mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220565 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			913 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			913 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- RegionInfo.h - SESE region analysis ----------------------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Calculate a program structure tree built out of single entry single exit
 | 
						|
// regions.
 | 
						|
// The basic ideas are taken from "The Program Structure Tree - Richard Johnson,
 | 
						|
// David Pearson, Keshav Pingali - 1994", however enriched with ideas from "The
 | 
						|
// Refined Process Structure Tree - Jussi Vanhatalo, Hagen Voelyer, Jana
 | 
						|
// Koehler - 2009".
 | 
						|
// The algorithm to calculate these data structures however is completely
 | 
						|
// different, as it takes advantage of existing information already available
 | 
						|
// in (Post)dominace tree and dominance frontier passes. This leads to a simpler
 | 
						|
// and in practice hopefully better performing algorithm. The runtime of the
 | 
						|
// algorithms described in the papers above are both linear in graph size,
 | 
						|
// O(V+E), whereas this algorithm is not, as the dominance frontier information
 | 
						|
// itself is not, but in practice runtime seems to be in the order of magnitude
 | 
						|
// of dominance tree calculation.
 | 
						|
//
 | 
						|
// WARNING: LLVM is generally very concerned about compile time such that
 | 
						|
//          the use of additional analysis passes in the default
 | 
						|
//          optimization sequence is avoided as much as possible.
 | 
						|
//          Specifically, if you do not need the RegionInfo, but dominance
 | 
						|
//          information could be sufficient please base your work only on
 | 
						|
//          the dominator tree. Most passes maintain it, such that using
 | 
						|
//          it has often near zero cost. In contrast RegionInfo is by
 | 
						|
//          default not available, is not maintained by existing
 | 
						|
//          transformations and there is no intention to do so.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_ANALYSIS_REGIONINFO_H
 | 
						|
#define LLVM_ANALYSIS_REGIONINFO_H
 | 
						|
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include "llvm/ADT/PointerIntPair.h"
 | 
						|
#include "llvm/IR/CFG.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include <map>
 | 
						|
#include <memory>
 | 
						|
#include <set>
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
// RegionTraits - Class to be specialized for different users of RegionInfo
 | 
						|
// (i.e. BasicBlocks or MachineBasicBlocks). This is only to avoid needing to
 | 
						|
// pass around an unreasonable number of template parameters.
 | 
						|
template <class FuncT_>
 | 
						|
struct RegionTraits {
 | 
						|
  // FuncT
 | 
						|
  // BlockT
 | 
						|
  // RegionT
 | 
						|
  // RegionNodeT
 | 
						|
  // RegionInfoT
 | 
						|
  typedef typename FuncT_::UnknownRegionTypeError BrokenT;
 | 
						|
};
 | 
						|
 | 
						|
class DominatorTree;
 | 
						|
class DominanceFrontier;
 | 
						|
class Loop;
 | 
						|
class LoopInfo;
 | 
						|
struct PostDominatorTree;
 | 
						|
class raw_ostream;
 | 
						|
class Region;
 | 
						|
template <class RegionTr>
 | 
						|
class RegionBase;
 | 
						|
class RegionNode;
 | 
						|
class RegionInfo;
 | 
						|
template <class RegionTr>
 | 
						|
class RegionInfoBase;
 | 
						|
 | 
						|
template <>
 | 
						|
struct RegionTraits<Function> {
 | 
						|
  typedef Function FuncT;
 | 
						|
  typedef BasicBlock BlockT;
 | 
						|
  typedef Region RegionT;
 | 
						|
  typedef RegionNode RegionNodeT;
 | 
						|
  typedef RegionInfo RegionInfoT;
 | 
						|
  typedef DominatorTree DomTreeT;
 | 
						|
  typedef DomTreeNode DomTreeNodeT;
 | 
						|
  typedef DominanceFrontier DomFrontierT;
 | 
						|
  typedef PostDominatorTree PostDomTreeT;
 | 
						|
  typedef Instruction InstT;
 | 
						|
  typedef Loop LoopT;
 | 
						|
  typedef LoopInfo LoopInfoT;
 | 
						|
 | 
						|
  static unsigned getNumSuccessors(BasicBlock *BB) {
 | 
						|
    return BB->getTerminator()->getNumSuccessors();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// @brief Marker class to iterate over the elements of a Region in flat mode.
 | 
						|
///
 | 
						|
/// The class is used to either iterate in Flat mode or by not using it to not
 | 
						|
/// iterate in Flat mode.  During a Flat mode iteration all Regions are entered
 | 
						|
/// and the iteration returns every BasicBlock.  If the Flat mode is not
 | 
						|
/// selected for SubRegions just one RegionNode containing the subregion is
 | 
						|
/// returned.
