mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	a trailing newline. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@77719 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1772 lines
		
	
	
		
			61 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1772 lines
		
	
	
		
			61 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass performs global value numbering to eliminate fully redundant
 | 
						|
// instructions.  It also performs simple dead load elimination.
 | 
						|
//
 | 
						|
// Note that this pass does the value numbering itself; it does not use the
 | 
						|
// ValueNumbering analysis passes.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "gvn"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/BasicBlock.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/IntrinsicInst.h"
 | 
						|
#include "llvm/LLVMContext.h"
 | 
						|
#include "llvm/Value.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include "llvm/ADT/PostOrderIterator.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include <cstdio>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumGVNInstr,  "Number of instructions deleted");
 | 
						|
STATISTIC(NumGVNLoad,   "Number of loads deleted");
 | 
						|
STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
 | 
						|
STATISTIC(NumGVNBlocks, "Number of blocks merged");
 | 
						|
STATISTIC(NumPRELoad,   "Number of loads PRE'd");
 | 
						|
 | 
						|
static cl::opt<bool> EnablePRE("enable-pre",
 | 
						|
                               cl::init(true), cl::Hidden);
 | 
						|
static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                         ValueTable Class
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// This class holds the mapping between values and value numbers.  It is used
 | 
						|
/// as an efficient mechanism to determine the expression-wise equivalence of
 | 
						|
/// two values.
 | 
						|
namespace {
 | 
						|
  struct VISIBILITY_HIDDEN Expression {
 | 
						|
    enum ExpressionOpcode { ADD, FADD, SUB, FSUB, MUL, FMUL,
 | 
						|
                            UDIV, SDIV, FDIV, UREM, SREM,
 | 
						|
                            FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ, 
 | 
						|
                            ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE, 
 | 
						|
                            ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ, 
 | 
						|
                            FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE, 
 | 
						|
                            FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE, 
 | 
						|
                            FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
 | 
						|
                            SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
 | 
						|
                            FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT, 
 | 
						|
                            PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, CONSTANT,
 | 
						|
                            EMPTY, TOMBSTONE };
 | 
						|
 | 
						|
    ExpressionOpcode opcode;
 | 
						|
    const Type* type;
 | 
						|
    uint32_t firstVN;
 | 
						|
    uint32_t secondVN;
 | 
						|
    uint32_t thirdVN;
 | 
						|
    SmallVector<uint32_t, 4> varargs;
 | 
						|
    Value* function;
 | 
						|
  
 | 
						|
    Expression() { }
 | 
						|
    Expression(ExpressionOpcode o) : opcode(o) { }
 | 
						|
  
 | 
						|
    bool operator==(const Expression &other) const {
 | 
						|
      if (opcode != other.opcode)
 | 
						|
        return false;
 | 
						|
      else if (opcode == EMPTY || opcode == TOMBSTONE)
 | 
						|
        return true;
 | 
						|
      else if (type != other.type)
 | 
						|
        return false;
 | 
						|
      else if (function != other.function)
 | 
						|
        return false;
 | 
						|
      else if (firstVN != other.firstVN)
 | 
						|
        return false;
 | 
						|
      else if (secondVN != other.secondVN)
 | 
						|
        return false;
 | 
						|
      else if (thirdVN != other.thirdVN)
 | 
						|
        return false;
 | 
						|
      else {
 | 
						|
        if (varargs.size() != other.varargs.size())
 | 
						|
          return false;
 | 
						|
      
 | 
						|
        for (size_t i = 0; i < varargs.size(); ++i)
 | 
						|
          if (varargs[i] != other.varargs[i])
 | 
						|
            return false;
 | 
						|
    
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  
 | 
						|
    bool operator!=(const Expression &other) const {
 | 
						|
      return !(*this == other);
 | 
						|
    }
 | 
						|
  };
 | 
						|
  
 | 
						|
  class VISIBILITY_HIDDEN ValueTable {
 | 
						|
    private:
 | 
						|
      DenseMap<Value*, uint32_t> valueNumbering;
 | 
						|
      DenseMap<Expression, uint32_t> expressionNumbering;
 | 
						|
      AliasAnalysis* AA;
 | 
						|
      MemoryDependenceAnalysis* MD;
 | 
						|
      DominatorTree* DT;
 | 
						|
  
 | 
						|
      uint32_t nextValueNumber;
 | 
						|
    
 | 
						|
      Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
 | 
						|
      Expression::ExpressionOpcode getOpcode(CmpInst* C);
 | 
						|
      Expression::ExpressionOpcode getOpcode(CastInst* C);
 | 
						|
      Expression create_expression(BinaryOperator* BO);
 | 
						|
      Expression create_expression(CmpInst* C);
 | 
						|
      Expression create_expression(ShuffleVectorInst* V);
 | 
						|
      Expression create_expression(ExtractElementInst* C);
 | 
						|
      Expression create_expression(InsertElementInst* V);
 | 
						|
      Expression create_expression(SelectInst* V);
 | 
						|
      Expression create_expression(CastInst* C);
 | 
						|
      Expression create_expression(GetElementPtrInst* G);
 | 
						|
      Expression create_expression(CallInst* C);
 | 
						|
      Expression create_expression(Constant* C);
 | 
						|
    public:
 | 
						|
      ValueTable() : nextValueNumber(1) { }
 | 
						|
      uint32_t lookup_or_add(Value* V);
 | 
						|
      uint32_t lookup(Value* V) const;
 | 
						|
      void add(Value* V, uint32_t num);
 | 
						|
      void clear();
 | 
						|
      void erase(Value* v);
 | 
						|
      unsigned size();
 | 
						|
      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
 | 
						|
      AliasAnalysis *getAliasAnalysis() const { return AA; }
 | 
						|
      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
 | 
						|
      void setDomTree(DominatorTree* D) { DT = D; }
 | 
						|
      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
 | 
						|
      void verifyRemoved(const Value *) const;
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
template <> struct DenseMapInfo<Expression> {
 | 
						|
  static inline Expression getEmptyKey() {
 | 
						|
    return Expression(Expression::EMPTY);
 | 
						|
  }
 | 
						|
  
 | 
						|
  static inline Expression getTombstoneKey() {
 | 
						|
    return Expression(Expression::TOMBSTONE);
 | 
						|
  }
 | 
						|
  
 | 
						|
  static unsigned getHashValue(const Expression e) {
 | 
						|
    unsigned hash = e.opcode;
 | 
						|
    
 | 
						|
    hash = e.firstVN + hash * 37;
 | 
						|
    hash = e.secondVN + hash * 37;
 | 
						|
    hash = e.thirdVN + hash * 37;
 | 
						|
    
 | 
						|
    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
 | 
						|
            (unsigned)((uintptr_t)e.type >> 9)) +
 | 
						|
           hash * 37;
 | 
						|
    
 | 
						|
    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
 | 
						|
         E = e.varargs.end(); I != E; ++I)
 | 
						|
      hash = *I + hash * 37;
 | 
						|
    
 | 
						|
    hash = ((unsigned)((uintptr_t)e.function >> 4) ^
 | 
						|
            (unsigned)((uintptr_t)e.function >> 9)) +
 | 
						|
           hash * 37;
 | 
						|
    
 | 
						|
    return hash;
 | 
						|
  }
 | 
						|
  static bool isEqual(const Expression &LHS, const Expression &RHS) {
 | 
						|
    return LHS == RHS;
 | 
						|
  }
 | 
						|
  static bool isPod() { return true; }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                     ValueTable Internal Functions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
 | 
						|
  switch(BO->getOpcode()) {
 | 
						|
  default: // THIS SHOULD NEVER HAPPEN
 | 
						|
    llvm_unreachable("Binary operator with unknown opcode?");
 | 
						|
  case Instruction::Add:  return Expression::ADD;
 | 
						|
  case Instruction::FAdd: return Expression::FADD;
 | 
						|
  case Instruction::Sub:  return Expression::SUB;
 | 
						|
  case Instruction::FSub: return Expression::FSUB;
 | 
						|
  case Instruction::Mul:  return Expression::MUL;
 | 
						|
  case Instruction::FMul: return Expression::FMUL;
 | 
						|
  case Instruction::UDiv: return Expression::UDIV;
 | 
						|
  case Instruction::SDiv: return Expression::SDIV;
 | 
						|
  case Instruction::FDiv: return Expression::FDIV;
 | 
						|
  case Instruction::URem: return Expression::UREM;
 | 
						|
  case Instruction::SRem: return Expression::SREM;
 | 
						|
  case Instruction::FRem: return Expression::FREM;
 | 
						|
  case Instruction::Shl:  return Expression::SHL;
 | 
						|
  case Instruction::LShr: return Expression::LSHR;
 | 
						|
  case Instruction::AShr: return Expression::ASHR;
 | 
						|
  case Instruction::And:  return Expression::AND;
 | 
						|
  case Instruction::Or:   return Expression::OR;
 | 
						|
  case Instruction::Xor:  return Expression::XOR;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
 | 
						|
  if (isa<ICmpInst>(C)) {
 | 
						|
    switch (C->getPredicate()) {
 | 
						|
    default:  // THIS SHOULD NEVER HAPPEN
 | 
						|
      llvm_unreachable("Comparison with unknown predicate?");
 | 
						|
    case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
 | 
						|
    case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
 | 
						|
    case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
 | 
						|
    case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
 | 
						|
    case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
 | 
						|
    case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
 | 
						|
    case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
 | 
						|
    case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
 | 
						|
    case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
 | 
						|
    case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    switch (C->getPredicate()) {
 | 
						|
    default: // THIS SHOULD NEVER HAPPEN
 | 
						|
      llvm_unreachable("Comparison with unknown predicate?");
 | 
						|
    case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
 | 
						|
    case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
 | 
						|
    case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
 | 
						|
    case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
 | 
						|
    case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
 | 
						|
    case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
 | 
						|
    case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
 | 
						|
    case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
 | 
						|
    case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
 | 
						|
    case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
 | 
						|
    case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
 | 
						|
    case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
 | 
						|
    case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
 | 
						|
    case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
 | 
						|
  switch(C->getOpcode()) {
 | 
						|
  default: // THIS SHOULD NEVER HAPPEN
 | 
						|
    llvm_unreachable("Cast operator with unknown opcode?");
 | 
						|
  case Instruction::Trunc:    return Expression::TRUNC;
 | 
						|
  case Instruction::ZExt:     return Expression::ZEXT;
 | 
						|
  case Instruction::SExt:     return Expression::SEXT;
 | 
						|
  case Instruction::FPToUI:   return Expression::FPTOUI;
 | 
						|
  case Instruction::FPToSI:   return Expression::FPTOSI;
 | 
						|
  case Instruction::UIToFP:   return Expression::UITOFP;
 | 
						|
  case Instruction::SIToFP:   return Expression::SITOFP;
 | 
						|
  case Instruction::FPTrunc:  return Expression::FPTRUNC;
 | 
						|
  case Instruction::FPExt:    return Expression::FPEXT;
 | 
						|
  case Instruction::PtrToInt: return Expression::PTRTOINT;
 | 
						|
  case Instruction::IntToPtr: return Expression::INTTOPTR;
 | 
						|
  case Instruction::BitCast:  return Expression::BITCAST;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Expression ValueTable::create_expression(CallInst* C) {
 | 
						|
  Expression e;
 | 
						|
  
