llvm-6502/lib/Analysis/MemoryBuiltins.cpp
Mehdi Amini 529919ff31 DataLayout is mandatory, update the API to reflect it with references.
Summary:
Now that the DataLayout is a mandatory part of the module, let's start
cleaning the codebase. This patch is a first attempt at doing that.

This patch is not exactly NFC as for instance some places were passing
a nullptr instead of the DataLayout, possibly just because there was a
default value on the DataLayout argument to many functions in the API.
Even though it is not purely NFC, there is no change in the
validation.

I turned as many pointer to DataLayout to references, this helped
figuring out all the places where a nullptr could come up.

I had initially a local version of this patch broken into over 30
independant, commits but some later commit were cleaning the API and
touching part of the code modified in the previous commits, so it
seemed cleaner without the intermediate state.

Test Plan:

Reviewers: echristo

Subscribers: llvm-commits

From: Mehdi Amini <mehdi.amini@apple.com>

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231740 91177308-0d34-0410-b5e6-96231b3b80d8
2015-03-10 02:37:25 +00:00

793 lines
28 KiB
C++

//===------ MemoryBuiltins.cpp - Identify calls to memory builtins --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This family of functions identifies calls to builtin functions that allocate
// or free memory.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
#define DEBUG_TYPE "memory-builtins"
enum AllocType {
OpNewLike = 1<<0, // allocates; never returns null
MallocLike = 1<<1 | OpNewLike, // allocates; may return null
CallocLike = 1<<2, // allocates + bzero
ReallocLike = 1<<3, // reallocates
StrDupLike = 1<<4,
AllocLike = MallocLike | CallocLike | StrDupLike,
AnyAlloc = AllocLike | ReallocLike
};
struct AllocFnsTy {
LibFunc::Func Func;
AllocType AllocTy;
unsigned char NumParams;
// First and Second size parameters (or -1 if unused)
signed char FstParam, SndParam;
};
// FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
// know which functions are nounwind, noalias, nocapture parameters, etc.
static const AllocFnsTy AllocationFnData[] = {
{LibFunc::malloc, MallocLike, 1, 0, -1},
{LibFunc::valloc, MallocLike, 1, 0, -1},
{LibFunc::Znwj, OpNewLike, 1, 0, -1}, // new(unsigned int)
{LibFunc::ZnwjRKSt9nothrow_t, MallocLike, 2, 0, -1}, // new(unsigned int, nothrow)
{LibFunc::Znwm, OpNewLike, 1, 0, -1}, // new(unsigned long)
{LibFunc::ZnwmRKSt9nothrow_t, MallocLike, 2, 0, -1}, // new(unsigned long, nothrow)
{LibFunc::Znaj, OpNewLike, 1, 0, -1}, // new[](unsigned int)
{LibFunc::ZnajRKSt9nothrow_t, MallocLike, 2, 0, -1}, // new[](unsigned int, nothrow)
{LibFunc::Znam, OpNewLike, 1, 0, -1}, // new[](unsigned long)
{LibFunc::ZnamRKSt9nothrow_t, MallocLike, 2, 0, -1}, // new[](unsigned long, nothrow)
{LibFunc::calloc, CallocLike, 2, 0, 1},
{LibFunc::realloc, ReallocLike, 2, 1, -1},
{LibFunc::reallocf, ReallocLike, 2, 1, -1},
{LibFunc::strdup, StrDupLike, 1, -1, -1},
{LibFunc::strndup, StrDupLike, 2, 1, -1}
// TODO: Handle "int posix_memalign(void **, size_t, size_t)"
};
static Function *getCalledFunction(const Value *V, bool LookThroughBitCast) {
if (LookThroughBitCast)
V = V->stripPointerCasts();
CallSite CS(const_cast<Value*>(V));
if (!CS.getInstruction())
return nullptr;
if (CS.isNoBuiltin())
return nullptr;
Function *Callee = CS.getCalledFunction();
if (!Callee || !Callee->isDeclaration())
return nullptr;
return Callee;
}
/// \brief Returns the allocation data for the given value if it is a call to a
/// known allocation function, and NULL otherwise.
static const AllocFnsTy *getAllocationData(const Value *V, AllocType AllocTy,
const TargetLibraryInfo *TLI,
bool LookThroughBitCast = false) {
// Skip intrinsics
if (isa<IntrinsicInst>(V))
return nullptr;
Function *Callee = getCalledFunction(V, LookThroughBitCast);
if (!Callee)
return nullptr;
// Make sure that the function is available.