 | 
						|
template <class GraphType>
 | 
						|
class FlatIt {};
 | 
						|
 | 
						|
/// @brief A RegionNode represents a subregion or a BasicBlock that is part of a
 | 
						|
/// Region.
 | 
						|
template <class Tr>
 | 
						|
class RegionNodeBase {
 | 
						|
  friend class RegionBase<Tr>;
 | 
						|
 | 
						|
public:
 | 
						|
  typedef typename Tr::BlockT BlockT;
 | 
						|
  typedef typename Tr::RegionT RegionT;
 | 
						|
 | 
						|
private:
 | 
						|
  RegionNodeBase(const RegionNodeBase &) LLVM_DELETED_FUNCTION;
 | 
						|
  const RegionNodeBase &operator=(const RegionNodeBase &) LLVM_DELETED_FUNCTION;
 | 
						|
 | 
						|
  /// This is the entry basic block that starts this region node.  If this is a
 | 
						|
  /// BasicBlock RegionNode, then entry is just the basic block, that this
 | 
						|
  /// RegionNode represents.  Otherwise it is the entry of this (Sub)RegionNode.
 | 
						|
  ///
 | 
						|
  /// In the BBtoRegionNode map of the parent of this node, BB will always map
 | 
						|
  /// to this node no matter which kind of node this one is.
 | 
						|
  ///
 | 
						|
  /// The node can hold either a Region or a BasicBlock.
 | 
						|
  /// Use one bit to save, if this RegionNode is a subregion or BasicBlock
 | 
						|
  /// RegionNode.
 | 
						|
  PointerIntPair<BlockT *, 1, bool> entry;
 | 
						|
 | 
						|
  /// @brief The parent Region of this RegionNode.
 | 
						|
  /// @see getParent()
 | 
						|
  RegionT *parent;
 | 
						|
 | 
						|
protected:
 | 
						|
  /// @brief Create a RegionNode.
 | 
						|
  ///
 | 
						|
  /// @param Parent      The parent of this RegionNode.
 | 
						|
  /// @param Entry       The entry BasicBlock of the RegionNode.  If this
 | 
						|
  ///                    RegionNode represents a BasicBlock, this is the
 | 
						|
  ///                    BasicBlock itself.  If it represents a subregion, this
 | 
						|
  ///                    is the entry BasicBlock of the subregion.
 | 
						|
  /// @param isSubRegion If this RegionNode represents a SubRegion.
 | 
						|
  inline RegionNodeBase(RegionT *Parent, BlockT *Entry,
 | 
						|
                        bool isSubRegion = false)
 | 
						|
      : entry(Entry, isSubRegion), parent(Parent) {}
 | 
						|
 | 
						|
public:
 | 
						|
  /// @brief Get the parent Region of this RegionNode.
 | 
						|
  ///
 | 
						|
  /// The parent Region is the Region this RegionNode belongs to. If for
 | 
						|
  /// example a BasicBlock is element of two Regions, there exist two
 | 
						|
  /// RegionNodes for this BasicBlock. Each with the getParent() function
 | 
						|
  /// pointing to the Region this RegionNode belongs to.
 | 
						|
  ///
 | 
						|
  /// @return Get the parent Region of this RegionNode.
 | 
						|
  inline RegionT *getParent() const { return parent; }
 | 
						|
 | 
						|
  /// @brief Get the entry BasicBlock of this RegionNode.
 | 
						|
  ///
 | 
						|
  /// If this RegionNode represents a BasicBlock this is just the BasicBlock
 | 
						|
  /// itself, otherwise we return the entry BasicBlock of the Subregion
 | 
						|
  ///
 | 
						|
  /// @return The entry BasicBlock of this RegionNode.
 | 
						|
  inline BlockT *getEntry() const { return entry.getPointer(); }
 | 
						|
 | 
						|
  /// @brief Get the content of this RegionNode.
 | 
						|
  ///
 | 
						|
  /// This can be either a BasicBlock or a subregion. Before calling getNodeAs()
 | 
						|
  /// check the type of the content with the isSubRegion() function call.
 | 
						|
  ///
 | 
						|
  /// @return The content of this RegionNode.
 | 
						|
  template <class T> inline T *getNodeAs() const;
 | 
						|
 | 
						|
  /// @brief Is this RegionNode a subregion?
 | 
						|
  ///
 | 
						|
  /// @return True if it contains a subregion. False if it contains a
 | 
						|
  ///         BasicBlock.
 | 
						|
  inline bool isSubRegion() const { return entry.getInt(); }
 | 
						|
};
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// @brief A single entry single exit Region.
 | 
						|
///
 | 
						|
/// A Region is a connected subgraph of a control flow graph that has exactly
 | 
						|
/// two connections to the remaining graph. It can be used to analyze or
 | 
						|
/// optimize parts of the control flow graph.