 | 
						|
  e.type = C->getType();
 | 
						|
  e.firstVN = 0;
 | 
						|
  e.secondVN = 0;
 | 
						|
  e.thirdVN = 0;
 | 
						|
  e.function = C->getCalledFunction();
 | 
						|
  e.opcode = Expression::CALL;
 | 
						|
  
 | 
						|
  for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
 | 
						|
       I != E; ++I)
 | 
						|
    e.varargs.push_back(lookup_or_add(*I));
 | 
						|
  
 | 
						|
  return e;
 | 
						|
}
 | 
						|
 | 
						|
Expression ValueTable::create_expression(BinaryOperator* BO) {
 | 
						|
  Expression e;
 | 
						|
    
 | 
						|
  e.firstVN = lookup_or_add(BO->getOperand(0));
 | 
						|
  e.secondVN = lookup_or_add(BO->getOperand(1));
 | 
						|
  e.thirdVN = 0;
 | 
						|
  e.function = 0;
 | 
						|
  e.type = BO->getType();
 | 
						|
  e.opcode = getOpcode(BO);
 | 
						|
  
 | 
						|
  return e;
 | 
						|
}
 | 
						|
 | 
						|
Expression ValueTable::create_expression(CmpInst* C) {
 | 
						|
  Expression e;
 | 
						|
    
 | 
						|
  e.firstVN = lookup_or_add(C->getOperand(0));
 | 
						|
  e.secondVN = lookup_or_add(C->getOperand(1));
 | 
						|
  e.thirdVN = 0;
 | 
						|
  e.function = 0;
 | 
						|
  e.type = C->getType();
 | 
						|
  e.opcode = getOpcode(C);
 | 
						|
  
 | 
						|
  return e;
 | 
						|
}
 | 
						|
 | 
						|
Expression ValueTable::create_expression(CastInst* C) {
 | 
						|
  Expression e;
 | 
						|
    
 | 
						|
  e.firstVN = lookup_or_add(C->getOperand(0));
 | 
						|
  e.secondVN = 0;
 | 
						|
  e.thirdVN = 0;
 | 
						|
  e.function = 0;
 | 
						|
  e.type = C->getType();
 | 
						|
  e.opcode = getOpcode(C);
 | 
						|
  
 | 
						|
  return e;
 | 
						|
}
 | 
						|
 | 
						|
Expression ValueTable::create_expression(ShuffleVectorInst* S) {
 | 
						|
  Expression e;
 | 
						|
    
 | 
						|
  e.firstVN = lookup_or_add(S->getOperand(0));
 | 
						|
  e.secondVN = lookup_or_add(S->getOperand(1));
 | 
						|
  e.thirdVN = lookup_or_add(S->getOperand(2));
 | 
						|
  e.function = 0;
 | 
						|
  e.type = S->getType();
 | 
						|
  e.opcode = Expression::SHUFFLE;
 | 
						|
  
 | 
						|
  return e;
 | 
						|
}
 | 
						|
 | 
						|
Expression ValueTable::create_expression(ExtractElementInst* E) {
 | 
						|
  Expression e;
 | 
						|
    
 | 
						|
  e.firstVN = lookup_or_add(E->getOperand(0));
 | 
						|
  e.secondVN = lookup_or_add(E->getOperand(1));
 | 
						|
  e.thirdVN = 0;
 | 
						|
  e.function = 0;
 | 
						|
  e.type = E->getType();
 | 
						|
  e.opcode = Expression::EXTRACT;
 | 
						|
  
 | 
						|
  return e;
 | 
						|
}
 | 
						|
 | 
						|
Expression ValueTable::create_expression(InsertElementInst* I) {
 | 
						|
  Expression e;
 | 
						|
    
 | 
						|
  e.firstVN = lookup_or_add(I->getOperand(0));
 | 
						|
  e.secondVN = lookup_or_add(I->getOperand(1));
 | 
						|
  e.thirdVN = lookup_or_add(I->getOperand(2));
 | 
						|
  e.function = 0;
 | 
						|
  e.type = I->getType();
 | 
						|
  e.opcode = Expression::INSERT;
 | 
						|
  
 | 
						|
  return e;
 | 
						|
}
 | 
						|
 | 
						|
Expression ValueTable::create_expression(SelectInst* I) {
 | 
						|
  Expression e;
 | 
						|
    
 | 
						|
  e.firstVN = lookup_or_add(I->getCondition());
 | 
						|
  e.secondVN = lookup_or_add(I->getTrueValue());
 | 
						|
  e.thirdVN = lookup_or_add(I->getFalseValue());
 | 
						|
  e.function = 0;
 | 
						|
  e.type = I->getType();
 | 
						|
  e.opcode = Expression::SELECT;
 | 
						|
  
 | 
						|
  return e;
 | 
						|
}
 | 
						|
 | 
						|
Expression ValueTable::create_expression(GetElementPtrInst* G) {
 | 
						|
  Expression e;
 | 
						|
  
 | 
						|
  e.firstVN = lookup_or_add(G->getPointerOperand());
 | 
						|
  e.secondVN = 0;
 | 
						|
  e.thirdVN = 0;
 | 
						|
  e.function = 0;
 | 
						|
  e.type = G->getType();
 | 
						|
  e.opcode = Expression::GEP;
 | 
						|
  
 | 
						|
  for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
 | 
						|
       I != E; ++I)
 | 
						|
    e.varargs.push_back(lookup_or_add(*I));
 | 
						|
  
 | 
						|
  return e;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                     ValueTable External Functions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// add - Insert a value into the table with a specified value number.
 | 
						|
void ValueTable::add(Value* V, uint32_t num) {
 | 
						|
  valueNumbering.insert(std::make_pair(V, num));
 | 
						|
}
 | 
						|
 | 
						|
/// lookup_or_add - Returns the value number for the specified value, assigning
 | 
						|
/// it a new number if it did not have one before.
 | 
						|
uint32_t ValueTable::lookup_or_add(Value* V) {
 | 
						|
  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
 | 
						|
  if (VI != valueNumbering.end())
 | 
						|
    return VI->second;
 | 
						|
  
 | 
						|
  if (CallInst* C = dyn_cast<CallInst>(V)) {
 | 
						|
    if (AA->doesNotAccessMemory(C)) {
 | 
						|
      Expression e = create_expression(C);
 | 
						|
    
 | 
						|
      DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
 | 
						|
      if (EI != expressionNumbering.end()) {
 | 
						|
        valueNumbering.insert(std::make_pair(V, EI->second));
 | 
						|
        return EI->second;
 | 
						|
      } else {
 | 
						|
        expressionNumbering.insert(std::make_pair(e, nextValueNumber));
 | 
						|
        valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | 
						|
      
 | 
						|
        return nextValueNumber++;
 | 
						|
      }
 | 
						|
    } else if (AA->onlyReadsMemory(C)) {
 | 
						|
      Expression e = create_expression(C);
 | 
						|
      
 | 
						|
      if (expressionNumbering.find(e) == expressionNumbering.end()) {
 | 
						|
        expressionNumbering.insert(std::make_pair(e, nextValueNumber));
 | 
						|
        valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | 
						|
        return nextValueNumber++;
 | 
						|
      }
 | 
						|
      
 | 
						|
      MemDepResult local_dep = MD->getDependency(C);
 | 
						|
      
 | 
						|
      if (!local_dep.isDef() && !local_dep.isNonLocal()) {
 | 
						|
        valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | 
						|
        return nextValueNumber++;
 | 
						|
      }
 | 
						|
 | 
						|
      if (local_dep.isDef()) {
 | 
						|
        CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
 | 
						|
        
 | 
						|
        if (local_cdep->getNumOperands() != C->getNumOperands()) {
 | 
						|
          valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | 
						|
          return nextValueNumber++;
 | 
						|
        }
 | 
						|
          