StringRef FnName = Callee->getName();
LibFunc::Func TLIFn;
if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
return nullptr;
unsigned i = 0;
bool found = false;
for ( ; i < array_lengthof(AllocationFnData); ++i) {
if (AllocationFnData[i].Func == TLIFn) {
found = true;
break;
}
}
if (!found)
return nullptr;
const AllocFnsTy *FnData = &AllocationFnData[i];
if ((FnData->AllocTy & AllocTy) != FnData->AllocTy)
return nullptr;
// Check function prototype.
int FstParam = FnData->FstParam;
int SndParam = FnData->SndParam;
FunctionType *FTy = Callee->getFunctionType();
if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) &&
FTy->getNumParams() == FnData->NumParams &&
(FstParam < 0 ||
(FTy->getParamType(FstParam)->isIntegerTy(32) ||
FTy->getParamType(FstParam)->isIntegerTy(64))) &&
(SndParam < 0 ||
FTy->getParamType(SndParam)->isIntegerTy(32) ||
FTy->getParamType(SndParam)->isIntegerTy(64)))
return FnData;
return nullptr;
}
static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) {
ImmutableCallSite CS(LookThroughBitCast ? V->stripPointerCasts() : V);
return CS && CS.hasFnAttr(Attribute::NoAlias);
}
/// \brief Tests if a value is a call or invoke to a library function that
/// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
/// like).
bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI,
bool LookThroughBitCast) {
return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast);
}
/// \brief Tests if a value is a call or invoke to a function that returns a
/// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions).
bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI,
bool LookThroughBitCast) {
// it's safe to consider realloc as noalias since accessing the original
// pointer is undefined behavior
return isAllocationFn(V, TLI, LookThroughBitCast) ||
hasNoAliasAttr(V, LookThroughBitCast);
}
/// \brief Tests if a value is a call or invoke to a library function that
/// allocates uninitialized memory (such as malloc).
bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
bool LookThroughBitCast) {
return getAllocationData(V, MallocLike, TLI, LookThroughBitCast);
}
/// \brief Tests if a value is a call or invoke to a library function that
/// allocates zero-filled memory (such as calloc).
bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
bool LookThroughBitCast) {
return getAllocationData(V, CallocLike, TLI, LookThroughBitCast);
}
/// \brief Tests if a value is a call or invoke to a library function that
/// allocates memory (either malloc, calloc, or strdup like).
bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
bool LookThroughBitCast) {
return getAllocationData(V, AllocLike, TLI, LookThroughBitCast);
}
/// \brief Tests if a value is a call or invoke to a library function that
/// reallocates memory (such as realloc).
bool llvm::isReallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
bool LookThroughBitCast) {
return getAllocationData(V, ReallocLike, TLI, LookThroughBitCast);
}
/// \brief Tests if a value is a call or invoke to a library function that
/// allocates memory and never returns null (such as operator new).
bool llvm::isOperatorNewLikeFn(const Value *V, const TargetLibraryInfo *TLI,
bool LookThroughBitCast) {
return getAllocationData(V, OpNewLike, TLI, LookThroughBitCast);
}
/// extractMallocCall - Returns the corresponding CallInst if the instruction
/// is a malloc call. Since CallInst::CreateMalloc() only creates calls, we
/// ignore InvokeInst here.
const CallInst *llvm::extractMallocCall(const Value *I,
const TargetLibraryInfo *TLI) {
return isMallocLikeFn(I, TLI) ? dyn_cast<CallInst>(I) : nullptr;
}
static Value *computeArraySize(const CallInst *CI, const DataLayout &DL,
const TargetLibraryInfo *TLI,
bool LookThroughSExt = false) {
if (!CI)
return nullptr;
// The size of the malloc's result type must be known to determine array size.
