
 | |
|                                        SelectionDAG &DAG, TargetLowering &TLI) {
 | |
|   if (NumNonZero > 4)
 | |
|     return SDValue();
 | |
| 
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   SDValue V(0, 0);
 | |
|   bool First = true;
 | |
|   for (unsigned i = 0; i < 8; ++i) {
 | |
|     bool isNonZero = (NonZeros & (1 << i)) != 0;
 | |
|     if (isNonZero) {
 | |
|       if (First) {
 | |
|         if (NumZero)
 | |
|           V = getZeroVector(MVT::v8i16, true, DAG, dl);
 | |
|         else
 | |
|           V = DAG.getUNDEF(MVT::v8i16);
 | |
|         First = false;
 | |
|       }
 | |
|       V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
 | |
|                       MVT::v8i16, V, Op.getOperand(i),
 | |
|                       DAG.getIntPtrConstant(i));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// getVShift - Return a vector logical shift node.
 | |
| ///
 | |
| static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
 | |
|                          unsigned NumBits, SelectionDAG &DAG,
 | |
|                          const TargetLowering &TLI, DebugLoc dl) {
 | |
|   bool isMMX = VT.getSizeInBits() == 64;
 | |
|   EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
 | |
|   unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
 | |
|   SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
 | |
|   return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
 | |
|                      DAG.getNode(Opc, dl, ShVT, SrcOp,
 | |
|                              DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   // All zero's are handled with pxor, all one's are handled with pcmpeqd.
 | |
|   if (ISD::isBuildVectorAllZeros(Op.getNode())
 | |
|       || ISD::isBuildVectorAllOnes(Op.getNode())) {
 | |
|     // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
 | |
|     // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
 | |
|     // eliminated on x86-32 hosts.
 | |
|     if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
 | |
|       return Op;
 | |
| 
 | |
|     if (ISD::isBuildVectorAllOnes(Op.getNode()))
 | |
|       return getOnesVector(Op.getValueType(), DAG, dl);
 | |
|     return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
 | |
|   }
 | |
| 
 | |
|   EVT VT = Op.getValueType();
 | |
|   EVT ExtVT = VT.getVectorElementType();
 | |
|   unsigned EVTBits = ExtVT.getSizeInBits();
 | |
| 
 | |
|   unsigned NumElems = Op.getNumOperands();
 | |
|   unsigned NumZero  = 0;
 | |
|   unsigned NumNonZero = 0;
 | |
|   unsigned NonZeros = 0;
 | |
|   bool IsAllConstants = true;
 | |
|   SmallSet<SDValue, 8> Values;
 | |
|   for (unsigned i = 0; i < NumElems; ++i) {
 | |
|     SDValue Elt = Op.getOperand(i);
 | |
|     if (Elt.getOpcode() == ISD::UNDEF)
 | |
|       continue;
 | |
|     Values.insert(Elt);
 | |
|     if (Elt.getOpcode() != ISD::Constant &&
 | |
|         Elt.getOpcode() != ISD::ConstantFP)
 | |
|       IsAllConstants = false;
 | |
|     if (X86::isZeroNode(Elt))
 | |
|       NumZero++;
 | |
|     else {
 | |
|       NonZeros |= (1 << i);
 | |
|       NumNonZero++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (NumNonZero == 0) {
 | |
|     // All undef vector. Return an UNDEF.  All zero vectors were handled above.
 | |
|     return DAG.getUNDEF(VT);
 | |
|   }
 | |
| 
 | |
|   // Special case for single non-zero, non-undef, element.
 | |
|   if (NumNonZero == 1) {
 | |
|     unsigned Idx = CountTrailingZeros_32(NonZeros);
 | |
|     SDValue Item = Op.getOperand(Idx);
 | |
| 
 | |
|     // If this is an insertion of an i64 value on x86-32, and if the top bits of
 | |
|     // the value are obviously zero, truncate the value to i32 and do the
 | |
|     // insertion that way.  Only do this if the value is non-constant or if the
 | |
|     // value is a constant being inserted into element 0.  It is cheaper to do
 | |
|     // a constant pool load than it is to do a movd + shuffle.
 | |
|     if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
 | |
|         (!IsAllConstants || Idx == 0)) {
 | |
|       if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
 | |
|         // Handle MMX and SSE both.
 | |
|         EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
 | |
|         unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
 | |
| 
 | |
|         // Truncate the value (which may itself be a constant) to i32, and
 | |
|         // convert it to a vector with movd (S2V+shuffle to zero extend).
 | |
|         Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
 | |
|         Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
 | |
|         Item = getShuffleVectorZeroOrUndef(Item, 0, true,
 | |
|                                            Subtarget->hasSSE2(), DAG);
 | |
| 
 | |
|         // Now we have our 32-bit value zero extended in the low element of
 | |
|         // a vector.  If Idx != 0, swizzle it into place.
 | |
|         if (Idx != 0) {
 | |
|           SmallVector<int, 4> Mask;
 | |
|           Mask.push_back(Idx);
 | |
|           for (unsigned i = 1; i != VecElts; ++i)
 | |
|             Mask.push_back(i);
 | |
|           Item = DAG.getVectorShuffle(VecVT, dl, Item,
 | |
|                                       DAG.getUNDEF(Item.getValueType()), 
 | |
|                                       &Mask[0]);
 | |
|         }
 | |
|         return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If we have a constant or non-constant insertion into the low element of
 | |
|     // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
 | |
|     // the rest of the elements.  This will be matched as movd/movq/movss/movsd
 | |
|     // depending on what the source datatype is.
 | |
|     if (Idx == 0) {
 | |
|       if (NumZero == 0) {
 | |
|         return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
 | |
|       } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
 | |
|           (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
 | |
|         Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
 | |
|         // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
 | |
|         return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
 | |
|                                            DAG);
 | |
|       } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
 | |
|         Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
 | |
|         EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
 | |
|         Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
 | |
|         Item = getShuffleVectorZeroOrUndef(Item, 0, true,
 | |
|                                            Subtarget->hasSSE2(), DAG);
 | |
|         return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Is it a vector logical left shift?
 | |
|     if (NumElems == 2 && Idx == 1 &&
 | |
|         X86::isZeroNode(Op.getOperand(0)) &&
 | |
|         !X86::isZeroNode(Op.getOperand(1))) {
 | |
|       unsigned NumBits = VT.getSizeInBits();
 | |
|       return getVShift(true, VT,
 | |
|                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
 | |
|                                    VT, Op.getOperand(1)),
 | |
|                        NumBits/2, DAG, *this, dl);
 | |
|     }
 | |
| 
 | |
|     if (IsAllConstants) // Otherwise, it's better to do a constpool load.
 | |
|       return SDValue();
 | |
| 
 | |
|     // Otherwise, if this is a vector with i32 or f32 elements, and the element
 | |
|     // is a non-constant being inserted into an element other than the low one,
 | |
|     // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
 | |
|     // movd/movss) to move this into the low element, then shuffle it into
 | |
|     // place.
 | |
|     if (EVTBits == 32) {
 | |
|       Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
 | |
| 
 | |
|       // Turn it into a shuffle of zero and zero-extended scalar to vector.
 | |
|       Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
 | |
|                                          Subtarget->hasSSE2(), DAG);
 | |
|       SmallVector<int, 8> MaskVec;
 | |
|       for (unsigned i = 0; i < NumElems; i++)
 | |
|         MaskVec.push_back(i == Idx ? 0 : 1);
 | |
|       return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Splat is obviously ok. Let legalizer expand it to a shuffle.
 | |
|   if (Values.size() == 1)
 | |
|     return SDValue();
 | |
| 
 | |
|   // A vector full of immediates; various special cases are already
 | |
|   // handled, so this is best done with a single constant-pool load.
 | |
|   if (IsAllConstants)
 | |
|     return SDValue();
 | |
| 
 | |
|   // Let legalizer expand 2-wide build_vectors.
 | |
|   if (EVTBits == 64) {
 | |
|     if (NumNonZero == 1) {
 | |
|       // One half is zero or undef.
 | |
|       unsigned Idx = CountTrailingZeros_32(NonZeros);
 | |
|       SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
 | |
|                                  Op.getOperand(Idx));
 | |
|       return getShuffleVectorZeroOrUndef(V2, Idx, true,
 | |
|                                          Subtarget->hasSSE2(), DAG);
 | |
|     }
 | |
|     return SDValue();
 | |
|   }
 | |
| 
 | |
|   // If element VT is < 32 bits, convert it to inserts into a zero vector.
 | |
|   if (EVTBits == 8 && NumElems == 16) {
 | |
|     SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
 | |
|                                         *this);
 | |
|     if (V.getNode()) return V;
 | |
|   }
 | |
| 
 | |
|   if (EVTBits == 16 && NumElems == 8) {
 | |
|     SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
 | |
|                                         *this);
 | |
|     if (V.getNode()) return V;
 | |
|   }
 | |
| 
 | |
|   // If element VT is == 32 bits, turn it into a number of shuffles.
 | |
|   SmallVector<SDValue, 8> V;
 | |
|   V.resize(NumElems);
 | |
|   if (NumElems == 4 && NumZero > 0) {
 | |
|     for (unsigned i = 0; i < 4; ++i) {
 | |
|       bool isZero = !(NonZeros & (1 << i));
 | |
|       if (isZero)
 | |
|         V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
 | |
|       else
 | |
|         V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
 | |
|     }
 | |
| 
 | |
|     for (unsigned i = 0; i < 2; ++i) {
 | |
|       switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
 | |
|         default: break;
 | |
|         case 0:
 | |
|           V[i] = V[i*2];  // Must be a zero vector.
 | |
|           break;
 | |
|         case 1:
 | |
|           V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
 | |
|           break;
 | |
|         case 2:
 | |
|           V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
 | |
|           break;
 | |
|         case 3:
 | |
|           V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
 | |
|           break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     SmallVector<int, 8> MaskVec;
 | |
|     bool Reverse = (NonZeros & 0x3) == 2;
 | |
|     for (unsigned i = 0; i < 2; ++i)
 | |
|       MaskVec.push_back(Reverse ? 1-i : i);
 | |
|     Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
 | |
|     for (unsigned i = 0; i < 2; ++i)
 | |
|       MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
 | |
|     return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
 | |
|   }
 | |
| 
 | |
|   if (Values.size() > 2) {
 | |
|     // If we have SSE 4.1, Expand into a number of inserts unless the number of
 | |
|     // values to be inserted is equal to the number of elements, in which case
 | |
|     // use the unpack code below in the hopes of matching the consecutive elts
 | |
|     // load merge pattern for shuffles. 
 | |
|     // FIXME: We could probably just check that here directly.
 | |
|     if (Values.size() < NumElems && VT.getSizeInBits() == 128 && 
 | |
|         getSubtarget()->hasSSE41()) {
 | |
|       V[0] = DAG.getUNDEF(VT);
 | |
|       for (unsigned i = 0; i < NumElems; ++i)
 | |
|         if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
 | |
|           V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
 | |
|                              Op.getOperand(i), DAG.getIntPtrConstant(i));
 | |
|       return V[0];
 | |
|     }
 | |
|     // Expand into a number of unpckl*.
 | |
|     // e.g. for v4f32
 | |
|     //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
 | |
|     //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
 | |
|     //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
 | |
|     for (unsigned i = 0; i < NumElems; ++i)
 | |
|       V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
 | |
|     NumElems >>= 1;
 | |
|     while (NumElems != 0) {
 | |
|       for (unsigned i = 0; i < NumElems; ++i)
 | |
|         V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
 | |
|       NumElems >>= 1;
 | |
|     }
 | |
|     return V[0];
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| // v8i16 shuffles - Prefer shuffles in the following order:
 | |
| // 1. [all]   pshuflw, pshufhw, optional move
 | |
| // 2. [ssse3] 1 x pshufb
 | |
| // 3. [ssse3] 2 x pshufb + 1 x por
 | |
| // 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
 | |
| static
 | |
| SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
 | |
|                                  SelectionDAG &DAG, X86TargetLowering &TLI) {
 | |
|   SDValue V1 = SVOp->getOperand(0);
 | |
|   SDValue V2 = SVOp->getOperand(1);
 | |
|   DebugLoc dl = SVOp->getDebugLoc();
 | |
|   SmallVector<int, 8> MaskVals;
 | |
| 
 | |
|   // Determine if more than 1 of the words in each of the low and high quadwords
 | |
|   // of the result come from the same quadword of one of the two inputs.  Undef
 | |
|   // mask values count as coming from any quadword, for better codegen.
 | |
|   SmallVector<unsigned, 4> LoQuad(4);
 | |
|   SmallVector<unsigned, 4> HiQuad(4);
 | |
|   BitVector InputQuads(4);
 | |
|   for (unsigned i = 0; i < 8; ++i) {
 | |
|     SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
 | |
|     int EltIdx = SVOp->getMaskElt(i);
 | |
|     MaskVals.push_back(EltIdx);
 | |
|     if (EltIdx < 0) {
 | |
|       ++Quad[0];
 | |
|       ++Quad[1];
 | |
|       ++Quad[2];
 | |
|       ++Quad[3];
 | |
|       continue;
 | |
|     }
 | |
|     ++Quad[EltIdx / 4];
 | |
|     InputQuads.set(EltIdx / 4);
 | |
|   }
 | |
| 
 | |
|   int BestLoQuad = -1;
 | |
|   unsigned MaxQuad = 1;
 | |
|   for (unsigned i = 0; i < 4; ++i) {
 | |
|     if (LoQuad[i] > MaxQuad) {
 | |
|       BestLoQuad = i;
 | |
|       MaxQuad = LoQuad[i];
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   int BestHiQuad = -1;
 | |
|   MaxQuad = 1;
 | |
|   for (unsigned i = 0; i < 4; ++i) {
 | |
|     if (HiQuad[i] > MaxQuad) {
 | |
|       BestHiQuad = i;
 | |
|       MaxQuad = HiQuad[i];
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // For SSSE3, If all 8 words of the result come from only 1 quadword of each
 | |
|   // of the two input vectors, shuffle them into one input vector so only a 
 | |
|   // single pshufb instruction is necessary. If There are more than 2 input
 | |
|   // quads, disable the next transformation since it does not help SSSE3.
 | |
|   bool V1Used = InputQuads[0] || InputQuads[1];
 | |
|   bool V2Used = InputQuads[2] || InputQuads[3];
 | |
|   if (TLI.getSubtarget()->hasSSSE3()) {
 | |
|     if (InputQuads.count() == 2 && V1Used && V2Used) {
 | |
|       BestLoQuad = InputQuads.find_first();
 | |
|       BestHiQuad = InputQuads.find_next(BestLoQuad);
 | |
|     }
 | |
|     if (InputQuads.count() > 2) {
 | |
|       BestLoQuad = -1;
 | |
|       BestHiQuad = -1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
 | |
|   // the shuffle mask.  If a quad is scored as -1, that means that it contains
 | |
|   // words from all 4 input quadwords.
 | |
|   SDValue NewV;
 | |
|   if (BestLoQuad >= 0 || BestHiQuad >= 0) {
 | |
|     SmallVector<int, 8> MaskV;
 | |
|     MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
 | |
|     MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
 | |
|     NewV = DAG.getVectorShuffle(MVT::v2i64, dl, 
 | |
|                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
 | |
|                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
 | |
|     NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
 | |
| 
 | |
|     // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
 | |
|     // source words for the shuffle, to aid later transformations.
 | |
|     bool AllWordsInNewV = true;
 | |
|     bool InOrder[2] = { true, true };
 | |
|     for (unsigned i = 0; i != 8; ++i) {
 | |
|       int idx = MaskVals[i];
 | |
|       if (idx != (int)i)
 | |
|         InOrder[i/4] = false;
 | |
|       if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
 | |
|         continue;
 | |
|       AllWordsInNewV = false;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
 | |
|     if (AllWordsInNewV) {
 | |
|       for (int i = 0; i != 8; ++i) {
 | |
|         int idx = MaskVals[i];
 | |
|         if (idx < 0)
 | |
|           continue;
 | |
|         idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4; 
 | |
|         if ((idx != i) && idx < 4)
 | |
|           pshufhw = false;
 | |
|         if ((idx != i) && idx > 3)
 | |
|           pshuflw = false;
 | |
|       }
 | |
|       V1 = NewV;
 | |
|       V2Used = false;
 | |
|       BestLoQuad = 0;
 | |
|       BestHiQuad = 1;
 | |
|     }
 | |
| 
 | |
|     // If we've eliminated the use of V2, and the new mask is a pshuflw or
 | |
|     // pshufhw, that's as cheap as it gets.  Return the new shuffle.
 | |
|     if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
 | |
|       return DAG.getVectorShuffle(MVT::v8i16, dl, NewV, 
 | |
|                                   DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If we have SSSE3, and all words of the result are from 1 input vector,
 | |
|   // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
 | |
|   // is present, fall back to case 4.
 | |
|   if (TLI.getSubtarget()->hasSSSE3()) {
 | |
|     SmallVector<SDValue,16> pshufbMask;
 | |
|     
 | |
|     // If we have elements from both input vectors, set the high bit of the
 | |
|     // shuffle mask element to zero out elements that come from V2 in the V1 
 | |
|     // mask, and elements that come from V1 in the V2 mask, so that the two
 | |
|     // results can be OR'd together.
 | |
|     bool TwoInputs = V1Used && V2Used;
 | |
|     for (unsigned i = 0; i != 8; ++i) {
 | |
|       int EltIdx = MaskVals[i] * 2;
 | |
|       if (TwoInputs && (EltIdx >= 16)) {
 | |
|         pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
 | |
|         pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
 | |
|         continue;
 | |
|       }
 | |
|       pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
 | |
|       pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
 | |
|     }
 | |
|     V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
 | |
|     V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1, 
 | |
|                      DAG.getNode(ISD::BUILD_VECTOR, dl,
 | |
|                                  MVT::v16i8, &pshufbMask[0], 16));
 | |
|     if (!TwoInputs)
 | |
|       return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
 | |
|     
 | |
|     // Calculate the shuffle mask for the second input, shuffle it, and
 | |
|     // OR it with the first shuffled input.
 | |
|     pshufbMask.clear();
 | |
|     for (unsigned i = 0; i != 8; ++i) {
 | |
|       int EltIdx = MaskVals[i] * 2;
 | |
|       if (EltIdx < 16) {
 | |
|         pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
 | |
|         pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
 | |
|         continue;
 | |
|       }
 | |
|       pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
 | |
|       pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
 | |
|     }
 | |
|     V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
 | |
|     V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2, 
 | |
|                      DAG.getNode(ISD::BUILD_VECTOR, dl,
 | |
|                                  MVT::v16i8, &pshufbMask[0], 16));
 | |
|     V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
 | |
|     return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
 | |
|   }
 | |
| 
 | |
|   // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
 | |
|   // and update MaskVals with new element order.
 | |
|   BitVector InOrder(8);
 | |
|   if (BestLoQuad >= 0) {
 | |
|     SmallVector<int, 8> MaskV;
 | |
|     for (int i = 0; i != 4; ++i) {
 | |
|       int idx = MaskVals[i];
 | |
|       if (idx < 0) {
 | |
|         MaskV.push_back(-1);
 | |
|         InOrder.set(i);
 | |
|       } else if ((idx / 4) == BestLoQuad) {
 | |
|         MaskV.push_back(idx & 3);
 | |
|         InOrder.set(i);
 | |
|       } else {
 | |
|         MaskV.push_back(-1);
 | |
|       }
 | |
|     }
 | |
|     for (unsigned i = 4; i != 8; ++i)
 | |
|       MaskV.push_back(i);
 | |
|     NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
 | |
|                                 &MaskV[0]);
 | |
|   }
 | |
|   
 | |
|   // If BestHi >= 0, generate a pshufhw to put the high elements in order,
 | |
|   // and update MaskVals with the new element order.
 | |
|   if (BestHiQuad >= 0) {
 | |
|     SmallVector<int, 8> MaskV;
 | |
|     for (unsigned i = 0; i != 4; ++i)
 | |
|       MaskV.push_back(i);
 | |
|     for (unsigned i = 4; i != 8; ++i) {
 | |
|       int idx = MaskVals[i];
 | |
|       if (idx < 0) {
 | |
|         MaskV.push_back(-1);
 | |
|         InOrder.set(i);
 | |
|       } else if ((idx / 4) == BestHiQuad) {
 | |
|         MaskV.push_back((idx & 3) + 4);
 | |
|         InOrder.set(i);
 | |
|       } else {
 | |
|         MaskV.push_back(-1);
 | |
|       }
 | |
|     }
 | |
|     NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
 | |
|                                 &MaskV[0]);
 | |
|   }
 | |
|   
 | |
|   // In case BestHi & BestLo were both -1, which means each quadword has a word
 | |
|   // from each of the four input quadwords, calculate the InOrder bitvector now
 | |
|   // before falling through to the insert/extract cleanup.
 | |
|   if (BestLoQuad == -1 && BestHiQuad == -1) {
 | |
|     NewV = V1;
 | |
|     for (int i = 0; i != 8; ++i)
 | |
|       if (MaskVals[i] < 0 || MaskVals[i] == i)
 | |
|         InOrder.set(i);
 | |
|   }
 | |
|   
 | |
|   // The other elements are put in the right place using pextrw and pinsrw.
 | |
|   for (unsigned i = 0; i != 8; ++i) {
 | |
|     if (InOrder[i])
 | |
|       continue;
 | |
|     int EltIdx = MaskVals[i];
 | |
|     if (EltIdx < 0)
 | |
|       continue;
 | |
|     SDValue ExtOp = (EltIdx < 8)
 | |
|     ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
 | |
|                   DAG.getIntPtrConstant(EltIdx))
 | |
|     : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
 | |
|                   DAG.getIntPtrConstant(EltIdx - 8));
 | |
|     NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
 | |
|                        DAG.getIntPtrConstant(i));
 | |
|   }
 | |
|   return NewV;
 | |
| }
 | |
| 
 | |
| // v16i8 shuffles - Prefer shuffles in the following order:
 | |
| // 1. [ssse3] 1 x pshufb
 | |
| // 2. [ssse3] 2 x pshufb + 1 x por
 | |
| // 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
 | |
| static
 | |
| SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
 | |
|                                  SelectionDAG &DAG, X86TargetLowering &TLI) {
 | |
|   SDValue V1 = SVOp->getOperand(0);
 | |
|   SDValue V2 = SVOp->getOperand(1);
 | |
|   DebugLoc dl = SVOp->getDebugLoc();
 | |
|   SmallVector<int, 16> MaskVals;
 | |
|   SVOp->getMask(MaskVals);
 | |
|   
 | |
|   // If we have SSSE3, case 1 is generated when all result bytes come from
 | |
|   // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is 
 | |
|   // present, fall back to case 3.
 | |
|   // FIXME: kill V2Only once shuffles are canonizalized by getNode.
 | |
|   bool V1Only = true;
 | |
|   bool V2Only = true;
 | |
|   for (unsigned i = 0; i < 16; ++i) {
 | |
|     int EltIdx = MaskVals[i];
 | |
|     if (EltIdx < 0)
 | |
|       continue;
 | |
|     if (EltIdx < 16)
 | |
|       V2Only = false;
 | |
|     else
 | |
|       V1Only = false;
 | |
|   }
 | |
|   
 | |
|   // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
 | |
|   if (TLI.getSubtarget()->hasSSSE3()) {
 | |
|     SmallVector<SDValue,16> pshufbMask;
 | |
|     
 | |
|     // If all result elements are from one input vector, then only translate
 | |
|     // undef mask values to 0x80 (zero out result) in the pshufb mask. 
 | |
|     //
 | |
|     // Otherwise, we have elements from both input vectors, and must zero out
 | |
|     // elements that come from V2 in the first mask, and V1 in the second mask
 | |
|     // so that we can OR them together.
 | |
|     bool TwoInputs = !(V1Only || V2Only);
 | |
|     for (unsigned i = 0; i != 16; ++i) {
 | |
|       int EltIdx = MaskVals[i];
 | |
|       if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
 | |
|         pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
 | |
|         continue;
 | |
|       }
 | |
|       pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
 | |
|     }
 | |
|     // If all the elements are from V2, assign it to V1 and return after
 | |
|     // building the first pshufb.
 | |
|     if (V2Only)
 | |
|       V1 = V2;
 | |
|     V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
 | |
|                      DAG.getNode(ISD::BUILD_VECTOR, dl,
 | |
|                                  MVT::v16i8, &pshufbMask[0], 16));
 | |
|     if (!TwoInputs)
 | |
|       return V1;
 | |
|     
 | |
|     // Calculate the shuffle mask for the second input, shuffle it, and
 | |
|     // OR it with the first shuffled input.
 | |
|     pshufbMask.clear();
 | |
|     for (unsigned i = 0; i != 16; ++i) {
 | |
|       int EltIdx = MaskVals[i];
 | |
|       if (EltIdx < 16) {
 | |
|         pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
 | |
|         continue;
 | |
|       }
 | |
|       pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
 | |
|     }
 | |
|     V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
 | |
|                      DAG.getNode(ISD::BUILD_VECTOR, dl,
 | |
|                                  MVT::v16i8, &pshufbMask[0], 16));
 | |
|     return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
 | |
|   }
 | |
|   
 | |
|   // No SSSE3 - Calculate in place words and then fix all out of place words
 | |
|   // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
 | |
|   // the 16 different words that comprise the two doublequadword input vectors.
 | |
|   V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
 | |
|   V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
 | |
|   SDValue NewV = V2Only ? V2 : V1;
 | |
|   for (int i = 0; i != 8; ++i) {
 | |
|     int Elt0 = MaskVals[i*2];
 | |
|     int Elt1 = MaskVals[i*2+1];
 | |
|     
 | |
|     // This word of the result is all undef, skip it.
 | |
|     if (Elt0 < 0 && Elt1 < 0)
 | |
|       continue;
 | |
|     
 | |
|     // This word of the result is already in the correct place, skip it.
 | |
|     if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
 | |
|       continue;
 | |
|     if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
 | |
|       continue;
 | |
|     
 | |
|     SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
 | |
|     SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
 | |
|     SDValue InsElt;
 | |
| 
 | |
|     // If Elt0 and Elt1 are defined, are consecutive, and can be load
 | |
|     // using a single extract together, load it and store it.
 | |
|     if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
 | |
|       InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
 | |
|                            DAG.getIntPtrConstant(Elt1 / 2));
 | |
|       NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
 | |
|                         DAG.getIntPtrConstant(i));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If Elt1 is defined, extract it from the appropriate source.  If the
 | |
|     // source byte is not also odd, shift the extracted word left 8 bits
 | |
|     // otherwise clear the bottom 8 bits if we need to do an or.
 | |
|     if (Elt1 >= 0) {
 | |
|       InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
 | |
|                            DAG.getIntPtrConstant(Elt1 / 2));
 | |
|       if ((Elt1 & 1) == 0)
 | |
|         InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
 | |
|                              DAG.getConstant(8, TLI.getShiftAmountTy()));
 | |
|       else if (Elt0 >= 0)
 | |
|         InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
 | |
|                              DAG.getConstant(0xFF00, MVT::i16));
 | |
|     }
 | |
|     // If Elt0 is defined, extract it from the appropriate source.  If the
 | |
|     // source byte is not also even, shift the extracted word right 8 bits. If
 | |
|     // Elt1 was also defined, OR the extracted values together before
 | |
|     // inserting them in the result.
 | |
|     if (Elt0 >= 0) {
 | |
|       SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
 | |
|                                     Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
 | |
|       if ((Elt0 & 1) != 0)
 | |
|         InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
 | |
|                               DAG.getConstant(8, TLI.getShiftAmountTy()));
 | |
|       else if (Elt1 >= 0)
 | |
|         InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
 | |
|                              DAG.getConstant(0x00FF, MVT::i16));
 | |
|       InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
 | |
|                          : InsElt0;
 | |
|     }
 | |
|     NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
 | |
|                        DAG.getIntPtrConstant(i));
 | |
|   }
 | |
|   return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
 | |
| }
 | |
| 
 | |
| /// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
 | |
| /// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
 | |
| /// done when every pair / quad of shuffle mask elements point to elements in
 | |
| /// the right sequence. e.g.
 | |
| /// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
 | |
| static
 | |
| SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
 | |
|                                  SelectionDAG &DAG,
 | |
|                                  TargetLowering &TLI, DebugLoc dl) {
 | |
|   EVT VT = SVOp->getValueType(0);
 | |
|   SDValue V1 = SVOp->getOperand(0);
 | |
|   SDValue V2 = SVOp->getOperand(1);
 | |
|   unsigned NumElems = VT.getVectorNumElements();
 | |
|   unsigned NewWidth = (NumElems == 4) ? 2 : 4;
 | |
|   EVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
 | |
|   EVT MaskEltVT = MaskVT.getVectorElementType();
 | |
|   EVT NewVT = MaskVT;
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default: assert(false && "Unexpected!");
 | |
|   case MVT::v4f32: NewVT = MVT::v2f64; break;
 | |
|   case MVT::v4i32: NewVT = MVT::v2i64; break;
 | |
|   case MVT::v8i16: NewVT = MVT::v4i32; break;
 | |
|   case MVT::v16i8: NewVT = MVT::v4i32; break;
 | |
|   }
 | |
| 
 | |
|   if (NewWidth == 2) {
 | |
|     if (VT.isInteger())
 | |
|       NewVT = MVT::v2i64;
 | |
|     else
 | |
|       NewVT = MVT::v2f64;
 | |
|   }
 | |
|   int Scale = NumElems / NewWidth;
 | |
|   SmallVector<int, 8> MaskVec;
 | |
|   for (unsigned i = 0; i < NumElems; i += Scale) {
 | |
|     int StartIdx = -1;
 | |
|     for (int j = 0; j < Scale; ++j) {
 | |
|       int EltIdx = SVOp->getMaskElt(i+j);
 | |
|       if (EltIdx < 0)
 | |
|         continue;
 | |
|       if (StartIdx == -1)
 | |
|         StartIdx = EltIdx - (EltIdx % Scale);
 | |
|       if (EltIdx != StartIdx + j)
 | |
|         return SDValue();
 | |
|     }
 | |
|     if (StartIdx == -1)
 | |
|       MaskVec.push_back(-1);
 | |
|     else
 | |
|       MaskVec.push_back(StartIdx / Scale);
 | |
|   }
 | |
| 
 | |
|   V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
 | |
|   V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
 | |
|   return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
 | |
| }
 | |
| 
 | |
| /// getVZextMovL - Return a zero-extending vector move low node.