 | 
						|
        for (unsigned i = 1; i < C->getNumOperands(); ++i) {
 | 
						|
          uint32_t c_vn = lookup_or_add(C->getOperand(i));
 | 
						|
          uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
 | 
						|
          if (c_vn != cd_vn) {
 | 
						|
            valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | 
						|
            return nextValueNumber++;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      
 | 
						|
        uint32_t v = lookup_or_add(local_cdep);
 | 
						|
        valueNumbering.insert(std::make_pair(V, v));
 | 
						|
        return v;
 | 
						|
      }
 | 
						|
 | 
						|
      // Non-local case.
 | 
						|
      const MemoryDependenceAnalysis::NonLocalDepInfo &deps = 
 | 
						|
        MD->getNonLocalCallDependency(CallSite(C));
 | 
						|
      // FIXME: call/call dependencies for readonly calls should return def, not
 | 
						|
      // clobber!  Move the checking logic to MemDep!
 | 
						|
      CallInst* cdep = 0;
 | 
						|
      
 | 
						|
      // Check to see if we have a single dominating call instruction that is
 | 
						|
      // identical to C.
 | 
						|
      for (unsigned i = 0, e = deps.size(); i != e; ++i) {
 | 
						|
        const MemoryDependenceAnalysis::NonLocalDepEntry *I = &deps[i];
 | 
						|
        // Ignore non-local dependencies.
 | 
						|
        if (I->second.isNonLocal())
 | 
						|
          continue;
 | 
						|
 | 
						|
        // We don't handle non-depedencies.  If we already have a call, reject
 | 
						|
        // instruction dependencies.
 | 
						|
        if (I->second.isClobber() || cdep != 0) {
 | 
						|
          cdep = 0;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        
 | 
						|
        CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->second.getInst());
 | 
						|
        // FIXME: All duplicated with non-local case.
 | 
						|
        if (NonLocalDepCall && DT->properlyDominates(I->first, C->getParent())){
 | 
						|
          cdep = NonLocalDepCall;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        
 | 
						|
        cdep = 0;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      
 | 
						|
      if (!cdep) {
 | 
						|
        valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | 
						|
        return nextValueNumber++;
 | 
						|
      }
 | 
						|
      
 | 
						|
      if (cdep->getNumOperands() != C->getNumOperands()) {
 | 
						|
        valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | 
						|
        return nextValueNumber++;
 | 
						|
      }
 | 
						|
      for (unsigned i = 1; i < C->getNumOperands(); ++i) {
 | 
						|
        uint32_t c_vn = lookup_or_add(C->getOperand(i));
 | 
						|
        uint32_t cd_vn = lookup_or_add(cdep->getOperand(i));
 | 
						|
        if (c_vn != cd_vn) {
 | 
						|
          valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | 
						|
          return nextValueNumber++;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      
 | 
						|
      uint32_t v = lookup_or_add(cdep);
 | 
						|
      valueNumbering.insert(std::make_pair(V, v));
 | 
						|
      return v;
 | 
						|
      
 | 
						|
    } else {
 | 
						|
      valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | 
						|
      return nextValueNumber++;
 | 
						|
    }
 | 
						|
  } else if (BinaryOperator* BO = dyn_cast<BinaryOperator>(V)) {
 | 
						|
    Expression e = create_expression(BO);
 | 
						|
    
 | 
						|
    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
 | 
						|
    if (EI != expressionNumbering.end()) {
 | 
						|
      valueNumbering.insert(std::make_pair(V, EI->second));
 | 
						|
      return EI->second;
 | 
						|
    } else {
 | 
						|
      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
 | 
						|
      valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | 
						|
      
 | 
						|
      return nextValueNumber++;
 | 
						|
    }
 | 
						|
  } else if (CmpInst* C = dyn_cast<CmpInst>(V)) {
 | 
						|
    Expression e = create_expression(C);
 | 
						|
    
 | 
						|
    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
 | 
						|
    if (EI != expressionNumbering.end()) {
 | 
						|
      valueNumbering.insert(std::make_pair(V, EI->second));
 | 
						|
      return EI->second;
 | 
						|
    } else {
 | 
						|
      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
 | 
						|
      valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | 
						|
      
 | 
						|
      return nextValueNumber++;
 | 
						|
    }
 | 
						|
  } else if (ShuffleVectorInst* U = dyn_cast<ShuffleVectorInst>(V)) {
 | 
						|
    Expression e = create_expression(U);
 | 
						|
    
 | 
						|
    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
 | 
						|
    if (EI != expressionNumbering.end()) {
 | 
						|
      valueNumbering.insert(std::make_pair(V, EI->second));
 | 
						|
      return EI->second;
 | 
						|
    } else {
 | 
						|
      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
 | 
						|
      valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | 
						|
      
 | 
						|
      return nextValueNumber++;
 | 
						|
    }
 | 
						|
  } else if (ExtractElementInst* U = dyn_cast<ExtractElementInst>(V)) {
 | 
						|
    Expression e = create_expression(U);
 | 
						|
    
 | 
						|
    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
 | 
						|
    if (EI != expressionNumbering.end()) {
 | 
						|
      valueNumbering.insert(std::make_pair(V, EI->second));
 | 
						|
      return EI->second;
 | 
						|
    } else {
 | 
						|
      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
 | 
						|
      valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | 
						|
      
 | 
						|
      return nextValueNumber++;
 | 
						|
    }
 | 
						|
  } else if (InsertElementInst* U = dyn_cast<InsertElementInst>(V)) {
 | 
						|
    Expression e = create_expression(U);
 | 
						|
    
 | 
						|
    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
 | 
						|
    if (EI != expressionNumbering.end()) {
 | 
						|
      valueNumbering.insert(std::make_pair(V, EI->second));
 | 
						|
      return EI->second;
 | 
						|
    } else {
 | 
						|
      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
 | 
						|
      valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | 
						|
      
 | 
						|
      return nextValueNumber++;
 | 
						|
    }
 | 
						|
  } else if (SelectInst* U = dyn_cast<SelectInst>(V)) {
 | 
						|
    Expression e = create_expression(U);
 | 
						|
    
 | 
						|
    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
 | 
						|
    if (EI != expressionNumbering.end()) {
 | 
						|
      valueNumbering.insert(std::make_pair(V, EI->second));
 | 
						|
      return EI->second;
 | 
						|
    } else {
 | 
						|
      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
 | 
						|
      valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | 
						|
      
 | 
						|
      return nextValueNumber++;
 | 
						|
    }
 | 
						|
  } else if (CastInst* U = dyn_cast<CastInst>(V)) {
 | 
						|
    Expression e = create_expression(U);
 | 
						|
    
 | 
						|
    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
 | 
						|
    if (EI != expressionNumbering.end()) {
 | 
						|
      valueNumbering.insert(std::make_pair(V, EI->second));
 | 
						|
      return EI->second;
 | 
						|
    } else {
 | 
						|
      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
 | 
						|
      valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | 
						|
      
 | 
						|
      return nextValueNumber++;
 | 
						|
    }
 | 
						|
  } else if (GetElementPtrInst* U = dyn_cast<GetElementPtrInst>(V)) {
 | 
						|
    Expression e = create_expression(U);
 | 
						|
    
 | 
						|
    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
 | 
						|
    if (EI != expressionNumbering.end()) {
 | 
						|
      valueNumbering.insert(std::make_pair(V, EI->second));
 | 
						|
      return EI->second;
 | 
						|
    } else {
 | 
						|
      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
 | 
						|
      valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | 
						|
      
 | 
						|
      return nextValueNumber++;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | 
						|
    return nextValueNumber++;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// lookup - Returns the value number of the specified value. Fails if
 | 
						|
/// the value has not yet been numbered.
 | 
						|
uint32_t ValueTable::lookup(Value* V) const {
 | 
						|
  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
 | 
						|
  assert(VI != valueNumbering.end() && "Value not numbered?");
 | 
						|
  return VI->second;
 | 
						|
}
 | 
						|
 | 
						|
/// clear - Remove all entries from the ValueTable
 | 
						|
void ValueTable::clear() {
 | 
						|
  valueNumbering.clear();
 | 
						|
  expressionNumbering.clear();
 | 
						|
  nextValueNumber = 1;
 | 
						|
}
 | 
						|
 | 
						|
/// erase - Remove a value from the value numbering
 | 
						|
void ValueTable::erase(Value* V) {
 | 
						|
  valueNumbering.erase(V);
 | 
						|
}
 | 
						|
 | 
						|
/// verifyRemoved - Verify that the value is removed from all internal data
 | 
						|
/// structures.
 | 
						|
void ValueTable::verifyRemoved(const Value *V) const {
 | 
						|
  for (DenseMap<Value*, uint32_t>::iterator
 | 
						|
         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
 | 
						|
    assert(I->first != V && "Inst still occurs in value numbering map!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                                GVN Pass
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct VISIBILITY_HIDDEN ValueNumberScope {
 | 
						|
    ValueNumberScope* parent;
 | 
						|
    DenseMap<uint32_t, Value*> table;
 | 
						|
    
 | 
						|
    ValueNumberScope(ValueNumberScope* p) : parent(p) { }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
  class VISIBILITY_HIDDEN GVN : public FunctionPass {
 | 
						|
    bool runOnFunction(Function &F);
 | 
						|
  public:
 | 
						|
    static char ID; // Pass identification, replacement for typeid
 | 
						|
    GVN() : FunctionPass(&ID) { }
 | 
						|
 | 
						|
  private:
 | 
						|
    MemoryDependenceAnalysis *MD;
 | 
						|
    DominatorTree *DT;
 | 
						|
 | 
						|
    ValueTable VN;
 | 
						|
    DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
 | 
						|
    
 | 
						|
    typedef DenseMap<Value*, SmallPtrSet<Instruction*, 4> > PhiMapType;
 | 
						|
    PhiMapType phiMap;
 | 
						|
    
 | 
						|
    
 | 
						|
    // This transformation requires dominator postdominator info
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.addRequired<DominatorTree>();
 | 
						|
      AU.addRequired<MemoryDependenceAnalysis>();
 | 
						|
      AU.addRequired<AliasAnalysis>();
 | 
						|
      