 | 
						|
///
 | 
						|
/// A <em> simple Region </em> is connected to the remaining graph by just two
 | 
						|
/// edges. One edge entering the Region and another one leaving the Region.
 | 
						|
///
 | 
						|
/// An <em> extended Region </em> (or just Region) is a subgraph that can be
 | 
						|
/// transform into a simple Region. The transformation is done by adding
 | 
						|
/// BasicBlocks that merge several entry or exit edges so that after the merge
 | 
						|
/// just one entry and one exit edge exists.
 | 
						|
///
 | 
						|
/// The \e Entry of a Region is the first BasicBlock that is passed after
 | 
						|
/// entering the Region. It is an element of the Region. The entry BasicBlock
 | 
						|
/// dominates all BasicBlocks in the Region.
 | 
						|
///
 | 
						|
/// The \e Exit of a Region is the first BasicBlock that is passed after
 | 
						|
/// leaving the Region. It is not an element of the Region. The exit BasicBlock,
 | 
						|
/// postdominates all BasicBlocks in the Region.
 | 
						|
///
 | 
						|
/// A <em> canonical Region </em> cannot be constructed by combining smaller
 | 
						|
/// Regions.
 | 
						|
///
 | 
						|
/// Region A is the \e parent of Region B, if B is completely contained in A.
 | 
						|
///
 | 
						|
/// Two canonical Regions either do not intersect at all or one is
 | 
						|
/// the parent of the other.
 | 
						|
///
 | 
						|
/// The <em> Program Structure Tree</em> is a graph (V, E) where V is the set of
 | 
						|
/// Regions in the control flow graph and E is the \e parent relation of these
 | 
						|
/// Regions.
 | 
						|
///
 | 
						|
/// Example:
 | 
						|
///
 | 
						|
/// \verbatim
 | 
						|
/// A simple control flow graph, that contains two regions.
 | 
						|
///
 | 
						|
///        1
 | 
						|
///       / |
 | 
						|
///      2   |
 | 
						|
///     / \   3
 | 
						|
///    4   5  |
 | 
						|
///    |   |  |
 | 
						|
///    6   7  8
 | 
						|
///     \  | /
 | 
						|
///      \ |/       Region A: 1 -> 9 {1,2,3,4,5,6,7,8}
 | 
						|
///        9        Region B: 2 -> 9 {2,4,5,6,7}
 | 
						|
/// \endverbatim
 | 
						|
///
 | 
						|
/// You can obtain more examples by either calling
 | 
						|
///
 | 
						|
/// <tt> "opt -regions -analyze anyprogram.ll" </tt>
 | 
						|
/// or
 | 
						|
/// <tt> "opt -view-regions-only anyprogram.ll" </tt>
 | 
						|
///
 | 
						|
/// on any LLVM file you are interested in.
 | 
						|
///
 | 
						|
/// The first call returns a textual representation of the program structure
 | 
						|
/// tree, the second one creates a graphical representation using graphviz.
 | 
						|
template <class Tr>
 | 
						|
class RegionBase : public RegionNodeBase<Tr> {
 | 
						|
  typedef typename Tr::FuncT FuncT;
 | 
						|
  typedef typename Tr::BlockT BlockT;
 | 
						|
  typedef typename Tr::RegionInfoT RegionInfoT;
 | 
						|
  typedef typename Tr::RegionT RegionT;
 | 
						|
  typedef typename Tr::RegionNodeT RegionNodeT;
 | 
						|
  typedef typename Tr::DomTreeT DomTreeT;
 | 
						|
  typedef typename Tr::LoopT LoopT;
 | 
						|
  typedef typename Tr::LoopInfoT LoopInfoT;
 | 
						|
  typedef typename Tr::InstT InstT;
 | 
						|
 | 
						|
  typedef GraphTraits<BlockT *> BlockTraits;
 | 
						|
  typedef GraphTraits<Inverse<BlockT *>> InvBlockTraits;
 | 
						|
  typedef typename BlockTraits::ChildIteratorType SuccIterTy;
 | 
						|
  typedef typename InvBlockTraits::ChildIteratorType PredIterTy;
 | 
						|
 | 
						|
  friend class RegionInfoBase<Tr>;
 | 
						|
  RegionBase(const RegionBase &) LLVM_DELETED_FUNCTION;
 | 
						|
  const RegionBase &operator=(const RegionBase &) LLVM_DELETED_FUNCTION;
 | 
						|
 | 
						|
  // Information necessary to manage this Region.
 | 
						|
  RegionInfoT *RI;
 | 
						|
  DomTreeT *DT;
 | 
						|
 | 
						|
  // The exit BasicBlock of this region.