 | |
| ///
 | |
| static SDValue getVZextMovL(EVT VT, EVT OpVT,
 | |
|                             SDValue SrcOp, SelectionDAG &DAG,
 | |
|                             const X86Subtarget *Subtarget, DebugLoc dl) {
 | |
|   if (VT == MVT::v2f64 || VT == MVT::v4f32) {
 | |
|     LoadSDNode *LD = NULL;
 | |
|     if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
 | |
|       LD = dyn_cast<LoadSDNode>(SrcOp);
 | |
|     if (!LD) {
 | |
|       // movssrr and movsdrr do not clear top bits. Try to use movd, movq
 | |
|       // instead.
 | |
|       MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
 | |
|       if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) &&
 | |
|           SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
 | |
|           SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
 | |
|           SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
 | |
|         // PR2108
 | |
|         OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
 | |
|         return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
 | |
|                            DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
 | |
|                                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
 | |
|                                                    OpVT,
 | |
|                                                    SrcOp.getOperand(0)
 | |
|                                                           .getOperand(0))));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
 | |
|                      DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
 | |
|                                  DAG.getNode(ISD::BIT_CONVERT, dl,
 | |
|                                              OpVT, SrcOp)));
 | |
| }
 | |
| 
 | |
| /// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
 | |
| /// shuffles.
 | |
| static SDValue
 | |
| LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
 | |
|   SDValue V1 = SVOp->getOperand(0);
 | |
|   SDValue V2 = SVOp->getOperand(1);
 | |
|   DebugLoc dl = SVOp->getDebugLoc();
 | |
|   EVT VT = SVOp->getValueType(0);
 | |
|   
 | |
|   SmallVector<std::pair<int, int>, 8> Locs;
 | |
|   Locs.resize(4);
 | |
|   SmallVector<int, 8> Mask1(4U, -1);
 | |
|   SmallVector<int, 8> PermMask;
 | |
|   SVOp->getMask(PermMask);
 | |
| 
 | |
|   unsigned NumHi = 0;
 | |
|   unsigned NumLo = 0;
 | |
|   for (unsigned i = 0; i != 4; ++i) {
 | |
|     int Idx = PermMask[i];
 | |
|     if (Idx < 0) {
 | |
|       Locs[i] = std::make_pair(-1, -1);
 | |
|     } else {
 | |
|       assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
 | |
|       if (Idx < 4) {
 | |
|         Locs[i] = std::make_pair(0, NumLo);
 | |
|         Mask1[NumLo] = Idx;
 | |
|         NumLo++;
 | |
|       } else {
 | |
|         Locs[i] = std::make_pair(1, NumHi);
 | |
|         if (2+NumHi < 4)
 | |
|           Mask1[2+NumHi] = Idx;
 | |
|         NumHi++;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (NumLo <= 2 && NumHi <= 2) {
 | |
|     // If no more than two elements come from either vector. This can be
 | |
|     // implemented with two shuffles. First shuffle gather the elements.
 | |
|     // The second shuffle, which takes the first shuffle as both of its
 | |
|     // vector operands, put the elements into the right order.
 | |
|     V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
 | |
| 
 | |
|     SmallVector<int, 8> Mask2(4U, -1);
 | |
|     
 | |
|     for (unsigned i = 0; i != 4; ++i) {
 | |
|       if (Locs[i].first == -1)
 | |
|         continue;
 | |
|       else {
 | |
|         unsigned Idx = (i < 2) ? 0 : 4;
 | |
|         Idx += Locs[i].first * 2 + Locs[i].second;
 | |
|         Mask2[i] = Idx;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
 | |
|   } else if (NumLo == 3 || NumHi == 3) {
 | |
|     // Otherwise, we must have three elements from one vector, call it X, and
 | |
|     // one element from the other, call it Y.  First, use a shufps to build an
 | |
|     // intermediate vector with the one element from Y and the element from X
 | |
|     // that will be in the same half in the final destination (the indexes don't
 | |
|     // matter). Then, use a shufps to build the final vector, taking the half
 | |
|     // containing the element from Y from the intermediate, and the other half
 | |
|     // from X.
 | |
|     if (NumHi == 3) {
 | |
|       // Normalize it so the 3 elements come from V1.
 | |
|       CommuteVectorShuffleMask(PermMask, VT);
 | |
|       std::swap(V1, V2);
 | |
|     }
 | |
| 
 | |
|     // Find the element from V2.
 | |
|     unsigned HiIndex;
 | |
|     for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
 | |
|       int Val = PermMask[HiIndex];
 | |
|       if (Val < 0)
 | |
|         continue;
 | |
|       if (Val >= 4)
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     Mask1[0] = PermMask[HiIndex];
 | |
|     Mask1[1] = -1;
 | |
|     Mask1[2] = PermMask[HiIndex^1];
 | |
|     Mask1[3] = -1;
 | |
|     V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
 | |
| 
 | |
|     if (HiIndex >= 2) {
 | |
|       Mask1[0] = PermMask[0];
 | |
|       Mask1[1] = PermMask[1];
 | |
|       Mask1[2] = HiIndex & 1 ? 6 : 4;
 | |
|       Mask1[3] = HiIndex & 1 ? 4 : 6;
 | |
|       return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
 | |
|     } else {
 | |
|       Mask1[0] = HiIndex & 1 ? 2 : 0;
 | |
|       Mask1[1] = HiIndex & 1 ? 0 : 2;
 | |
|       Mask1[2] = PermMask[2];
 | |
|       Mask1[3] = PermMask[3];
 | |
|       if (Mask1[2] >= 0)
 | |
|         Mask1[2] += 4;
 | |
|       if (Mask1[3] >= 0)
 | |
|         Mask1[3] += 4;
 | |
|       return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Break it into (shuffle shuffle_hi, shuffle_lo).
 | |
|   Locs.clear();
 | |
|   SmallVector<int,8> LoMask(4U, -1);
 | |
|   SmallVector<int,8> HiMask(4U, -1);
 | |
| 
 | |
|   SmallVector<int,8> *MaskPtr = &LoMask;
 | |
|   unsigned MaskIdx = 0;
 | |
|   unsigned LoIdx = 0;
 | |
|   unsigned HiIdx = 2;
 | |
|   for (unsigned i = 0; i != 4; ++i) {
 | |
|     if (i == 2) {
 | |
|       MaskPtr = &HiMask;
 | |
|       MaskIdx = 1;
 | |
|       LoIdx = 0;
 | |
|       HiIdx = 2;
 | |
|     }
 | |
|     int Idx = PermMask[i];
 | |
|     if (Idx < 0) {
 | |
|       Locs[i] = std::make_pair(-1, -1);
 | |
|     } else if (Idx < 4) {
 | |
|       Locs[i] = std::make_pair(MaskIdx, LoIdx);
 | |
|       (*MaskPtr)[LoIdx] = Idx;
 | |
|       LoIdx++;
 | |
|     } else {
 | |
|       Locs[i] = std::make_pair(MaskIdx, HiIdx);
 | |
|       (*MaskPtr)[HiIdx] = Idx;
 | |
|       HiIdx++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
 | |
|   SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
 | |
|   SmallVector<int, 8> MaskOps;
 | |
|   for (unsigned i = 0; i != 4; ++i) {
 | |
|     if (Locs[i].first == -1) {
 | |
|       MaskOps.push_back(-1);
 | |
|     } else {
 | |
|       unsigned Idx = Locs[i].first * 4 + Locs[i].second;
 | |
|       MaskOps.push_back(Idx);
 | |
|     }
 | |
|   }
 | |
|   return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
 | |
|   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
 | |
|   SDValue V1 = Op.getOperand(0);
 | |
|   SDValue V2 = Op.getOperand(1);
 | |
|   EVT VT = Op.getValueType();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   unsigned NumElems = VT.getVectorNumElements();
 | |
|   bool isMMX = VT.getSizeInBits() == 64;
 | |
|   bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
 | |
|   bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
 | |
|   bool V1IsSplat = false;
 | |
|   bool V2IsSplat = false;
 | |
| 
 | |
|   if (isZeroShuffle(SVOp))
 | |
|     return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
 | |
| 
 | |
|   // Promote splats to v4f32.
 | |
|   if (SVOp->isSplat()) {
 | |
|     if (isMMX || NumElems < 4) 
 | |
|       return Op;
 | |
|     return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2());
 | |
|   }
 | |
| 
 | |
|   // If the shuffle can be profitably rewritten as a narrower shuffle, then
 | |
|   // do it!
 | |
|   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
 | |
|     SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
 | |
|     if (NewOp.getNode())
 | |
|       return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
 | |
|                          LowerVECTOR_SHUFFLE(NewOp, DAG));
 | |
|   } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
 | |
|     // FIXME: Figure out a cleaner way to do this.
 | |
|     // Try to make use of movq to zero out the top part.
 | |
|     if (ISD::isBuildVectorAllZeros(V2.getNode())) {
 | |
|       SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
 | |
|       if (NewOp.getNode()) {
 | |
|         if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
 | |
|           return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
 | |
|                               DAG, Subtarget, dl);
 | |
|       }
 | |
|     } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
 | |
|       SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
 | |
|       if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
 | |
|         return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
 | |
|                             DAG, Subtarget, dl);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (X86::isPSHUFDMask(SVOp))
 | |
|     return Op;
 | |
|   
 | |
|   // Check if this can be converted into a logical shift.
 | |
|   bool isLeft = false;
 | |
|   unsigned ShAmt = 0;
 | |
|   SDValue ShVal;
 | |
|   bool isShift = getSubtarget()->hasSSE2() &&
 | |
|   isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
 | |
|   if (isShift && ShVal.hasOneUse()) {
 | |
|     // If the shifted value has multiple uses, it may be cheaper to use
 | |
|     // v_set0 + movlhps or movhlps, etc.
 | |
|     EVT EVT = VT.getVectorElementType();
 | |
|     ShAmt *= EVT.getSizeInBits();
 | |
|     return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
 | |
|   }
 | |
|   
 | |
|   if (X86::isMOVLMask(SVOp)) {
 | |
|     if (V1IsUndef)
 | |
|       return V2;
 | |
|     if (ISD::isBuildVectorAllZeros(V1.getNode()))
 | |
|       return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
 | |
|     if (!isMMX)
 | |
|       return Op;
 | |
|   }
 | |
|   
 | |
|   // FIXME: fold these into legal mask.
 | |
|   if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
 | |
|                  X86::isMOVSLDUPMask(SVOp) ||
 | |
|                  X86::isMOVHLPSMask(SVOp) ||
 | |
|                  X86::isMOVHPMask(SVOp) ||
 | |
|                  X86::isMOVLPMask(SVOp)))
 | |
|     return Op;
 | |
| 
 | |
|   if (ShouldXformToMOVHLPS(SVOp) ||
 | |
|       ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
 | |
|     return CommuteVectorShuffle(SVOp, DAG);
 | |
| 
 | |
|   if (isShift) {
 | |
|     // No better options. Use a vshl / vsrl.
 | |
|     EVT EVT = VT.getVectorElementType();
 | |
|     ShAmt *= EVT.getSizeInBits();
 | |
|     return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
 | |
|   }
 | |
|   
 | |
|   bool Commuted = false;
 | |
|   // FIXME: This should also accept a bitcast of a splat?  Be careful, not
 | |
|   // 1,1,1,1 -> v8i16 though.
 | |
|   V1IsSplat = isSplatVector(V1.getNode());
 | |
|   V2IsSplat = isSplatVector(V2.getNode());
 | |
| 
 | |
|   // Canonicalize the splat or undef, if present, to be on the RHS.
 | |
|   if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
 | |
|     Op = CommuteVectorShuffle(SVOp, DAG);
 | |
|     SVOp = cast<ShuffleVectorSDNode>(Op);
 | |
|     V1 = SVOp->getOperand(0);
 | |
|     V2 = SVOp->getOperand(1);
 | |
|     std::swap(V1IsSplat, V2IsSplat);
 | |
|     std::swap(V1IsUndef, V2IsUndef);
 | |
|     Commuted = true;
 | |
|   }
 | |
| 
 | |
|   if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
 | |
|     // Shuffling low element of v1 into undef, just return v1.
 | |
|     if (V2IsUndef) 
 | |
|       return V1;
 | |
|     // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
 | |
|     // the instruction selector will not match, so get a canonical MOVL with
 | |
|     // swapped operands to undo the commute.
 | |
|     return getMOVL(DAG, dl, VT, V2, V1);
 | |
|   }
 | |
| 
 | |
|   if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
 | |
|       X86::isUNPCKH_v_undef_Mask(SVOp) ||
 | |
|       X86::isUNPCKLMask(SVOp) ||
 | |
|       X86::isUNPCKHMask(SVOp))
 | |
|     return Op;
 | |
| 
 | |
|   if (V2IsSplat) {
 | |
|     // Normalize mask so all entries that point to V2 points to its first
 | |
|     // element then try to match unpck{h|l} again. If match, return a
 | |
|     // new vector_shuffle with the corrected mask.
 | |
|     SDValue NewMask = NormalizeMask(SVOp, DAG);
 | |
|     ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
 | |
|     if (NSVOp != SVOp) {
 | |
|       if (X86::isUNPCKLMask(NSVOp, true)) {
 | |
|         return NewMask;
 | |
|       } else if (X86::isUNPCKHMask(NSVOp, true)) {
 | |
|         return NewMask;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Commuted) {
 | |
|     // Commute is back and try unpck* again.
 | |
|     // FIXME: this seems wrong.
 | |
|     SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
 | |
|     ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
 | |
|     if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
 | |
|         X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
 | |
|         X86::isUNPCKLMask(NewSVOp) ||
 | |
|         X86::isUNPCKHMask(NewSVOp))
 | |
|       return NewOp;
 | |
|   }
 | |
| 
 | |
|   // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
 | |
| 
 | |
|   // Normalize the node to match x86 shuffle ops if needed
 | |
|   if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
 | |
|     return CommuteVectorShuffle(SVOp, DAG);
 | |
| 
 | |
|   // Check for legal shuffle and return?
 | |
|   SmallVector<int, 16> PermMask;
 | |
|   SVOp->getMask(PermMask);
 | |
|   if (isShuffleMaskLegal(PermMask, VT))
 | |
|     return Op;
 | |
|   
 | |
|   // Handle v8i16 specifically since SSE can do byte extraction and insertion.
 | |
|   if (VT == MVT::v8i16) {
 | |
|     SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this);
 | |
|     if (NewOp.getNode())
 | |
|       return NewOp;
 | |
|   }
 | |
| 
 | |
|   if (VT == MVT::v16i8) {
 | |
|     SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
 | |
|     if (NewOp.getNode())
 | |
|       return NewOp;
 | |
|   }
 | |
|   
 | |
|   // Handle all 4 wide cases with a number of shuffles except for MMX.
 | |
|   if (NumElems == 4 && !isMMX)
 | |
|     return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
 | |
|                                                 SelectionDAG &DAG) {
 | |
|   EVT VT = Op.getValueType();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   if (VT.getSizeInBits() == 8) {
 | |
|     SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
 | |
|                                     Op.getOperand(0), Op.getOperand(1));
 | |
|     SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
 | |
|                                     DAG.getValueType(VT));
 | |
|     return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
 | |
|   } else if (VT.getSizeInBits() == 16) {
 | |
|     unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
 | |
|     // If Idx is 0, it's cheaper to do a move instead of a pextrw.
 | |
|     if (Idx == 0)
 | |
|       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
 | |
|                          DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
 | |
|                                      DAG.getNode(ISD::BIT_CONVERT, dl,
 | |
|                                                  MVT::v4i32,
 | |
|                                                  Op.getOperand(0)),
 | |
|                                      Op.getOperand(1)));
 | |
|     SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
 | |
|                                     Op.getOperand(0), Op.getOperand(1));
 | |
|     SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
 | |
|                                     DAG.getValueType(VT));
 | |
|     return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
 | |
|   } else if (VT == MVT::f32) {
 | |
|     // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
 | |
|     // the result back to FR32 register. It's only worth matching if the
 | |
|     // result has a single use which is a store or a bitcast to i32.  And in
 | |
|     // the case of a store, it's not worth it if the index is a constant 0,
 | |
|     // because a MOVSSmr can be used instead, which is smaller and faster.
 | |
|     if (!Op.hasOneUse())
 | |
|       return SDValue();
 | |
|     SDNode *User = *Op.getNode()->use_begin();
 | |
|     if ((User->getOpcode() != ISD::STORE ||
 | |
|          (isa<ConstantSDNode>(Op.getOperand(1)) &&
 | |
|           cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
 | |
|         (User->getOpcode() != ISD::BIT_CONVERT ||
 | |
|          User->getValueType(0) != MVT::i32))
 | |
|       return SDValue();
 | |
|     SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
 | |
|                                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
 | |
|                                               Op.getOperand(0)),
 | |
|                                               Op.getOperand(1));
 | |
|     return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
 | |
|   } else if (VT == MVT::i32) {
 | |
|     // ExtractPS works with constant index.
 | |
|     if (isa<ConstantSDNode>(Op.getOperand(1)))
 | |
|       return Op;
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
 | |
|   if (!isa<ConstantSDNode>(Op.getOperand(1)))
 | |
|     return SDValue();
 | |
| 
 | |
|   if (Subtarget->hasSSE41()) {
 | |
|     SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
 | |
|     if (Res.getNode())
 | |
|       return Res;
 | |
|   }
 | |
| 
 | |
|   EVT VT = Op.getValueType();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   // TODO: handle v16i8.
 | |
|   if (VT.getSizeInBits() == 16) {
 | |
|     SDValue Vec = Op.getOperand(0);
 | |
|     unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
 | |
|     if (Idx == 0)
 | |
|       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
 | |
|                          DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
 | |
|                                      DAG.getNode(ISD::BIT_CONVERT, dl,
 | |
|                                                  MVT::v4i32, Vec),
 | |
|                                      Op.getOperand(1)));
 | |
|     // Transform it so it match pextrw which produces a 32-bit result.
 | |
|     EVT EVT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy+1);
 | |
|     SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EVT,
 | |
|                                     Op.getOperand(0), Op.getOperand(1));
 | |
|     SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EVT, Extract,
 | |
|                                     DAG.getValueType(VT));
 | |
|     return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
 | |
|   } else if (VT.getSizeInBits() == 32) {
 | |
|     unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
 | |
|     if (Idx == 0)
 | |
|       return Op;
 | |
|     
 | |
|     // SHUFPS the element to the lowest double word, then movss.
 | |
|     int Mask[4] = { Idx, -1, -1, -1 };
 | |
|     EVT VVT = Op.getOperand(0).getValueType();
 | |
|     SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0), 
 | |
|                                        DAG.getUNDEF(VVT), Mask);
 | |
|     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
 | |
|                        DAG.getIntPtrConstant(0));
 | |
|   } else if (VT.getSizeInBits() == 64) {
 | |
|     // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
 | |
|     // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
 | |
|     //        to match extract_elt for f64.
 | |
|     unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
 | |
|     if (Idx == 0)
 | |
|       return Op;
 | |
| 
 | |
|     // UNPCKHPD the element to the lowest double word, then movsd.
 | |
|     // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
 | |
|     // to a f64mem, the whole operation is folded into a single MOVHPDmr.
 | |
|     int Mask[2] = { 1, -1 };
 | |
|     EVT VVT = Op.getOperand(0).getValueType();
 | |
|     SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0), 
 | |
|                                        DAG.getUNDEF(VVT), Mask);
 | |
|     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
 | |
|                        DAG.getIntPtrConstant(0));
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
 | |
|   EVT VT = Op.getValueType();
 | |
|   EVT EVT = VT.getVectorElementType();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   SDValue N0 = Op.getOperand(0);
 | |
|   SDValue N1 = Op.getOperand(1);
 | |
|   SDValue N2 = Op.getOperand(2);
 | |
| 
 | |
|   if ((EVT.getSizeInBits() == 8 || EVT.getSizeInBits() == 16) &&
 | |
|       isa<ConstantSDNode>(N2)) {
 | |
|     unsigned Opc = (EVT.getSizeInBits() == 8) ? X86ISD::PINSRB
 | |
|                                               : X86ISD::PINSRW;
 | |
|     // Transform it so it match pinsr{b,w} which expects a GR32 as its second
 | |
|     // argument.
 | |
|     if (N1.getValueType() != MVT::i32)
 | |
|       N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
 | |
|     if (N2.getValueType() != MVT::i32)
 | |
|       N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
 | |
|     return DAG.getNode(Opc, dl, VT, N0, N1, N2);
 | |
|   } else if (EVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
 | |
|     // Bits [7:6] of the constant are the source select.  This will always be
 | |
|     //  zero here.  The DAG Combiner may combine an extract_elt index into these
 | |
|     //  bits.  For example (insert (extract, 3), 2) could be matched by putting
 | |
|     //  the '3' into bits [7:6] of X86ISD::INSERTPS.
 | |
|     // Bits [5:4] of the constant are the destination select.  This is the
 | |
|     //  value of the incoming immediate.
 | |
|     // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
 | |
|     //   combine either bitwise AND or insert of float 0.0 to set these bits.
 | |
|     N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
 | |
|     // Create this as a scalar to vector..
 | |
|     N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
 | |
|     return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
 | |
|   } else if (EVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
 | |
|     // PINSR* works with constant index.
 | |
|     return Op;
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
 | |
|   EVT VT = Op.getValueType();
 | |
|   EVT EVT = VT.getVectorElementType();
 | |
| 
 | |
|   if (Subtarget->hasSSE41())
 | |
|     return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
 | |
| 
 | |
|   if (EVT == MVT::i8)
 | |
|     return SDValue();
 | |
| 
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   SDValue N0 = Op.getOperand(0);
 | |
|   SDValue N1 = Op.getOperand(1);
 | |
|   SDValue N2 = Op.getOperand(2);
 | |
| 
 | |
|   if (EVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
 | |
|     // Transform it so it match pinsrw which expects a 16-bit value in a GR32
 | |
|     // as its second argument.
 | |
|     if (N1.getValueType() != MVT::i32)
 | |
|       N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
 | |
|     if (N2.getValueType() != MVT::i32)
 | |
|       N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
 | |
|     return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   if (Op.getValueType() == MVT::v2f32)
 | |
|     return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32,
 | |
|                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32,
 | |
|                                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
 | |
|                                                Op.getOperand(0))));
 | |
| 
 | |
|   if (Op.getValueType() == MVT::v1i64 && Op.getOperand(0).getValueType() == MVT::i64)
 | |
|     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
 | |
| 
 | |
|   SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
 | |
|   EVT VT = MVT::v2i32;
 | |
|   switch (Op.getValueType().getSimpleVT().SimpleTy) {
 | |
|   default: break;
 | |
|   case MVT::v16i8:
 | |
|   case MVT::v8i16:
 | |
|     VT = MVT::v4i32;
 | |
|     break;
 | |
|   }
 | |
|   return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
 | |
|                      DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
 | |
| }
 | |
| 
 | |
| // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
 | |
| // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
 | |
| // one of the above mentioned nodes. It has to be wrapped because otherwise
 | |
| // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
 | |
| // be used to form addressing mode. These wrapped nodes will be selected
 | |
| // into MOV32ri.
 | |
| SDValue
 | |
| X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
 | |
|   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
 | |
|   
 | |
|   // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
 | |
|   // global base reg.
 | |
|   unsigned char OpFlag = 0;
 | |
|   unsigned WrapperKind = X86ISD::Wrapper;
 | |
|   CodeModel::Model M = getTargetMachine().getCodeModel();
 | |
| 
 | |
|   if (Subtarget->isPICStyleRIPRel() &&
 | |
|       (M == CodeModel::Small || M == CodeModel::Kernel))
 | |
|     WrapperKind = X86ISD::WrapperRIP;
 | |
|   else if (Subtarget->isPICStyleGOT())
 | |
|     OpFlag = X86II::MO_GOTOFF;
 | |
|   else if (Subtarget->isPICStyleStubPIC())
 | |
|     OpFlag = X86II::MO_PIC_BASE_OFFSET;
 | |
|   
 | |
|   SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
 | |
|                                              CP->getAlignment(),
 | |
|                                              CP->getOffset(), OpFlag);
 | |
|   DebugLoc DL = CP->getDebugLoc();
 | |
|   Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
 | |
|   // With PIC, the address is actually $g + Offset.
 | |
|   if (OpFlag) {
 | |
|     Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
 | |
|                          DAG.getNode(X86ISD::GlobalBaseReg,
 | |
|                                      DebugLoc::getUnknownLoc(), getPointerTy()),
 | |
|                          Result);
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
 | |
|   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
 | |
|   
 | |
|   // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
 | |
|   // global base reg.
 | |
|   unsigned char OpFlag = 0;
 | |
|   unsigned WrapperKind = X86ISD::Wrapper;
 | |
|   CodeModel::Model M = getTargetMachine().getCodeModel();
 | |
| 
 | |
|   if (Subtarget->isPICStyleRIPRel() &&
 | |
|       (M == CodeModel::Small || M == CodeModel::Kernel))
 | |
|     WrapperKind = X86ISD::WrapperRIP;
 | |
|   else if (Subtarget->isPICStyleGOT())
 | |
|     OpFlag = X86II::MO_GOTOFF;
 | |
|   else if (Subtarget->isPICStyleStubPIC())
 | |
|     OpFlag = X86II::MO_PIC_BASE_OFFSET;
 | |
|   
 | |
|   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
 | |
|                                           OpFlag);
 | |
|   DebugLoc DL = JT->getDebugLoc();
 | |
|   Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
 | |
|   
 | |
|   // With PIC, the address is actually $g + Offset.
 | |
|   if (OpFlag) {
 | |
|     Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
 | |
|                          DAG.getNode(X86ISD::GlobalBaseReg,
 | |
|                                      DebugLoc::getUnknownLoc(), getPointerTy()),
 | |
|                          Result);
 | |
|   }
 | |
|   
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
 | |
|   const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
 | |
|   
 | |
|   // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
 | |
|   // global base reg.
 | |
|   unsigned char OpFlag = 0;
 | |
|   unsigned WrapperKind = X86ISD::Wrapper;
 | |
|   CodeModel::Model M = getTargetMachine().getCodeModel();
 | |
| 
 | |
|   if (Subtarget->isPICStyleRIPRel() &&
 | |
|       (M == CodeModel::Small || M == CodeModel::Kernel))
 | |
|     WrapperKind = X86ISD::WrapperRIP;
 | |
|   else if (Subtarget->isPICStyleGOT())
 | |
|     OpFlag = X86II::MO_GOTOFF;
 | |
|   else if (Subtarget->isPICStyleStubPIC())
 | |
|     OpFlag = X86II::MO_PIC_BASE_OFFSET;
 | |
|   
 | |
|   SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
 | |
|   
 | |
|   DebugLoc DL = Op.getDebugLoc();
 | |
|   Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
 | |
|   
 | |
|   
 | |
|   // With PIC, the address is actually $g + Offset.
 | |
|   if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
 | |
|       !Subtarget->is64Bit()) {
 | |
|     Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
 | |
|                          DAG.getNode(X86ISD::GlobalBaseReg,
 | |
|                                      DebugLoc::getUnknownLoc(),
 | |
|                                      getPointerTy()),
 | |
|                          Result);
 | |
|   }
 | |
|   
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
 | |
|                                       int64_t Offset,
 | |
|                                       SelectionDAG &DAG) const {
 | |
|   // Create the TargetGlobalAddress node, folding in the constant
 | |
|   // offset if it is legal.
 | |
|   unsigned char OpFlags =
 | |
|     Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
 | |
|   CodeModel::Model M = getTargetMachine().getCodeModel();
 | |
|   SDValue Result;
 | |
|   if (OpFlags == X86II::MO_NO_FLAG &&
 | |
|       X86::isOffsetSuitableForCodeModel(Offset, M)) {
 | |
|     // A direct static reference to a global.
 | |
|     Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
 | |
|     Offset = 0;
 | |
|   } else {
 | |
|     Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0, OpFlags);
 | |
|   }
 | |
|   
 | |
|   if (Subtarget->isPICStyleRIPRel() &&
 | |
|       (M == CodeModel::Small || M == CodeModel::Kernel))
 | |
|     Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
 | |
|   else
 | |
|     Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
 | |
| 
 | |
|   // With PIC, the address is actually $g + Offset.
 | |
|   if (isGlobalRelativeToPICBase(OpFlags)) {
 | |
|     Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
 | |
|                          DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
 | |
|                          Result);
 | |
|   }
 | |
| 
 | |
|   // For globals that require a load from a stub to get the address, emit the
 | |
|   // load.
 | |
|   if (isGlobalStubReference(OpFlags))
 | |
|     Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
 | |
|                          PseudoSourceValue::getGOT(), 0);
 | |
| 
 | |
|   // If there was a non-zero offset that we didn't fold, create an explicit
 | |
|   // addition for it.
 | |
|   if (Offset != 0)
 | |
|     Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
 | |
|                          DAG.getConstant(Offset, getPointerTy()));
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
 | |
|   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
 | |
|   int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
 | |
|   return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
 | |
| }
 | |
| 
 | |
| static SDValue
 | |
| GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
 | |
|            SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
 | |
|            unsigned char OperandFlags) {
 | |
|   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
 | |
|   DebugLoc dl = GA->getDebugLoc();
 | |
|   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
 | |
|                                            GA->getValueType(0),
 | |
|                                            GA->getOffset(),
 | |
|                                            OperandFlags);
 | |
|   if (InFlag) {
 | |
|     SDValue Ops[] = { Chain,  TGA, *InFlag };
 | |
|     Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
 | |
|   } else {
 | |
|     SDValue Ops[]  = { Chain, TGA };
 | |
|     Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
 | |
|   }
 | |
|   SDValue Flag = Chain.getValue(1);
 | |
|   return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
 | |
| }
 | |
| 
 | |
| // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
 | |
| static SDValue
 | |
| LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
 | |
|                                 const EVT PtrVT) {
 | |
|   SDValue InFlag;
 | |
|   DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
 | |
|   SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
 | |
|                                      DAG.getNode(X86ISD::GlobalBaseReg,
 | |
|                                                  DebugLoc::getUnknownLoc(),
 | |
|                                                  PtrVT), InFlag);
 | |
|   InFlag = Chain.getValue(1);
 | |
| 
 | |
|   return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
 | |
| }
 | |
| 
 | |
| // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
 | |
| static SDValue
 | |
| LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
 | |
|                                 const EVT PtrVT) {
 | |
|   return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
 | |
|                     X86::RAX, X86II::MO_TLSGD);
 | |
| }
 | |
| 
 | |
| // Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
 | |
| // "local exec" model.