 | 
						|
      AU.addPreserved<DominatorTree>();
 | 
						|
      AU.addPreserved<AliasAnalysis>();
 | 
						|
    }
 | 
						|
  
 | 
						|
    // Helper fuctions
 | 
						|
    // FIXME: eliminate or document these better
 | 
						|
    bool processLoad(LoadInst* L,
 | 
						|
                     SmallVectorImpl<Instruction*> &toErase);
 | 
						|
    bool processInstruction(Instruction* I,
 | 
						|
                            SmallVectorImpl<Instruction*> &toErase);
 | 
						|
    bool processNonLocalLoad(LoadInst* L,
 | 
						|
                             SmallVectorImpl<Instruction*> &toErase);
 | 
						|
    bool processBlock(BasicBlock* BB);
 | 
						|
    Value *GetValueForBlock(BasicBlock *BB, Instruction* orig,
 | 
						|
                            DenseMap<BasicBlock*, Value*> &Phis,
 | 
						|
                            bool top_level = false);
 | 
						|
    void dump(DenseMap<uint32_t, Value*>& d);
 | 
						|
    bool iterateOnFunction(Function &F);
 | 
						|
    Value* CollapsePhi(PHINode* p);
 | 
						|
    bool isSafeReplacement(PHINode* p, Instruction* inst);
 | 
						|
    bool performPRE(Function& F);
 | 
						|
    Value* lookupNumber(BasicBlock* BB, uint32_t num);
 | 
						|
    bool mergeBlockIntoPredecessor(BasicBlock* BB);
 | 
						|
    Value* AttemptRedundancyElimination(Instruction* orig, unsigned valno);
 | 
						|
    void cleanupGlobalSets();
 | 
						|
    void verifyRemoved(const Instruction *I) const;
 | 
						|
  };
 | 
						|
  
 | 
						|
  char GVN::ID = 0;
 | 
						|
}
 | 
						|
 | 
						|
// createGVNPass - The public interface to this file...
 | 
						|
FunctionPass *llvm::createGVNPass() { return new GVN(); }
 | 
						|
 | 
						|
static RegisterPass<GVN> X("gvn",
 | 
						|
                           "Global Value Numbering");
 | 
						|
 | 
						|
void GVN::dump(DenseMap<uint32_t, Value*>& d) {
 | 
						|
  printf("{\n");
 | 
						|
  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
 | 
						|
       E = d.end(); I != E; ++I) {
 | 
						|
      printf("%d\n", I->first);
 | 
						|
      I->second->dump();
 | 
						|
  }
 | 
						|
  printf("}\n");
 | 
						|
}
 | 
						|
 | 
						|
Value* GVN::CollapsePhi(PHINode* p) {
 | 
						|
  Value* constVal = p->hasConstantValue();
 | 
						|
  if (!constVal) return 0;
 | 
						|
  
 | 
						|
  Instruction* inst = dyn_cast<Instruction>(constVal);
 | 
						|
  if (!inst)
 | 
						|
    return constVal;
 | 
						|
    
 | 
						|
  if (DT->dominates(inst, p))
 | 
						|
    if (isSafeReplacement(p, inst))
 | 
						|
      return inst;
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
bool GVN::isSafeReplacement(PHINode* p, Instruction* inst) {
 | 
						|
  if (!isa<PHINode>(inst))
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
 | 
						|
       UI != E; ++UI)
 | 
						|
    if (PHINode* use_phi = dyn_cast<PHINode>(UI))
 | 
						|
      if (use_phi->getParent() == inst->getParent())
 | 
						|
        return false;
 | 
						|
  
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// GetValueForBlock - Get the value to use within the specified basic block.
 | 
						|
/// available values are in Phis.
 | 
						|
Value *GVN::GetValueForBlock(BasicBlock *BB, Instruction* orig,
 | 
						|
                             DenseMap<BasicBlock*, Value*> &Phis,
 | 
						|
                             bool top_level) { 
 | 
						|
                                 
 | 
						|
  // If we have already computed this value, return the previously computed val.
 | 
						|
  DenseMap<BasicBlock*, Value*>::iterator V = Phis.find(BB);
 | 
						|
  if (V != Phis.end() && !top_level) return V->second;
 | 
						|
  
 | 
						|
  // If the block is unreachable, just return undef, since this path
 | 
						|
  // can't actually occur at runtime.
 | 
						|
  if (!DT->isReachableFromEntry(BB))
 | 
						|
    return Phis[BB] = UndefValue::get(orig->getType());
 | 
						|
  
 | 
						|
  if (BasicBlock *Pred = BB->getSinglePredecessor()) {
 | 
						|
    Value *ret = GetValueForBlock(Pred, orig, Phis);
 | 
						|
    Phis[BB] = ret;
 | 
						|
    return ret;
 | 
						|
  }
 | 
						|
 | 
						|
  // Get the number of predecessors of this block so we can reserve space later.
 | 
						|
  // If there is already a PHI in it, use the #preds from it, otherwise count.
 | 
						|
  // Getting it from the PHI is constant time.
 | 
						|
  unsigned NumPreds;
 | 
						|
  if (PHINode *ExistingPN = dyn_cast<PHINode>(BB->begin()))
 | 
						|
    NumPreds = ExistingPN->getNumIncomingValues();
 | 
						|
  else
 | 
						|
    NumPreds = std::distance(pred_begin(BB), pred_end(BB));
 | 
						|
  
 | 
						|
  // Otherwise, the idom is the loop, so we need to insert a PHI node.  Do so
 | 
						|
  // now, then get values to fill in the incoming values for the PHI.
 | 
						|
  PHINode *PN = PHINode::Create(orig->getType(), orig->getName()+".rle",
 | 
						|
                                BB->begin());
 | 
						|
  PN->reserveOperandSpace(NumPreds);
 | 
						|
  
 | 
						|
  Phis.insert(std::make_pair(BB, PN));
 | 
						|
  
 | 
						|
  // Fill in the incoming values for the block.
 | 
						|
  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
 | 
						|
    Value* val = GetValueForBlock(*PI, orig, Phis);
 | 
						|
    PN->addIncoming(val, *PI);
 | 
						|
  }
 | 
						|
  
 | 
						|
  VN.getAliasAnalysis()->copyValue(orig, PN);
 | 
						|
  
 | 
						|
  // Attempt to collapse PHI nodes that are trivially redundant
 | 
						|
  Value* v = CollapsePhi(PN);
 | 
						|
  if (!v) {
 | 
						|
    // Cache our phi construction results
 | 
						|
    if (LoadInst* L = dyn_cast<LoadInst>(orig))
 | 
						|
      phiMap[L->getPointerOperand()].insert(PN);
 | 
						|
    else
 | 
						|
      phiMap[orig].insert(PN);
 | 
						|
    
 | 
						|
    return PN;
 | 
						|
  }
 | 
						|
    
 | 
						|
  PN->replaceAllUsesWith(v);
 | 
						|
  if (isa<PointerType>(v->getType()))
 | 
						|
    MD->invalidateCachedPointerInfo(v);
 | 
						|
 | 
						|
  for (DenseMap<BasicBlock*, Value*>::iterator I = Phis.begin(),
 | 
						|
       E = Phis.end(); I != E; ++I)
 | 
						|
    if (I->second == PN)
 | 
						|
      I->second = v;
 | 
						|
 | 
						|
  DEBUG(errs() << "GVN removed: " << *PN << '\n');
 | 
						|
  MD->removeInstruction(PN);
 | 
						|
  PN->eraseFromParent();
 | 
						|
  DEBUG(verifyRemoved(PN));
 | 
						|
 | 
						|
  Phis[BB] = v;
 | 
						|
  return v;
 | 
						|
}
 | 
						|
 | 
						|
/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
 | 
						|
/// we're analyzing is fully available in the specified block.  As we go, keep
 | 
						|
/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
 | 
						|
/// map is actually a tri-state map with the following values:
 | 
						|
///   0) we know the block *is not* fully available.
 | 
						|
///   1) we know the block *is* fully available.
 | 
						|
///   2) we do not know whether the block is fully available or not, but we are
 | 
						|
///      currently speculating that it will be.
 | 
						|
///   3) we are speculating for this block and have used that to speculate for
 | 
						|
///      other blocks.
 | 
						|
static bool IsValueFullyAvailableInBlock(BasicBlock *BB, 
 | 
						|
                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
 | 
						|
  // Optimistically assume that the block is fully available and check to see
 | 
						|
  // if we already know about this block in one lookup.
 | 
						|
  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV = 
 | 
						|
    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
 | 
						|
 | 
						|
  // If the entry already existed for this block, return the precomputed value.
 | 
						|
  if (!IV.second) {
 | 
						|
    // If this is a speculative "available" value, mark it as being used for
 | 
						|
    // speculation of other blocks.
 | 
						|
    if (IV.first->second == 2)
 | 
						|
      IV.first->second = 3;
 | 
						|
    return IV.first->second != 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Otherwise, see if it is fully available in all predecessors.
 | 
						|
  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
 | 
						|
  
 | 
						|
  // If this block has no predecessors, it isn't live-in here.
 | 
						|
  if (PI == PE)
 | 
						|
    goto SpeculationFailure;
 | 
						|
  
 | 
						|
  for (; PI != PE; ++PI)
 | 
						|
    // If the value isn't fully available in one of our predecessors, then it
 | 
						|
    // isn't fully available in this block either.  Undo our previous
 | 
						|
    // optimistic assumption and bail out.
 | 
						|
    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
 | 
						|
      goto SpeculationFailure;
 | 
						|
  
 | 
						|
  return true;
 | 
						|
  
 | 
						|
// SpeculationFailure - If we get here, we found out that this is not, after
 | 
						|
// all, a fully-available block.  We have a problem if we speculated on this and
 | 
						|
// used the speculation to mark other blocks as available.
 | 
						|
SpeculationFailure:
 | 
						|
  char &BBVal = FullyAvailableBlocks[BB];
 | 
						|
  