Type *T = getMallocAllocatedType(CI, TLI);
if (!T || !T->isSized())
return nullptr;
unsigned ElementSize = DL.getTypeAllocSize(T);
if (StructType *ST = dyn_cast<StructType>(T))
ElementSize = DL.getStructLayout(ST)->getSizeInBytes();
// If malloc call's arg can be determined to be a multiple of ElementSize,
// return the multiple. Otherwise, return NULL.
Value *MallocArg = CI->getArgOperand(0);
Value *Multiple = nullptr;
if (ComputeMultiple(MallocArg, ElementSize, Multiple,
LookThroughSExt))
return Multiple;
return nullptr;
}
/// getMallocType - Returns the PointerType resulting from the malloc call.
/// The PointerType depends on the number of bitcast uses of the malloc call:
/// 0: PointerType is the calls' return type.
/// 1: PointerType is the bitcast's result type.
/// >1: Unique PointerType cannot be determined, return NULL.
PointerType *llvm::getMallocType(const CallInst *CI,
const TargetLibraryInfo *TLI) {
assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call");
PointerType *MallocType = nullptr;
unsigned NumOfBitCastUses = 0;
// Determine if CallInst has a bitcast use.
for (Value::const_user_iterator UI = CI->user_begin(), E = CI->user_end();
UI != E;)
if (const BitCastInst *BCI = dyn_cast<BitCastInst>(*UI++)) {
MallocType = cast<PointerType>(BCI->getDestTy());
NumOfBitCastUses++;
}
// Malloc call has 1 bitcast use, so type is the bitcast's destination type.
if (NumOfBitCastUses == 1)
return MallocType;
// Malloc call was not bitcast, so type is the malloc function's return type.
if (NumOfBitCastUses == 0)
return cast<PointerType>(CI->getType());
// Type could not be determined.
return nullptr;
}
/// getMallocAllocatedType - Returns the Type allocated by malloc call.
/// The Type depends on the number of bitcast uses of the malloc call:
/// 0: PointerType is the malloc calls' return type.
/// 1: PointerType is the bitcast's result type.
/// >1: Unique PointerType cannot be determined, return NULL.
Type *llvm::getMallocAllocatedType(const CallInst *CI,
const TargetLibraryInfo *TLI) {
PointerType *PT = getMallocType(CI, TLI);
return PT ? PT->getElementType() : nullptr;
}
/// getMallocArraySize - Returns the array size of a malloc call. If the
/// argument passed to malloc is a multiple of the size of the malloced type,
/// then return that multiple. For non-array mallocs, the multiple is
/// constant 1. Otherwise, return NULL for mallocs whose array size cannot be
/// determined.
Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout &DL,
const TargetLibraryInfo *TLI,
bool LookThroughSExt) {
assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call");
return computeArraySize(CI, DL, TLI, LookThroughSExt);
}
/// extractCallocCall - Returns the corresponding CallInst if the instruction
/// is a calloc call.
const CallInst *llvm::extractCallocCall(const Value *I,
const TargetLibraryInfo *TLI) {
return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr;
}
/// isFreeCall - Returns non-null if the value is a call to the builtin free()
const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) {
const CallInst *CI = dyn_cast<CallInst>(I);
if (!CI || isa<IntrinsicInst>(CI))
return nullptr;
Function *Callee = CI->getCalledFunction();
if (Callee == nullptr)
return nullptr;
StringRef FnName = Callee->getName();
LibFunc::Func TLIFn;
if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
return nullptr;
unsigned ExpectedNumParams;
if (TLIFn == LibFunc::free ||
TLIFn == LibFunc::ZdlPv || // operator delete(void*)
TLIFn == LibFunc::ZdaPv) // operator delete[](void*)
ExpectedNumParams = 1;
else if (TLIFn == LibFunc::ZdlPvj || // delete(void*, uint)
TLIFn == LibFunc::ZdlPvm || // delete(void*, ulong)
TLIFn == LibFunc::ZdlPvRKSt9nothrow_t || // delete(void*, nothrow)
TLIFn == LibFunc::ZdaPvj || // delete[](void*, uint)
TLIFn == LibFunc::ZdaPvm || // delete[](void*, ulong)
TLIFn == LibFunc::ZdaPvRKSt9nothrow_t) // delete[](void*, nothrow)
ExpectedNumParams = 2;
else
return nullptr;
// Check free prototype.
// FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
// attribute will exist.
FunctionType *FTy = Callee->getFunctionType();
if (!FTy->getReturnType()->isVoidTy())
return nullptr;
if (FTy->getNumParams() != ExpectedNumParams)
return nullptr;
if (FTy->getParamType(0) != Type::getInt8PtrTy(Callee->getContext()))
return nullptr;
return CI;
}
//===----------------------------------------------------------------------===//
// Utility functions to compute size of objects.
//
/// \brief Compute the size of the object pointed by Ptr. Returns true and the
/// object size in Size if successful, and false otherwise.
/// If RoundToAlign is true, then Size is rounded up to the aligment of allocas,
/// byval arguments, and global variables.
bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL,
const TargetLibraryInfo *TLI, bool RoundToAlign) {
ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), RoundToAlign);
SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr));
if (!Visitor.bothKnown(Data))
return false;
APInt ObjSize = Data.first, Offset = Data.second;
// check for overflow
if (Offset.slt(0) || ObjSize.ult(Offset))
Size = 0;
else
Size = (ObjSize - Offset).getZExtValue();
return true;
}
STATISTIC(ObjectVisitorArgument,
"Number of arguments with unsolved size and offset");
STATISTIC(ObjectVisitorLoad,
"Number of load instructions with unsolved size and offset");
APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Align) {
if (RoundToAlign && Align)
return APInt(IntTyBits, RoundUpToAlignment(Size.getZExtValue(), Align));
return Size;
}
ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL,
const TargetLibraryInfo *TLI,
LLVMContext &Context,
bool RoundToAlign)
: DL(DL), TLI(TLI), RoundToAlign(RoundToAlign) {
// Pointer size must be rechecked for each object visited since it could have
// a different address space.
}
SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
IntTyBits = DL.getPointerTypeSizeInBits(V->getType());
Zero = APInt::getNullValue(IntTyBits);
V = V->stripPointerCasts();
if (Instruction *I = dyn_cast<Instruction>(V)) {
// If we have already seen this instruction, bail out. Cycles can happen in
// unreachable code after constant propagation.
if (!SeenInsts.insert(I).second)
return unknown();
if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
return visitGEPOperator(*GEP);
return visit(*I);
}
if (Argument *A = dyn_cast<Argument>(V))
return visitArgument(*A);
if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
return visitConstantPointerNull(*P);
if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
return visitGlobalAlias(*GA);
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
return visitGlobalVariable(*GV);
if (UndefValue *UV = dyn_cast<UndefValue>(V))
return visitUndefValue(*UV);
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
if (CE->getOpcode() == Instruction::IntToPtr)
return unknown(); // clueless
if (CE->getOpcode() == Instruction::GetElementPtr)
return visitGEPOperator(cast<GEPOperator>(*CE));
}
DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " << *V
<< '\n');
return unknown();
}
SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
if (!I.getAllocatedType()->isSized())
return unknown();
APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType()));
if (!I.isArrayAllocation())
return std::make_pair(align(Size, I.getAlignment()), Zero);
Value *ArraySize = I.getArraySize();
if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
Size *= C->getValue().zextOrSelf(IntTyBits);
return std::make_pair(align(Size, I.getAlignment()), Zero);
}
return unknown();
}
SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
// no interprocedural analysis is done at the moment
if (!A.hasByValOrInAllocaAttr()) {
++ObjectVisitorArgument;
return unknown();
}
PointerType *PT = cast<PointerType>(A.getType());
APInt Size(IntTyBits, DL.getTypeAllocSize(PT->getElementType()));
return std::make_pair(align(Size, A.getParamAlignment()), Zero);
}
SizeOffsetType ObjectSizeOffsetVisitor::visitCallSite(CallSite CS) {
const AllocFnsTy *FnData = getAllocationData(CS.getInstruction(), AnyAlloc,
TLI);
if (!FnData)
return unknown();
// handle strdup-like functions separately
if (FnData->AllocTy == StrDupLike) {
APInt Size(IntTyBits, GetStringLength(CS.getArgument(0)));
if (!Size)
return unknown();
// strndup limits strlen
if (FnData->FstParam > 0) {
ConstantInt *Arg= dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam));
if (!Arg)
return unknown();
APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits);
if (Size.ugt(MaxSize))
Size = MaxSize + 1;
}
return std::make_pair(Size, Zero);
}
ConstantInt *Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam));
if (!Arg)
return unknown();
APInt Size = Arg->getValue().zextOrSelf(IntTyBits);
// size determined by just 1 parameter
if (FnData->SndParam < 0)
return std::make_pair(Size, Zero);
Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->SndParam));
if (!Arg)
return unknown();
Size *= Arg->getValue().zextOrSelf(IntTyBits);
return std::make_pair(Size, Zero);
// TODO: handle more standard functions (+ wchar cousins):
// - strdup / strndup
// - strcpy / strncpy
// - strcat / strncat
// - memcpy / memmove
// - strcat / strncat
// - memset
}
SizeOffsetType
ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull&) {
return std::make_pair(Zero, Zero);
}
SizeOffsetType
ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) {
return unknown();
}
SizeOffsetType
ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) {
// Easy cases were already folded by previous passes.