 | |
| static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
 | |
|                                    const EVT PtrVT, TLSModel::Model model,
 | |
|                                    bool is64Bit) {
 | |
|   DebugLoc dl = GA->getDebugLoc();
 | |
|   // Get the Thread Pointer
 | |
|   SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
 | |
|                              DebugLoc::getUnknownLoc(), PtrVT,
 | |
|                              DAG.getRegister(is64Bit? X86::FS : X86::GS,
 | |
|                                              MVT::i32));
 | |
| 
 | |
|   SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
 | |
|                                       NULL, 0);
 | |
| 
 | |
|   unsigned char OperandFlags = 0;
 | |
|   // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
 | |
|   // initialexec.
 | |
|   unsigned WrapperKind = X86ISD::Wrapper;
 | |
|   if (model == TLSModel::LocalExec) {
 | |
|     OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
 | |
|   } else if (is64Bit) {
 | |
|     assert(model == TLSModel::InitialExec);
 | |
|     OperandFlags = X86II::MO_GOTTPOFF;
 | |
|     WrapperKind = X86ISD::WrapperRIP;
 | |
|   } else {
 | |
|     assert(model == TLSModel::InitialExec);
 | |
|     OperandFlags = X86II::MO_INDNTPOFF;
 | |
|   }
 | |
|   
 | |
|   // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
 | |
|   // exec)
 | |
|   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
 | |
|                                            GA->getOffset(), OperandFlags);
 | |
|   SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
 | |
| 
 | |
|   if (model == TLSModel::InitialExec)
 | |
|     Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
 | |
|                          PseudoSourceValue::getGOT(), 0);
 | |
| 
 | |
|   // The address of the thread local variable is the add of the thread
 | |
|   // pointer with the offset of the variable.
 | |
|   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
 | |
|   // TODO: implement the "local dynamic" model
 | |
|   // TODO: implement the "initial exec"model for pic executables
 | |
|   assert(Subtarget->isTargetELF() &&
 | |
|          "TLS not implemented for non-ELF targets");
 | |
|   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
 | |
|   const GlobalValue *GV = GA->getGlobal();
 | |
|   
 | |
|   // If GV is an alias then use the aliasee for determining
 | |
|   // thread-localness.
 | |
|   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
 | |
|     GV = GA->resolveAliasedGlobal(false);
 | |
|   
 | |
|   TLSModel::Model model = getTLSModel(GV,
 | |
|                                       getTargetMachine().getRelocationModel());
 | |
|   
 | |
|   switch (model) {
 | |
|   case TLSModel::GeneralDynamic:
 | |
|   case TLSModel::LocalDynamic: // not implemented
 | |
|     if (Subtarget->is64Bit())
 | |
|       return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
 | |
|     return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
 | |
|     
 | |
|   case TLSModel::InitialExec:
 | |
|   case TLSModel::LocalExec:
 | |
|     return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
 | |
|                                Subtarget->is64Bit());
 | |
|   }
 | |
|   
 | |
|   llvm_unreachable("Unreachable");
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
 | |
| /// take a 2 x i32 value to shift plus a shift amount.
 | |
| SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
 | |
|   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
 | |
|   EVT VT = Op.getValueType();
 | |
|   unsigned VTBits = VT.getSizeInBits();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
 | |
|   SDValue ShOpLo = Op.getOperand(0);
 | |
|   SDValue ShOpHi = Op.getOperand(1);
 | |
|   SDValue ShAmt  = Op.getOperand(2);
 | |
|   SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
 | |
|                                      DAG.getConstant(VTBits - 1, MVT::i8))
 | |
|                        : DAG.getConstant(0, VT);
 | |
| 
 | |
|   SDValue Tmp2, Tmp3;
 | |
|   if (Op.getOpcode() == ISD::SHL_PARTS) {
 | |
|     Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
 | |
|     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
 | |
|   } else {
 | |
|     Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
 | |
|     Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
 | |
|   }
 | |
| 
 | |
|   SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
 | |
|                                 DAG.getConstant(VTBits, MVT::i8));
 | |
|   SDValue Cond = DAG.getNode(X86ISD::CMP, dl, VT,
 | |
|                              AndNode, DAG.getConstant(0, MVT::i8));
 | |
| 
 | |
|   SDValue Hi, Lo;
 | |
|   SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
 | |
|   SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
 | |
|   SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
 | |
| 
 | |
|   if (Op.getOpcode() == ISD::SHL_PARTS) {
 | |
|     Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
 | |
|     Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
 | |
|   } else {
 | |
|     Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
 | |
|     Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
 | |
|   }
 | |
| 
 | |
|   SDValue Ops[2] = { Lo, Hi };
 | |
|   return DAG.getMergeValues(Ops, 2, dl);
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
 | |
|   EVT SrcVT = Op.getOperand(0).getValueType();
 | |
| 
 | |
|   if (SrcVT.isVector()) {
 | |
|     if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
 | |
|       return Op;
 | |
|     }
 | |
|     return SDValue();
 | |
|   }
 | |
| 
 | |
|   assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
 | |
|          "Unknown SINT_TO_FP to lower!");
 | |
| 
 | |
|   // These are really Legal; return the operand so the caller accepts it as
 | |
|   // Legal.
 | |
|   if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
 | |
|     return Op;
 | |
|   if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
 | |
|       Subtarget->is64Bit()) {
 | |
|     return Op;
 | |
|   }
 | |
| 
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   unsigned Size = SrcVT.getSizeInBits()/8;
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
 | |
|   SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
 | |
|   SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
 | |
|                                StackSlot,
 | |
|                                PseudoSourceValue::getFixedStack(SSFI), 0);
 | |
|   return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
 | |
|                                      SDValue StackSlot,
 | |
|                                      SelectionDAG &DAG) {
 | |
|   // Build the FILD
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   SDVTList Tys;
 | |
|   bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
 | |
|   if (useSSE)
 | |
|     Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
 | |
|   else
 | |
|     Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
|   Ops.push_back(Chain);
 | |
|   Ops.push_back(StackSlot);
 | |
|   Ops.push_back(DAG.getValueType(SrcVT));
 | |
|   SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
 | |
|                                  Tys, &Ops[0], Ops.size());
 | |
| 
 | |
|   if (useSSE) {
 | |
|     Chain = Result.getValue(1);
 | |
|     SDValue InFlag = Result.getValue(2);
 | |
| 
 | |
|     // FIXME: Currently the FST is flagged to the FILD_FLAG. This
 | |
|     // shouldn't be necessary except that RFP cannot be live across
 | |
|     // multiple blocks. When stackifier is fixed, they can be uncoupled.
 | |
|     MachineFunction &MF = DAG.getMachineFunction();
 | |
|     int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
 | |
|     SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
 | |
|     Tys = DAG.getVTList(MVT::Other);
 | |
|     SmallVector<SDValue, 8> Ops;
 | |
|     Ops.push_back(Chain);
 | |
|     Ops.push_back(Result);
 | |
|     Ops.push_back(StackSlot);
 | |
|     Ops.push_back(DAG.getValueType(Op.getValueType()));
 | |
|     Ops.push_back(InFlag);
 | |
|     Chain = DAG.getNode(X86ISD::FST, dl, Tys, &Ops[0], Ops.size());
 | |
|     Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
 | |
|                          PseudoSourceValue::getFixedStack(SSFI), 0);
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| // LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
 | |
| SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) {
 | |
|   // This algorithm is not obvious. Here it is in C code, more or less:
 | |
|   /*
 | |
|     double uint64_to_double( uint32_t hi, uint32_t lo ) {
 | |
|       static const __m128i exp = { 0x4330000045300000ULL, 0 };
 | |
|       static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
 | |
| 
 | |
|       // Copy ints to xmm registers.
 | |
|       __m128i xh = _mm_cvtsi32_si128( hi );
 | |
|       __m128i xl = _mm_cvtsi32_si128( lo );
 | |
| 
 | |
|       // Combine into low half of a single xmm register.
 | |
|       __m128i x = _mm_unpacklo_epi32( xh, xl );
 | |
|       __m128d d;
 | |
|       double sd;
 | |
| 
 | |
|       // Merge in appropriate exponents to give the integer bits the right
 | |
|       // magnitude.
 | |
|       x = _mm_unpacklo_epi32( x, exp );
 | |
| 
 | |
|       // Subtract away the biases to deal with the IEEE-754 double precision
 | |
|       // implicit 1.
 | |
|       d = _mm_sub_pd( (__m128d) x, bias );
 | |
| 
 | |
|       // All conversions up to here are exact. The correctly rounded result is
 | |
|       // calculated using the current rounding mode using the following
 | |
|       // horizontal add.
 | |
|       d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
 | |
|       _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
 | |
|                                 // store doesn't really need to be here (except
 | |
|                                 // maybe to zero the other double)
 | |
|       return sd;
 | |
|     }
 | |
|   */
 | |
| 
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   LLVMContext *Context = DAG.getContext();
 | |
| 
 | |
|   // Build some magic constants.
 | |
|   std::vector<Constant*> CV0;
 | |
|   CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
 | |
|   CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
 | |
|   CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
 | |
|   CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
 | |
|   Constant *C0 = ConstantVector::get(CV0);
 | |
|   SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
 | |
| 
 | |
|   std::vector<Constant*> CV1;
 | |
|   CV1.push_back(
 | |
|     ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
 | |
|   CV1.push_back(
 | |
|     ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
 | |
|   Constant *C1 = ConstantVector::get(CV1);
 | |
|   SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
 | |
| 
 | |
|   SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
 | |
|                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
 | |
|                                         Op.getOperand(0),
 | |
|                                         DAG.getIntPtrConstant(1)));
 | |
|   SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
 | |
|                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
 | |
|                                         Op.getOperand(0),
 | |
|                                         DAG.getIntPtrConstant(0)));
 | |
|   SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
 | |
|   SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
 | |
|                               PseudoSourceValue::getConstantPool(), 0,
 | |
|                               false, 16);
 | |
|   SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
 | |
|   SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
 | |
|   SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
 | |
|                               PseudoSourceValue::getConstantPool(), 0,
 | |
|                               false, 16);
 | |
|   SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
 | |
| 
 | |
|   // Add the halves; easiest way is to swap them into another reg first.
 | |
|   int ShufMask[2] = { 1, -1 };
 | |
|   SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
 | |
|                                       DAG.getUNDEF(MVT::v2f64), ShufMask);
 | |
|   SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
 | |
|   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
 | |
|                      DAG.getIntPtrConstant(0));
 | |
| }
 | |
| 
 | |
| // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
 | |
| SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) {
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   // FP constant to bias correct the final result.
 | |
|   SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
 | |
|                                    MVT::f64);
 | |
| 
 | |
|   // Load the 32-bit value into an XMM register.
 | |
|   SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
 | |
|                              DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
 | |
|                                          Op.getOperand(0),
 | |
|                                          DAG.getIntPtrConstant(0)));
 | |
| 
 | |
|   Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
 | |
|                      DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
 | |
|                      DAG.getIntPtrConstant(0));
 | |
| 
 | |
|   // Or the load with the bias.
 | |
|   SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
 | |
|                            DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
 | |
|                                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
 | |
|                                                    MVT::v2f64, Load)),
 | |
|                            DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
 | |
|                                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
 | |
|                                                    MVT::v2f64, Bias)));
 | |
|   Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
 | |
|                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
 | |
|                    DAG.getIntPtrConstant(0));
 | |
| 
 | |
|   // Subtract the bias.
 | |
|   SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
 | |
| 
 | |
|   // Handle final rounding.
 | |
|   EVT DestVT = Op.getValueType();
 | |
| 
 | |
|   if (DestVT.bitsLT(MVT::f64)) {
 | |
|     return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
 | |
|                        DAG.getIntPtrConstant(0));
 | |
|   } else if (DestVT.bitsGT(MVT::f64)) {
 | |
|     return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
 | |
|   }
 | |
| 
 | |
|   // Handle final rounding.
 | |
|   return Sub;
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
 | |
|   SDValue N0 = Op.getOperand(0);
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
 | |
|   // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
 | |
|   // the optimization here.
 | |
|   if (DAG.SignBitIsZero(N0))
 | |
|     return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
 | |
| 
 | |
|   EVT SrcVT = N0.getValueType();
 | |
|   if (SrcVT == MVT::i64) {
 | |
|     // We only handle SSE2 f64 target here; caller can expand the rest.
 | |
|     if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
 | |
|       return SDValue();
 | |
| 
 | |
|     return LowerUINT_TO_FP_i64(Op, DAG);
 | |
|   } else if (SrcVT == MVT::i32 && X86ScalarSSEf64) {
 | |
|     return LowerUINT_TO_FP_i32(Op, DAG);
 | |
|   }
 | |
| 
 | |
|   assert(SrcVT == MVT::i32 && "Unknown UINT_TO_FP to lower!");
 | |
| 
 | |
|   // Make a 64-bit buffer, and use it to build an FILD.
 | |
|   SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
 | |
|   SDValue WordOff = DAG.getConstant(4, getPointerTy());
 | |
|   SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
 | |
|                                    getPointerTy(), StackSlot, WordOff);
 | |
|   SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
 | |
|                                 StackSlot, NULL, 0);
 | |
|   SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
 | |
|                                 OffsetSlot, NULL, 0);
 | |
|   return BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
 | |
| }
 | |
| 
 | |
| std::pair<SDValue,SDValue> X86TargetLowering::
 | |
| FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) {
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   EVT DstTy = Op.getValueType();
 | |
| 
 | |
|   if (!IsSigned) {
 | |
|     assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
 | |
|     DstTy = MVT::i64;
 | |
|   }
 | |
| 
 | |
|   assert(DstTy.getSimpleVT() <= MVT::i64 &&
 | |
|          DstTy.getSimpleVT() >= MVT::i16 &&
 | |
|          "Unknown FP_TO_SINT to lower!");
 | |
| 
 | |
|   // These are really Legal.
 | |
|   if (DstTy == MVT::i32 &&
 | |
|       isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
 | |
|     return std::make_pair(SDValue(), SDValue());
 | |
|   if (Subtarget->is64Bit() &&
 | |
|       DstTy == MVT::i64 &&
 | |
|       isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
 | |
|     return std::make_pair(SDValue(), SDValue());
 | |
| 
 | |
|   // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
 | |
|   // stack slot.
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   unsigned MemSize = DstTy.getSizeInBits()/8;
 | |
|   int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
 | |
|   SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
 | |
|   
 | |
|   unsigned Opc;
 | |
|   switch (DstTy.getSimpleVT().SimpleTy) {
 | |
|   default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
 | |
|   case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
 | |
|   case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
 | |
|   case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
 | |
|   }
 | |
| 
 | |
|   SDValue Chain = DAG.getEntryNode();
 | |
|   SDValue Value = Op.getOperand(0);
 | |
|   if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
 | |
|     assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
 | |
|     Chain = DAG.getStore(Chain, dl, Value, StackSlot,
 | |
|                          PseudoSourceValue::getFixedStack(SSFI), 0);
 | |
|     SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
 | |
|     SDValue Ops[] = {
 | |
|       Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
 | |
|     };
 | |
|     Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
 | |
|     Chain = Value.getValue(1);
 | |
|     SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
 | |
|     StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
 | |
|   }
 | |
| 
 | |
|   // Build the FP_TO_INT*_IN_MEM
 | |
|   SDValue Ops[] = { Chain, Value, StackSlot };
 | |
|   SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
 | |
| 
 | |
|   return std::make_pair(FIST, StackSlot);
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
 | |
|   if (Op.getValueType().isVector()) {
 | |
|     if (Op.getValueType() == MVT::v2i32 &&
 | |
|         Op.getOperand(0).getValueType() == MVT::v2f64) {
 | |
|       return Op;
 | |
|     }
 | |
|     return SDValue();
 | |
|   }
 | |
| 
 | |
|   std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
 | |
|   SDValue FIST = Vals.first, StackSlot = Vals.second;
 | |
|   // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
 | |
|   if (FIST.getNode() == 0) return Op;
 | |
| 
 | |
|   // Load the result.
 | |
|   return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
 | |
|                      FIST, StackSlot, NULL, 0);
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) {
 | |
|   std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
 | |
|   SDValue FIST = Vals.first, StackSlot = Vals.second;
 | |
|   assert(FIST.getNode() && "Unexpected failure");
 | |
| 
 | |
|   // Load the result.
 | |
|   return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
 | |
|                      FIST, StackSlot, NULL, 0);
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
 | |
|   LLVMContext *Context = DAG.getContext();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   EVT VT = Op.getValueType();
 | |
|   EVT EltVT = VT;
 | |
|   if (VT.isVector())
 | |
|     EltVT = VT.getVectorElementType();
 | |
|   std::vector<Constant*> CV;
 | |
|   if (EltVT == MVT::f64) {
 | |
|     Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
 | |
|     CV.push_back(C);
 | |
|     CV.push_back(C);
 | |
|   } else {
 | |
|     Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
 | |
|     CV.push_back(C);
 | |
|     CV.push_back(C);
 | |
|     CV.push_back(C);
 | |
|     CV.push_back(C);
 | |
|   }
 | |
|   Constant *C = ConstantVector::get(CV);
 | |
|   SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
 | |
|   SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
 | |
|                                PseudoSourceValue::getConstantPool(), 0,
 | |
|                                false, 16);
 | |
|   return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
 | |
|   LLVMContext *Context = DAG.getContext();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   EVT VT = Op.getValueType();
 | |
|   EVT EltVT = VT;
 | |
|   unsigned EltNum = 1;
 | |
|   if (VT.isVector()) {
 | |
|     EltVT = VT.getVectorElementType();
 | |
|     EltNum = VT.getVectorNumElements();
 | |
|   }
 | |
|   std::vector<Constant*> CV;
 | |
|   if (EltVT == MVT::f64) {
 | |
|     Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
 | |
|     CV.push_back(C);
 | |
|     CV.push_back(C);
 | |
|   } else {
 | |
|     Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
 | |
|     CV.push_back(C);
 | |
|     CV.push_back(C);
 | |
|     CV.push_back(C);
 | |
|     CV.push_back(C);
 | |
|   }
 | |
|   Constant *C = ConstantVector::get(CV);
 | |
|   SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
 | |
|   SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
 | |
|                                PseudoSourceValue::getConstantPool(), 0,
 | |
|                                false, 16);
 | |
|   if (VT.isVector()) {
 | |
|     return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
 | |
|                        DAG.getNode(ISD::XOR, dl, MVT::v2i64,
 | |
|                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
 | |
|                                 Op.getOperand(0)),
 | |
|                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
 | |
|   } else {
 | |
|     return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
 | |
|   LLVMContext *Context = DAG.getContext();
 | |
|   SDValue Op0 = Op.getOperand(0);
 | |
|   SDValue Op1 = Op.getOperand(1);
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   EVT VT = Op.getValueType();
 | |
|   EVT SrcVT = Op1.getValueType();
 | |
| 
 | |
|   // If second operand is smaller, extend it first.
 | |
|   if (SrcVT.bitsLT(VT)) {
 | |
|     Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
 | |
|     SrcVT = VT;
 | |
|   }
 | |
|   // And if it is bigger, shrink it first.
 | |
|   if (SrcVT.bitsGT(VT)) {
 | |
|     Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
 | |
|     SrcVT = VT;
 | |
|   }
 | |
| 
 | |
|   // At this point the operands and the result should have the same
 | |
|   // type, and that won't be f80 since that is not custom lowered.
 | |
| 
 | |
|   // First get the sign bit of second operand.
 | |
|   std::vector<Constant*> CV;
 | |
|   if (SrcVT == MVT::f64) {
 | |
|     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
 | |
|     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
 | |
|   } else {
 | |
|     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
 | |
|     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
 | |
|     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
 | |
|     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
 | |
|   }
 | |
|   Constant *C = ConstantVector::get(CV);
 | |
|   SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
 | |
|   SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
 | |
|                                 PseudoSourceValue::getConstantPool(), 0,
 | |
|                                 false, 16);
 | |
|   SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
 | |
| 
 | |
|   // Shift sign bit right or left if the two operands have different types.
 | |
|   if (SrcVT.bitsGT(VT)) {
 | |
|     // Op0 is MVT::f32, Op1 is MVT::f64.
 | |
|     SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
 | |
|     SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
 | |
|                           DAG.getConstant(32, MVT::i32));
 | |
|     SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
 | |
|     SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
 | |
|                           DAG.getIntPtrConstant(0));
 | |
|   }
 | |
| 
 | |
|   // Clear first operand sign bit.
 | |
|   CV.clear();
 | |
|   if (VT == MVT::f64) {
 | |
|     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
 | |
|     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
 | |
|   } else {
 | |
|     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
 | |
|     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
 | |
|     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
 | |
|     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
 | |
|   }
 | |
|   C = ConstantVector::get(CV);
 | |
|   CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
 | |
|   SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
 | |
|                                 PseudoSourceValue::getConstantPool(), 0,
 | |
|                                 false, 16);
 | |
|   SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
 | |
| 
 | |
|   // Or the value with the sign bit.
 | |
|   return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
 | |
| }
 | |
| 
 | |
| /// Emit nodes that will be selected as "test Op0,Op0", or something
 | |
| /// equivalent.
 | |
| SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
 | |
|                                     SelectionDAG &DAG) {
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   // CF and OF aren't always set the way we want. Determine which
 | |
|   // of these we need.
 | |
|   bool NeedCF = false;
 | |
|   bool NeedOF = false;
 | |
|   switch (X86CC) {
 | |
|   case X86::COND_A: case X86::COND_AE:
 | |
|   case X86::COND_B: case X86::COND_BE:
 | |
|     NeedCF = true;
 | |
|     break;
 | |
|   case X86::COND_G: case X86::COND_GE:
 | |
|   case X86::COND_L: case X86::COND_LE:
 | |
|   case X86::COND_O: case X86::COND_NO:
 | |
|     NeedOF = true;
 | |
|     break;
 | |
|   default: break;
 | |
|   }
 | |
| 
 | |
|   // See if we can use the EFLAGS value from the operand instead of
 | |
|   // doing a separate TEST. TEST always sets OF and CF to 0, so unless
 | |
|   // we prove that the arithmetic won't overflow, we can't use OF or CF.
 | |
|   if (Op.getResNo() == 0 && !NeedOF && !NeedCF) {
 | |
|     unsigned Opcode = 0;
 | |
|     unsigned NumOperands = 0;
 | |
|     switch (Op.getNode()->getOpcode()) {
 | |
|     case ISD::ADD:
 | |
|       // Due to an isel shortcoming, be conservative if this add is likely to
 | |
|       // be selected as part of a load-modify-store instruction. When the root
 | |
|       // node in a match is a store, isel doesn't know how to remap non-chain
 | |
|       // non-flag uses of other nodes in the match, such as the ADD in this
 | |
|       // case. This leads to the ADD being left around and reselected, with
 | |
|       // the result being two adds in the output.
 | |
|       for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
 | |
|            UE = Op.getNode()->use_end(); UI != UE; ++UI)
 | |
|         if (UI->getOpcode() == ISD::STORE)
 | |
|           goto default_case;
 | |
|       if (ConstantSDNode *C =
 | |
|             dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
 | |
|         // An add of one will be selected as an INC.
 | |
|         if (C->getAPIntValue() == 1) {
 | |
|           Opcode = X86ISD::INC;
 | |
|           NumOperands = 1;
 | |
|           break;
 | |
|         }
 | |
|         // An add of negative one (subtract of one) will be selected as a DEC.
 | |
|         if (C->getAPIntValue().isAllOnesValue()) {
 | |
|           Opcode = X86ISD::DEC;
 | |
|           NumOperands = 1;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       // Otherwise use a regular EFLAGS-setting add.
 | |
|       Opcode = X86ISD::ADD;
 | |
|       NumOperands = 2;
 | |
|       break;
 | |
|     case ISD::SUB:
 | |
|       // Due to the ISEL shortcoming noted above, be conservative if this sub is
 | |
|       // likely to be selected as part of a load-modify-store instruction.
 | |
|       for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
 | |
|            UE = Op.getNode()->use_end(); UI != UE; ++UI)
 | |
|         if (UI->getOpcode() == ISD::STORE)
 | |
|           goto default_case;
 | |
|       // Otherwise use a regular EFLAGS-setting sub.
 | |
|       Opcode = X86ISD::SUB;
 | |
|       NumOperands = 2;
 | |
|       break;
 | |
|     case X86ISD::ADD:
 | |
|     case X86ISD::SUB:
 | |
|     case X86ISD::INC:
 | |
|     case X86ISD::DEC:
 | |
|       return SDValue(Op.getNode(), 1);
 | |
|     default:
 | |
|     default_case:
 | |
|       break;
 | |
|     }
 | |
|     if (Opcode != 0) {
 | |
|       SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
 | |
|       SmallVector<SDValue, 4> Ops;
 | |
|       for (unsigned i = 0; i != NumOperands; ++i)
 | |
|         Ops.push_back(Op.getOperand(i));
 | |
|       SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
 | |
|       DAG.ReplaceAllUsesWith(Op, New);
 | |
|       return SDValue(New.getNode(), 1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise just emit a CMP with 0, which is the TEST pattern.
 | |
|   return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
 | |
|                      DAG.getConstant(0, Op.getValueType()));
 | |
| }
 | |
| 
 | |
| /// Emit nodes that will be selected as "cmp Op0,Op1", or something
 | |
| /// equivalent.
 | |
| SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
 | |
|                                    SelectionDAG &DAG) {
 | |
|   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
 | |
|     if (C->getAPIntValue() == 0)
 | |
|       return EmitTest(Op0, X86CC, DAG);
 | |
| 
 | |
|   DebugLoc dl = Op0.getDebugLoc();
 | |
|   return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
 | |
|   assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
 | |
|   SDValue Op0 = Op.getOperand(0);
 | |
|   SDValue Op1 = Op.getOperand(1);
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
 | |
| 
 | |
|   // Lower (X & (1 << N)) == 0 to BT(X, N).
 | |
|   // Lower ((X >>u N) & 1) != 0 to BT(X, N).
 | |
|   // Lower ((X >>s N) & 1) != 0 to BT(X, N).
 | |
|   if (Op0.getOpcode() == ISD::AND &&
 | |
|       Op0.hasOneUse() &&
 | |
|       Op1.getOpcode() == ISD::Constant &&
 | |
|       cast<ConstantSDNode>(Op1)->getZExtValue() == 0 &&
 | |
|       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
 | |
|     SDValue LHS, RHS;
 | |
|     if (Op0.getOperand(1).getOpcode() == ISD::SHL) {
 | |
|       if (ConstantSDNode *Op010C =
 | |
|             dyn_cast<ConstantSDNode>(Op0.getOperand(1).getOperand(0)))
 | |
|         if (Op010C->getZExtValue() == 1) {
 | |
|           LHS = Op0.getOperand(0);
 | |
|           RHS = Op0.getOperand(1).getOperand(1);
 | |
|         }
 | |
|     } else if (Op0.getOperand(0).getOpcode() == ISD::SHL) {
 | |
|       if (ConstantSDNode *Op000C =
 | |
|             dyn_cast<ConstantSDNode>(Op0.getOperand(0).getOperand(0)))
 | |
|         if (Op000C->getZExtValue() == 1) {
 | |
|           LHS = Op0.getOperand(1);
 | |
|           RHS = Op0.getOperand(0).getOperand(1);
 | |
|         }
 | |
|     } else if (Op0.getOperand(1).getOpcode() == ISD::Constant) {
 | |
|       ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op0.getOperand(1));
 | |
|       SDValue AndLHS = Op0.getOperand(0);
 | |
|       if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
 | |
|         LHS = AndLHS.getOperand(0);
 | |
|         RHS = AndLHS.getOperand(1);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (LHS.getNode()) {
 | |
|       // If LHS is i8, promote it to i16 with any_extend.  There is no i8 BT
 | |
|       // instruction.  Since the shift amount is in-range-or-undefined, we know
 | |
|       // that doing a bittest on the i16 value is ok.  We extend to i32 because
 | |
|       // the encoding for the i16 version is larger than the i32 version.
 | |
|       if (LHS.getValueType() == MVT::i8)
 | |
|         LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
 | |
| 
 | |
|       // If the operand types disagree, extend the shift amount to match.  Since
 | |
|       // BT ignores high bits (like shifts) we can use anyextend.
 | |
|       if (LHS.getValueType() != RHS.getValueType())
 | |
|         RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
 | |
| 
 | |
|       SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
 | |
|       unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
 | |
|       return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
 | |
|                          DAG.getConstant(Cond, MVT::i8), BT);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
 | |
|   unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
 | |
| 
 | |
|   SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
 | |
|   return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
 | |
|                      DAG.getConstant(X86CC, MVT::i8), Cond);
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
 | |
|   SDValue Cond;
 | |
|   SDValue Op0 = Op.getOperand(0);
 | |
|   SDValue Op1 = Op.getOperand(1);
 | |
|   SDValue CC = Op.getOperand(2);
 | |
|   EVT VT = Op.getValueType();
 | |
|   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
 | |
|   bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   if (isFP) {
 | |
|     unsigned SSECC = 8;
 | |
|     EVT VT0 = Op0.getValueType();
 | |
|     assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
 | |
|     unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
 | |
|     bool Swap = false;
 | |
| 
 | |
|     switch (SetCCOpcode) {
 | |
|     default: break;
 | |
|     case ISD::SETOEQ:
 | |
|     case ISD::SETEQ:  SSECC = 0; break;
 | |
|     case ISD::SETOGT:
 | |
|     case ISD::SETGT: Swap = true; // Fallthrough
 | |
|     case ISD::SETLT:
 | |
|     case ISD::SETOLT: SSECC = 1; break;
 | |
|     case ISD::SETOGE:
 | |
|     case ISD::SETGE: Swap = true; // Fallthrough
 | |
|     case ISD::SETLE:
 | |
|     case ISD::SETOLE: SSECC = 2; break;
 | |
|     case ISD::SETUO:  SSECC = 3; break;
 | |
|     case ISD::SETUNE:
 | |
|     case ISD::SETNE:  SSECC = 4; break;
 | |
|     case ISD::SETULE: Swap = true;
 | |
|     case ISD::SETUGE: SSECC = 5; break;
 | |
|     case ISD::SETULT: Swap = true;
 | |
|     case ISD::SETUGT: SSECC = 6; break;
 | |
|     case ISD::SETO:   SSECC = 7; break;
 | |
|     }
 | |
|     if (Swap)
 | |
|       std::swap(Op0, Op1);
 | |
| 
 | |
|     // In the two special cases we can't handle, emit two comparisons.