 | 
						|
  // If we didn't speculate on this, just return with it set to false.
 | 
						|
  if (BBVal == 2) {
 | 
						|
    BBVal = 0;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we did speculate on this value, we could have blocks set to 1 that are
 | 
						|
  // incorrect.  Walk the (transitive) successors of this block and mark them as
 | 
						|
  // 0 if set to one.
 | 
						|
  SmallVector<BasicBlock*, 32> BBWorklist;
 | 
						|
  BBWorklist.push_back(BB);
 | 
						|
  
 | 
						|
  while (!BBWorklist.empty()) {
 | 
						|
    BasicBlock *Entry = BBWorklist.pop_back_val();
 | 
						|
    // Note that this sets blocks to 0 (unavailable) if they happen to not
 | 
						|
    // already be in FullyAvailableBlocks.  This is safe.
 | 
						|
    char &EntryVal = FullyAvailableBlocks[Entry];
 | 
						|
    if (EntryVal == 0) continue;  // Already unavailable.
 | 
						|
 | 
						|
    // Mark as unavailable.
 | 
						|
    EntryVal = 0;
 | 
						|
    
 | 
						|
    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
 | 
						|
      BBWorklist.push_back(*I);
 | 
						|
  }
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
 | 
						|
/// non-local by performing PHI construction.
 | 
						|
bool GVN::processNonLocalLoad(LoadInst *LI,
 | 
						|
                              SmallVectorImpl<Instruction*> &toErase) {
 | 
						|
  // Find the non-local dependencies of the load.
 | 
						|
  SmallVector<MemoryDependenceAnalysis::NonLocalDepEntry, 64> Deps; 
 | 
						|
  MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
 | 
						|
                                   Deps);
 | 
						|
  //DEBUG(errs() << "INVESTIGATING NONLOCAL LOAD: "
 | 
						|
  //             << Deps.size() << *LI << '\n');
 | 
						|
  
 | 
						|
  // If we had to process more than one hundred blocks to find the
 | 
						|
  // dependencies, this load isn't worth worrying about.  Optimizing
 | 
						|
  // it will be too expensive.
 | 
						|
  if (Deps.size() > 100)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If we had a phi translation failure, we'll have a single entry which is a
 | 
						|
  // clobber in the current block.  Reject this early.
 | 
						|
  if (Deps.size() == 1 && Deps[0].second.isClobber()) {
 | 
						|
    DEBUG(
 | 
						|
      errs() << "GVN: non-local load ";
 | 
						|
      WriteAsOperand(errs(), LI);
 | 
						|
      errs() << " is clobbered by " << *Deps[0].second.getInst() << '\n';
 | 
						|
    );
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Filter out useless results (non-locals, etc).  Keep track of the blocks
 | 
						|
  // where we have a value available in repl, also keep track of whether we see
 | 
						|
  // dependencies that produce an unknown value for the load (such as a call
 | 
						|
  // that could potentially clobber the load).
 | 
						|
  SmallVector<std::pair<BasicBlock*, Value*>, 16> ValuesPerBlock;
 | 
						|
  SmallVector<BasicBlock*, 16> UnavailableBlocks;
 | 
						|
  
 | 
						|
  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
 | 
						|
    BasicBlock *DepBB = Deps[i].first;
 | 
						|
    MemDepResult DepInfo = Deps[i].second;
 | 
						|
    
 | 
						|
    if (DepInfo.isClobber()) {
 | 
						|
      UnavailableBlocks.push_back(DepBB);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    Instruction *DepInst = DepInfo.getInst();
 | 
						|
    
 | 
						|
    // Loading the allocation -> undef.
 | 
						|
    if (isa<AllocationInst>(DepInst)) {
 | 
						|
      ValuesPerBlock.push_back(std::make_pair(DepBB,  
 | 
						|
                               UndefValue::get(LI->getType())));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
  
 | 
						|
    if (StoreInst* S = dyn_cast<StoreInst>(DepInst)) {
 | 
						|
      // Reject loads and stores that are to the same address but are of 
 | 
						|
      // different types.
 | 
						|
      // NOTE: 403.gcc does have this case (e.g. in readonly_fields_p) because
 | 
						|
      // of bitfield access, it would be interesting to optimize for it at some
 | 
						|
      // point.
 | 
						|
      if (S->getOperand(0)->getType() != LI->getType()) {
 | 
						|
        UnavailableBlocks.push_back(DepBB);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      
 | 
						|
      ValuesPerBlock.push_back(std::make_pair(DepBB, S->getOperand(0)));
 | 
						|
      
 | 
						|
    } else if (LoadInst* LD = dyn_cast<LoadInst>(DepInst)) {
 | 
						|
      if (LD->getType() != LI->getType()) {
 | 
						|
        UnavailableBlocks.push_back(DepBB);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      ValuesPerBlock.push_back(std::make_pair(DepBB, LD));
 | 
						|
    } else {
 | 
						|
      UnavailableBlocks.push_back(DepBB);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If we have no predecessors that produce a known value for this load, exit
 | 
						|
  // early.
 | 
						|
  if (ValuesPerBlock.empty()) return false;
 | 
						|
  
 | 
						|
  // If all of the instructions we depend on produce a known value for this
 | 
						|
  // load, then it is fully redundant and we can use PHI insertion to compute
 | 
						|
  // its value.  Insert PHIs and remove the fully redundant value now.
 | 
						|
  if (UnavailableBlocks.empty()) {
 | 
						|
    // Use cached PHI construction information from previous runs
 | 
						|
    SmallPtrSet<Instruction*, 4> &p = phiMap[LI->getPointerOperand()];
 | 
						|
    // FIXME: What does phiMap do? Are we positive it isn't getting invalidated?
 | 
						|
    for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      if ((*I)->getParent() == LI->getParent()) {
 | 
						|
        DEBUG(errs() << "GVN REMOVING NONLOCAL LOAD #1: " << *LI << '\n');
 | 
						|
        LI->replaceAllUsesWith(*I);
 | 
						|
        if (isa<PointerType>((*I)->getType()))
 | 
						|
          MD->invalidateCachedPointerInfo(*I);
 | 
						|
        toErase.push_back(LI);
 | 
						|
        NumGVNLoad++;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      
 | 
						|
      ValuesPerBlock.push_back(std::make_pair((*I)->getParent(), *I));
 | 
						|
    }
 | 
						|
    
 | 
						|
    DEBUG(errs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
 | 
						|
    
 | 
						|
    DenseMap<BasicBlock*, Value*> BlockReplValues;
 | 
						|
    BlockReplValues.insert(ValuesPerBlock.begin(), ValuesPerBlock.end());
 | 
						|
    // Perform PHI construction.
 | 
						|
    Value* v = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
 | 
						|
    LI->replaceAllUsesWith(v);
 | 
						|
    
 | 
						|
    if (isa<PHINode>(v))
 | 
						|
      v->takeName(LI);
 | 
						|
    if (isa<PointerType>(v->getType()))
 | 
						|
      MD->invalidateCachedPointerInfo(v);
 | 
						|
    toErase.push_back(LI);
 | 
						|
    NumGVNLoad++;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (!EnablePRE || !EnableLoadPRE)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Okay, we have *some* definitions of the value.  This means that the value
 | 
						|
  // is available in some of our (transitive) predecessors.  Lets think about
 | 
						|
  // doing PRE of this load.  This will involve inserting a new load into the
 | 
						|
  // predecessor when it's not available.  We could do this in general, but
 | 
						|
  // prefer to not increase code size.  As such, we only do this when we know
 | 
						|
  // that we only have to insert *one* load (which means we're basically moving
 | 
						|
  // the load, not inserting a new one).
 | 
						|
  
 | 
						|
  SmallPtrSet<BasicBlock *, 4> Blockers;
 | 
						|
  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
 | 
						|
    Blockers.insert(UnavailableBlocks[i]);
 | 
						|
 | 
						|
  // Lets find first basic block with more than one predecessor.  Walk backwards
 | 
						|
  // through predecessors if needed.
 | 
						|
  BasicBlock *LoadBB = LI->getParent();
 | 
						|
  BasicBlock *TmpBB = LoadBB;
 | 
						|
 | 
						|
  bool isSinglePred = false;
 | 
						|
  bool allSingleSucc = true;
 | 
						|
  while (TmpBB->getSinglePredecessor()) {
 | 
						|
    isSinglePred = true;
 | 
						|
    TmpBB = TmpBB->getSinglePredecessor();
 | 
						|
    if (!TmpBB) // If haven't found any, bail now.
 | 
						|
      return false;
 | 
						|
    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
 | 
						|
      return false;
 | 
						|
    if (Blockers.count(TmpBB))
 | 
						|
      return false;
 | 
						|
    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
 | 
						|
      allSingleSucc = false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  assert(TmpBB);
 | 
						|
  LoadBB = TmpBB;
 | 
						|
  
 | 
						|
  // If we have a repl set with LI itself in it, this means we have a loop where
 | 
						|
  // at least one of the values is LI.  Since this means that we won't be able
 | 
						|
  // to eliminate LI even if we insert uses in the other predecessors, we will
 | 
						|
  // end up increasing code size.  Reject this by scanning for LI.
 | 
						|
  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
 | 
						|
    if (ValuesPerBlock[i].second == LI)
 | 
						|
      return false;
 | 
						|
  