return unknown();
}
SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) {
SizeOffsetType PtrData = compute(GEP.getPointerOperand());
APInt Offset(IntTyBits, 0);
if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset))
return unknown();
return std::make_pair(PtrData.first, PtrData.second + Offset);
}
SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) {
if (GA.mayBeOverridden())
return unknown();
return compute(GA.getAliasee());
}
SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){
if (!GV.hasDefinitiveInitializer())
return unknown();
APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getType()->getElementType()));
return std::make_pair(align(Size, GV.getAlignment()), Zero);
}
SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) {
// clueless
return unknown();
}
SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) {
++ObjectVisitorLoad;
return unknown();
}
SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) {
// too complex to analyze statically.
return unknown();
}
SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
SizeOffsetType TrueSide = compute(I.getTrueValue());
SizeOffsetType FalseSide = compute(I.getFalseValue());
if (bothKnown(TrueSide) && bothKnown(FalseSide) && TrueSide == FalseSide)
return TrueSide;
return unknown();
}
SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) {
return std::make_pair(Zero, Zero);
}
SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I << '\n');
return unknown();
}
ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context,
bool RoundToAlign)
: DL(DL), TLI(TLI), Context(Context), Builder(Context, TargetFolder(DL)),
RoundToAlign(RoundToAlign) {
// IntTy and Zero must be set for each compute() since the address space may
// be different for later objects.
}
SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) {
// XXX - Are vectors of pointers possible here?
IntTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
Zero = ConstantInt::get(IntTy, 0);
SizeOffsetEvalType Result = compute_(V);
if (!bothKnown(Result)) {
// erase everything that was computed in this iteration from the cache, so
// that no dangling references are left behind. We could be a bit smarter if
// we kept a dependency graph. It's probably not worth the complexity.
for (PtrSetTy::iterator I=SeenVals.begin(), E=SeenVals.end(); I != E; ++I) {
CacheMapTy::iterator CacheIt = CacheMap.find(*I);
// non-computable results can be safely cached
if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second))
CacheMap.erase(CacheIt);
}
}
SeenVals.clear();
return Result;
}
SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) {
ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, RoundToAlign);
SizeOffsetType Const = Visitor.compute(V);
if (Visitor.bothKnown(Const))
return std::make_pair(ConstantInt::get(Context, Const.first),
ConstantInt::get(Context, Const.second));
V = V->stripPointerCasts();
// check cache
CacheMapTy::iterator CacheIt = CacheMap.find(V);
if (CacheIt != CacheMap.end())
return CacheIt->second;
// always generate code immediately before the instruction being
// processed, so that the generated code dominates the same BBs
Instruction *PrevInsertPoint = Builder.GetInsertPoint();
if (Instruction *I = dyn_cast<Instruction>(V))
Builder.SetInsertPoint(I);
// now compute the size and offset
SizeOffsetEvalType Result;
// Record the pointers that were handled in this run, so that they can be
// cleaned later if something fails. We also use this set to break cycles that
// can occur in dead code.