 | |
|     if (SSECC == 8) {
 | |
|       if (SetCCOpcode == ISD::SETUEQ) {
 | |
|         SDValue UNORD, EQ;
 | |
|         UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
 | |
|         EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
 | |
|         return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
 | |
|       }
 | |
|       else if (SetCCOpcode == ISD::SETONE) {
 | |
|         SDValue ORD, NEQ;
 | |
|         ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
 | |
|         NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
 | |
|         return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
 | |
|       }
 | |
|       llvm_unreachable("Illegal FP comparison");
 | |
|     }
 | |
|     // Handle all other FP comparisons here.
 | |
|     return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
 | |
|   }
 | |
| 
 | |
|   // We are handling one of the integer comparisons here.  Since SSE only has
 | |
|   // GT and EQ comparisons for integer, swapping operands and multiple
 | |
|   // operations may be required for some comparisons.
 | |
|   unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
 | |
|   bool Swap = false, Invert = false, FlipSigns = false;
 | |
| 
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default: break;
 | |
|   case MVT::v8i8:
 | |
|   case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
 | |
|   case MVT::v4i16:
 | |
|   case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
 | |
|   case MVT::v2i32:
 | |
|   case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
 | |
|   case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
 | |
|   }
 | |
| 
 | |
|   switch (SetCCOpcode) {
 | |
|   default: break;
 | |
|   case ISD::SETNE:  Invert = true;
 | |
|   case ISD::SETEQ:  Opc = EQOpc; break;
 | |
|   case ISD::SETLT:  Swap = true;
 | |
|   case ISD::SETGT:  Opc = GTOpc; break;
 | |
|   case ISD::SETGE:  Swap = true;
 | |
|   case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
 | |
|   case ISD::SETULT: Swap = true;
 | |
|   case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
 | |
|   case ISD::SETUGE: Swap = true;
 | |
|   case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
 | |
|   }
 | |
|   if (Swap)
 | |
|     std::swap(Op0, Op1);
 | |
| 
 | |
|   // Since SSE has no unsigned integer comparisons, we need to flip  the sign
 | |
|   // bits of the inputs before performing those operations.
 | |
|   if (FlipSigns) {
 | |
|     EVT EltVT = VT.getVectorElementType();
 | |
|     SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
 | |
|                                       EltVT);
 | |
|     std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
 | |
|     SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
 | |
|                                     SignBits.size());
 | |
|     Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
 | |
|     Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
 | |
|   }
 | |
| 
 | |
|   SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
 | |
| 
 | |
|   // If the logical-not of the result is required, perform that now.
 | |
|   if (Invert)
 | |
|     Result = DAG.getNOT(dl, Result, VT);
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| // isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
 | |
| static bool isX86LogicalCmp(SDValue Op) {
 | |
|   unsigned Opc = Op.getNode()->getOpcode();
 | |
|   if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
 | |
|     return true;
 | |
|   if (Op.getResNo() == 1 &&
 | |
|       (Opc == X86ISD::ADD ||
 | |
|        Opc == X86ISD::SUB ||
 | |
|        Opc == X86ISD::SMUL ||
 | |
|        Opc == X86ISD::UMUL ||
 | |
|        Opc == X86ISD::INC ||
 | |
|        Opc == X86ISD::DEC))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
 | |
|   bool addTest = true;
 | |
|   SDValue Cond  = Op.getOperand(0);
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   SDValue CC;
 | |
| 
 | |
|   if (Cond.getOpcode() == ISD::SETCC)
 | |
|     Cond = LowerSETCC(Cond, DAG);
 | |
| 
 | |
|   // If condition flag is set by a X86ISD::CMP, then use it as the condition
 | |
|   // setting operand in place of the X86ISD::SETCC.
 | |
|   if (Cond.getOpcode() == X86ISD::SETCC) {
 | |
|     CC = Cond.getOperand(0);
 | |
| 
 | |
|     SDValue Cmp = Cond.getOperand(1);
 | |
|     unsigned Opc = Cmp.getOpcode();
 | |
|     EVT VT = Op.getValueType();
 | |
| 
 | |
|     bool IllegalFPCMov = false;
 | |
|     if (VT.isFloatingPoint() && !VT.isVector() &&
 | |
|         !isScalarFPTypeInSSEReg(VT))  // FPStack?
 | |
|       IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
 | |
| 
 | |
|     if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
 | |
|         Opc == X86ISD::BT) { // FIXME
 | |
|       Cond = Cmp;
 | |
|       addTest = false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (addTest) {
 | |
|     CC = DAG.getConstant(X86::COND_NE, MVT::i8);
 | |
|     Cond = EmitTest(Cond, X86::COND_NE, DAG);
 | |
|   }
 | |
| 
 | |
|   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
 | |
|   SmallVector<SDValue, 4> Ops;
 | |
|   // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
 | |
|   // condition is true.
 | |
|   Ops.push_back(Op.getOperand(2));
 | |
|   Ops.push_back(Op.getOperand(1));
 | |
|   Ops.push_back(CC);
 | |
|   Ops.push_back(Cond);
 | |
|   return DAG.getNode(X86ISD::CMOV, dl, VTs, &Ops[0], Ops.size());
 | |
| }
 | |
| 
 | |
| // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
 | |
| // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
 | |
| // from the AND / OR.
 | |
| static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
 | |
|   Opc = Op.getOpcode();
 | |
|   if (Opc != ISD::OR && Opc != ISD::AND)
 | |
|     return false;
 | |
|   return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
 | |
|           Op.getOperand(0).hasOneUse() &&
 | |
|           Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
 | |
|           Op.getOperand(1).hasOneUse());
 | |
| }
 | |
| 
 | |
| // isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
 | |
| // 1 and that the SETCC node has a single use.
 | |
| static bool isXor1OfSetCC(SDValue Op) {
 | |
|   if (Op.getOpcode() != ISD::XOR)
 | |
|     return false;
 | |
|   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
 | |
|   if (N1C && N1C->getAPIntValue() == 1) {
 | |
|     return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
 | |
|       Op.getOperand(0).hasOneUse();
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
 | |
|   bool addTest = true;
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   SDValue Cond  = Op.getOperand(1);
 | |
|   SDValue Dest  = Op.getOperand(2);
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   SDValue CC;
 | |
| 
 | |
|   if (Cond.getOpcode() == ISD::SETCC)
 | |
|     Cond = LowerSETCC(Cond, DAG);
 | |
| #if 0
 | |
|   // FIXME: LowerXALUO doesn't handle these!!
 | |
|   else if (Cond.getOpcode() == X86ISD::ADD  ||
 | |
|            Cond.getOpcode() == X86ISD::SUB  ||
 | |
|            Cond.getOpcode() == X86ISD::SMUL ||
 | |
|            Cond.getOpcode() == X86ISD::UMUL)
 | |
|     Cond = LowerXALUO(Cond, DAG);
 | |
| #endif
 | |
| 
 | |
|   // If condition flag is set by a X86ISD::CMP, then use it as the condition
 | |
|   // setting operand in place of the X86ISD::SETCC.
 | |
|   if (Cond.getOpcode() == X86ISD::SETCC) {
 | |
|     CC = Cond.getOperand(0);
 | |
| 
 | |
|     SDValue Cmp = Cond.getOperand(1);
 | |
|     unsigned Opc = Cmp.getOpcode();
 | |
|     // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
 | |
|     if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
 | |
|       Cond = Cmp;
 | |
|       addTest = false;
 | |
|     } else {
 | |
|       switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
 | |
|       default: break;
 | |
|       case X86::COND_O:
 | |
|       case X86::COND_B:
 | |
|         // These can only come from an arithmetic instruction with overflow,
 | |
|         // e.g. SADDO, UADDO.
 | |
|         Cond = Cond.getNode()->getOperand(1);
 | |
|         addTest = false;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     unsigned CondOpc;
 | |
|     if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
 | |
|       SDValue Cmp = Cond.getOperand(0).getOperand(1);
 | |
|       if (CondOpc == ISD::OR) {
 | |
|         // Also, recognize the pattern generated by an FCMP_UNE. We can emit
 | |
|         // two branches instead of an explicit OR instruction with a
 | |
|         // separate test.
 | |
|         if (Cmp == Cond.getOperand(1).getOperand(1) &&
 | |
|             isX86LogicalCmp(Cmp)) {
 | |
|           CC = Cond.getOperand(0).getOperand(0);
 | |
|           Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
 | |
|                               Chain, Dest, CC, Cmp);
 | |
|           CC = Cond.getOperand(1).getOperand(0);
 | |
|           Cond = Cmp;
 | |
|           addTest = false;
 | |
|         }
 | |
|       } else { // ISD::AND
 | |
|         // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
 | |
|         // two branches instead of an explicit AND instruction with a
 | |
|         // separate test. However, we only do this if this block doesn't
 | |
|         // have a fall-through edge, because this requires an explicit
 | |
|         // jmp when the condition is false.
 | |
|         if (Cmp == Cond.getOperand(1).getOperand(1) &&
 | |
|             isX86LogicalCmp(Cmp) &&
 | |
|             Op.getNode()->hasOneUse()) {
 | |
|           X86::CondCode CCode =
 | |
|             (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
 | |
|           CCode = X86::GetOppositeBranchCondition(CCode);
 | |
|           CC = DAG.getConstant(CCode, MVT::i8);
 | |
|           SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
 | |
|           // Look for an unconditional branch following this conditional branch.
 | |
|           // We need this because we need to reverse the successors in order
 | |
|           // to implement FCMP_OEQ.
 | |
|           if (User.getOpcode() == ISD::BR) {
 | |
|             SDValue FalseBB = User.getOperand(1);
 | |
|             SDValue NewBR =
 | |
|               DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
 | |
|             assert(NewBR == User);
 | |
|             Dest = FalseBB;
 | |
| 
 | |
|             Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
 | |
|                                 Chain, Dest, CC, Cmp);
 | |
|             X86::CondCode CCode =
 | |
|               (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
 | |
|             CCode = X86::GetOppositeBranchCondition(CCode);
 | |
|             CC = DAG.getConstant(CCode, MVT::i8);
 | |
|             Cond = Cmp;
 | |
|             addTest = false;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
 | |
|       // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
 | |
|       // It should be transformed during dag combiner except when the condition
 | |
|       // is set by a arithmetics with overflow node.
 | |
|       X86::CondCode CCode =
 | |
|         (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
 | |
|       CCode = X86::GetOppositeBranchCondition(CCode);
 | |
|       CC = DAG.getConstant(CCode, MVT::i8);
 | |
|       Cond = Cond.getOperand(0).getOperand(1);
 | |
|       addTest = false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (addTest) {
 | |
|     CC = DAG.getConstant(X86::COND_NE, MVT::i8);
 | |
|     Cond = EmitTest(Cond, X86::COND_NE, DAG);
 | |
|   }
 | |
|   return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
 | |
|                      Chain, Dest, CC, Cond);
 | |
| }
 | |
| 
 | |
| 
 | |
| // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
 | |
| // Calls to _alloca is needed to probe the stack when allocating more than 4k
 | |
| // bytes in one go. Touching the stack at 4K increments is necessary to ensure
 | |
| // that the guard pages used by the OS virtual memory manager are allocated in
 | |
| // correct sequence.
 | |
| SDValue
 | |
| X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
 | |
|                                            SelectionDAG &DAG) {
 | |
|   assert(Subtarget->isTargetCygMing() &&
 | |
|          "This should be used only on Cygwin/Mingw targets");
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   // Get the inputs.
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   SDValue Size  = Op.getOperand(1);
 | |
|   // FIXME: Ensure alignment here
 | |
| 
 | |
|   SDValue Flag;
 | |
| 
 | |
|   EVT IntPtr = getPointerTy();
 | |
|   EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
 | |
| 
 | |
|   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
 | |
| 
 | |
|   Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
 | |
|   Flag = Chain.getValue(1);
 | |
| 
 | |
|   SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
 | |
|   SDValue Ops[] = { Chain,
 | |
|                       DAG.getTargetExternalSymbol("_alloca", IntPtr),
 | |
|                       DAG.getRegister(X86::EAX, IntPtr),
 | |
|                       DAG.getRegister(X86StackPtr, SPTy),
 | |
|                       Flag };
 | |
|   Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops, 5);
 | |
|   Flag = Chain.getValue(1);
 | |
| 
 | |
|   Chain = DAG.getCALLSEQ_END(Chain,
 | |
|                              DAG.getIntPtrConstant(0, true),
 | |
|                              DAG.getIntPtrConstant(0, true),
 | |
|                              Flag);
 | |
| 
 | |
|   Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
 | |
| 
 | |
|   SDValue Ops1[2] = { Chain.getValue(0), Chain };
 | |
|   return DAG.getMergeValues(Ops1, 2, dl);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
 | |
|                                            SDValue Chain,
 | |
|                                            SDValue Dst, SDValue Src,
 | |
|                                            SDValue Size, unsigned Align,
 | |
|                                            const Value *DstSV,
 | |
|                                            uint64_t DstSVOff) {
 | |
|   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
 | |
| 
 | |
|   // If not DWORD aligned or size is more than the threshold, call the library.
 | |
|   // The libc version is likely to be faster for these cases. It can use the
 | |
|   // address value and run time information about the CPU.
 | |
|   if ((Align & 3) != 0 ||
 | |
|       !ConstantSize ||
 | |
|       ConstantSize->getZExtValue() >
 | |
|         getSubtarget()->getMaxInlineSizeThreshold()) {
 | |
|     SDValue InFlag(0, 0);
 | |
| 
 | |
|     // Check to see if there is a specialized entry-point for memory zeroing.
 | |
|     ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
 | |
| 
 | |
|     if (const char *bzeroEntry =  V &&
 | |
|         V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
 | |
|       EVT IntPtr = getPointerTy();
 | |
|       const Type *IntPtrTy = TD->getIntPtrType();
 | |
|       TargetLowering::ArgListTy Args;
 | |
|       TargetLowering::ArgListEntry Entry;
 | |
|       Entry.Node = Dst;
 | |
|       Entry.Ty = IntPtrTy;
 | |
|       Args.push_back(Entry);
 | |
|       Entry.Node = Size;
 | |
|       Args.push_back(Entry);
 | |
|       std::pair<SDValue,SDValue> CallResult =
 | |
|         LowerCallTo(Chain, Type::VoidTy, false, false, false, false,
 | |
|                     0, CallingConv::C, false, /*isReturnValueUsed=*/false,
 | |
|                     DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl);
 | |
|       return CallResult.second;
 | |
|     }
 | |
| 
 | |
|     // Otherwise have the target-independent code call memset.
 | |
|     return SDValue();
 | |
|   }
 | |
| 
 | |
|   uint64_t SizeVal = ConstantSize->getZExtValue();
 | |
|   SDValue InFlag(0, 0);
 | |
|   EVT AVT;
 | |
|   SDValue Count;
 | |
|   ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
 | |
|   unsigned BytesLeft = 0;
 | |
|   bool TwoRepStos = false;
 | |
|   if (ValC) {
 | |
|     unsigned ValReg;
 | |
|     uint64_t Val = ValC->getZExtValue() & 255;
 | |
| 
 | |
|     // If the value is a constant, then we can potentially use larger sets.
 | |
|     switch (Align & 3) {
 | |
|     case 2:   // WORD aligned
 | |
|       AVT = MVT::i16;
 | |
|       ValReg = X86::AX;
 | |
|       Val = (Val << 8) | Val;
 | |
|       break;
 | |
|     case 0:  // DWORD aligned
 | |
|       AVT = MVT::i32;
 | |
|       ValReg = X86::EAX;
 | |
|       Val = (Val << 8)  | Val;
 | |
|       Val = (Val << 16) | Val;
 | |
|       if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
 | |
|         AVT = MVT::i64;
 | |
|         ValReg = X86::RAX;
 | |
|         Val = (Val << 32) | Val;
 | |
|       }
 | |
|       break;
 | |
|     default:  // Byte aligned
 | |
|       AVT = MVT::i8;
 | |
|       ValReg = X86::AL;
 | |
|       Count = DAG.getIntPtrConstant(SizeVal);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (AVT.bitsGT(MVT::i8)) {
 | |
|       unsigned UBytes = AVT.getSizeInBits() / 8;
 | |
|       Count = DAG.getIntPtrConstant(SizeVal / UBytes);
 | |
|       BytesLeft = SizeVal % UBytes;
 | |
|     }
 | |
| 
 | |
|     Chain  = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT),
 | |
|                               InFlag);
 | |
|     InFlag = Chain.getValue(1);
 | |
|   } else {
 | |
|     AVT = MVT::i8;
 | |
|     Count  = DAG.getIntPtrConstant(SizeVal);
 | |
|     Chain  = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag);
 | |
|     InFlag = Chain.getValue(1);
 | |
|   }
 | |
| 
 | |
|   Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
 | |
|                                                               X86::ECX,
 | |
|                             Count, InFlag);
 | |
|   InFlag = Chain.getValue(1);
 | |
|   Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
 | |
|                                                               X86::EDI,
 | |
|                             Dst, InFlag);
 | |
|   InFlag = Chain.getValue(1);
 | |
| 
 | |
|   SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
|   Ops.push_back(Chain);
 | |
|   Ops.push_back(DAG.getValueType(AVT));
 | |
|   Ops.push_back(InFlag);
 | |
|   Chain  = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
 | |
| 
 | |
|   if (TwoRepStos) {
 | |
|     InFlag = Chain.getValue(1);
 | |
|     Count  = Size;
 | |
|     EVT CVT = Count.getValueType();
 | |
|     SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
 | |
|                                DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
 | |
|     Chain  = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
 | |
|                                                              X86::ECX,
 | |
|                               Left, InFlag);
 | |
|     InFlag = Chain.getValue(1);
 | |
|     Tys = DAG.getVTList(MVT::Other, MVT::Flag);
 | |
|     Ops.clear();
 | |
|     Ops.push_back(Chain);
 | |
|     Ops.push_back(DAG.getValueType(MVT::i8));
 | |
|     Ops.push_back(InFlag);
 | |
|     Chain  = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
 | |
|   } else if (BytesLeft) {
 | |
|     // Handle the last 1 - 7 bytes.
 | |
|     unsigned Offset = SizeVal - BytesLeft;
 | |
|     EVT AddrVT = Dst.getValueType();
 | |
|     EVT SizeVT = Size.getValueType();
 | |
| 
 | |
|     Chain = DAG.getMemset(Chain, dl,
 | |
|                           DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
 | |
|                                       DAG.getConstant(Offset, AddrVT)),
 | |
|                           Src,
 | |
|                           DAG.getConstant(BytesLeft, SizeVT),
 | |
|                           Align, DstSV, DstSVOff + Offset);
 | |
|   }
 | |
| 
 | |
|   // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
 | |
|                                       SDValue Chain, SDValue Dst, SDValue Src,
 | |
|                                       SDValue Size, unsigned Align,
 | |
|                                       bool AlwaysInline,
 | |
|                                       const Value *DstSV, uint64_t DstSVOff,
 | |
|                                       const Value *SrcSV, uint64_t SrcSVOff) {
 | |
|   // This requires the copy size to be a constant, preferrably
 | |
|   // within a subtarget-specific limit.
 | |
|   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
 | |
|   if (!ConstantSize)
 | |
|     return SDValue();
 | |
|   uint64_t SizeVal = ConstantSize->getZExtValue();
 | |
|   if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
 | |
|     return SDValue();
 | |
| 
 | |
|   /// If not DWORD aligned, call the library.
 | |
|   if ((Align & 3) != 0)
 | |
|     return SDValue();
 | |
| 
 | |
|   // DWORD aligned
 | |
|   EVT AVT = MVT::i32;
 | |
|   if (Subtarget->is64Bit() && ((Align & 0x7) == 0))  // QWORD aligned
 | |
|     AVT = MVT::i64;
 | |
| 
 | |
|   unsigned UBytes = AVT.getSizeInBits() / 8;
 | |
|   unsigned CountVal = SizeVal / UBytes;
 | |
|   SDValue Count = DAG.getIntPtrConstant(CountVal);
 | |
|   unsigned BytesLeft = SizeVal % UBytes;
 | |
| 
 | |
|   SDValue InFlag(0, 0);
 | |
|   Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
 | |
|                                                               X86::ECX,
 | |
|                             Count, InFlag);
 | |
|   InFlag = Chain.getValue(1);
 | |
|   Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
 | |
|                                                              X86::EDI,
 | |
|                             Dst, InFlag);
 | |
|   InFlag = Chain.getValue(1);
 | |
|   Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI :
 | |
|                                                               X86::ESI,
 | |
|                             Src, InFlag);
 | |
|   InFlag = Chain.getValue(1);
 | |
| 
 | |
|   SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
|   Ops.push_back(Chain);
 | |
|   Ops.push_back(DAG.getValueType(AVT));
 | |
|   Ops.push_back(InFlag);
 | |
|   SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, &Ops[0], Ops.size());
 | |
| 
 | |
|   SmallVector<SDValue, 4> Results;
 | |
|   Results.push_back(RepMovs);
 | |
|   if (BytesLeft) {
 | |
|     // Handle the last 1 - 7 bytes.
 | |
|     unsigned Offset = SizeVal - BytesLeft;
 | |
|     EVT DstVT = Dst.getValueType();
 | |
|     EVT SrcVT = Src.getValueType();
 | |
|     EVT SizeVT = Size.getValueType();
 | |
|     Results.push_back(DAG.getMemcpy(Chain, dl,
 | |
|                                     DAG.getNode(ISD::ADD, dl, DstVT, Dst,
 | |
|                                                 DAG.getConstant(Offset, DstVT)),
 | |
|                                     DAG.getNode(ISD::ADD, dl, SrcVT, Src,
 | |
|                                                 DAG.getConstant(Offset, SrcVT)),
 | |
|                                     DAG.getConstant(BytesLeft, SizeVT),
 | |
|                                     Align, AlwaysInline,
 | |
|                                     DstSV, DstSVOff + Offset,
 | |
|                                     SrcSV, SrcSVOff + Offset));
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | |
|                      &Results[0], Results.size());
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
 | |
|   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   if (!Subtarget->is64Bit()) {
 | |
|     // vastart just stores the address of the VarArgsFrameIndex slot into the
 | |
|     // memory location argument.
 | |
|     SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
 | |
|     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
 | |
|   }
 | |
| 
 | |
|   // __va_list_tag:
 | |
|   //   gp_offset         (0 - 6 * 8)
 | |
|   //   fp_offset         (48 - 48 + 8 * 16)
 | |
|   //   overflow_arg_area (point to parameters coming in memory).
 | |
|   //   reg_save_area
 | |
|   SmallVector<SDValue, 8> MemOps;
 | |
|   SDValue FIN = Op.getOperand(1);
 | |
|   // Store gp_offset
 | |
|   SDValue Store = DAG.getStore(Op.getOperand(0), dl,
 | |
|                                  DAG.getConstant(VarArgsGPOffset, MVT::i32),
 | |
|                                  FIN, SV, 0);
 | |
|   MemOps.push_back(Store);
 | |
| 
 | |
|   // Store fp_offset
 | |
|   FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
 | |
|                     FIN, DAG.getIntPtrConstant(4));
 | |
|   Store = DAG.getStore(Op.getOperand(0), dl,
 | |
|                        DAG.getConstant(VarArgsFPOffset, MVT::i32),
 | |
|                        FIN, SV, 0);
 | |
|   MemOps.push_back(Store);
 | |
| 
 | |
|   // Store ptr to overflow_arg_area
 | |
|   FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
 | |
|                     FIN, DAG.getIntPtrConstant(4));
 | |
|   SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
 | |
|   Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0);
 | |
|   MemOps.push_back(Store);
 | |
| 
 | |
|   // Store ptr to reg_save_area.
 | |
|   FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
 | |
|                     FIN, DAG.getIntPtrConstant(8));
 | |
|   SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
 | |
|   Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0);
 | |
|   MemOps.push_back(Store);
 | |
|   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | |
|                      &MemOps[0], MemOps.size());
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
 | |
|   // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
 | |
|   assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   SDValue SrcPtr = Op.getOperand(1);
 | |
|   SDValue SrcSV = Op.getOperand(2);
 | |
| 
 | |
|   llvm_report_error("VAArgInst is not yet implemented for x86-64!");
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
 | |
|   // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
 | |
|   assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   SDValue DstPtr = Op.getOperand(1);
 | |
|   SDValue SrcPtr = Op.getOperand(2);
 | |
|   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
 | |
|   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
 | |
|                        DAG.getIntPtrConstant(24), 8, false,
 | |
|                        DstSV, 0, SrcSV, 0);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
|   switch (IntNo) {
 | |
|   default: return SDValue();    // Don't custom lower most intrinsics.
 | |
|   // Comparison intrinsics.
 | |
|   case Intrinsic::x86_sse_comieq_ss:
 | |
|   case Intrinsic::x86_sse_comilt_ss:
 | |
|   case Intrinsic::x86_sse_comile_ss:
 | |
|   case Intrinsic::x86_sse_comigt_ss:
 | |
|   case Intrinsic::x86_sse_comige_ss:
 | |
|   case Intrinsic::x86_sse_comineq_ss:
 | |
|   case Intrinsic::x86_sse_ucomieq_ss:
 | |
|   case Intrinsic::x86_sse_ucomilt_ss:
 | |
|   case Intrinsic::x86_sse_ucomile_ss:
 | |
|   case Intrinsic::x86_sse_ucomigt_ss:
 | |
|   case Intrinsic::x86_sse_ucomige_ss:
 | |
|   case Intrinsic::x86_sse_ucomineq_ss:
 | |
|   case Intrinsic::x86_sse2_comieq_sd:
 | |
|   case Intrinsic::x86_sse2_comilt_sd:
 | |
|   case Intrinsic::x86_sse2_comile_sd:
 | |
|   case Intrinsic::x86_sse2_comigt_sd:
 | |
|   case Intrinsic::x86_sse2_comige_sd:
 | |
|   case Intrinsic::x86_sse2_comineq_sd:
 | |
|   case Intrinsic::x86_sse2_ucomieq_sd:
 | |
|   case Intrinsic::x86_sse2_ucomilt_sd:
 | |
|   case Intrinsic::x86_sse2_ucomile_sd:
 | |
|   case Intrinsic::x86_sse2_ucomigt_sd:
 | |
|   case Intrinsic::x86_sse2_ucomige_sd:
 | |
|   case Intrinsic::x86_sse2_ucomineq_sd: {
 | |
|     unsigned Opc = 0;
 | |
|     ISD::CondCode CC = ISD::SETCC_INVALID;
 | |
|     switch (IntNo) {
 | |
|     default: break;
 | |
|     case Intrinsic::x86_sse_comieq_ss:
 | |
|     case Intrinsic::x86_sse2_comieq_sd:
 | |
|       Opc = X86ISD::COMI;
 | |
|       CC = ISD::SETEQ;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse_comilt_ss:
 | |
|     case Intrinsic::x86_sse2_comilt_sd:
 | |
|       Opc = X86ISD::COMI;
 | |
|       CC = ISD::SETLT;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse_comile_ss:
 | |
|     case Intrinsic::x86_sse2_comile_sd:
 | |
|       Opc = X86ISD::COMI;
 | |
|       CC = ISD::SETLE;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse_comigt_ss:
 | |
|     case Intrinsic::x86_sse2_comigt_sd:
 | |
|       Opc = X86ISD::COMI;
 | |
|       CC = ISD::SETGT;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse_comige_ss:
 | |
|     case Intrinsic::x86_sse2_comige_sd:
 | |
|       Opc = X86ISD::COMI;
 | |
|       CC = ISD::SETGE;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse_comineq_ss:
 | |
|     case Intrinsic::x86_sse2_comineq_sd:
 | |
|       Opc = X86ISD::COMI;
 | |
|       CC = ISD::SETNE;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse_ucomieq_ss:
 | |
|     case Intrinsic::x86_sse2_ucomieq_sd:
 | |
|       Opc = X86ISD::UCOMI;
 | |
|       CC = ISD::SETEQ;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse_ucomilt_ss:
 | |
|     case Intrinsic::x86_sse2_ucomilt_sd:
 | |
|       Opc = X86ISD::UCOMI;
 | |
|       CC = ISD::SETLT;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse_ucomile_ss:
 | |
|     case Intrinsic::x86_sse2_ucomile_sd:
 | |
|       Opc = X86ISD::UCOMI;
 | |
|       CC = ISD::SETLE;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse_ucomigt_ss:
 | |
|     case Intrinsic::x86_sse2_ucomigt_sd:
 | |
|       Opc = X86ISD::UCOMI;
 | |
|       CC = ISD::SETGT;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse_ucomige_ss:
 | |
|     case Intrinsic::x86_sse2_ucomige_sd:
 | |
|       Opc = X86ISD::UCOMI;
 | |
|       CC = ISD::SETGE;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse_ucomineq_ss:
 | |
|     case Intrinsic::x86_sse2_ucomineq_sd:
 | |
|       Opc = X86ISD::UCOMI;
 | |
|       CC = ISD::SETNE;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     SDValue LHS = Op.getOperand(1);
 | |
|     SDValue RHS = Op.getOperand(2);
 | |
|     unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
 | |
|     SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
 | |
|     SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
 | |
|                                 DAG.getConstant(X86CC, MVT::i8), Cond);
 | |
|     return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
 | |
|   }
 | |
|   // ptest intrinsics. The intrinsic these come from are designed to return
 | |
|   // an integer value, not just an instruction so lower it to the ptest
 | |
|   // pattern and a setcc for the result.