 | 
						|
  if (isSinglePred) {
 | 
						|
    bool isHot = false;
 | 
						|
    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
 | 
						|
      if (Instruction *I = dyn_cast<Instruction>(ValuesPerBlock[i].second))
 | 
						|
	// "Hot" Instruction is in some loop (because it dominates its dep. 
 | 
						|
	// instruction).
 | 
						|
	if (DT->dominates(LI, I)) { 
 | 
						|
	  isHot = true;
 | 
						|
	  break;
 | 
						|
	}
 | 
						|
 | 
						|
    // We are interested only in "hot" instructions. We don't want to do any
 | 
						|
    // mis-optimizations here.
 | 
						|
    if (!isHot)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, we have some hope :).  Check to see if the loaded value is fully
 | 
						|
  // available in all but one predecessor.
 | 
						|
  // FIXME: If we could restructure the CFG, we could make a common pred with
 | 
						|
  // all the preds that don't have an available LI and insert a new load into
 | 
						|
  // that one block.
 | 
						|
  BasicBlock *UnavailablePred = 0;
 | 
						|
 | 
						|
  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
 | 
						|
  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
 | 
						|
    FullyAvailableBlocks[ValuesPerBlock[i].first] = true;
 | 
						|
  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
 | 
						|
    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
 | 
						|
 | 
						|
  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
 | 
						|
       PI != E; ++PI) {
 | 
						|
    if (IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    // If this load is not available in multiple predecessors, reject it.
 | 
						|
    if (UnavailablePred && UnavailablePred != *PI)
 | 
						|
      return false;
 | 
						|
    UnavailablePred = *PI;
 | 
						|
  }
 | 
						|
  
 | 
						|
  assert(UnavailablePred != 0 &&
 | 
						|
         "Fully available value should be eliminated above!");
 | 
						|
  
 | 
						|
  // If the loaded pointer is PHI node defined in this block, do PHI translation
 | 
						|
  // to get its value in the predecessor.
 | 
						|
  Value *LoadPtr = LI->getOperand(0)->DoPHITranslation(LoadBB, UnavailablePred);
 | 
						|
  
 | 
						|
  // Make sure the value is live in the predecessor.  If it was defined by a
 | 
						|
  // non-PHI instruction in this block, we don't know how to recompute it above.
 | 
						|
  if (Instruction *LPInst = dyn_cast<Instruction>(LoadPtr))
 | 
						|
    if (!DT->dominates(LPInst->getParent(), UnavailablePred)) {
 | 
						|
      DEBUG(errs() << "COULDN'T PRE LOAD BECAUSE PTR IS UNAVAILABLE IN PRED: "
 | 
						|
                   << *LPInst << '\n' << *LI << "\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  
 | 
						|
  // We don't currently handle critical edges :(
 | 
						|
  if (UnavailablePred->getTerminator()->getNumSuccessors() != 1) {
 | 
						|
    DEBUG(errs() << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '"
 | 
						|
                 << UnavailablePred->getName() << "': " << *LI << '\n');
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure it is valid to move this load here.  We have to watch out for:
 | 
						|
  //  @1 = getelementptr (i8* p, ...
 | 
						|
  //  test p and branch if == 0
 | 
						|
  //  load @1
 | 
						|
  // It is valid to have the getelementptr before the test, even if p can be 0,
 | 
						|
  // as getelementptr only does address arithmetic.
 | 
						|
  // If we are not pushing the value through any multiple-successor blocks
 | 
						|
  // we do not have this case.  Otherwise, check that the load is safe to
 | 
						|
  // put anywhere; this can be improved, but should be conservatively safe.
 | 
						|
  if (!allSingleSucc &&
 | 
						|
      !isSafeToLoadUnconditionally(LoadPtr, UnavailablePred->getTerminator()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Okay, we can eliminate this load by inserting a reload in the predecessor
 | 
						|
  // and using PHI construction to get the value in the other predecessors, do
 | 
						|
  // it.
 | 
						|
  DEBUG(errs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
 | 
						|
  
 | 
						|
  Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
 | 
						|
                                LI->getAlignment(),
 | 
						|
                                UnavailablePred->getTerminator());
 | 
						|
  
 | 
						|
  SmallPtrSet<Instruction*, 4> &p = phiMap[LI->getPointerOperand()];
 | 
						|
  for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
 | 
						|
       I != E; ++I)
 | 
						|
    ValuesPerBlock.push_back(std::make_pair((*I)->getParent(), *I));
 | 
						|
  
 | 
						|
  DenseMap<BasicBlock*, Value*> BlockReplValues;
 | 
						|
  BlockReplValues.insert(ValuesPerBlock.begin(), ValuesPerBlock.end());
 | 
						|
  BlockReplValues[UnavailablePred] = NewLoad;
 | 
						|
  
 | 
						|
  // Perform PHI construction.
 | 
						|
  Value* v = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
 | 
						|
  LI->replaceAllUsesWith(v);
 | 
						|
  if (isa<PHINode>(v))
 | 
						|
    v->takeName(LI);
 | 
						|
  if (isa<PointerType>(v->getType()))
 | 
						|
    MD->invalidateCachedPointerInfo(v);
 | 
						|
  toErase.push_back(LI);
 | 
						|
  NumPRELoad++;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// processLoad - Attempt to eliminate a load, first by eliminating it
 | 
						|
/// locally, and then attempting non-local elimination if that fails.
 | 
						|
bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
 | 
						|
  if (L->isVolatile())
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  Value* pointer = L->getPointerOperand();
 | 
						|
 | 
						|
  // ... to a pointer that has been loaded from before...
 | 
						|
  MemDepResult dep = MD->getDependency(L);
 | 
						|
  
 | 
						|
  // If the value isn't available, don't do anything!
 | 
						|
  if (dep.isClobber()) {
 | 
						|
    DEBUG(
 | 
						|
      // fast print dep, using operator<< on instruction would be too slow
 | 
						|
      errs() << "GVN: load ";
 | 
						|
      WriteAsOperand(errs(), L);
 | 
						|
      Instruction *I = dep.getInst();
 | 
						|
      errs() << " is clobbered by " << *I << '\n';
 | 
						|
    );
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If it is defined in another block, try harder.
 | 
						|
  if (dep.isNonLocal())
 | 
						|
    return processNonLocalLoad(L, toErase);
 | 
						|
 | 
						|
  Instruction *DepInst = dep.getInst();
 | 
						|
  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
 | 
						|
    // Only forward substitute stores to loads of the same type.
 | 
						|
    // FIXME: Could do better!
 | 
						|
    if (DepSI->getPointerOperand()->getType() != pointer->getType())
 | 
						|
      return false;
 | 
						|
    
 | 
						|
    // Remove it!
 | 
						|
    L->replaceAllUsesWith(DepSI->getOperand(0));
 | 
						|
    if (isa<PointerType>(DepSI->getOperand(0)->getType()))
 | 
						|
      MD->invalidateCachedPointerInfo(DepSI->getOperand(0));
 | 
						|
    toErase.push_back(L);
 | 
						|
    NumGVNLoad++;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
 | 
						|
    // Only forward substitute stores to loads of the same type.
 | 
						|
    // FIXME: Could do better! load i32 -> load i8 -> truncate on little endian.
 | 
						|
    if (DepLI->getType() != L->getType())
 | 
						|
      return false;
 | 
						|
    
 | 
						|
    // Remove it!
 | 
						|
    L->replaceAllUsesWith(DepLI);
 | 
						|
    if (isa<PointerType>(DepLI->getType()))
 | 
						|
      MD->invalidateCachedPointerInfo(DepLI);
 | 
						|
    toErase.push_back(L);
 | 
						|
    NumGVNLoad++;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If this load really doesn't depend on anything, then we must be loading an
 | 
						|
  // undef value.  This can happen when loading for a fresh allocation with no
 | 
						|
  // intervening stores, for example.
 | 
						|
  if (isa<AllocationInst>(DepInst)) {
 | 
						|
    L->replaceAllUsesWith(UndefValue::get(L->getType()));
 | 
						|
    toErase.push_back(L);
 | 
						|
    NumGVNLoad++;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
Value* GVN::lookupNumber(BasicBlock* BB, uint32_t num) {
 | 
						|
  DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
 | 
						|
  if (I == localAvail.end())
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  ValueNumberScope* locals = I->second;
 | 
						|
  
 | 
						|
  while (locals) {
 | 
						|
    DenseMap<uint32_t, Value*>::iterator I = locals->table.find(num);
 | 
						|
    if (I != locals->table.end())
 | 
						|
      return I->second;
 | 
						|
    else
 | 
						|
      locals = locals->parent;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// AttemptRedundancyElimination - If the "fast path" of redundancy elimination
 | 
						|
/// by inheritance from the dominator fails, see if we can perform phi 
 | 
						|
/// construction to eliminate the redundancy.
 | 
						|
Value* GVN::AttemptRedundancyElimination(Instruction* orig, unsigned valno) {
 | 
						|
  BasicBlock* BaseBlock = orig->getParent();
 | 
						|
  
 | 
						|
  SmallPtrSet<BasicBlock*, 4> Visited;
 | 
						|
  SmallVector<BasicBlock*, 8> Stack;
 | 
						|
  Stack.push_back(BaseBlock);
 | 
						|
  
 | 
						|
  DenseMap<BasicBlock*, Value*> Results;
 | 
						|
  
 | 
						|
  // Walk backwards through our predecessors, looking for instances of the
 | 
						|
  // value number we're looking for.  Instances are recorded in the Results
 | 
						|
  // map, which is then used to perform phi construction.
 | 
						|
  while (!Stack.empty()) {
 | 
						|
    BasicBlock* Current = Stack.back();
 | 
						|
    Stack.pop_back();
 | 
						|
    
 | 
						|
    // If we've walked all the way to a proper dominator, then give up. Cases
 | 
						|
    // where the instance is in the dominator will have been caught by the fast
 | 
						|
    // path, and any cases that require phi construction further than this are
 | 
						|
    // probably not worth it anyways.  Note that this is a SIGNIFICANT compile
 | 
						|
    // time improvement.
 | 
						|
    if (DT->properlyDominates(Current, orig->getParent())) return 0;
 | 
						|
    