if (!SeenVals.insert(V).second) {
Result = unknown();
} else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Result = visitGEPOperator(*GEP);
} else if (Instruction *I = dyn_cast<Instruction>(V)) {
Result = visit(*I);
} else if (isa<Argument>(V) ||
(isa<ConstantExpr>(V) &&
cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) ||
isa<GlobalAlias>(V) ||
isa<GlobalVariable>(V)) {
// ignore values where we cannot do more than what ObjectSizeVisitor can
Result = unknown();
} else {
DEBUG(dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: "
<< *V << '\n');
Result = unknown();
}
if (PrevInsertPoint)
Builder.SetInsertPoint(PrevInsertPoint);
// Don't reuse CacheIt since it may be invalid at this point.
CacheMap[V] = Result;
return Result;
}
SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) {
if (!I.getAllocatedType()->isSized())
return unknown();
// must be a VLA
assert(I.isArrayAllocation());
Value *ArraySize = I.getArraySize();
Value *Size = ConstantInt::get(ArraySize->getType(),
DL.getTypeAllocSize(I.getAllocatedType()));
Size = Builder.CreateMul(Size, ArraySize);
return std::make_pair(Size, Zero);
}
SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS) {
const AllocFnsTy *FnData = getAllocationData(CS.getInstruction(), AnyAlloc,
TLI);
if (!FnData)
return unknown();
// handle strdup-like functions separately
if (FnData->AllocTy == StrDupLike) {
// TODO
return unknown();
}
Value *FirstArg = CS.getArgument(FnData->FstParam);
FirstArg = Builder.CreateZExt(FirstArg, IntTy);
if (FnData->SndParam < 0)
return std::make_pair(FirstArg, Zero);
Value *SecondArg = CS.getArgument(FnData->SndParam);
SecondArg = Builder.CreateZExt(SecondArg, IntTy);
Value *Size = Builder.CreateMul(FirstArg, SecondArg);
return std::make_pair(Size, Zero);
// TODO: handle more standard functions (+ wchar cousins):
// - strdup / strndup
// - strcpy / strncpy
// - strcat / strncat
// - memcpy / memmove
// - strcat / strncat
// - memset
}
SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) {
return unknown();
}
SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) {
return unknown();
}
SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) {
SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand());
if (!bothKnown(PtrData))
return unknown();
Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true);
Offset = Builder.CreateAdd(PtrData.second, Offset);
return std::make_pair(PtrData.first, Offset);
}
SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) {
// clueless
return unknown();
}
SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) {
return unknown();
}
SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) {
// create 2 PHIs: one for size and another for offset
PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
// insert right away in the cache to handle recursive PHIs
CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI);
// compute offset/size for each PHI incoming pointer
for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) {
Builder.SetInsertPoint(PHI.getIncomingBlock(i)->getFirstInsertionPt());
SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i));
if (!bothKnown(EdgeData)) {
OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy));
OffsetPHI->eraseFromParent();
SizePHI->replaceAllUsesWith(UndefValue::get(IntTy));
SizePHI->eraseFromParent();
return unknown();
}
SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i));
OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i));
}
Value *Size = SizePHI, *Offset = OffsetPHI, *Tmp;
if ((Tmp = SizePHI->hasConstantValue())) {
Size = Tmp;
SizePHI->replaceAllUsesWith(Size);
SizePHI->eraseFromParent();
}
if ((Tmp = OffsetPHI->hasConstantValue())) {
Offset = Tmp;
OffsetPHI->replaceAllUsesWith(Offset);
OffsetPHI->eraseFromParent();
}
return std::make_pair(Size, Offset);
}
SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) {
SizeOffsetEvalType TrueSide = compute_(I.getTrueValue());
SizeOffsetEvalType FalseSide = compute_(I.getFalseValue());
if (!bothKnown(TrueSide) || !bothKnown(FalseSide))
return unknown();
if (TrueSide == FalseSide)
return TrueSide;
Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first,
FalseSide.first);
Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second,
FalseSide.second);
return std::make_pair(Size, Offset);
}
SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) {
DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I <<'\n');
return unknown();
}