 | |
|   case Intrinsic::x86_sse41_ptestz:
 | |
|   case Intrinsic::x86_sse41_ptestc:
 | |
|   case Intrinsic::x86_sse41_ptestnzc:{
 | |
|     unsigned X86CC = 0;
 | |
|     switch (IntNo) {
 | |
|     default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
 | |
|     case Intrinsic::x86_sse41_ptestz:
 | |
|       // ZF = 1
 | |
|       X86CC = X86::COND_E;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse41_ptestc:
 | |
|       // CF = 1
 | |
|       X86CC = X86::COND_B;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse41_ptestnzc: 
 | |
|       // ZF and CF = 0
 | |
|       X86CC = X86::COND_A;
 | |
|       break;
 | |
|     }
 | |
|        
 | |
|     SDValue LHS = Op.getOperand(1);
 | |
|     SDValue RHS = Op.getOperand(2);
 | |
|     SDValue Test = DAG.getNode(X86ISD::PTEST, dl, MVT::i32, LHS, RHS);
 | |
|     SDValue CC = DAG.getConstant(X86CC, MVT::i8);
 | |
|     SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
 | |
|     return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
 | |
|   }
 | |
| 
 | |
|   // Fix vector shift instructions where the last operand is a non-immediate
 | |
|   // i32 value.
 | |
|   case Intrinsic::x86_sse2_pslli_w:
 | |
|   case Intrinsic::x86_sse2_pslli_d:
 | |
|   case Intrinsic::x86_sse2_pslli_q:
 | |
|   case Intrinsic::x86_sse2_psrli_w:
 | |
|   case Intrinsic::x86_sse2_psrli_d:
 | |
|   case Intrinsic::x86_sse2_psrli_q:
 | |
|   case Intrinsic::x86_sse2_psrai_w:
 | |
|   case Intrinsic::x86_sse2_psrai_d:
 | |
|   case Intrinsic::x86_mmx_pslli_w:
 | |
|   case Intrinsic::x86_mmx_pslli_d:
 | |
|   case Intrinsic::x86_mmx_pslli_q:
 | |
|   case Intrinsic::x86_mmx_psrli_w:
 | |
|   case Intrinsic::x86_mmx_psrli_d:
 | |
|   case Intrinsic::x86_mmx_psrli_q:
 | |
|   case Intrinsic::x86_mmx_psrai_w:
 | |
|   case Intrinsic::x86_mmx_psrai_d: {
 | |
|     SDValue ShAmt = Op.getOperand(2);
 | |
|     if (isa<ConstantSDNode>(ShAmt))
 | |
|       return SDValue();
 | |
| 
 | |
|     unsigned NewIntNo = 0;
 | |
|     EVT ShAmtVT = MVT::v4i32;
 | |
|     switch (IntNo) {
 | |
|     case Intrinsic::x86_sse2_pslli_w:
 | |
|       NewIntNo = Intrinsic::x86_sse2_psll_w;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse2_pslli_d:
 | |
|       NewIntNo = Intrinsic::x86_sse2_psll_d;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse2_pslli_q:
 | |
|       NewIntNo = Intrinsic::x86_sse2_psll_q;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse2_psrli_w:
 | |
|       NewIntNo = Intrinsic::x86_sse2_psrl_w;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse2_psrli_d:
 | |
|       NewIntNo = Intrinsic::x86_sse2_psrl_d;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse2_psrli_q:
 | |
|       NewIntNo = Intrinsic::x86_sse2_psrl_q;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse2_psrai_w:
 | |
|       NewIntNo = Intrinsic::x86_sse2_psra_w;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse2_psrai_d:
 | |
|       NewIntNo = Intrinsic::x86_sse2_psra_d;
 | |
|       break;
 | |
|     default: {
 | |
|       ShAmtVT = MVT::v2i32;
 | |
|       switch (IntNo) {
 | |
|       case Intrinsic::x86_mmx_pslli_w:
 | |
|         NewIntNo = Intrinsic::x86_mmx_psll_w;
 | |
|         break;
 | |
|       case Intrinsic::x86_mmx_pslli_d:
 | |
|         NewIntNo = Intrinsic::x86_mmx_psll_d;
 | |
|         break;
 | |
|       case Intrinsic::x86_mmx_pslli_q:
 | |
|         NewIntNo = Intrinsic::x86_mmx_psll_q;
 | |
|         break;
 | |
|       case Intrinsic::x86_mmx_psrli_w:
 | |
|         NewIntNo = Intrinsic::x86_mmx_psrl_w;
 | |
|         break;
 | |
|       case Intrinsic::x86_mmx_psrli_d:
 | |
|         NewIntNo = Intrinsic::x86_mmx_psrl_d;
 | |
|         break;
 | |
|       case Intrinsic::x86_mmx_psrli_q:
 | |
|         NewIntNo = Intrinsic::x86_mmx_psrl_q;
 | |
|         break;
 | |
|       case Intrinsic::x86_mmx_psrai_w:
 | |
|         NewIntNo = Intrinsic::x86_mmx_psra_w;
 | |
|         break;
 | |
|       case Intrinsic::x86_mmx_psrai_d:
 | |
|         NewIntNo = Intrinsic::x86_mmx_psra_d;
 | |
|         break;
 | |
|       default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|     EVT VT = Op.getValueType();
 | |
|     ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT,
 | |
|                         DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, ShAmtVT, ShAmt));
 | |
|     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
 | |
|                        DAG.getConstant(NewIntNo, MVT::i32),
 | |
|                        Op.getOperand(1), ShAmt);
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
 | |
|   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   if (Depth > 0) {
 | |
|     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
 | |
|     SDValue Offset =
 | |
|       DAG.getConstant(TD->getPointerSize(),
 | |
|                       Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
 | |
|     return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
 | |
|                        DAG.getNode(ISD::ADD, dl, getPointerTy(),
 | |
|                                    FrameAddr, Offset),
 | |
|                        NULL, 0);
 | |
|   }
 | |
| 
 | |
|   // Just load the return address.
 | |
|   SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
 | |
|   return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
 | |
|                      RetAddrFI, NULL, 0);
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
 | |
|   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
 | |
|   MFI->setFrameAddressIsTaken(true);
 | |
|   EVT VT = Op.getValueType();
 | |
|   DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
 | |
|   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
|   unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
 | |
|   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
 | |
|   while (Depth--)
 | |
|     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0);
 | |
|   return FrameAddr;
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
 | |
|                                                      SelectionDAG &DAG) {
 | |
|   return DAG.getIntPtrConstant(2*TD->getPointerSize());
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
 | |
| {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   SDValue Chain     = Op.getOperand(0);
 | |
|   SDValue Offset    = Op.getOperand(1);
 | |
|   SDValue Handler   = Op.getOperand(2);
 | |
|   DebugLoc dl       = Op.getDebugLoc();
 | |
| 
 | |
|   SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
 | |
|                                   getPointerTy());
 | |
|   unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
 | |
| 
 | |
|   SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame,
 | |
|                                   DAG.getIntPtrConstant(-TD->getPointerSize()));
 | |
|   StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
 | |
|   Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0);
 | |
|   Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
 | |
|   MF.getRegInfo().addLiveOut(StoreAddrReg);
 | |
| 
 | |
|   return DAG.getNode(X86ISD::EH_RETURN, dl,
 | |
|                      MVT::Other,
 | |
|                      Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
 | |
|                                              SelectionDAG &DAG) {
 | |
|   SDValue Root = Op.getOperand(0);
 | |
|   SDValue Trmp = Op.getOperand(1); // trampoline
 | |
|   SDValue FPtr = Op.getOperand(2); // nested function
 | |
|   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
 | |
|   DebugLoc dl  = Op.getDebugLoc();
 | |
| 
 | |
|   const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
 | |
| 
 | |
|   const X86InstrInfo *TII =
 | |
|     ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
 | |
| 
 | |
|   if (Subtarget->is64Bit()) {
 | |
|     SDValue OutChains[6];
 | |
| 
 | |
|     // Large code-model.
 | |
| 
 | |
|     const unsigned char JMP64r  = TII->getBaseOpcodeFor(X86::JMP64r);
 | |
|     const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
 | |
| 
 | |
|     const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
 | |
|     const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
 | |
| 
 | |
|     const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
 | |
| 
 | |
|     // Load the pointer to the nested function into R11.
 | |
|     unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
 | |
|     SDValue Addr = Trmp;
 | |
|     OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
 | |
|                                 Addr, TrmpAddr, 0);
 | |
| 
 | |
|     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
 | |
|                        DAG.getConstant(2, MVT::i64));
 | |
|     OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2, false, 2);
 | |
| 
 | |
|     // Load the 'nest' parameter value into R10.
 | |
|     // R10 is specified in X86CallingConv.td
 | |
|     OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
 | |
|     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
 | |
|                        DAG.getConstant(10, MVT::i64));
 | |
|     OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
 | |
|                                 Addr, TrmpAddr, 10);
 | |
| 
 | |
|     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
 | |
|                        DAG.getConstant(12, MVT::i64));
 | |
|     OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12, false, 2);
 | |
| 
 | |
|     // Jump to the nested function.
 | |
|     OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
 | |
|     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
 | |
|                        DAG.getConstant(20, MVT::i64));
 | |
|     OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
 | |
|                                 Addr, TrmpAddr, 20);
 | |
| 
 | |
|     unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
 | |
|     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
 | |
|                        DAG.getConstant(22, MVT::i64));
 | |
|     OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
 | |
|                                 TrmpAddr, 22);
 | |
| 
 | |
|     SDValue Ops[] =
 | |
|       { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
 | |
|     return DAG.getMergeValues(Ops, 2, dl);
 | |
|   } else {
 | |
|     const Function *Func =
 | |
|       cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
 | |
|     unsigned CC = Func->getCallingConv();
 | |
|     unsigned NestReg;
 | |
| 
 | |
|     switch (CC) {
 | |
|     default:
 | |
|       llvm_unreachable("Unsupported calling convention");
 | |
|     case CallingConv::C:
 | |
|     case CallingConv::X86_StdCall: {
 | |
|       // Pass 'nest' parameter in ECX.
 | |
|       // Must be kept in sync with X86CallingConv.td
 | |
|       NestReg = X86::ECX;
 | |
| 
 | |
|       // Check that ECX wasn't needed by an 'inreg' parameter.
 | |
|       const FunctionType *FTy = Func->getFunctionType();
 | |
|       const AttrListPtr &Attrs = Func->getAttributes();
 | |
| 
 | |
|       if (!Attrs.isEmpty() && !Func->isVarArg()) {
 | |
|         unsigned InRegCount = 0;
 | |
|         unsigned Idx = 1;
 | |
| 
 | |
|         for (FunctionType::param_iterator I = FTy->param_begin(),
 | |
|              E = FTy->param_end(); I != E; ++I, ++Idx)
 | |
|           if (Attrs.paramHasAttr(Idx, Attribute::InReg))
 | |
|             // FIXME: should only count parameters that are lowered to integers.
 | |
|             InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
 | |
| 
 | |
|         if (InRegCount > 2) {
 | |
|           llvm_report_error("Nest register in use - reduce number of inreg parameters!");
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case CallingConv::X86_FastCall:
 | |
|     case CallingConv::Fast:
 | |
|       // Pass 'nest' parameter in EAX.
 | |
|       // Must be kept in sync with X86CallingConv.td
 | |
|       NestReg = X86::EAX;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     SDValue OutChains[4];
 | |
|     SDValue Addr, Disp;
 | |
| 
 | |
|     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
 | |
|                        DAG.getConstant(10, MVT::i32));
 | |
|     Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
 | |
| 
 | |
|     const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
 | |
|     const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
 | |
|     OutChains[0] = DAG.getStore(Root, dl,
 | |
|                                 DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
 | |
|                                 Trmp, TrmpAddr, 0);
 | |
| 
 | |
|     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
 | |
|                        DAG.getConstant(1, MVT::i32));
 | |
|     OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1, false, 1);
 | |
| 
 | |
|     const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
 | |
|     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
 | |
|                        DAG.getConstant(5, MVT::i32));
 | |
|     OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
 | |
|                                 TrmpAddr, 5, false, 1);
 | |
| 
 | |
|     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
 | |
|                        DAG.getConstant(6, MVT::i32));
 | |
|     OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6, false, 1);
 | |
| 
 | |
|     SDValue Ops[] =
 | |
|       { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
 | |
|     return DAG.getMergeValues(Ops, 2, dl);
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
 | |
|   /*
 | |
|    The rounding mode is in bits 11:10 of FPSR, and has the following
 | |
|    settings:
 | |
|      00 Round to nearest
 | |
|      01 Round to -inf
 | |
|      10 Round to +inf
 | |
|      11 Round to 0
 | |
| 
 | |
|   FLT_ROUNDS, on the other hand, expects the following:
 | |
|     -1 Undefined
 | |
|      0 Round to 0
 | |
|      1 Round to nearest
 | |
|      2 Round to +inf
 | |
|      3 Round to -inf
 | |
| 
 | |
|   To perform the conversion, we do:
 | |
|     (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
 | |
|   */
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   const TargetMachine &TM = MF.getTarget();
 | |
|   const TargetFrameInfo &TFI = *TM.getFrameInfo();
 | |
|   unsigned StackAlignment = TFI.getStackAlignment();
 | |
|   EVT VT = Op.getValueType();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   // Save FP Control Word to stack slot
 | |
|   int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
 | |
|   SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
 | |
| 
 | |
|   SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
 | |
|                               DAG.getEntryNode(), StackSlot);
 | |
| 
 | |
|   // Load FP Control Word from stack slot
 | |
|   SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0);
 | |
| 
 | |
|   // Transform as necessary
 | |
|   SDValue CWD1 =
 | |
|     DAG.getNode(ISD::SRL, dl, MVT::i16,
 | |
|                 DAG.getNode(ISD::AND, dl, MVT::i16,
 | |
|                             CWD, DAG.getConstant(0x800, MVT::i16)),
 | |
|                 DAG.getConstant(11, MVT::i8));
 | |
|   SDValue CWD2 =
 | |
|     DAG.getNode(ISD::SRL, dl, MVT::i16,
 | |
|                 DAG.getNode(ISD::AND, dl, MVT::i16,
 | |
|                             CWD, DAG.getConstant(0x400, MVT::i16)),
 | |
|                 DAG.getConstant(9, MVT::i8));
 | |
| 
 | |
|   SDValue RetVal =
 | |
|     DAG.getNode(ISD::AND, dl, MVT::i16,
 | |
|                 DAG.getNode(ISD::ADD, dl, MVT::i16,
 | |
|                             DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
 | |
|                             DAG.getConstant(1, MVT::i16)),
 | |
|                 DAG.getConstant(3, MVT::i16));
 | |
| 
 | |
| 
 | |
|   return DAG.getNode((VT.getSizeInBits() < 16 ?
 | |
|                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
 | |
|   EVT VT = Op.getValueType();
 | |
|   EVT OpVT = VT;
 | |
|   unsigned NumBits = VT.getSizeInBits();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   Op = Op.getOperand(0);
 | |
|   if (VT == MVT::i8) {
 | |
|     // Zero extend to i32 since there is not an i8 bsr.
 | |
|     OpVT = MVT::i32;
 | |
|     Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
 | |
|   }
 | |
| 
 | |
|   // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
 | |
|   SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
 | |
|   Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
 | |
| 
 | |
|   // If src is zero (i.e. bsr sets ZF), returns NumBits.
 | |
|   SmallVector<SDValue, 4> Ops;
 | |
|   Ops.push_back(Op);
 | |
|   Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
 | |
|   Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
 | |
|   Ops.push_back(Op.getValue(1));
 | |
|   Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
 | |
| 
 | |
|   // Finally xor with NumBits-1.
 | |
|   Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
 | |
| 
 | |
|   if (VT == MVT::i8)
 | |
|     Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
 | |
|   return Op;
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
 | |
|   EVT VT = Op.getValueType();
 | |
|   EVT OpVT = VT;
 | |
|   unsigned NumBits = VT.getSizeInBits();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   Op = Op.getOperand(0);
 | |
|   if (VT == MVT::i8) {
 | |
|     OpVT = MVT::i32;
 | |
|     Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
 | |
|   }
 | |
| 
 | |
|   // Issue a bsf (scan bits forward) which also sets EFLAGS.
 | |
|   SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
 | |
|   Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
 | |
| 
 | |
|   // If src is zero (i.e. bsf sets ZF), returns NumBits.
 | |
|   SmallVector<SDValue, 4> Ops;
 | |
|   Ops.push_back(Op);
 | |
|   Ops.push_back(DAG.getConstant(NumBits, OpVT));
 | |
|   Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
 | |
|   Ops.push_back(Op.getValue(1));
 | |
|   Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
 | |
| 
 | |
|   if (VT == MVT::i8)
 | |
|     Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
 | |
|   return Op;
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) {
 | |
|   EVT VT = Op.getValueType();
 | |
|   assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
 | |
|   //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
 | |
|   //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
 | |
|   //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
 | |
|   //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
 | |
|   //
 | |
|   //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
 | |
|   //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
 | |
|   //  return AloBlo + AloBhi + AhiBlo;
 | |
| 
 | |
|   SDValue A = Op.getOperand(0);
 | |
|   SDValue B = Op.getOperand(1);
 | |
| 
 | |
|   SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
 | |
|                        DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
 | |
|                        A, DAG.getConstant(32, MVT::i32));
 | |
|   SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
 | |
|                        DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
 | |
|                        B, DAG.getConstant(32, MVT::i32));
 | |
|   SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
 | |
|                        DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
 | |
|                        A, B);
 | |
|   SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
 | |
|                        DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
 | |
|                        A, Bhi);
 | |
|   SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
 | |
|                        DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
 | |
|                        Ahi, B);
 | |
|   AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
 | |
|                        DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
 | |
|                        AloBhi, DAG.getConstant(32, MVT::i32));
 | |
|   AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
 | |
|                        DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
 | |
|                        AhiBlo, DAG.getConstant(32, MVT::i32));
 | |
|   SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
 | |
|   Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| 
 | |
| SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) {
 | |
|   // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
 | |
|   // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
 | |
|   // looks for this combo and may remove the "setcc" instruction if the "setcc"
 | |
|   // has only one use.
 | |
|   SDNode *N = Op.getNode();
 | |
|   SDValue LHS = N->getOperand(0);
 | |
|   SDValue RHS = N->getOperand(1);
 | |
|   unsigned BaseOp = 0;
 | |
|   unsigned Cond = 0;
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   switch (Op.getOpcode()) {
 | |
|   default: llvm_unreachable("Unknown ovf instruction!");
 | |
|   case ISD::SADDO:
 | |
|     // A subtract of one will be selected as a INC. Note that INC doesn't
 | |
|     // set CF, so we can't do this for UADDO.
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
 | |
|       if (C->getAPIntValue() == 1) {
 | |
|         BaseOp = X86ISD::INC;
 | |
|         Cond = X86::COND_O;
 | |
|         break;
 | |
|       }
 | |
|     BaseOp = X86ISD::ADD;
 | |
|     Cond = X86::COND_O;
 | |
|     break;
 | |
|   case ISD::UADDO:
 | |
|     BaseOp = X86ISD::ADD;
 | |
|     Cond = X86::COND_B;
 | |
|     break;
 | |
|   case ISD::SSUBO:
 | |
|     // A subtract of one will be selected as a DEC. Note that DEC doesn't
 | |
|     // set CF, so we can't do this for USUBO.
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
 | |
|       if (C->getAPIntValue() == 1) {
 | |
|         BaseOp = X86ISD::DEC;
 | |
|         Cond = X86::COND_O;
 | |
|         break;
 | |
|       }
 | |
|     BaseOp = X86ISD::SUB;
 | |
|     Cond = X86::COND_O;
 | |
|     break;
 | |
|   case ISD::USUBO:
 | |
|     BaseOp = X86ISD::SUB;
 | |
|     Cond = X86::COND_B;
 | |
|     break;
 | |
|   case ISD::SMULO:
 | |
|     BaseOp = X86ISD::SMUL;
 | |
|     Cond = X86::COND_O;
 | |
|     break;
 | |
|   case ISD::UMULO:
 | |
|     BaseOp = X86ISD::UMUL;
 | |
|     Cond = X86::COND_B;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Also sets EFLAGS.
 | |
|   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
 | |
|   SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
 | |
| 
 | |
|   SDValue SetCC =
 | |
|     DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
 | |
|                 DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
 | |
| 
 | |
|   DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
 | |
|   return Sum;
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
 | |
|   EVT T = Op.getValueType();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   unsigned Reg = 0;
 | |
|   unsigned size = 0;
 | |
|   switch(T.getSimpleVT().SimpleTy) {
 | |
|   default:
 | |
|     assert(false && "Invalid value type!");
 | |
|   case MVT::i8:  Reg = X86::AL;  size = 1; break;
 | |
|   case MVT::i16: Reg = X86::AX;  size = 2; break;
 | |
|   case MVT::i32: Reg = X86::EAX; size = 4; break;
 | |
|   case MVT::i64:
 | |
|     assert(Subtarget->is64Bit() && "Node not type legal!");
 | |
|     Reg = X86::RAX; size = 8;
 | |
|     break;
 | |
|   }
 | |
|   SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
 | |
|                                     Op.getOperand(2), SDValue());
 | |
|   SDValue Ops[] = { cpIn.getValue(0),
 | |
|                     Op.getOperand(1),
 | |
|                     Op.getOperand(3),
 | |
|                     DAG.getTargetConstant(size, MVT::i8),
 | |
|                     cpIn.getValue(1) };
 | |
|   SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
 | |
|   SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
 | |
|   SDValue cpOut =
 | |
|     DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
 | |
|   return cpOut;
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
 | |
|                                                  SelectionDAG &DAG) {
 | |
|   assert(Subtarget->is64Bit() && "Result not type legalized?");
 | |
|   SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
 | |
|   SDValue TheChain = Op.getOperand(0);
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
 | |
|   SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
 | |
|   SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
 | |
|                                    rax.getValue(2));
 | |
|   SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
 | |
|                             DAG.getConstant(32, MVT::i8));
 | |
|   SDValue Ops[] = {
 | |
|     DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
 | |
|     rdx.getValue(1)
 | |
|   };
 | |
|   return DAG.getMergeValues(Ops, 2, dl);
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
 | |
|   SDNode *Node = Op.getNode();
 | |
|   DebugLoc dl = Node->getDebugLoc();
 | |
|   EVT T = Node->getValueType(0);
 | |
|   SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
 | |
|                               DAG.getConstant(0, T), Node->getOperand(2));
 | |
|   return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
 | |
|                        cast<AtomicSDNode>(Node)->getMemoryVT(),
 | |
|                        Node->getOperand(0),
 | |
|                        Node->getOperand(1), negOp,
 | |
|                        cast<AtomicSDNode>(Node)->getSrcValue(),
 | |
|                        cast<AtomicSDNode>(Node)->getAlignment());
 | |
| }
 | |
| 
 | |
| /// LowerOperation - Provide custom lowering hooks for some operations.
 | |
| ///
 | |
| SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
 | |
|   switch (Op.getOpcode()) {
 | |
|   default: llvm_unreachable("Should not custom lower this!");
 | |
|   case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
 | |
|   case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
 | |
|   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
 | |
|   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
 | |
|   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
 | |
|   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
 | |
|   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
 | |
|   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
 | |
|   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
 | |
|   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
 | |
|   case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
 | |
|   case ISD::SHL_PARTS:
 | |
|   case ISD::SRA_PARTS:
 | |
|   case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
 | |
|   case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
 | |
|   case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
 | |
|   case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
 | |
|   case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
 | |
|   case ISD::FABS:               return LowerFABS(Op, DAG);
 | |
|   case ISD::FNEG:               return LowerFNEG(Op, DAG);
 | |
|   case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
 | |
|   case ISD::SETCC:              return LowerSETCC(Op, DAG);
 | |
|   case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
 | |
|   case ISD::SELECT:             return LowerSELECT(Op, DAG);
 | |
|   case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
 | |
|   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
 | |
|   case ISD::VASTART:            return LowerVASTART(Op, DAG);
 | |
|   case ISD::VAARG:              return LowerVAARG(Op, DAG);
 | |
|   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
 | |
|   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
 | |
|   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
 | |
|   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
 | |
|   case ISD::FRAME_TO_ARGS_OFFSET:
 | |
|                                 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
 | |
|   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
 | |
|   case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
 | |
|   case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
 | |
|   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
 | |
|   case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
 | |
|   case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
 | |
|   case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
 | |
|   case ISD::SADDO:
 | |
|   case ISD::UADDO:
 | |
|   case ISD::SSUBO:
 | |
|   case ISD::USUBO:
 | |
|   case ISD::SMULO:
 | |
|   case ISD::UMULO:              return LowerXALUO(Op, DAG);
 | |
|   case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void X86TargetLowering::
 | |
| ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
 | |
|                         SelectionDAG &DAG, unsigned NewOp) {
 | |
|   EVT T = Node->getValueType(0);
 | |
|   DebugLoc dl = Node->getDebugLoc();
 | |
|   assert (T == MVT::i64 && "Only know how to expand i64 atomics");
 | |
| 
 | |
|   SDValue Chain = Node->getOperand(0);
 | |
|   SDValue In1 = Node->getOperand(1);
 | |
|   SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
 | |
|                              Node->getOperand(2), DAG.getIntPtrConstant(0));
 | |
|   SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
 | |
|                              Node->getOperand(2), DAG.getIntPtrConstant(1));
 | |
|   // This is a generalized SDNode, not an AtomicSDNode, so it doesn't
 | |
|   // have a MemOperand.  Pass the info through as a normal operand.
 | |
|   SDValue LSI = DAG.getMemOperand(cast<MemSDNode>(Node)->getMemOperand());
 | |
|   SDValue Ops[] = { Chain, In1, In2L, In2H, LSI };
 | |
|   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
 | |
|   SDValue Result = DAG.getNode(NewOp, dl, Tys, Ops, 5);
 | |
|   SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
 | |
|   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
 | |
|   Results.push_back(Result.getValue(2));
 | |
| }
 | |
| 
 | |
| /// ReplaceNodeResults - Replace a node with an illegal result type
 | |
| /// with a new node built out of custom code.
 | |
| void X86TargetLowering::ReplaceNodeResults(SDNode *N,
 | |
|                                            SmallVectorImpl<SDValue>&Results,
 | |
|                                            SelectionDAG &DAG) {
 | |
|   DebugLoc dl = N->getDebugLoc();
 | |
|   switch (N->getOpcode()) {
 | |
|   default:
 | |
|     assert(false && "Do not know how to custom type legalize this operation!");
 | |
|     return;
 | |
|   case ISD::FP_TO_SINT: {
 | |
|     std::pair<SDValue,SDValue> Vals =
 | |
|         FP_TO_INTHelper(SDValue(N, 0), DAG, true);
 | |
|     SDValue FIST = Vals.first, StackSlot = Vals.second;
 | |
|     if (FIST.getNode() != 0) {
 | |
|       EVT VT = N->getValueType(0);
 | |
|       // Return a load from the stack slot.
 | |
|       Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0));
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   case ISD::READCYCLECOUNTER: {
 | |
|     SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
 | |
|     SDValue TheChain = N->getOperand(0);
 | |
|     SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
 | |
|     SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
 | |
|                                      rd.getValue(1));
 | |
|     SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
 | |
|                                      eax.getValue(2));
 | |
|     // Use a buildpair to merge the two 32-bit values into a 64-bit one.