 | 
						|
    DenseMap<BasicBlock*, ValueNumberScope*>::iterator LA =
 | 
						|
                                                       localAvail.find(Current);
 | 
						|
    if (LA == localAvail.end()) return 0;
 | 
						|
    DenseMap<uint32_t, Value*>::iterator V = LA->second->table.find(valno);
 | 
						|
    
 | 
						|
    if (V != LA->second->table.end()) {
 | 
						|
      // Found an instance, record it.
 | 
						|
      Results.insert(std::make_pair(Current, V->second));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If we reach the beginning of the function, then give up.
 | 
						|
    if (pred_begin(Current) == pred_end(Current))
 | 
						|
      return 0;
 | 
						|
    
 | 
						|
    for (pred_iterator PI = pred_begin(Current), PE = pred_end(Current);
 | 
						|
         PI != PE; ++PI)
 | 
						|
      if (Visited.insert(*PI))
 | 
						|
        Stack.push_back(*PI);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If we didn't find instances, give up.  Otherwise, perform phi construction.
 | 
						|
  if (Results.size() == 0)
 | 
						|
    return 0;
 | 
						|
  else
 | 
						|
    return GetValueForBlock(BaseBlock, orig, Results, true);
 | 
						|
}
 | 
						|
 | 
						|
/// processInstruction - When calculating availability, handle an instruction
 | 
						|
/// by inserting it into the appropriate sets
 | 
						|
bool GVN::processInstruction(Instruction *I,
 | 
						|
                             SmallVectorImpl<Instruction*> &toErase) {
 | 
						|
  if (LoadInst* L = dyn_cast<LoadInst>(I)) {
 | 
						|
    bool changed = processLoad(L, toErase);
 | 
						|
    
 | 
						|
    if (!changed) {
 | 
						|
      unsigned num = VN.lookup_or_add(L);
 | 
						|
      localAvail[I->getParent()]->table.insert(std::make_pair(num, L));
 | 
						|
    }
 | 
						|
    
 | 
						|
    return changed;
 | 
						|
  }
 | 
						|
  
 | 
						|
  uint32_t nextNum = VN.getNextUnusedValueNumber();
 | 
						|
  unsigned num = VN.lookup_or_add(I);
 | 
						|
  
 | 
						|
  if (BranchInst* BI = dyn_cast<BranchInst>(I)) {
 | 
						|
    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
 | 
						|
    
 | 
						|
    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
 | 
						|
      return false;
 | 
						|
    
 | 
						|
    Value* branchCond = BI->getCondition();
 | 
						|
    uint32_t condVN = VN.lookup_or_add(branchCond);
 | 
						|
    
 | 
						|
    BasicBlock* trueSucc = BI->getSuccessor(0);
 | 
						|
    BasicBlock* falseSucc = BI->getSuccessor(1);
 | 
						|
    
 | 
						|
    if (trueSucc->getSinglePredecessor())
 | 
						|
      localAvail[trueSucc]->table[condVN] = 
 | 
						|
        ConstantInt::getTrue(trueSucc->getContext());
 | 
						|
    if (falseSucc->getSinglePredecessor())
 | 
						|
      localAvail[falseSucc]->table[condVN] =
 | 
						|
        ConstantInt::getFalse(trueSucc->getContext());
 | 
						|
 | 
						|
    return false;
 | 
						|
    
 | 
						|
  // Allocations are always uniquely numbered, so we can save time and memory
 | 
						|
  // by fast failing them.  
 | 
						|
  } else if (isa<AllocationInst>(I) || isa<TerminatorInst>(I)) {
 | 
						|
    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Collapse PHI nodes
 | 
						|
  if (PHINode* p = dyn_cast<PHINode>(I)) {
 | 
						|
    Value* constVal = CollapsePhi(p);
 | 
						|
    
 | 
						|
    if (constVal) {
 | 
						|
      for (PhiMapType::iterator PI = phiMap.begin(), PE = phiMap.end();
 | 
						|
           PI != PE; ++PI)
 | 
						|
        PI->second.erase(p);
 | 
						|
        
 | 
						|
      p->replaceAllUsesWith(constVal);
 | 
						|
      if (isa<PointerType>(constVal->getType()))
 | 
						|
        MD->invalidateCachedPointerInfo(constVal);
 | 
						|
      VN.erase(p);
 | 
						|
      
 | 
						|
      toErase.push_back(p);
 | 
						|
    } else {
 | 
						|
      localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
 | 
						|
    }
 | 
						|
  
 | 
						|
  // If the number we were assigned was a brand new VN, then we don't
 | 
						|
  // need to do a lookup to see if the number already exists
 | 
						|
  // somewhere in the domtree: it can't!
 | 
						|
  } else if (num == nextNum) {
 | 
						|
    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
 | 
						|
    
 | 
						|
  // Perform fast-path value-number based elimination of values inherited from
 | 
						|
  // dominators.
 | 
						|
  } else if (Value* repl = lookupNumber(I->getParent(), num)) {
 | 
						|
    // Remove it!
 | 
						|
    VN.erase(I);
 | 
						|
    I->replaceAllUsesWith(repl);
 | 
						|
    if (isa<PointerType>(repl->getType()))
 | 
						|
      MD->invalidateCachedPointerInfo(repl);
 | 
						|
    toErase.push_back(I);
 | 
						|
    return true;
 | 
						|
 | 
						|
#if 0
 | 
						|
  // Perform slow-pathvalue-number based elimination with phi construction.
 | 
						|
  } else if (Value* repl = AttemptRedundancyElimination(I, num)) {
 | 
						|
    // Remove it!
 | 
						|
    VN.erase(I);
 | 
						|
    I->replaceAllUsesWith(repl);
 | 
						|
    if (isa<PointerType>(repl->getType()))
 | 
						|
      MD->invalidateCachedPointerInfo(repl);
 | 
						|
    toErase.push_back(I);
 | 
						|
    return true;
 | 
						|
#endif
 | 
						|
  } else {
 | 
						|
    localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
 | 
						|
  }
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// runOnFunction - This is the main transformation entry point for a function.
 | 
						|
bool GVN::runOnFunction(Function& F) {
 | 
						|
  MD = &getAnalysis<MemoryDependenceAnalysis>();
 | 
						|
  DT = &getAnalysis<DominatorTree>();
 | 
						|
  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
 | 
						|
  VN.setMemDep(MD);
 | 
						|
  VN.setDomTree(DT);
 | 
						|
  
 | 
						|
  bool changed = false;
 | 
						|
  bool shouldContinue = true;
 | 
						|
  
 | 
						|
  // Merge unconditional branches, allowing PRE to catch more
 | 
						|
  // optimization opportunities.
 | 
						|
  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
 | 
						|
    BasicBlock* BB = FI;
 | 
						|
    ++FI;
 | 
						|
    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
 | 
						|
    if (removedBlock) NumGVNBlocks++;
 | 
						|
    
 | 
						|
    changed |= removedBlock;
 | 
						|
  }
 | 
						|
  
 | 
						|
  unsigned Iteration = 0;
 | 
						|
  
 | 
						|
  while (shouldContinue) {
 | 
						|
    DEBUG(errs() << "GVN iteration: " << Iteration << "\n");
 | 
						|
    shouldContinue = iterateOnFunction(F);
 | 
						|
    changed |= shouldContinue;
 | 
						|
    ++Iteration;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (EnablePRE) {
 | 
						|
    bool PREChanged = true;
 | 
						|
    while (PREChanged) {
 | 
						|
      PREChanged = performPRE(F);
 | 
						|
      changed |= PREChanged;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // FIXME: Should perform GVN again after PRE does something.  PRE can move
 | 
						|
  // computations into blocks where they become fully redundant.  Note that
 | 
						|
  // we can't do this until PRE's critical edge splitting updates memdep.
 | 
						|
  // Actually, when this happens, we should just fully integrate PRE into GVN.
 | 
						|
 | 
						|
  cleanupGlobalSets();
 | 
						|
 | 
						|
  return changed;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool GVN::processBlock(BasicBlock* BB) {
 | 
						|
  // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
 | 
						|
  // incrementing BI before processing an instruction).
 | 
						|
  SmallVector<Instruction*, 8> toErase;
 | 
						|
  bool changed_function = false;
 | 
						|
  
 | 
						|
  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
 | 
						|
       BI != BE;) {
 | 
						|
    changed_function |= processInstruction(BI, toErase);
 | 
						|
    if (toErase.empty()) {
 | 
						|
      ++BI;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If we need some instructions deleted, do it now.
 | 
						|
    NumGVNInstr += toErase.size();
 | 
						|
    
 | 
						|
    // Avoid iterator invalidation.
 | 
						|
    bool AtStart = BI == BB->begin();
 | 
						|
    if (!AtStart)
 | 
						|
      --BI;
 | 
						|
 | 
						|
    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
 | 
						|
         E = toErase.end(); I != E; ++I) {
 | 
						|
      DEBUG(errs() << "GVN removed: " << **I << '\n');
 | 
						|
      MD->removeInstruction(*I);
 | 
						|
      (*I)->eraseFromParent();
 | 
						|
      DEBUG(verifyRemoved(*I));
 | 
						|
    }
 | 
						|
    toErase.clear();
 | 
						|
 | 
						|
    if (AtStart)
 | 
						|
      BI = BB->begin();
 | 
						|
    else
 | 
						|
      ++BI;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return changed_function;
 | 
						|
}
 | 
						|
 | 
						|
/// performPRE - Perform a purely local form of PRE that looks for diamond
 | 
						|
/// control flow patterns and attempts to perform simple PRE at the join point.
 | 
						|
bool GVN::performPRE(Function& F) {
 | 
						|
  bool Changed = false;
 | 
						|
  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
 | 
						|
  DenseMap<BasicBlock*, Value*> predMap;
 | 
						|
  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
 | 
						|
       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
 | 
						|
    BasicBlock* CurrentBlock = *DI;
 | 
						|
    