 | |
|     SDValue Ops[] = { eax, edx };
 | |
|     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
 | |
|     Results.push_back(edx.getValue(1));
 | |
|     return;
 | |
|   }
 | |
|   case ISD::ATOMIC_CMP_SWAP: {
 | |
|     EVT T = N->getValueType(0);
 | |
|     assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
 | |
|     SDValue cpInL, cpInH;
 | |
|     cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
 | |
|                         DAG.getConstant(0, MVT::i32));
 | |
|     cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
 | |
|                         DAG.getConstant(1, MVT::i32));
 | |
|     cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
 | |
|     cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
 | |
|                              cpInL.getValue(1));
 | |
|     SDValue swapInL, swapInH;
 | |
|     swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
 | |
|                           DAG.getConstant(0, MVT::i32));
 | |
|     swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
 | |
|                           DAG.getConstant(1, MVT::i32));
 | |
|     swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
 | |
|                                cpInH.getValue(1));
 | |
|     swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
 | |
|                                swapInL.getValue(1));
 | |
|     SDValue Ops[] = { swapInH.getValue(0),
 | |
|                       N->getOperand(1),
 | |
|                       swapInH.getValue(1) };
 | |
|     SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
 | |
|     SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
 | |
|     SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
 | |
|                                         MVT::i32, Result.getValue(1));
 | |
|     SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
 | |
|                                         MVT::i32, cpOutL.getValue(2));
 | |
|     SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
 | |
|     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
 | |
|     Results.push_back(cpOutH.getValue(1));
 | |
|     return;
 | |
|   }
 | |
|   case ISD::ATOMIC_LOAD_ADD:
 | |
|     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
 | |
|     return;
 | |
|   case ISD::ATOMIC_LOAD_AND:
 | |
|     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
 | |
|     return;
 | |
|   case ISD::ATOMIC_LOAD_NAND:
 | |
|     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
 | |
|     return;
 | |
|   case ISD::ATOMIC_LOAD_OR:
 | |
|     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
 | |
|     return;
 | |
|   case ISD::ATOMIC_LOAD_SUB:
 | |
|     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
 | |
|     return;
 | |
|   case ISD::ATOMIC_LOAD_XOR:
 | |
|     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
 | |
|     return;
 | |
|   case ISD::ATOMIC_SWAP:
 | |
|     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
 | |
|     return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
 | |
|   switch (Opcode) {
 | |
|   default: return NULL;
 | |
|   case X86ISD::BSF:                return "X86ISD::BSF";
 | |
|   case X86ISD::BSR:                return "X86ISD::BSR";
 | |
|   case X86ISD::SHLD:               return "X86ISD::SHLD";
 | |
|   case X86ISD::SHRD:               return "X86ISD::SHRD";
 | |
|   case X86ISD::FAND:               return "X86ISD::FAND";
 | |
|   case X86ISD::FOR:                return "X86ISD::FOR";
 | |
|   case X86ISD::FXOR:               return "X86ISD::FXOR";
 | |
|   case X86ISD::FSRL:               return "X86ISD::FSRL";
 | |
|   case X86ISD::FILD:               return "X86ISD::FILD";
 | |
|   case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
 | |
|   case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
 | |
|   case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
 | |
|   case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
 | |
|   case X86ISD::FLD:                return "X86ISD::FLD";
 | |
|   case X86ISD::FST:                return "X86ISD::FST";
 | |
|   case X86ISD::CALL:               return "X86ISD::CALL";
 | |
|   case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
 | |
|   case X86ISD::BT:                 return "X86ISD::BT";
 | |
|   case X86ISD::CMP:                return "X86ISD::CMP";
 | |
|   case X86ISD::COMI:               return "X86ISD::COMI";
 | |
|   case X86ISD::UCOMI:              return "X86ISD::UCOMI";
 | |
|   case X86ISD::SETCC:              return "X86ISD::SETCC";
 | |
|   case X86ISD::CMOV:               return "X86ISD::CMOV";
 | |
|   case X86ISD::BRCOND:             return "X86ISD::BRCOND";
 | |
|   case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
 | |
|   case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
 | |
|   case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
 | |
|   case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
 | |
|   case X86ISD::Wrapper:            return "X86ISD::Wrapper";
 | |
|   case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
 | |
|   case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
 | |
|   case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
 | |
|   case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
 | |
|   case X86ISD::PINSRB:             return "X86ISD::PINSRB";
 | |
|   case X86ISD::PINSRW:             return "X86ISD::PINSRW";
 | |
|   case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
 | |
|   case X86ISD::FMAX:               return "X86ISD::FMAX";
 | |
|   case X86ISD::FMIN:               return "X86ISD::FMIN";
 | |
|   case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
 | |
|   case X86ISD::FRCP:               return "X86ISD::FRCP";
 | |
|   case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
 | |
|   case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
 | |
|   case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
 | |
|   case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
 | |
|   case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
 | |
|   case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
 | |
|   case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
 | |
|   case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
 | |
|   case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
 | |
|   case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
 | |
|   case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
 | |
|   case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
 | |
|   case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
 | |
|   case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
 | |
|   case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
 | |
|   case X86ISD::VSHL:               return "X86ISD::VSHL";
 | |
|   case X86ISD::VSRL:               return "X86ISD::VSRL";
 | |
|   case X86ISD::CMPPD:              return "X86ISD::CMPPD";
 | |
|   case X86ISD::CMPPS:              return "X86ISD::CMPPS";
 | |
|   case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
 | |
|   case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
 | |
|   case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
 | |
|   case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
 | |
|   case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
 | |
|   case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
 | |
|   case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
 | |
|   case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
 | |
|   case X86ISD::ADD:                return "X86ISD::ADD";
 | |
|   case X86ISD::SUB:                return "X86ISD::SUB";
 | |
|   case X86ISD::SMUL:               return "X86ISD::SMUL";
 | |
|   case X86ISD::UMUL:               return "X86ISD::UMUL";
 | |
|   case X86ISD::INC:                return "X86ISD::INC";
 | |
|   case X86ISD::DEC:                return "X86ISD::DEC";
 | |
|   case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
 | |
|   case X86ISD::PTEST:              return "X86ISD::PTEST";
 | |
|   }
 | |
| }
 | |
| 
 | |
| // isLegalAddressingMode - Return true if the addressing mode represented
 | |
| // by AM is legal for this target, for a load/store of the specified type.
 | |
| bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
 | |
|                                               const Type *Ty) const {
 | |
|   // X86 supports extremely general addressing modes.
 | |
|   CodeModel::Model M = getTargetMachine().getCodeModel();
 | |
| 
 | |
|   // X86 allows a sign-extended 32-bit immediate field as a displacement.
 | |
|   if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
 | |
|     return false;
 | |
| 
 | |
|   if (AM.BaseGV) {
 | |
|     unsigned GVFlags =
 | |
|       Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
 | |
| 
 | |
|     // If a reference to this global requires an extra load, we can't fold it.
 | |
|     if (isGlobalStubReference(GVFlags))
 | |
|       return false;
 | |
| 
 | |
|     // If BaseGV requires a register for the PIC base, we cannot also have a
 | |
|     // BaseReg specified.
 | |
|     if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
 | |
|       return false;
 | |
| 
 | |
|     // If lower 4G is not available, then we must use rip-relative addressing.
 | |
|     if (Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   switch (AM.Scale) {
 | |
|   case 0:
 | |
|   case 1:
 | |
|   case 2:
 | |
|   case 4:
 | |
|   case 8:
 | |
|     // These scales always work.
 | |
|     break;
 | |
|   case 3:
 | |
|   case 5:
 | |
|   case 9:
 | |
|     // These scales are formed with basereg+scalereg.  Only accept if there is
 | |
|     // no basereg yet.
 | |
|     if (AM.HasBaseReg)
 | |
|       return false;
 | |
|     break;
 | |
|   default:  // Other stuff never works.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
 | |
|   if (!Ty1->isInteger() || !Ty2->isInteger())
 | |
|     return false;
 | |
|   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
 | |
|   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
 | |
|   if (NumBits1 <= NumBits2)
 | |
|     return false;
 | |
|   return Subtarget->is64Bit() || NumBits1 < 64;
 | |
| }
 | |
| 
 | |
| bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
 | |
|   if (!VT1.isInteger() || !VT2.isInteger())
 | |
|     return false;
 | |
|   unsigned NumBits1 = VT1.getSizeInBits();
 | |
|   unsigned NumBits2 = VT2.getSizeInBits();
 | |
|   if (NumBits1 <= NumBits2)
 | |
|     return false;
 | |
|   return Subtarget->is64Bit() || NumBits1 < 64;
 | |
| }
 | |
| 
 | |
| bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
 | |
|   // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
 | |
|   return Ty1 == Type::Int32Ty && Ty2 == Type::Int64Ty && Subtarget->is64Bit();
 | |
| }
 | |
| 
 | |
| bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
 | |
|   // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
 | |
|   return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
 | |
| }
 | |
| 
 | |
| bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
 | |
|   // i16 instructions are longer (0x66 prefix) and potentially slower.
 | |
|   return !(VT1 == MVT::i32 && VT2 == MVT::i16);
 | |
| }
 | |
| 
 | |
| /// isShuffleMaskLegal - Targets can use this to indicate that they only
 | |
| /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
 | |
| /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
 | |
| /// are assumed to be legal.
 | |
| bool
 | |
| X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M, 
 | |
|                                       EVT VT) const {
 | |
|   // Only do shuffles on 128-bit vector types for now.
 | |
|   if (VT.getSizeInBits() == 64)
 | |
|     return false;
 | |
| 
 | |
|   // FIXME: pshufb, blends, palignr, shifts.
 | |
|   return (VT.getVectorNumElements() == 2 ||
 | |
|           ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
 | |
|           isMOVLMask(M, VT) ||
 | |
|           isSHUFPMask(M, VT) ||
 | |
|           isPSHUFDMask(M, VT) ||
 | |
|           isPSHUFHWMask(M, VT) ||
 | |
|           isPSHUFLWMask(M, VT) ||
 | |
|           isUNPCKLMask(M, VT) ||
 | |
|           isUNPCKHMask(M, VT) ||
 | |
|           isUNPCKL_v_undef_Mask(M, VT) ||
 | |
|           isUNPCKH_v_undef_Mask(M, VT));
 | |
| }
 | |
| 
 | |
| bool
 | |
| X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
 | |
|                                           EVT VT) const {
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   // FIXME: This collection of masks seems suspect.
 | |
|   if (NumElts == 2)
 | |
|     return true;
 | |
|   if (NumElts == 4 && VT.getSizeInBits() == 128) {
 | |
|     return (isMOVLMask(Mask, VT)  ||
 | |
|             isCommutedMOVLMask(Mask, VT, true) ||
 | |
|             isSHUFPMask(Mask, VT) ||
 | |
|             isCommutedSHUFPMask(Mask, VT));
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           X86 Scheduler Hooks
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // private utility function
 | |
| MachineBasicBlock *
 | |
| X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
 | |
|                                                        MachineBasicBlock *MBB,
 | |
|                                                        unsigned regOpc,
 | |
|                                                        unsigned immOpc,
 | |
|                                                        unsigned LoadOpc,
 | |
|                                                        unsigned CXchgOpc,
 | |
|                                                        unsigned copyOpc,
 | |
|                                                        unsigned notOpc,
 | |
|                                                        unsigned EAXreg,
 | |
|                                                        TargetRegisterClass *RC,
 | |
|                                                        bool invSrc) const {
 | |
|   // For the atomic bitwise operator, we generate
 | |
|   //   thisMBB:
 | |
|   //   newMBB:
 | |
|   //     ld  t1 = [bitinstr.addr]
 | |
|   //     op  t2 = t1, [bitinstr.val]
 | |
|   //     mov EAX = t1
 | |
|   //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
 | |
|   //     bz  newMBB
 | |
|   //     fallthrough -->nextMBB
 | |
|   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | |
|   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
 | |
|   MachineFunction::iterator MBBIter = MBB;
 | |
|   ++MBBIter;
 | |
| 
 | |
|   /// First build the CFG
 | |
|   MachineFunction *F = MBB->getParent();
 | |
|   MachineBasicBlock *thisMBB = MBB;
 | |
|   MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|   F->insert(MBBIter, newMBB);
 | |
|   F->insert(MBBIter, nextMBB);
 | |
| 
 | |
|   // Move all successors to thisMBB to nextMBB
 | |
|   nextMBB->transferSuccessors(thisMBB);
 | |
| 
 | |
|   // Update thisMBB to fall through to newMBB
 | |
|   thisMBB->addSuccessor(newMBB);
 | |
| 
 | |
|   // newMBB jumps to itself and fall through to nextMBB
 | |
|   newMBB->addSuccessor(nextMBB);
 | |
|   newMBB->addSuccessor(newMBB);
 | |
| 
 | |
|   // Insert instructions into newMBB based on incoming instruction
 | |
|   assert(bInstr->getNumOperands() < X86AddrNumOperands + 4 &&
 | |
|          "unexpected number of operands");
 | |
|   DebugLoc dl = bInstr->getDebugLoc();
 | |
|   MachineOperand& destOper = bInstr->getOperand(0);
 | |
|   MachineOperand* argOpers[2 + X86AddrNumOperands];
 | |
|   int numArgs = bInstr->getNumOperands() - 1;
 | |
|   for (int i=0; i < numArgs; ++i)
 | |
|     argOpers[i] = &bInstr->getOperand(i+1);
 | |
| 
 | |
|   // x86 address has 4 operands: base, index, scale, and displacement
 | |
|   int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
 | |
|   int valArgIndx = lastAddrIndx + 1;
 | |
| 
 | |
|   unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
 | |
|   MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
 | |
|   for (int i=0; i <= lastAddrIndx; ++i)
 | |
|     (*MIB).addOperand(*argOpers[i]);
 | |
| 
 | |
|   unsigned tt = F->getRegInfo().createVirtualRegister(RC);
 | |
|   if (invSrc) {
 | |
|     MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
 | |
|   }
 | |
|   else
 | |
|     tt = t1;
 | |
| 
 | |
|   unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
 | |
|   assert((argOpers[valArgIndx]->isReg() ||
 | |
|           argOpers[valArgIndx]->isImm()) &&
 | |
|          "invalid operand");
 | |
|   if (argOpers[valArgIndx]->isReg())
 | |
|     MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
 | |
|   else
 | |
|     MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
 | |
|   MIB.addReg(tt);
 | |
|   (*MIB).addOperand(*argOpers[valArgIndx]);
 | |
| 
 | |
|   MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg);
 | |
|   MIB.addReg(t1);
 | |
| 
 | |
|   MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
 | |
|   for (int i=0; i <= lastAddrIndx; ++i)
 | |
|     (*MIB).addOperand(*argOpers[i]);
 | |
|   MIB.addReg(t2);
 | |
|   assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
 | |
|   (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
 | |
| 
 | |
|   MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg());
 | |
|   MIB.addReg(EAXreg);
 | |
| 
 | |
|   // insert branch
 | |
|   BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
 | |
| 
 | |
|   F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
 | |
|   return nextMBB;
 | |
| }
 | |
| 
 | |
| // private utility function:  64 bit atomics on 32 bit host.
 | |
| MachineBasicBlock *
 | |
| X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
 | |
|                                                        MachineBasicBlock *MBB,
 | |
|                                                        unsigned regOpcL,
 | |
|                                                        unsigned regOpcH,
 | |
|                                                        unsigned immOpcL,
 | |
|                                                        unsigned immOpcH,
 | |
|                                                        bool invSrc) const {
 | |
|   // For the atomic bitwise operator, we generate
 | |
|   //   thisMBB (instructions are in pairs, except cmpxchg8b)
 | |
|   //     ld t1,t2 = [bitinstr.addr]
 | |
|   //   newMBB:
 | |
|   //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
 | |
|   //     op  t5, t6 <- out1, out2, [bitinstr.val]
 | |
|   //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
 | |
|   //     mov ECX, EBX <- t5, t6
 | |
|   //     mov EAX, EDX <- t1, t2
 | |
|   //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
 | |
|   //     mov t3, t4 <- EAX, EDX
 | |
|   //     bz  newMBB
 | |
|   //     result in out1, out2
 | |
|   //     fallthrough -->nextMBB
 | |
| 
 | |
|   const TargetRegisterClass *RC = X86::GR32RegisterClass;
 | |
|   const unsigned LoadOpc = X86::MOV32rm;
 | |
|   const unsigned copyOpc = X86::MOV32rr;
 | |
|   const unsigned NotOpc = X86::NOT32r;
 | |
|   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | |
|   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
 | |
|   MachineFunction::iterator MBBIter = MBB;
 | |
|   ++MBBIter;
 | |
| 
 | |
|   /// First build the CFG
 | |
|   MachineFunction *F = MBB->getParent();
 | |
|   MachineBasicBlock *thisMBB = MBB;
 | |
|   MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|   F->insert(MBBIter, newMBB);
 | |
|   F->insert(MBBIter, nextMBB);
 | |
| 
 | |
|   // Move all successors to thisMBB to nextMBB
 | |
|   nextMBB->transferSuccessors(thisMBB);
 | |
| 
 | |
|   // Update thisMBB to fall through to newMBB
 | |
|   thisMBB->addSuccessor(newMBB);
 | |
| 
 | |
|   // newMBB jumps to itself and fall through to nextMBB
 | |
|   newMBB->addSuccessor(nextMBB);
 | |
|   newMBB->addSuccessor(newMBB);
 | |
| 
 | |
|   DebugLoc dl = bInstr->getDebugLoc();
 | |
|   // Insert instructions into newMBB based on incoming instruction
 | |
|   // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
 | |
|   assert(bInstr->getNumOperands() < X86AddrNumOperands + 14 &&
 | |
|          "unexpected number of operands");
 | |
|   MachineOperand& dest1Oper = bInstr->getOperand(0);
 | |
|   MachineOperand& dest2Oper = bInstr->getOperand(1);
 | |
|   MachineOperand* argOpers[2 + X86AddrNumOperands];
 | |
|   for (int i=0; i < 2 + X86AddrNumOperands; ++i)
 | |
|     argOpers[i] = &bInstr->getOperand(i+2);
 | |
| 
 | |
|   // x86 address has 4 operands: base, index, scale, and displacement
 | |
|   int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
 | |
| 
 | |
|   unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
 | |
|   MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
 | |
|   for (int i=0; i <= lastAddrIndx; ++i)
 | |
|     (*MIB).addOperand(*argOpers[i]);
 | |
|   unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
 | |
|   MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
 | |
|   // add 4 to displacement.
 | |
|   for (int i=0; i <= lastAddrIndx-2; ++i)
 | |
|     (*MIB).addOperand(*argOpers[i]);
 | |
|   MachineOperand newOp3 = *(argOpers[3]);
 | |
|   if (newOp3.isImm())
 | |
|     newOp3.setImm(newOp3.getImm()+4);
 | |
|   else
 | |
|     newOp3.setOffset(newOp3.getOffset()+4);
 | |
|   (*MIB).addOperand(newOp3);
 | |
|   (*MIB).addOperand(*argOpers[lastAddrIndx]);
 | |
| 
 | |
|   // t3/4 are defined later, at the bottom of the loop
 | |
|   unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
 | |
|   unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
 | |
|   BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
 | |
|     .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
 | |
|   BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
 | |
|     .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
 | |
| 
 | |
|   unsigned tt1 = F->getRegInfo().createVirtualRegister(RC);
 | |
|   unsigned tt2 = F->getRegInfo().createVirtualRegister(RC);
 | |
|   if (invSrc) {
 | |
|     MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt1).addReg(t1);
 | |
|     MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt2).addReg(t2);
 | |
|   } else {
 | |
|     tt1 = t1;
 | |
|     tt2 = t2;
 | |
|   }
 | |
| 
 | |
|   int valArgIndx = lastAddrIndx + 1;
 | |
|   assert((argOpers[valArgIndx]->isReg() ||
 | |
|           argOpers[valArgIndx]->isImm()) &&
 | |
|          "invalid operand");
 | |
|   unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
 | |
|   unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
 | |
|   if (argOpers[valArgIndx]->isReg())
 | |
|     MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
 | |
|   else
 | |
|     MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
 | |
|   if (regOpcL != X86::MOV32rr)
 | |
|     MIB.addReg(tt1);
 | |
|   (*MIB).addOperand(*argOpers[valArgIndx]);
 | |
|   assert(argOpers[valArgIndx + 1]->isReg() ==
 | |
|          argOpers[valArgIndx]->isReg());
 | |
|   assert(argOpers[valArgIndx + 1]->isImm() ==
 | |
|          argOpers[valArgIndx]->isImm());
 | |
|   if (argOpers[valArgIndx + 1]->isReg())
 | |
|     MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
 | |
|   else
 | |
|     MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
 | |
|   if (regOpcH != X86::MOV32rr)
 | |
|     MIB.addReg(tt2);
 | |
|   (*MIB).addOperand(*argOpers[valArgIndx + 1]);
 | |
| 
 | |
|   MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX);
 | |
|   MIB.addReg(t1);
 | |
|   MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EDX);
 | |
|   MIB.addReg(t2);
 | |
| 
 | |
|   MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EBX);
 | |
|   MIB.addReg(t5);
 | |
|   MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX);
 | |
|   MIB.addReg(t6);
 | |
| 
 | |
|   MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
 | |
|   for (int i=0; i <= lastAddrIndx; ++i)
 | |
|     (*MIB).addOperand(*argOpers[i]);
 | |
| 
 | |
|   assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
 | |
|   (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
 | |
| 
 | |
|   MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3);
 | |
|   MIB.addReg(X86::EAX);
 | |
|   MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4);
 | |
|   MIB.addReg(X86::EDX);
 | |
| 
 | |
|   // insert branch
 | |
|   BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
 | |
| 
 | |
|   F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
 | |
|   return nextMBB;
 | |
| }
 | |
| 
 | |
| // private utility function
 | |
| MachineBasicBlock *
 | |
| X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
 | |
|                                                       MachineBasicBlock *MBB,
 | |
|                                                       unsigned cmovOpc) const {
 | |
|   // For the atomic min/max operator, we generate
 | |
|   //   thisMBB:
 | |
|   //   newMBB:
 | |
|   //     ld t1 = [min/max.addr]
 | |
|   //     mov t2 = [min/max.val]
 | |
|   //     cmp  t1, t2
 | |
|   //     cmov[cond] t2 = t1
 | |
|   //     mov EAX = t1
 | |
|   //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
 | |
|   //     bz   newMBB
 | |
|   //     fallthrough -->nextMBB
 | |
|   //
 | |
|   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | |
|   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
 | |
|   MachineFunction::iterator MBBIter = MBB;
 | |
|   ++MBBIter;
 | |
| 
 | |
|   /// First build the CFG
 | |
|   MachineFunction *F = MBB->getParent();
 | |
|   MachineBasicBlock *thisMBB = MBB;
 | |
|   MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|   F->insert(MBBIter, newMBB);
 | |
|   F->insert(MBBIter, nextMBB);
 | |
| 
 | |
|   // Move all successors to thisMBB to nextMBB
 | |
|   nextMBB->transferSuccessors(thisMBB);
 | |
| 
 | |
|   // Update thisMBB to fall through to newMBB
 | |
|   thisMBB->addSuccessor(newMBB);
 | |
| 
 | |
|   // newMBB jumps to newMBB and fall through to nextMBB
 | |
|   newMBB->addSuccessor(nextMBB);
 | |
|   newMBB->addSuccessor(newMBB);
 | |
| 
 | |
|   DebugLoc dl = mInstr->getDebugLoc();
 | |
|   // Insert instructions into newMBB based on incoming instruction
 | |
|   assert(mInstr->getNumOperands() < X86AddrNumOperands + 4 &&
 | |
|          "unexpected number of operands");
 | |
|   MachineOperand& destOper = mInstr->getOperand(0);
 | |
|   MachineOperand* argOpers[2 + X86AddrNumOperands];
 | |
|   int numArgs = mInstr->getNumOperands() - 1;
 | |
|   for (int i=0; i < numArgs; ++i)
 | |
|     argOpers[i] = &mInstr->getOperand(i+1);
 | |
| 
 | |
|   // x86 address has 4 operands: base, index, scale, and displacement
 | |
|   int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
 | |
|   int valArgIndx = lastAddrIndx + 1;
 | |
| 
 | |
|   unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
 | |
|   MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
 | |
|   for (int i=0; i <= lastAddrIndx; ++i)
 | |
|     (*MIB).addOperand(*argOpers[i]);
 | |
| 
 | |
|   // We only support register and immediate values
 | |
|   assert((argOpers[valArgIndx]->isReg() ||
 | |
|           argOpers[valArgIndx]->isImm()) &&
 | |
|          "invalid operand");
 | |
| 
 | |
|   unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
 | |
|   if (argOpers[valArgIndx]->isReg())
 | |
|     MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
 | |
|   else
 | |
|     MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
 | |
|   (*MIB).addOperand(*argOpers[valArgIndx]);
 | |
| 
 | |
|   MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), X86::EAX);
 | |
|   MIB.addReg(t1);
 | |
| 
 | |
|   MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
 | |
|   MIB.addReg(t1);
 | |
|   MIB.addReg(t2);
 | |
| 
 | |
|   // Generate movc
 | |
|   unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
 | |
|   MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
 | |
|   MIB.addReg(t2);
 | |
|   MIB.addReg(t1);
 | |
| 
 | |
|   // Cmp and exchange if none has modified the memory location
 | |
|   MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
 | |
|   for (int i=0; i <= lastAddrIndx; ++i)
 | |
|     (*MIB).addOperand(*argOpers[i]);
 | |
|   MIB.addReg(t3);
 | |
|   assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
 | |
|   (*MIB).addMemOperand(*F, *mInstr->memoperands_begin());
 | |
| 
 | |
|   MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg());
 | |
|   MIB.addReg(X86::EAX);
 | |
| 
 | |
|   // insert branch
 | |
|   BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
 | |
| 
 | |
|   F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
 | |
|   return nextMBB;
 | |
| }
 | |
| 
 | |
| 
 | |
| MachineBasicBlock *
 | |
| X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
 | |
|                                                MachineBasicBlock *BB) const {
 | |
|   DebugLoc dl = MI->getDebugLoc();
 | |
|   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | |
|   switch (MI->getOpcode()) {
 | |
|   default: assert(false && "Unexpected instr type to insert");
 | |
|   case X86::CMOV_V1I64:
 | |
|   case X86::CMOV_FR32:
 | |
|   case X86::CMOV_FR64:
 | |
|   case X86::CMOV_V4F32:
 | |
|   case X86::CMOV_V2F64:
 | |
|   case X86::CMOV_V2I64: {
 | |
|     // To "insert" a SELECT_CC instruction, we actually have to insert the
 | |
|     // diamond control-flow pattern.  The incoming instruction knows the
 | |
|     // destination vreg to set, the condition code register to branch on, the
 | |
|     // true/false values to select between, and a branch opcode to use.
 | |
|     const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | |
|     MachineFunction::iterator It = BB;
 | |
|     ++It;
 | |
| 
 | |
|     //  thisMBB:
 | |
|     //  ...
 | |
|     //   TrueVal = ...
 | |
|     //   cmpTY ccX, r1, r2
 | |
|     //   bCC copy1MBB
 | |
|     //   fallthrough --> copy0MBB
 | |
|     MachineBasicBlock *thisMBB = BB;
 | |
|     MachineFunction *F = BB->getParent();
 | |
|     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     unsigned Opc =
 | |
|       X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
 | |
|     BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
 | |
|     F->insert(It, copy0MBB);
 | |
|     F->insert(It, sinkMBB);
 | |
|     // Update machine-CFG edges by transferring all successors of the current
 | |
|     // block to the new block which will contain the Phi node for the select.
 | |
|     sinkMBB->transferSuccessors(BB);
 | |
| 
 | |
|     // Add the true and fallthrough blocks as its successors.
 | |
|     BB->addSuccessor(copy0MBB);
 | |
|     BB->addSuccessor(sinkMBB);
 | |
| 
 | |
|     //  copy0MBB:
 | |
|     //   %FalseValue = ...
 | |
|     //   # fallthrough to sinkMBB
 | |
|     BB = copy0MBB;
 | |
| 
 | |
|     // Update machine-CFG edges
 | |
|     BB->addSuccessor(sinkMBB);
 | |
| 
 | |
|     //  sinkMBB:
 | |
|     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
 | |
|     //  ...
 | |
|     BB = sinkMBB;
 | |
|     BuildMI(BB, dl, TII->get(X86::PHI), MI->getOperand(0).getReg())
 | |
|       .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
 | |
|       .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
 | |
| 
 | |
|     F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
 | |
|     return BB;
 | |
|   }
 | |
| 
 | |
|   case X86::FP32_TO_INT16_IN_MEM:
 | |
|   case X86::FP32_TO_INT32_IN_MEM:
 | |
|   case X86::FP32_TO_INT64_IN_MEM:
 | |
|   case X86::FP64_TO_INT16_IN_MEM:
 | |
|   case X86::FP64_TO_INT32_IN_MEM:
 | |
|   case X86::FP64_TO_INT64_IN_MEM:
 | |
|   case X86::FP80_TO_INT16_IN_MEM:
 | |
|   case X86::FP80_TO_INT32_IN_MEM:
 | |
|   case X86::FP80_TO_INT64_IN_MEM: {
 | |
|     // Change the floating point control register to use "round towards zero"
 | |
|     // mode when truncating to an integer value.
 | |
|     MachineFunction *F = BB->getParent();
 | |
|     int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
 | |
|     addFrameReference(BuildMI(BB, dl, TII->get(X86::FNSTCW16m)), CWFrameIdx);
 | |
| 
 | |
|     // Load the old value of the high byte of the control word...
 | |
|     unsigned OldCW =
 | |
|       F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
 | |
|     addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16rm), OldCW),
 | |
|                       CWFrameIdx);
 | |
| 
 | |
|     // Set the high part to be round to zero...
 | |
|     addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16mi)), CWFrameIdx)
 | |
|       .addImm(0xC7F);
 | |
| 
 | |
|     // Reload the modified control word now...
 | |
|     addFrameReference(BuildMI(BB, dl, TII->get(X86::FLDCW16m)), CWFrameIdx);
 | |
| 
 | |
|     // Restore the memory image of control word to original value
 | |
|     addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16mr)), CWFrameIdx)
 | |
|       .addReg(OldCW);
 | |
| 
 | |
|     // Get the X86 opcode to use.
 | |
|     unsigned Opc;
 | |
|     switch (MI->getOpcode()) {
 | |
|     default: llvm_unreachable("illegal opcode!");
 | |
|     case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
 | |
|     case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
 | |
|     case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
 | |
|     case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
 | |
|     case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
 | |
|     case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
 | |
|     case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
 | |
|     case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
 | |
|     case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
 | |
|     }
 | |
| 
 | |
|     X86AddressMode AM;
 | |
|     MachineOperand &Op = MI->getOperand(0);
 | |
|     if (Op.isReg()) {
 | |
|       AM.BaseType = X86AddressMode::RegBase;
 | |
|       AM.Base.Reg = Op.getReg();
 | |
|     } else {
 | |
|       AM.BaseType = X86AddressMode::FrameIndexBase;
 | |
|       AM.Base.FrameIndex = Op.getIndex();
 | |
|     }
 | |
|     Op = MI->getOperand(1);
 | |
|     if (Op.isImm())
 | |
|       AM.Scale = Op.getImm();
 | |
|     Op = MI->getOperand(2);
 | |
|     if (Op.isImm())
 | |
|       AM.IndexReg = Op.getImm();
 | |
|     Op = MI->getOperand(3);
 | |
|     if (Op.isGlobal()) {
 | |
|       AM.GV = Op.getGlobal();
 | |
|     } else {
 | |
|       AM.Disp = Op.getImm();
 | |
|     }
 | |
|     addFullAddress(BuildMI(BB, dl, TII->get(Opc)), AM)
 | |
|                       .addReg(MI->getOperand(X86AddrNumOperands).getReg());
 | |
| 
 | |
|     // Reload the original control word now.
 | |
|     addFrameReference(BuildMI(BB, dl, TII->get(X86::FLDCW16m)), CWFrameIdx);
 | |
| 
 | |
|     F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
 | |
|     return BB;
 | |
|   }
 | |
|   case X86::ATOMAND32:
 | |
|     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
 | |
|                                                X86::AND32ri, X86::MOV32rm,
 | |
|                                                X86::LCMPXCHG32, X86::MOV32rr,
 | |
|                                                X86::NOT32r, X86::EAX,
 | |
|                                                X86::GR32RegisterClass);
 | |
|   case X86::ATOMOR32:
 | |
|     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
 | |
|                                                X86::OR32ri, X86::MOV32rm,
 | |
|                                                X86::LCMPXCHG32, X86::MOV32rr,
 | |
|                                                X86::NOT32r, X86::EAX,
 | |
|                                                X86::GR32RegisterClass);
 | |
|   case X86::ATOMXOR32:
 | |
|     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
 | |
|                                                X86::XOR32ri, X86::MOV32rm,
 | |
|                                                X86::LCMPXCHG32, X86::MOV32rr,
 | |
|                                                X86::NOT32r, X86::EAX,
 | |
|                                                X86::GR32RegisterClass);
 | |
|   case X86::ATOMNAND32:
 | |
|     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
 | |
|                                                X86::AND32ri, X86::MOV32rm,
 | |
|                                                X86::LCMPXCHG32, X86::MOV32rr,
 | |
|                                                X86::NOT32r, X86::EAX,
 | |
|                                                X86::GR32RegisterClass, true);
 | |
|   case X86::ATOMMIN32:
 | |
|     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
 | |
|   case X86::ATOMMAX32:
 | |
|     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
 | |
|   case X86::ATOMUMIN32:
 | |
|     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
 | |
|   case X86::ATOMUMAX32:
 | |
|     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
 | |
| 
 | |
|   case X86::ATOMAND16:
 | |
|     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
 | |
|                                                X86::AND16ri, X86::MOV16rm,
 | |
|                                                X86::LCMPXCHG16, X86::MOV16rr,
 | |
|                                                X86::NOT16r, X86::AX,
 | |
|                                                X86::GR16RegisterClass);
 | |
|   case X86::ATOMOR16:
 | |
|     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
 | |
|                                                X86::OR16ri, X86::MOV16rm,
 | |
|                                                X86::LCMPXCHG16, X86::MOV16rr,
 | |
|                                                X86::NOT16r, X86::AX,
 | |
|                                                X86::GR16RegisterClass);
 | |
|   case X86::ATOMXOR16:
 | |
|     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
 | |
|                                                X86::XOR16ri, X86::MOV16rm,
 | |
|                                                X86::LCMPXCHG16, X86::MOV16rr,
 | |
|                                                X86::NOT16r, X86::AX,
 | |
|                                                X86::GR16RegisterClass);
 | |
|   case X86::ATOMNAND16:
 | |
|     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
 | |
|                                                X86::AND16ri, X86::MOV16rm,
 | |
|                                                X86::LCMPXCHG16, X86::MOV16rr,
 | |
|                                                X86::NOT16r, X86::AX,
 | |
|                                                X86::GR16RegisterClass, true);
 | |
|   case X86::ATOMMIN16:
 | |
|     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
 | |
|   case X86::ATOMMAX16:
 | |
|     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
 | |
|   case X86::ATOMUMIN16:
 | |
|     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
 | |
|   case X86::ATOMUMAX16:
 | |
|     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
 | |
| 
 | |
|   case X86::ATOMAND8:
 | |
|     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
 | |
|                                                X86::AND8ri, X86::MOV8rm,
 | |
|                                                X86::LCMPXCHG8, X86::MOV8rr,
 | |
|                                                X86::NOT8r, X86::AL,
 | |
|                                                X86::GR8RegisterClass);
 | |
|   case X86::ATOMOR8:
 | |
|     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
 | |
|                                                X86::OR8ri, X86::MOV8rm,
 | |
|                                                X86::LCMPXCHG8, X86::MOV8rr,
 | |
|                                                X86::NOT8r, X86::AL,
 | |
|                                                X86::GR8RegisterClass);
 | |
|   case X86::ATOMXOR8:
 | |
|     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
 | |
|                                                X86::XOR8ri, X86::MOV8rm,
 | |
|                                                X86::LCMPXCHG8, X86::MOV8rr,
 | |
|                                                X86::NOT8r, X86::AL,
 | |
|                                                X86::GR8RegisterClass);
 | |
|   case X86::ATOMNAND8:
 | |
|     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
 | |
|                                                X86::AND8ri, X86::MOV8rm,
 | |
|                                                X86::LCMPXCHG8, X86::MOV8rr,
 | |
|                                                X86::NOT8r, X86::AL,
 | |
|                                                X86::GR8RegisterClass, true);
 | |
|   // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
 | |
|   // This group is for 64-bit host.
 | |
|   case X86::ATOMAND64:
 | |
|     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
 | |
|                                                X86::AND64ri32, X86::MOV64rm,
 | |
|                                                X86::LCMPXCHG64, X86::MOV64rr,
 | |
|                                                X86::NOT64r, X86::RAX,
 | |
|                                                X86::GR64RegisterClass);
 | |
|   case X86::ATOMOR64:
 | |
|     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
 | |
|                                                X86::OR64ri32, X86::MOV64rm,
 | |
|                                                X86::LCMPXCHG64, X86::MOV64rr,
 | |
|                                                X86::NOT64r, X86::RAX,
 | |
|                                                X86::GR64RegisterClass);
 | |
|   case X86::ATOMXOR64:
 | |
|     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
 | |
|                                                X86::XOR64ri32, X86::MOV64rm,
 | |
|                                                X86::LCMPXCHG64, X86::MOV64rr,
 | |
|                                                X86::NOT64r, X86::RAX,
 | |
|                                                X86::GR64RegisterClass);
 | |
|   case X86::ATOMNAND64:
 | |
|     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
 | |
|                                                X86::AND64ri32, X86::MOV64rm,
 | |
|                                                X86::LCMPXCHG64, X86::MOV64rr,
 | |
|                                                X86::NOT64r, X86::RAX,
 | |
|                                                X86::GR64RegisterClass, true);
 | |
|   case X86::ATOMMIN64:
 | |
|     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
 | |
|   case X86::ATOMMAX64:
 | |
|     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
 | |
|   case X86::ATOMUMIN64:
 | |
|     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
 | |
|   case X86::ATOMUMAX64:
 | |
|     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
 | |
| 
 | |
|   // This group does 64-bit operations on a 32-bit host.
 | |
|   case X86::ATOMAND6432:
 | |
|     return EmitAtomicBit6432WithCustomInserter(MI, BB,
 | |
|                                                X86::AND32rr, X86::AND32rr,
 | |
|                                                X86::AND32ri, X86::AND32ri,
 | |
|                                                false);
 | |
|   case X86::ATOMOR6432:
 | |
|     return EmitAtomicBit6432WithCustomInserter(MI, BB,
 | |
|                                                X86::OR32rr, X86::OR32rr,
 | |
|                                                X86::OR32ri, X86::OR32ri,
 | |
|                                                false);
 | |
|   case X86::ATOMXOR6432:
 | |
|     return EmitAtomicBit6432WithCustomInserter(MI, BB,
 | |
|                                                X86::XOR32rr, X86::XOR32rr,
 | |
|                                                X86::XOR32ri, X86::XOR32ri,
 | |
|                                                false);
 | |
|   case X86::ATOMNAND6432:
 | |
|     return EmitAtomicBit6432WithCustomInserter(MI, BB,
 | |
|                                                X86::AND32rr, X86::AND32rr,
 | |
|                                                X86::AND32ri, X86::AND32ri,
 | |
|                                                true);
 | |
|   case X86::ATOMADD6432:
 | |
|     return EmitAtomicBit6432WithCustomInserter(MI, BB,
 | |
|                                                X86::ADD32rr, X86::ADC32rr,
 | |
|                                                X86::ADD32ri, X86::ADC32ri,
 | |
|                                                false);
 | |
|   case X86::ATOMSUB6432:
 | |
|     return EmitAtomicBit6432WithCustomInserter(MI, BB,
 | |
|                                                X86::SUB32rr, X86::SBB32rr,
 | |
|                                                X86::SUB32ri, X86::SBB32ri,
 | |
|                                                false);
 | |
|   case X86::ATOMSWAP6432:
 | |
|     return EmitAtomicBit6432WithCustomInserter(MI, BB,
 | |
|                                                X86::MOV32rr, X86::MOV32rr,
 | |
|                                                X86::MOV32ri, X86::MOV32ri,
 | |
|                                                false);
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           X86 Optimization Hooks
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
 | |
|                                                        const APInt &Mask,
 | |
|                                                        APInt &KnownZero,
 | |
|                                                        APInt &KnownOne,
 | |
|                                                        const SelectionDAG &DAG,
 | |
|                                                        unsigned Depth) const {
 | |
|   unsigned Opc = Op.getOpcode();
 | |
|   assert((Opc >= ISD::BUILTIN_OP_END ||
 | |
|           Opc == ISD::INTRINSIC_WO_CHAIN ||
 | |
|           Opc == ISD::INTRINSIC_W_CHAIN ||
 | |
|           Opc == ISD::INTRINSIC_VOID) &&
 | |
|          "Should use MaskedValueIsZero if you don't know whether Op"
 | |
|          " is a target node!");
 | |
| 
 | |
|   KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
 | |
|   switch (Opc) {
 | |
|   default: break;
 | |
|   case X86ISD::ADD:
 | |
|   case X86ISD::SUB:
 | |
|   case X86ISD::SMUL:
 | |
|   case X86ISD::UMUL:
 | |
|   case X86ISD::INC:
 | |
|   case X86ISD::DEC:
 | |
|     // These nodes' second result is a boolean.
 | |
|     if (Op.getResNo() == 0)
 | |
|       break;
 | |
|     // Fallthrough
 | |
|   case X86ISD::SETCC:
 | |
|     KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
 | |
|                                        Mask.getBitWidth() - 1);
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
 | |
| /// node is a GlobalAddress + offset.
 | |
| bool X86TargetLowering::isGAPlusOffset(SDNode *N,
 | |
|                                        GlobalValue* &GA, int64_t &Offset) const{
 | |
|   if (N->getOpcode() == X86ISD::Wrapper) {
 | |
|     if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
 | |
|       GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
 | |
|       Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return TargetLowering::isGAPlusOffset(N, GA, Offset);
 | |
| }
 | |
| 
 | |
| static bool isBaseAlignmentOfN(unsigned N, SDNode *Base,
 | |
|                                const TargetLowering &TLI) {
 | |
|   GlobalValue *GV;
 | |
|   int64_t Offset = 0;
 | |
|   if (TLI.isGAPlusOffset(Base, GV, Offset))
 | |
|     return (GV->getAlignment() >= N && (Offset % N) == 0);
 | |
|   // DAG combine handles the stack object case.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool EltsFromConsecutiveLoads(ShuffleVectorSDNode *N, unsigned NumElems,
 | |
|                                      EVT EVT, LoadSDNode *&LDBase,
 | |
|                                      unsigned &LastLoadedElt,
 | |
|                                      SelectionDAG &DAG, MachineFrameInfo *MFI,
 | |
|                                      const TargetLowering &TLI) {
 | |
|   LDBase = NULL;
 | |
|   LastLoadedElt = -1U;
 | |
|   for (unsigned i = 0; i < NumElems; ++i) {
 | |
|     if (N->getMaskElt(i) < 0) {
 | |
|       if (!LDBase)
 | |
|         return false;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     SDValue Elt = DAG.getShuffleScalarElt(N, i);
 | |
|     if (!Elt.getNode() ||
 | |
|         (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
 | |
|       return false;
 | |
|     if (!LDBase) {
 | |
|       if (Elt.getNode()->getOpcode() == ISD::UNDEF)
 | |
|         return false;
 | |
|       LDBase = cast<LoadSDNode>(Elt.getNode());
 | |
|       LastLoadedElt = i;
 | |
|       continue;
 | |
|     }
 | |
|     if (Elt.getOpcode() == ISD::UNDEF)
 | |
|       continue;
 | |
| 
 | |
|     LoadSDNode *LD = cast<LoadSDNode>(Elt);
 | |
|     if (!TLI.isConsecutiveLoad(LD, LDBase, EVT.getSizeInBits()/8, i, MFI))
 | |
|       return false;
 | |
|     LastLoadedElt = i;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// PerformShuffleCombine - Combine a vector_shuffle that is equal to
 | |
| /// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
 | |
| /// if the load addresses are consecutive, non-overlapping, and in the right
 | |
| /// order.  In the case of v2i64, it will see if it can rewrite the
 | |
| /// shuffle to be an appropriate build vector so it can take advantage of
 | |
| // performBuildVectorCombine.
 | |
| static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
 | |
|                                      const TargetLowering &TLI) {
 | |
|   DebugLoc dl = N->getDebugLoc();
 | |
|   EVT VT = N->getValueType(0);
 | |
|   EVT EVT = VT.getVectorElementType();
 | |
|   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
 | |
|   unsigned NumElems = VT.getVectorNumElements();
 | |
| 
 | |
|   if (VT.getSizeInBits() != 128)
 | |
|     return SDValue();
 | |
| 
 | |
|   // Try to combine a vector_shuffle into a 128-bit load.
 | |
|   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
 | |
|   LoadSDNode *LD = NULL;
 | |
|   unsigned LastLoadedElt;
 | |
|   if (!EltsFromConsecutiveLoads(SVN, NumElems, EVT, LD, LastLoadedElt, DAG,
 | |
|                                 MFI, TLI))
 | |
|     return SDValue();
 | |
| 
 | |
|   if (LastLoadedElt == NumElems - 1) {
 | |
|     if (isBaseAlignmentOfN(16, LD->getBasePtr().getNode(), TLI))
 | |
|       return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
 | |
|                          LD->getSrcValue(), LD->getSrcValueOffset(),
 | |
|                          LD->isVolatile());
 | |
|     return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
 | |
|                        LD->getSrcValue(), LD->getSrcValueOffset(),
 | |
|                        LD->isVolatile(), LD->getAlignment());
 | |
|   } else if (NumElems == 4 && LastLoadedElt == 1) {
 | |
|     SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
 | |
|     SDValue Ops[] = { LD->getChain(), LD->getBasePtr() };
 | |
|     SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
 | |
|     return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
 | |
| static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
 | |
|                                     const X86Subtarget *Subtarget) {
 | |
|   DebugLoc DL = N->getDebugLoc();
 | |
|   SDValue Cond = N->getOperand(0);
 | |
|   // Get the LHS/RHS of the select.
 | |
|   SDValue LHS = N->getOperand(1);
 | |
|   SDValue RHS = N->getOperand(2);
 | |
|   
 | |
|   // If we have SSE[12] support, try to form min/max nodes.
 | |
|   if (Subtarget->hasSSE2() &&
 | |
|       (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
 | |
|       Cond.getOpcode() == ISD::SETCC) {
 | |
|     ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
 | |
| 
 | |
|     unsigned Opcode = 0;
 | |
|     if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
 | |
|       switch (CC) {
 | |
|       default: break;
 | |
|       case ISD::SETOLE: // (X <= Y) ? X : Y -> min
 | |
|       case ISD::SETULE:
 | |
|       case ISD::SETLE:
 | |
|         if (!UnsafeFPMath) break;
 | |
|         // FALL THROUGH.
 | |
|       case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
 | |
|       case ISD::SETLT:
 | |
|         Opcode = X86ISD::FMIN;
 | |
|         break;
 | |
| 
 | |
|       case ISD::SETOGT: // (X > Y) ? X : Y -> max
 | |
|       case ISD::SETUGT:
 | |
|       case ISD::SETGT:
 | |
|         if (!UnsafeFPMath) break;
 | |
|         // FALL THROUGH.
 | |
|       case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
 | |
|       case ISD::SETGE:
 | |
|         Opcode = X86ISD::FMAX;
 | |
|         break;
 | |
|       }
 | |
|     } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
 | |
|       switch (CC) {
 | |
|       default: break;
 | |
|       case ISD::SETOGT: // (X > Y) ? Y : X -> min
 | |
|       case ISD::SETUGT:
 | |
|       case ISD::SETGT:
 | |
|         if (!UnsafeFPMath) break;
 | |
|         // FALL THROUGH.
 | |
|       case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
 | |
|       case ISD::SETGE:
 | |
|         Opcode = X86ISD::FMIN;
 | |
|         break;
 | |
| 
 | |
|       case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
 | |
|       case ISD::SETULE:
 | |
|       case ISD::SETLE:
 | |
|         if (!UnsafeFPMath) break;
 | |
|         // FALL THROUGH.
 | |
|       case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
 | |
|       case ISD::SETLT:
 | |
|         Opcode = X86ISD::FMAX;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Opcode)
 | |
|       return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
 | |
|   }
 | |
|   
 | |
|   // If this is a select between two integer constants, try to do some
 | |
|   // optimizations.
 | |
|   if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
 | |
|     if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
 | |
|       // Don't do this for crazy integer types.
 | |
|       if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
 | |
|         // If this is efficiently invertible, canonicalize the LHSC/RHSC values
 | |
|         // so that TrueC (the true value) is larger than FalseC.
 | |
|         bool NeedsCondInvert = false;
 | |
|         
 | |
|         if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
 | |
|             // Efficiently invertible.
 | |
|             (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
 | |
|              (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
 | |
|               isa<ConstantSDNode>(Cond.getOperand(1))))) {
 | |
|           NeedsCondInvert = true;
 | |
|           std::swap(TrueC, FalseC);
 | |
|         }
 | |
|    
 | |
|         // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
 | |
|         if (FalseC->getAPIntValue() == 0 &&
 | |
|             TrueC->getAPIntValue().isPowerOf2()) {
 | |
|           if (NeedsCondInvert) // Invert the condition if needed.
 | |
|             Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
 | |
|                                DAG.getConstant(1, Cond.getValueType()));
 | |
|           
 | |
|           // Zero extend the condition if needed.
 | |
|           Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
 | |
|           
 | |
|           unsigned ShAmt = TrueC->getAPIntValue().logBase2();
 | |
|           return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
 | |
|                              DAG.getConstant(ShAmt, MVT::i8));
 | |
|         }
 | |
|         
 | |
|         // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
 | |
|         if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
 | |
|           if (NeedsCondInvert) // Invert the condition if needed.
 | |
|             Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
 | |
|                                DAG.getConstant(1, Cond.getValueType()));
 | |
|           
 | |
|           // Zero extend the condition if needed.
 | |
|           Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
 | |
|                              FalseC->getValueType(0), Cond);
 | |
|           return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
 | |
|                              SDValue(FalseC, 0));
 | |
|         }
 | |
|         
 | |
|         // Optimize cases that will turn into an LEA instruction.  This requires
 | |
|         // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
 | |
|         if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
 | |
|           uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
 | |
|           if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
 | |
|           
 | |
|           bool isFastMultiplier = false;
 | |
|           if (Diff < 10) {
 | |
|             switch ((unsigned char)Diff) {
 | |
|               default: break;
 | |
|               case 1:  // result = add base, cond
 | |
|               case 2:  // result = lea base(    , cond*2)
 | |
|               case 3:  // result = lea base(cond, cond*2)
 | |
|               case 4:  // result = lea base(    , cond*4)
 | |
|               case 5:  // result = lea base(cond, cond*4)
 | |
|               case 8:  // result = lea base(    , cond*8)
 | |
|               case 9:  // result = lea base(cond, cond*8)
 | |
|                 isFastMultiplier = true;
 | |
|                 break;
 | |
|             }
 | |
|           }
 | |
|           
 | |
|           if (isFastMultiplier) {
 | |
|             APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
 | |
|             if (NeedsCondInvert) // Invert the condition if needed.
 | |
|               Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
 | |
|                                  DAG.getConstant(1, Cond.getValueType()));
 | |
|             
 | |
|             // Zero extend the condition if needed.
 | |
|             Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
 | |
|                                Cond);
 | |
|             // Scale the condition by the difference.
 | |
|             if (Diff != 1)
 | |
|               Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
 | |
|                                  DAG.getConstant(Diff, Cond.getValueType()));
 | |
|             
 | |
|             // Add the base if non-zero.
 | |
|             if (FalseC->getAPIntValue() != 0)
 | |
|               Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
 | |
|                                  SDValue(FalseC, 0));
 | |
|             return Cond;
 | |
|           }
 | |
|         }      
 | |
|       }
 | |
|   }
 | |
|       
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
 | |
| static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
 | |
|                                   TargetLowering::DAGCombinerInfo &DCI) {
 | |
|   DebugLoc DL = N->getDebugLoc();
 | |
|   
 | |
|   // If the flag operand isn't dead, don't touch this CMOV.
 | |
|   if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
 | |
|     return SDValue();
 | |
|   
 | |
|   // If this is a select between two integer constants, try to do some
 | |
|   // optimizations.  Note that the operands are ordered the opposite of SELECT
 | |
|   // operands.
 | |
|   if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
 | |
|     if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
 | |
|       // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
 | |
|       // larger than FalseC (the false value).
 | |
|       X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
 | |
|         
 | |
|       if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
 | |
|         CC = X86::GetOppositeBranchCondition(CC);
 | |
|         std::swap(TrueC, FalseC);
 | |
|       }
 | |
|         
 | |
|       // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
 | |
|       // This is efficient for any integer data type (including i8/i16) and
 | |
|       // shift amount.
 | |
|       if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
 | |
|         SDValue Cond = N->getOperand(3);
 | |
|         Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
 | |
|                            DAG.getConstant(CC, MVT::i8), Cond);
 | |
|       
 | |
|         // Zero extend the condition if needed.
 | |
|         Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
 | |
|         
 | |
|         unsigned ShAmt = TrueC->getAPIntValue().logBase2();
 | |
|         Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
 | |
|                            DAG.getConstant(ShAmt, MVT::i8));
 | |
|         if (N->getNumValues() == 2)  // Dead flag value?
 | |
|           return DCI.CombineTo(N, Cond, SDValue());
 | |
|         return Cond;
 | |
|       }
 | |
|       
 | |
|       // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
 | |
|       // for any integer data type, including i8/i16.
 | |
|       if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
 | |
|         SDValue Cond = N->getOperand(3);
 | |
|         Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
 | |
|                            DAG.getConstant(CC, MVT::i8), Cond);
 | |
|         
 | |
|         // Zero extend the condition if needed.
 | |
|         Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
 | |
|                            FalseC->getValueType(0), Cond);
 | |
|         Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
 | |
|                            SDValue(FalseC, 0));
 | |
|         
 | |
|         if (N->getNumValues() == 2)  // Dead flag value?
 | |
|           return DCI.CombineTo(N, Cond, SDValue());
 | |
|         return Cond;
 | |
|       }
 | |
|       
 | |
|       // Optimize cases that will turn into an LEA instruction.  This requires
 | |
|       // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
 | |
|       if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
 | |
|         uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
 | |
|         if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
 | |
|        
 | |
|         bool isFastMultiplier = false;
 | |
|         if (Diff < 10) {
 | |
|           switch ((unsigned char)Diff) {
 | |
|           default: break;
 | |
|           case 1:  // result = add base, cond
 | |
|           case 2:  // result = lea base(    , cond*2)
 | |
|           case 3:  // result = lea base(cond, cond*2)
 | |
|           case 4:  // result = lea base(    , cond*4)
 | |
|           case 5:  // result = lea base(cond, cond*4)
 | |
|           case 8:  // result = lea base(    , cond*8)
 | |
|           case 9:  // result = lea base(cond, cond*8)
 | |
|             isFastMultiplier = true;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         
 | |
|         if (isFastMultiplier) {
 | |
|           APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
 | |
|           SDValue Cond = N->getOperand(3);
 | |
|           Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
 | |
|                              DAG.getConstant(CC, MVT::i8), Cond);
 | |
|           // Zero extend the condition if needed.
 | |
|           Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
 | |
|                              Cond);
 | |
|           // Scale the condition by the difference.
 | |
|           if (Diff != 1)
 | |
|             Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
 | |
|                                DAG.getConstant(Diff, Cond.getValueType()));
 | |
| 
 | |
|           // Add the base if non-zero.
 | |
|           if (FalseC->getAPIntValue() != 0)
 | |
|             Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
 | |
|                                SDValue(FalseC, 0));
 | |
|           if (N->getNumValues() == 2)  // Dead flag value?
 | |
|             return DCI.CombineTo(N, Cond, SDValue());
 | |
|           return Cond;
 | |
|         }
 | |
|       }      
 | |
|     }
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// PerformMulCombine - Optimize a single multiply with constant into two
 | |
| /// in order to implement it with two cheaper instructions, e.g.
 | |
| /// LEA + SHL, LEA + LEA.
 | |
| static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
 | |
|                                  TargetLowering::DAGCombinerInfo &DCI) {
 | |
|   if (DAG.getMachineFunction().
 | |
|       getFunction()->hasFnAttr(Attribute::OptimizeForSize))
 | |
|     return SDValue();
 | |
| 
 | |
|   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
 | |
|     return SDValue();
 | |
| 
 | |
|   EVT VT = N->getValueType(0);
 | |
|   if (VT != MVT::i64)
 | |
|     return SDValue();
 | |
| 
 | |
|   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
 | |
|   if (!C)
 | |
|     return SDValue();
 | |
|   uint64_t MulAmt = C->getZExtValue();
 | |
|   if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
 | |
|     return SDValue();
 | |
| 
 | |
|   uint64_t MulAmt1 = 0;
 | |
|   uint64_t MulAmt2 = 0;
 | |
|   if ((MulAmt % 9) == 0) {
 | |
|     MulAmt1 = 9;
 | |
|     MulAmt2 = MulAmt / 9;
 | |
|   } else if ((MulAmt % 5) == 0) {
 | |
|     MulAmt1 = 5;
 | |
|     MulAmt2 = MulAmt / 5;
 | |
|   } else if ((MulAmt % 3) == 0) {
 | |
|     MulAmt1 = 3;
 | |
|     MulAmt2 = MulAmt / 3;
 | |
|   }
 | |
|   if (MulAmt2 &&
 | |
|       (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
 | |
|     DebugLoc DL = N->getDebugLoc();
 | |
| 
 | |
|     if (isPowerOf2_64(MulAmt2) &&
 | |
|         !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
 | |
|       // If second multiplifer is pow2, issue it first. We want the multiply by
 | |
|       // 3, 5, or 9 to be folded into the addressing mode unless the lone use
 | |
|       // is an add.
 | |
|       std::swap(MulAmt1, MulAmt2);
 | |
| 
 | |
|     SDValue NewMul;
 | |
|     if (isPowerOf2_64(MulAmt1)) 
 | |
|       NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
 | |
|                            DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
 | |
|     else
 | |
|       NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
 | |
|                            DAG.getConstant(MulAmt1, VT));
 | |
| 
 | |
|     if (isPowerOf2_64(MulAmt2)) 
 | |
|       NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
 | |
|                            DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
 | |
|     else 
 | |
|       NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
 | |
|                            DAG.getConstant(MulAmt2, VT));
 | |
| 
 | |
|     // Do not add new nodes to DAG combiner worklist.
 | |
|     DCI.CombineTo(N, NewMul, false);
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
 | |
| ///                       when possible.
 | |
| static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
 | |
|                                    const X86Subtarget *Subtarget) {
 | |
|   // On X86 with SSE2 support, we can transform this to a vector shift if
 | |
|   // all elements are shifted by the same amount.  We can't do this in legalize
 | |
|   // because the a constant vector is typically transformed to a constant pool
 | |
|   // so we have no knowledge of the shift amount.
 | |
|   if (!Subtarget->hasSSE2())
 | |
|     return SDValue();
 | |
| 
 | |
|   EVT VT = N->getValueType(0);
 | |
|   if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue ShAmtOp = N->getOperand(1);
 | |
|   EVT EltVT = VT.getVectorElementType();
 | |
|   DebugLoc DL = N->getDebugLoc();
 | |
|   SDValue BaseShAmt;
 | |
|   if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
 | |
|     unsigned NumElts = VT.getVectorNumElements();
 | |
|     unsigned i = 0;
 | |
|     for (; i != NumElts; ++i) {
 | |
|       SDValue Arg = ShAmtOp.getOperand(i);
 | |
|       if (Arg.getOpcode() == ISD::UNDEF) continue;
 | |
|       BaseShAmt = Arg;
 | |
|       break;
 | |
|     }
 | |
|     for (; i != NumElts; ++i) {
 | |
|       SDValue Arg = ShAmtOp.getOperand(i);
 | |
|       if (Arg.getOpcode() == ISD::UNDEF) continue;
 | |
|       if (Arg != BaseShAmt) {
 | |
|         return SDValue();
 | |
|       }
 | |
|     }
 | |
|   } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
 | |
|              cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
 | |
|     BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
 | |
|                             DAG.getIntPtrConstant(0));
 | |
|   } else
 | |
|     return SDValue();
 | |
| 
 | |
|   if (EltVT.bitsGT(MVT::i32))
 | |
|     BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
 | |
|   else if (EltVT.bitsLT(MVT::i32))
 | |
|     BaseShAmt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, BaseShAmt);
 | |
| 
 | |
|   // The shift amount is identical so we can do a vector shift.
 | |
|   SDValue  ValOp = N->getOperand(0);
 | |
|   switch (N->getOpcode()) {
 | |
|   default:
 | |
|     llvm_unreachable("Unknown shift opcode!");
 | |
|     break;
 | |
|   case ISD::SHL:
 | |
|     if (VT == MVT::v2i64)
 | |
|       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
 | |
|                          DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
 | |
|                          ValOp, BaseShAmt);
 | |
|     if (VT == MVT::v4i32)
 | |
|       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
 | |
|                          DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
 | |
|                          ValOp, BaseShAmt);
 | |
|     if (VT == MVT::v8i16)
 | |
|       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
 | |
|                          DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
 | |
|                          ValOp, BaseShAmt);
 | |
|     break;
 | |
|   case ISD::SRA:
 | |
|     if (VT == MVT::v4i32)
 | |
|       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
 | |
|                          DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
 | |
|                          ValOp, BaseShAmt);
 | |
|     if (VT == MVT::v8i16)
 | |
|       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
 | |
|                          DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
 | |
|                          ValOp, BaseShAmt);
 | |
|     break;
 | |
|   case ISD::SRL:
 | |
|     if (VT == MVT::v2i64)
 | |
|       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
 | |
|                          DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
 | |
|                          ValOp, BaseShAmt);
 | |
|     if (VT == MVT::v4i32)
 | |
|       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
 | |
|                          DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
 | |
|                          ValOp, BaseShAmt);
 | |
|     if (VT ==  MVT::v8i16)
 | |
|       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
 | |
|                          DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
 | |
|                          ValOp, BaseShAmt);
 | |
|     break;
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
 | |
| static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
 | |
|                                    const X86Subtarget *Subtarget) {
 | |
|   // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
 | |
|   // the FP state in cases where an emms may be missing.
 | |
|   // A preferable solution to the general problem is to figure out the right
 | |
|   // places to insert EMMS.  This qualifies as a quick hack.