 | 
						|
    // Nothing to PRE in the entry block.
 | 
						|
    if (CurrentBlock == &F.getEntryBlock()) continue;
 | 
						|
    
 | 
						|
    for (BasicBlock::iterator BI = CurrentBlock->begin(),
 | 
						|
         BE = CurrentBlock->end(); BI != BE; ) {
 | 
						|
      Instruction *CurInst = BI++;
 | 
						|
 | 
						|
      if (isa<AllocationInst>(CurInst) || isa<TerminatorInst>(CurInst) ||
 | 
						|
          isa<PHINode>(CurInst) || (CurInst->getType() == Type::VoidTy) ||
 | 
						|
          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
 | 
						|
          isa<DbgInfoIntrinsic>(CurInst))
 | 
						|
        continue;
 | 
						|
 | 
						|
      uint32_t valno = VN.lookup(CurInst);
 | 
						|
      
 | 
						|
      // Look for the predecessors for PRE opportunities.  We're
 | 
						|
      // only trying to solve the basic diamond case, where
 | 
						|
      // a value is computed in the successor and one predecessor,
 | 
						|
      // but not the other.  We also explicitly disallow cases
 | 
						|
      // where the successor is its own predecessor, because they're
 | 
						|
      // more complicated to get right.
 | 
						|
      unsigned numWith = 0;
 | 
						|
      unsigned numWithout = 0;
 | 
						|
      BasicBlock* PREPred = 0;
 | 
						|
      predMap.clear();
 | 
						|
 | 
						|
      for (pred_iterator PI = pred_begin(CurrentBlock),
 | 
						|
           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
 | 
						|
        // We're not interested in PRE where the block is its
 | 
						|
        // own predecessor, on in blocks with predecessors
 | 
						|
        // that are not reachable.
 | 
						|
        if (*PI == CurrentBlock) {
 | 
						|
          numWithout = 2;
 | 
						|
          break;
 | 
						|
        } else if (!localAvail.count(*PI))  {
 | 
						|
          numWithout = 2;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        
 | 
						|
        DenseMap<uint32_t, Value*>::iterator predV = 
 | 
						|
                                            localAvail[*PI]->table.find(valno);
 | 
						|
        if (predV == localAvail[*PI]->table.end()) {
 | 
						|
          PREPred = *PI;
 | 
						|
          numWithout++;
 | 
						|
        } else if (predV->second == CurInst) {
 | 
						|
          numWithout = 2;
 | 
						|
        } else {
 | 
						|
          predMap[*PI] = predV->second;
 | 
						|
          numWith++;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Don't do PRE when it might increase code size, i.e. when
 | 
						|
      // we would need to insert instructions in more than one pred.
 | 
						|
      if (numWithout != 1 || numWith == 0)
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      // We can't do PRE safely on a critical edge, so instead we schedule
 | 
						|
      // the edge to be split and perform the PRE the next time we iterate
 | 
						|
      // on the function.
 | 
						|
      unsigned succNum = 0;
 | 
						|
      for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors();
 | 
						|
           i != e; ++i)
 | 
						|
        if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) {
 | 
						|
          succNum = i;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        
 | 
						|
      if (isCriticalEdge(PREPred->getTerminator(), succNum)) {
 | 
						|
        toSplit.push_back(std::make_pair(PREPred->getTerminator(), succNum));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Instantiate the expression the in predecessor that lacked it.
 | 
						|
      // Because we are going top-down through the block, all value numbers
 | 
						|
      // will be available in the predecessor by the time we need them.  Any
 | 
						|
      // that weren't original present will have been instantiated earlier
 | 
						|
      // in this loop.
 | 
						|
      Instruction* PREInstr = CurInst->clone(CurInst->getContext());
 | 
						|
      bool success = true;
 | 
						|
      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
 | 
						|
        Value *Op = PREInstr->getOperand(i);
 | 
						|
        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
 | 
						|
          continue;
 | 
						|
        
 | 
						|
        if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
 | 
						|
          PREInstr->setOperand(i, V);
 | 
						|
        } else {
 | 
						|
          success = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Fail out if we encounter an operand that is not available in
 | 
						|
      // the PRE predecessor.  This is typically because of loads which 
 | 
						|
      // are not value numbered precisely.
 | 
						|
      if (!success) {
 | 
						|
        delete PREInstr;
 | 
						|
        DEBUG(verifyRemoved(PREInstr));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      
 | 
						|
      PREInstr->insertBefore(PREPred->getTerminator());
 | 
						|
      PREInstr->setName(CurInst->getName() + ".pre");
 | 
						|
      predMap[PREPred] = PREInstr;
 | 
						|
      VN.add(PREInstr, valno);
 | 
						|
      NumGVNPRE++;
 | 
						|
      
 | 
						|
      // Update the availability map to include the new instruction.
 | 
						|
      localAvail[PREPred]->table.insert(std::make_pair(valno, PREInstr));
 | 
						|
      
 | 
						|
      // Create a PHI to make the value available in this block.
 | 
						|
      PHINode* Phi = PHINode::Create(CurInst->getType(),
 | 
						|
                                     CurInst->getName() + ".pre-phi",
 | 
						|
                                     CurrentBlock->begin());
 | 
						|
      for (pred_iterator PI = pred_begin(CurrentBlock),
 | 
						|
           PE = pred_end(CurrentBlock); PI != PE; ++PI)
 | 
						|
        Phi->addIncoming(predMap[*PI], *PI);
 | 
						|
      
 | 
						|
      VN.add(Phi, valno);
 | 
						|
      localAvail[CurrentBlock]->table[valno] = Phi;
 | 
						|
      
 | 
						|
      CurInst->replaceAllUsesWith(Phi);
 | 
						|
      if (isa<PointerType>(Phi->getType()))
 | 
						|
        MD->invalidateCachedPointerInfo(Phi);
 | 
						|
      VN.erase(CurInst);
 | 
						|
      
 | 
						|
      DEBUG(errs() << "GVN PRE removed: " << *CurInst << '\n');
 | 
						|
      MD->removeInstruction(CurInst);
 | 
						|
      CurInst->eraseFromParent();
 | 
						|
      DEBUG(verifyRemoved(CurInst));
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  for (SmallVector<std::pair<TerminatorInst*, unsigned>, 4>::iterator
 | 
						|
       I = toSplit.begin(), E = toSplit.end(); I != E; ++I)
 | 
						|
    SplitCriticalEdge(I->first, I->second, this);
 | 
						|
  
 | 
						|
  return Changed || toSplit.size();
 | 
						|
}
 | 
						|
 | 
						|
/// iterateOnFunction - Executes one iteration of GVN
 | 
						|
bool GVN::iterateOnFunction(Function &F) {
 | 
						|
  cleanupGlobalSets();
 | 
						|
 | 
						|
  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
 | 
						|
       DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
 | 
						|
    if (DI->getIDom())
 | 
						|
      localAvail[DI->getBlock()] =
 | 
						|
                   new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]);
 | 
						|
    else
 | 
						|
      localAvail[DI->getBlock()] = new ValueNumberScope(0);
 | 
						|
  }
 | 
						|
 | 
						|
  // Top-down walk of the dominator tree
 | 
						|
  bool changed = false;
 | 
						|
#if 0
 | 
						|
  // Needed for value numbering with phi construction to work.
 | 
						|
  ReversePostOrderTraversal<Function*> RPOT(&F);
 | 
						|
  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
 | 
						|
       RE = RPOT.end(); RI != RE; ++RI)
 | 
						|
    changed |= processBlock(*RI);
 | 
						|
#else
 | 
						|
  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
 | 
						|
       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
 | 
						|
    changed |= processBlock(DI->getBlock());
 | 
						|
#endif
 | 
						|
 | 
						|
  return changed;
 | 
						|
}
 | 
						|
 | 
						|
void GVN::cleanupGlobalSets() {
 | 
						|
  VN.clear();
 | 
						|
  phiMap.clear();
 | 
						|
 | 
						|
  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
 | 
						|
       I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
 | 
						|
    delete I->second;
 | 
						|
  localAvail.clear();
 | 
						|
}
 | 
						|
 | 
						|
/// verifyRemoved - Verify that the specified instruction does not occur in our
 | 
						|
/// internal data structures.
 | 
						|
void GVN::verifyRemoved(const Instruction *Inst) const {
 | 
						|
  VN.verifyRemoved(Inst);
 | 
						|
 | 
						|
  // Walk through the PHI map to make sure the instruction isn't hiding in there
 | 
						|
  // somewhere.
 | 
						|
  for (PhiMapType::iterator
 | 
						|
         I = phiMap.begin(), E = phiMap.end(); I != E; ++I) {
 | 
						|
    assert(I->first != Inst && "Inst is still a key in PHI map!");
 | 
						|
 | 
						|
    for (SmallPtrSet<Instruction*, 4>::iterator
 | 
						|
           II = I->second.begin(), IE = I->second.end(); II != IE; ++II) {
 | 
						|
      assert(*II != Inst && "Inst is still a value in PHI map!");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Walk through the value number scope to make sure the instruction isn't
 | 
						|
  // ferreted away in it.
 | 
						|
  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
 | 
						|
         I = localAvail.begin(), E = localAvail.end(); I != E; ++I) {
 | 
						|
    const ValueNumberScope *VNS = I->second;
 | 
						|
 | 
						|
    while (VNS) {
 | 
						|
      for (DenseMap<uint32_t, Value*>::iterator
 | 
						|
             II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) {
 | 
						|
        assert(II->second != Inst && "Inst still in value numbering scope!");
 | 
						|
      }
 | 
						|
 | 
						|
      VNS = VNS->parent;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 |