 | |
| 
 | |
|   // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
 | |
|   StoreSDNode *St = cast<StoreSDNode>(N);
 | |
|   EVT VT = St->getValue().getValueType();
 | |
|   if (VT.getSizeInBits() != 64)
 | |
|     return SDValue();
 | |
| 
 | |
|   const Function *F = DAG.getMachineFunction().getFunction();
 | |
|   bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
 | |
|   bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps 
 | |
|     && Subtarget->hasSSE2();
 | |
|   if ((VT.isVector() ||
 | |
|        (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
 | |
|       isa<LoadSDNode>(St->getValue()) &&
 | |
|       !cast<LoadSDNode>(St->getValue())->isVolatile() &&
 | |
|       St->getChain().hasOneUse() && !St->isVolatile()) {
 | |
|     SDNode* LdVal = St->getValue().getNode();
 | |
|     LoadSDNode *Ld = 0;
 | |
|     int TokenFactorIndex = -1;
 | |
|     SmallVector<SDValue, 8> Ops;
 | |
|     SDNode* ChainVal = St->getChain().getNode();
 | |
|     // Must be a store of a load.  We currently handle two cases:  the load
 | |
|     // is a direct child, and it's under an intervening TokenFactor.  It is
 | |
|     // possible to dig deeper under nested TokenFactors.
 | |
|     if (ChainVal == LdVal)
 | |
|       Ld = cast<LoadSDNode>(St->getChain());
 | |
|     else if (St->getValue().hasOneUse() &&
 | |
|              ChainVal->getOpcode() == ISD::TokenFactor) {
 | |
|       for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
 | |
|         if (ChainVal->getOperand(i).getNode() == LdVal) {
 | |
|           TokenFactorIndex = i;
 | |
|           Ld = cast<LoadSDNode>(St->getValue());
 | |
|         } else
 | |
|           Ops.push_back(ChainVal->getOperand(i));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!Ld || !ISD::isNormalLoad(Ld))
 | |
|       return SDValue();
 | |
| 
 | |
|     // If this is not the MMX case, i.e. we are just turning i64 load/store
 | |
|     // into f64 load/store, avoid the transformation if there are multiple
 | |
|     // uses of the loaded value.
 | |
|     if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
 | |
|       return SDValue();
 | |
| 
 | |
|     DebugLoc LdDL = Ld->getDebugLoc();
 | |
|     DebugLoc StDL = N->getDebugLoc();
 | |
|     // If we are a 64-bit capable x86, lower to a single movq load/store pair.
 | |
|     // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
 | |
|     // pair instead.
 | |
|     if (Subtarget->is64Bit() || F64IsLegal) {
 | |
|       EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
 | |
|       SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
 | |
|                                   Ld->getBasePtr(), Ld->getSrcValue(),
 | |
|                                   Ld->getSrcValueOffset(), Ld->isVolatile(),
 | |
|                                   Ld->getAlignment());
 | |
|       SDValue NewChain = NewLd.getValue(1);
 | |
|       if (TokenFactorIndex != -1) {
 | |
|         Ops.push_back(NewChain);
 | |
|         NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
 | |
|                                Ops.size());
 | |
|       }
 | |
|       return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
 | |
|                           St->getSrcValue(), St->getSrcValueOffset(),
 | |
|                           St->isVolatile(), St->getAlignment());
 | |
|     }
 | |
| 
 | |
|     // Otherwise, lower to two pairs of 32-bit loads / stores.
 | |
|     SDValue LoAddr = Ld->getBasePtr();
 | |
|     SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
 | |
|                                  DAG.getConstant(4, MVT::i32));
 | |
| 
 | |
|     SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
 | |
|                                Ld->getSrcValue(), Ld->getSrcValueOffset(),
 | |
|                                Ld->isVolatile(), Ld->getAlignment());
 | |
|     SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
 | |
|                                Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
 | |
|                                Ld->isVolatile(),
 | |
|                                MinAlign(Ld->getAlignment(), 4));
 | |
| 
 | |
|     SDValue NewChain = LoLd.getValue(1);
 | |
|     if (TokenFactorIndex != -1) {
 | |
|       Ops.push_back(LoLd);
 | |
|       Ops.push_back(HiLd);
 | |
|       NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
 | |
|                              Ops.size());
 | |
|     }
 | |
| 
 | |
|     LoAddr = St->getBasePtr();
 | |
|     HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
 | |
|                          DAG.getConstant(4, MVT::i32));
 | |
| 
 | |
|     SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
 | |
|                                 St->getSrcValue(), St->getSrcValueOffset(),
 | |
|                                 St->isVolatile(), St->getAlignment());
 | |
|     SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
 | |
|                                 St->getSrcValue(),
 | |
|                                 St->getSrcValueOffset() + 4,
 | |
|                                 St->isVolatile(),
 | |
|                                 MinAlign(St->getAlignment(), 4));
 | |
|     return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
 | |
| /// X86ISD::FXOR nodes.
 | |
| static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
 | |
|   assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
 | |
|   // F[X]OR(0.0, x) -> x
 | |
|   // F[X]OR(x, 0.0) -> x
 | |
|   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
 | |
|     if (C->getValueAPF().isPosZero())
 | |
|       return N->getOperand(1);
 | |
|   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
 | |
|     if (C->getValueAPF().isPosZero())
 | |
|       return N->getOperand(0);
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
 | |
| static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
 | |
|   // FAND(0.0, x) -> 0.0
 | |
|   // FAND(x, 0.0) -> 0.0
 | |
|   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
 | |
|     if (C->getValueAPF().isPosZero())
 | |
|       return N->getOperand(0);
 | |
|   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
 | |
|     if (C->getValueAPF().isPosZero())
 | |
|       return N->getOperand(1);
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static SDValue PerformBTCombine(SDNode *N,
 | |
|                                 SelectionDAG &DAG,
 | |
|                                 TargetLowering::DAGCombinerInfo &DCI) {
 | |
|   // BT ignores high bits in the bit index operand.
 | |
|   SDValue Op1 = N->getOperand(1);
 | |
|   if (Op1.hasOneUse()) {
 | |
|     unsigned BitWidth = Op1.getValueSizeInBits();
 | |
|     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
 | |
|     APInt KnownZero, KnownOne;
 | |
|     TargetLowering::TargetLoweringOpt TLO(DAG);
 | |
|     TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|     if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
 | |
|         TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
 | |
|       DCI.CommitTargetLoweringOpt(TLO);
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
 | |
|   SDValue Op = N->getOperand(0);
 | |
|   if (Op.getOpcode() == ISD::BIT_CONVERT)
 | |
|     Op = Op.getOperand(0);
 | |
|   EVT VT = N->getValueType(0), OpVT = Op.getValueType();
 | |
|   if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
 | |
|       VT.getVectorElementType().getSizeInBits() == 
 | |
|       OpVT.getVectorElementType().getSizeInBits()) {
 | |
|     return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| // On X86 and X86-64, atomic operations are lowered to locked instructions.
 | |
| // Locked instructions, in turn, have implicit fence semantics (all memory
 | |
| // operations are flushed before issuing the locked instruction, and the
 | |
| // are not buffered), so we can fold away the common pattern of 
 | |
| // fence-atomic-fence.
 | |
| static SDValue PerformMEMBARRIERCombine(SDNode* N, SelectionDAG &DAG) {
 | |
|   SDValue atomic = N->getOperand(0);
 | |
|   switch (atomic.getOpcode()) {
 | |
|     case ISD::ATOMIC_CMP_SWAP:
 | |
|     case ISD::ATOMIC_SWAP:
 | |
|     case ISD::ATOMIC_LOAD_ADD:
 | |
|     case ISD::ATOMIC_LOAD_SUB:
 | |
|     case ISD::ATOMIC_LOAD_AND:
 | |
|     case ISD::ATOMIC_LOAD_OR:
 | |
|     case ISD::ATOMIC_LOAD_XOR:
 | |
|     case ISD::ATOMIC_LOAD_NAND:
 | |
|     case ISD::ATOMIC_LOAD_MIN:
 | |
|     case ISD::ATOMIC_LOAD_MAX:
 | |
|     case ISD::ATOMIC_LOAD_UMIN:
 | |
|     case ISD::ATOMIC_LOAD_UMAX:
 | |
|       break;
 | |
|     default:
 | |
|       return SDValue();
 | |
|   }
 | |
|   
 | |
|   SDValue fence = atomic.getOperand(0);
 | |
|   if (fence.getOpcode() != ISD::MEMBARRIER)
 | |
|     return SDValue();
 | |
|   
 | |
|   switch (atomic.getOpcode()) {
 | |
|     case ISD::ATOMIC_CMP_SWAP:
 | |
|       return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
 | |
|                                     atomic.getOperand(1), atomic.getOperand(2),
 | |
|                                     atomic.getOperand(3));
 | |
|     case ISD::ATOMIC_SWAP:
 | |
|     case ISD::ATOMIC_LOAD_ADD:
 | |
|     case ISD::ATOMIC_LOAD_SUB:
 | |
|     case ISD::ATOMIC_LOAD_AND:
 | |
|     case ISD::ATOMIC_LOAD_OR:
 | |
|     case ISD::ATOMIC_LOAD_XOR:
 | |
|     case ISD::ATOMIC_LOAD_NAND:
 | |
|     case ISD::ATOMIC_LOAD_MIN:
 | |
|     case ISD::ATOMIC_LOAD_MAX:
 | |
|     case ISD::ATOMIC_LOAD_UMIN:
 | |
|     case ISD::ATOMIC_LOAD_UMAX:
 | |
|       return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
 | |
|                                     atomic.getOperand(1), atomic.getOperand(2));
 | |
|     default:
 | |
|       return SDValue();
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
 | |
|                                              DAGCombinerInfo &DCI) const {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   switch (N->getOpcode()) {
 | |
|   default: break;
 | |
|   case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
 | |
|   case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
 | |
|   case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
 | |
|   case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
 | |
|   case ISD::SHL:
 | |
|   case ISD::SRA:
 | |
|   case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
 | |
|   case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
 | |
|   case X86ISD::FXOR:
 | |
|   case X86ISD::FOR:         return PerformFORCombine(N, DAG);
 | |
|   case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
 | |
|   case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
 | |
|   case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
 | |
|   case ISD::MEMBARRIER:     return PerformMEMBARRIERCombine(N, DAG);
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           X86 Inline Assembly Support
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static bool LowerToBSwap(CallInst *CI) {
 | |
|   // FIXME: this should verify that we are targetting a 486 or better.  If not,
 | |
|   // we will turn this bswap into something that will be lowered to logical ops
 | |
|   // instead of emitting the bswap asm.  For now, we don't support 486 or lower
 | |
|   // so don't worry about this.
 | |
|   
 | |
|   // Verify this is a simple bswap.
 | |
|   if (CI->getNumOperands() != 2 ||
 | |
|       CI->getType() != CI->getOperand(1)->getType() ||
 | |
|       !CI->getType()->isInteger())
 | |
|     return false;
 | |
|   
 | |
|   const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
 | |
|   if (!Ty || Ty->getBitWidth() % 16 != 0)
 | |
|     return false;
 | |
|   
 | |
|   // Okay, we can do this xform, do so now.
 | |
|   const Type *Tys[] = { Ty };
 | |
|   Module *M = CI->getParent()->getParent()->getParent();
 | |
|   Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
 | |
|   
 | |
|   Value *Op = CI->getOperand(1);
 | |
|   Op = CallInst::Create(Int, Op, CI->getName(), CI);
 | |
|   
 | |
|   CI->replaceAllUsesWith(Op);
 | |
|   CI->eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
 | |
|   InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
 | |
|   std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
 | |
| 
 | |
|   std::string AsmStr = IA->getAsmString();
 | |
| 
 | |
|   // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
 | |
|   std::vector<std::string> AsmPieces;
 | |
|   SplitString(AsmStr, AsmPieces, "\n");  // ; as separator?
 | |
| 
 | |
|   switch (AsmPieces.size()) {
 | |
|   default: return false;
 | |
|   case 1:
 | |
|     AsmStr = AsmPieces[0];
 | |
|     AsmPieces.clear();
 | |
|     SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
 | |
| 
 | |
|     // bswap $0
 | |
|     if (AsmPieces.size() == 2 &&
 | |
|         (AsmPieces[0] == "bswap" ||
 | |
|          AsmPieces[0] == "bswapq" ||
 | |
|          AsmPieces[0] == "bswapl") &&
 | |
|         (AsmPieces[1] == "$0" ||
 | |
|          AsmPieces[1] == "${0:q}")) {
 | |
|       // No need to check constraints, nothing other than the equivalent of
 | |
|       // "=r,0" would be valid here.
 | |
|       return LowerToBSwap(CI);
 | |
|     }
 | |
|     // rorw $$8, ${0:w}  -->  llvm.bswap.i16
 | |
|     if (CI->getType() == Type::Int16Ty &&
 | |
|         AsmPieces.size() == 3 &&
 | |
|         AsmPieces[0] == "rorw" &&
 | |
|         AsmPieces[1] == "$$8," &&
 | |
|         AsmPieces[2] == "${0:w}" &&
 | |
|         IA->getConstraintString() == "=r,0,~{dirflag},~{fpsr},~{flags},~{cc}") {
 | |
|       return LowerToBSwap(CI);
 | |
|     }
 | |
|     break;
 | |
|   case 3:
 | |
|     if (CI->getType() == Type::Int64Ty && Constraints.size() >= 2 &&
 | |
|         Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
 | |
|         Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
 | |
|       // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
 | |
|       std::vector<std::string> Words;
 | |
|       SplitString(AsmPieces[0], Words, " \t");
 | |
|       if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
 | |
|         Words.clear();
 | |
|         SplitString(AsmPieces[1], Words, " \t");
 | |
|         if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
 | |
|           Words.clear();
 | |
|           SplitString(AsmPieces[2], Words, " \t,");
 | |
|           if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
 | |
|               Words[2] == "%edx") {
 | |
|             return LowerToBSwap(CI);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// getConstraintType - Given a constraint letter, return the type of
 | |
| /// constraint it is for this target.
 | |
| X86TargetLowering::ConstraintType
 | |
| X86TargetLowering::getConstraintType(const std::string &Constraint) const {
 | |
|   if (Constraint.size() == 1) {
 | |
|     switch (Constraint[0]) {
 | |
|     case 'A':
 | |
|       return C_Register;
 | |
|     case 'f':
 | |
|     case 'r':
 | |
|     case 'R':
 | |
|     case 'l':
 | |
|     case 'q':
 | |
|     case 'Q':
 | |
|     case 'x':
 | |
|     case 'y':
 | |
|     case 'Y':
 | |
|       return C_RegisterClass;
 | |
|     case 'e':
 | |
|     case 'Z':
 | |
|       return C_Other;
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return TargetLowering::getConstraintType(Constraint);
 | |
| }
 | |
| 
 | |
| /// LowerXConstraint - try to replace an X constraint, which matches anything,
 | |
| /// with another that has more specific requirements based on the type of the
 | |
| /// corresponding operand.
 | |
| const char *X86TargetLowering::
 | |
| LowerXConstraint(EVT ConstraintVT) const {
 | |
|   // FP X constraints get lowered to SSE1/2 registers if available, otherwise
 | |
|   // 'f' like normal targets.
 | |
|   if (ConstraintVT.isFloatingPoint()) {
 | |
|     if (Subtarget->hasSSE2())
 | |
|       return "Y";
 | |
|     if (Subtarget->hasSSE1())
 | |
|       return "x";
 | |
|   }
 | |
| 
 | |
|   return TargetLowering::LowerXConstraint(ConstraintVT);
 | |
| }
 | |
| 
 | |
| /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
 | |
| /// vector.  If it is invalid, don't add anything to Ops.
 | |
| void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
 | |
|                                                      char Constraint,
 | |
|                                                      bool hasMemory,
 | |
|                                                      std::vector<SDValue>&Ops,
 | |
|                                                      SelectionDAG &DAG) const {
 | |
|   SDValue Result(0, 0);
 | |
| 
 | |
|   switch (Constraint) {
 | |
|   default: break;
 | |
|   case 'I':
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
 | |
|       if (C->getZExtValue() <= 31) {
 | |
|         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   case 'J':
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
 | |
|       if (C->getZExtValue() <= 63) {
 | |
|         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   case 'K':
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
 | |
|       if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
 | |
|         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   case 'N':
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
 | |
|       if (C->getZExtValue() <= 255) {
 | |
|         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   case 'e': {
 | |
|     // 32-bit signed value
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
 | |
|       const ConstantInt *CI = C->getConstantIntValue();
 | |
|       if (CI->isValueValidForType(Type::Int32Ty, C->getSExtValue())) {
 | |
|         // Widen to 64 bits here to get it sign extended.
 | |
|         Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
 | |
|         break;
 | |
|       }
 | |
|     // FIXME gcc accepts some relocatable values here too, but only in certain
 | |
|     // memory models; it's complicated.
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   case 'Z': {
 | |
|     // 32-bit unsigned value
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
 | |
|       const ConstantInt *CI = C->getConstantIntValue();
 | |
|       if (CI->isValueValidForType(Type::Int32Ty, C->getZExtValue())) {
 | |
|         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     // FIXME gcc accepts some relocatable values here too, but only in certain
 | |
|     // memory models; it's complicated.
 | |
|     return;
 | |
|   }
 | |
|   case 'i': {
 | |
|     // Literal immediates are always ok.
 | |
|     if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
 | |
|       // Widen to 64 bits here to get it sign extended.
 | |
|       Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // If we are in non-pic codegen mode, we allow the address of a global (with
 | |
|     // an optional displacement) to be used with 'i'.
 | |
|     GlobalAddressSDNode *GA = 0;
 | |
|     int64_t Offset = 0;
 | |
| 
 | |
|     // Match either (GA), (GA+C), (GA+C1+C2), etc.
 | |
|     while (1) {
 | |
|       if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
 | |
|         Offset += GA->getOffset();
 | |
|         break;
 | |
|       } else if (Op.getOpcode() == ISD::ADD) {
 | |
|         if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|           Offset += C->getZExtValue();
 | |
|           Op = Op.getOperand(0);
 | |
|           continue;
 | |
|         }
 | |
|       } else if (Op.getOpcode() == ISD::SUB) {
 | |
|         if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|           Offset += -C->getZExtValue();
 | |
|           Op = Op.getOperand(0);
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Otherwise, this isn't something we can handle, reject it.
 | |
|       return;
 | |
|     }
 | |
|     
 | |
|     GlobalValue *GV = GA->getGlobal();
 | |
|     // If we require an extra load to get this address, as in PIC mode, we
 | |
|     // can't accept it.
 | |
|     if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
 | |
|                                                         getTargetMachine())))
 | |
|       return;
 | |
| 
 | |
|     if (hasMemory)
 | |
|       Op = LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
 | |
|     else
 | |
|       Op = DAG.getTargetGlobalAddress(GV, GA->getValueType(0), Offset);
 | |
|     Result = Op;
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   if (Result.getNode()) {
 | |
|     Ops.push_back(Result);
 | |
|     return;
 | |
|   }
 | |
|   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
 | |
|                                                       Ops, DAG);
 | |
| }
 | |
| 
 | |
| std::vector<unsigned> X86TargetLowering::
 | |
| getRegClassForInlineAsmConstraint(const std::string &Constraint,
 | |
|                                   EVT VT) const {
 | |
|   if (Constraint.size() == 1) {
 | |
|     // FIXME: not handling fp-stack yet!
 | |
|     switch (Constraint[0]) {      // GCC X86 Constraint Letters
 | |
|     default: break;  // Unknown constraint letter
 | |
|     case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
 | |
|       if (Subtarget->is64Bit()) {
 | |
|         if (VT == MVT::i32)
 | |
|           return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
 | |
|                                        X86::ESI, X86::EDI, X86::R8D, X86::R9D,
 | |
|                                        X86::R10D,X86::R11D,X86::R12D,
 | |
|                                        X86::R13D,X86::R14D,X86::R15D,
 | |
|                                        X86::EBP, X86::ESP, 0);
 | |
|         else if (VT == MVT::i16)
 | |
|           return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
 | |
|                                        X86::SI,  X86::DI,  X86::R8W,X86::R9W,
 | |
|                                        X86::R10W,X86::R11W,X86::R12W,
 | |
|                                        X86::R13W,X86::R14W,X86::R15W,
 | |
|                                        X86::BP,  X86::SP, 0);
 | |
|         else if (VT == MVT::i8)
 | |
|           return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
 | |
|                                        X86::SIL, X86::DIL, X86::R8B,X86::R9B,
 | |
|                                        X86::R10B,X86::R11B,X86::R12B,
 | |
|                                        X86::R13B,X86::R14B,X86::R15B,
 | |
|                                        X86::BPL, X86::SPL, 0);
 | |
| 
 | |
|         else if (VT == MVT::i64)
 | |
|           return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
 | |
|                                        X86::RSI, X86::RDI, X86::R8,  X86::R9,
 | |
|                                        X86::R10, X86::R11, X86::R12,
 | |
|                                        X86::R13, X86::R14, X86::R15,
 | |
|                                        X86::RBP, X86::RSP, 0);
 | |
| 
 | |
|         break;
 | |
|       }
 | |
|       // 32-bit fallthrough 
 | |
|     case 'Q':   // Q_REGS
 | |
|       if (VT == MVT::i32)
 | |
|         return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
 | |
|       else if (VT == MVT::i16)
 | |
|         return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
 | |
|       else if (VT == MVT::i8)
 | |
|         return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
 | |
|       else if (VT == MVT::i64)
 | |
|         return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return std::vector<unsigned>();
 | |
| }
 | |
| 
 | |
| std::pair<unsigned, const TargetRegisterClass*>
 | |
| X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
 | |
|                                                 EVT VT) const {
 | |
|   // First, see if this is a constraint that directly corresponds to an LLVM
 | |
|   // register class.
 | |
|   if (Constraint.size() == 1) {
 | |
|     // GCC Constraint Letters
 | |
|     switch (Constraint[0]) {
 | |
|     default: break;
 | |
|     case 'r':   // GENERAL_REGS
 | |
|     case 'R':   // LEGACY_REGS
 | |
|     case 'l':   // INDEX_REGS
 | |
|       if (VT == MVT::i8)
 | |
|         return std::make_pair(0U, X86::GR8RegisterClass);
 | |
|       if (VT == MVT::i16)
 | |
|         return std::make_pair(0U, X86::GR16RegisterClass);
 | |
|       if (VT == MVT::i32 || !Subtarget->is64Bit())
 | |
|         return std::make_pair(0U, X86::GR32RegisterClass);
 | |
|       return std::make_pair(0U, X86::GR64RegisterClass);
 | |
|     case 'f':  // FP Stack registers.
 | |
|       // If SSE is enabled for this VT, use f80 to ensure the isel moves the
 | |
|       // value to the correct fpstack register class.
 | |
|       if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
 | |
|         return std::make_pair(0U, X86::RFP32RegisterClass);
 | |
|       if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
 | |
|         return std::make_pair(0U, X86::RFP64RegisterClass);
 | |
|       return std::make_pair(0U, X86::RFP80RegisterClass);
 | |
|     case 'y':   // MMX_REGS if MMX allowed.
 | |
|       if (!Subtarget->hasMMX()) break;
 | |
|       return std::make_pair(0U, X86::VR64RegisterClass);
 | |
|     case 'Y':   // SSE_REGS if SSE2 allowed
 | |
|       if (!Subtarget->hasSSE2()) break;
 | |
|       // FALL THROUGH.
 | |
|     case 'x':   // SSE_REGS if SSE1 allowed
 | |
|       if (!Subtarget->hasSSE1()) break;
 | |
| 
 | |
|       switch (VT.getSimpleVT().SimpleTy) {
 | |
|       default: break;
 | |
|       // Scalar SSE types.
 | |
|       case MVT::f32:
 | |
|       case MVT::i32:
 | |
|         return std::make_pair(0U, X86::FR32RegisterClass);
 | |
|       case MVT::f64:
 | |
|       case MVT::i64:
 | |
|         return std::make_pair(0U, X86::FR64RegisterClass);
 | |
|       // Vector types.
 | |
|       case MVT::v16i8:
 | |
|       case MVT::v8i16:
 | |
|       case MVT::v4i32:
 | |
|       case MVT::v2i64:
 | |
|       case MVT::v4f32:
 | |
|       case MVT::v2f64:
 | |
|         return std::make_pair(0U, X86::VR128RegisterClass);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Use the default implementation in TargetLowering to convert the register
 | |
|   // constraint into a member of a register class.
 | |
|   std::pair<unsigned, const TargetRegisterClass*> Res;
 | |
|   Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
 | |
| 
 | |
|   // Not found as a standard register?
 | |
|   if (Res.second == 0) {
 | |
|     // GCC calls "st(0)" just plain "st".
 | |
|     if (StringsEqualNoCase("{st}", Constraint)) {
 | |
|       Res.first = X86::ST0;
 | |
|       Res.second = X86::RFP80RegisterClass;
 | |
|     }
 | |
|     // 'A' means EAX + EDX.
 | |
|     if (Constraint == "A") {
 | |
|       Res.first = X86::EAX;
 | |
|       Res.second = X86::GR32_ADRegisterClass;
 | |
|     }
 | |
|     return Res;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, check to see if this is a register class of the wrong value
 | |
|   // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
 | |
|   // turn into {ax},{dx}.
 | |
|   if (Res.second->hasType(VT))
 | |
|     return Res;   // Correct type already, nothing to do.
 | |
| 
 | |
|   // All of the single-register GCC register classes map their values onto
 | |
|   // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
 | |
|   // really want an 8-bit or 32-bit register, map to the appropriate register
 | |
|   // class and return the appropriate register.
 | |
|   if (Res.second == X86::GR16RegisterClass) {
 | |
|     if (VT == MVT::i8) {
 | |
|       unsigned DestReg = 0;
 | |
|       switch (Res.first) {
 | |
|       default: break;
 | |
|       case X86::AX: DestReg = X86::AL; break;
 | |
|       case X86::DX: DestReg = X86::DL; break;
 | |
|       case X86::CX: DestReg = X86::CL; break;
 | |
|       case X86::BX: DestReg = X86::BL; break;
 | |
|       }
 | |
|       if (DestReg) {
 | |
|         Res.first = DestReg;
 | |
|         Res.second = X86::GR8RegisterClass;
 | |
|       }
 | |
|     } else if (VT == MVT::i32) {
 | |
|       unsigned DestReg = 0;
 | |
|       switch (Res.first) {
 | |
|       default: break;
 | |
|       case X86::AX: DestReg = X86::EAX; break;
 | |
|       case X86::DX: DestReg = X86::EDX; break;
 | |
|       case X86::CX: DestReg = X86::ECX; break;
 | |
|       case X86::BX: DestReg = X86::EBX; break;
 | |
|       case X86::SI: DestReg = X86::ESI; break;
 | |
|       case X86::DI: DestReg = X86::EDI; break;
 | |
|       case X86::BP: DestReg = X86::EBP; break;
 | |
|       case X86::SP: DestReg = X86::ESP; break;
 | |
|       }
 | |
|       if (DestReg) {
 | |
|         Res.first = DestReg;
 | |
|         Res.second = X86::GR32RegisterClass;
 | |
|       }
 | |
|     } else if (VT == MVT::i64) {
 | |
|       unsigned DestReg = 0;
 | |
|       switch (Res.first) {
 | |
|       default: break;
 | |
|       case X86::AX: DestReg = X86::RAX; break;
 | |
|       case X86::DX: DestReg = X86::RDX; break;
 | |
|       case X86::CX: DestReg = X86::RCX; break;
 | |
|       case X86::BX: DestReg = X86::RBX; break;
 | |
|       case X86::SI: DestReg = X86::RSI; break;
 | |
|       case X86::DI: DestReg = X86::RDI; break;
 | |
|       case X86::BP: DestReg = X86::RBP; break;
 | |
|       case X86::SP: DestReg = X86::RSP; break;
 | |
|       }
 | |
|       if (DestReg) {
 | |
|         Res.first = DestReg;
 | |
|         Res.second = X86::GR64RegisterClass;
 | |
|       }
 | |
|     }
 | |
|   } else if (Res.second == X86::FR32RegisterClass ||
 | |
|              Res.second == X86::FR64RegisterClass ||
 | |
|              Res.second == X86::VR128RegisterClass) {
 | |
|     // Handle references to XMM physical registers that got mapped into the
 | |
|     // wrong class.  This can happen with constraints like {xmm0} where the
 | |
|     // target independent register mapper will just pick the first match it can
 | |
|     // find, ignoring the required type.
 | |
|     if (VT == MVT::f32)
 | |
|       Res.second = X86::FR32RegisterClass;
 | |
|     else if (VT == MVT::f64)
 | |
|       Res.second = X86::FR64RegisterClass;
 | |
|     else if (X86::VR128RegisterClass->hasType(VT))
 | |
|       Res.second = X86::VR128RegisterClass;
 | |
|   }
 | |
| 
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           X86 Widen vector type
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// getWidenVectorType: given a vector type, returns the type to widen
 | |
| /// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
 | |
| /// If there is no vector type that we want to widen to, returns MVT::Other
 | |
| /// When and where to widen is target dependent based on the cost of
 | |
| /// scalarizing vs using the wider vector type.
 | |
| 
 | |
| EVT X86TargetLowering::getWidenVectorType(EVT VT) const {
 | |
|   assert(VT.isVector());
 | |
|   if (isTypeLegal(VT))
 | |
|     return VT;
 | |
| 
 | |
|   // TODO: In computeRegisterProperty, we can compute the list of legal vector
 | |
|   //       type based on element type.  This would speed up our search (though
 | |
|   //       it may not be worth it since the size of the list is relatively
 | |
|   //       small).
 | |
|   EVT EltVT = VT.getVectorElementType();
 | |
|   unsigned NElts = VT.getVectorNumElements();
 | |
| 
 | |
|   // On X86, it make sense to widen any vector wider than 1
 | |
|   if (NElts <= 1)
 | |
|     return MVT::Other;
 | |
| 
 | |
|   for (unsigned nVT = MVT::FIRST_VECTOR_VALUETYPE;
 | |
|        nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
 | |
|     EVT SVT = (MVT::SimpleValueType)nVT;
 | |
| 
 | |
|     if (isTypeLegal(SVT) &&
 | |
|         SVT.getVectorElementType() == EltVT &&
 | |
|         SVT.getVectorNumElements() > NElts)
 | |
|       return SVT;
 | |
|   }
 | |
|   return MVT::Other;
 | |
| }
 |