 | 
						|
  // (The entry BasicBlock is part of RegionNode)
 | 
						|
  BlockT *exit;
 | 
						|
 | 
						|
  typedef std::vector<std::unique_ptr<RegionT>> RegionSet;
 | 
						|
 | 
						|
  // The subregions of this region.
 | 
						|
  RegionSet children;
 | 
						|
 | 
						|
  typedef std::map<BlockT *, RegionNodeT *> BBNodeMapT;
 | 
						|
 | 
						|
  // Save the BasicBlock RegionNodes that are element of this Region.
 | 
						|
  mutable BBNodeMapT BBNodeMap;
 | 
						|
 | 
						|
  /// verifyBBInRegion - Check if a BB is in this Region. This check also works
 | 
						|
  /// if the region is incorrectly built. (EXPENSIVE!)
 | 
						|
  void verifyBBInRegion(BlockT *BB) const;
 | 
						|
 | 
						|
  /// verifyWalk - Walk over all the BBs of the region starting from BB and
 | 
						|
  /// verify that all reachable basic blocks are elements of the region.
 | 
						|
  /// (EXPENSIVE!)
 | 
						|
  void verifyWalk(BlockT *BB, std::set<BlockT *> *visitedBB) const;
 | 
						|
 | 
						|
  /// verifyRegionNest - Verify if the region and its children are valid
 | 
						|
  /// regions (EXPENSIVE!)
 | 
						|
  void verifyRegionNest() const;
 | 
						|
 | 
						|
public:
 | 
						|
  /// @brief Create a new region.
 | 
						|
  ///
 | 
						|
  /// @param Entry  The entry basic block of the region.
 | 
						|
  /// @param Exit   The exit basic block of the region.
 | 
						|
  /// @param RI     The region info object that is managing this region.
 | 
						|
  /// @param DT     The dominator tree of the current function.
 | 
						|
  /// @param Parent The surrounding region or NULL if this is a top level
 | 
						|
  ///               region.
 | 
						|
  RegionBase(BlockT *Entry, BlockT *Exit, RegionInfoT *RI, DomTreeT *DT,
 | 
						|
             RegionT *Parent = nullptr);
 | 
						|
 | 
						|
  /// Delete the Region and all its subregions.
 | 
						|
  ~RegionBase();
 | 
						|
 | 
						|
  /// @brief Get the entry BasicBlock of the Region.
 | 
						|
  /// @return The entry BasicBlock of the region.
 | 
						|
  BlockT *getEntry() const {
 | 
						|
    return RegionNodeBase<Tr>::getEntry();
 | 
						|
  }
 | 
						|
 | 
						|
  /// @brief Replace the entry basic block of the region with the new basic
 | 
						|
  ///        block.
 | 
						|
  ///
 | 
						|
  /// @param BB  The new entry basic block of the region.
 | 
						|
  void replaceEntry(BlockT *BB);
 | 
						|
 | 
						|
  /// @brief Replace the exit basic block of the region with the new basic
 | 
						|
  ///        block.
 | 
						|
  ///
 | 
						|
  /// @param BB  The new exit basic block of the region.
 | 
						|
  void replaceExit(BlockT *BB);
 | 
						|
 | 
						|
  /// @brief Recursively replace the entry basic block of the region.
 | 
						|
  ///
 | 
						|
  /// This function replaces the entry basic block with a new basic block. It
 | 
						|
  /// also updates all child regions that have the same entry basic block as
 | 
						|
  /// this region.
 | 
						|
  ///
 | 
						|
  /// @param NewEntry The new entry basic block.
 | 
						|
  void replaceEntryRecursive(BlockT *NewEntry);
 | 
						|
 | 
						|
  /// @brief Recursively replace the exit basic block of the region.
 | 
						|
  ///
 | 
						|
  /// This function replaces the exit basic block with a new basic block. It
 | 
						|
  /// also updates all child regions that have the same exit basic block as
 | 
						|
  /// this region.
 | 
						|
  ///
 | 
						|
  /// @param NewExit The new exit basic block.
 | 
						|
  void replaceExitRecursive(BlockT *NewExit);
 | 
						|
 | 
						|
  /// @brief Get the exit BasicBlock of the Region.
 | 
						|
  /// @return The exit BasicBlock of the Region, NULL if this is the TopLevel
 | 
						|
  ///         Region.
 | 
						|
  BlockT *getExit() const { return exit; }
 | 
						|
 | 
						|
  /// @brief Get the parent of the Region.
 | 
						|
  /// @return The parent of the Region or NULL if this is a top level
 | 
						|
  ///         Region.
 | 
						|
  RegionT *getParent() const {
 | 
						|
    return RegionNodeBase<Tr>::getParent();
 | 
						|
  }
 | 
						|
 | 
						|
  /// @brief Get the RegionNode representing the current Region.
 | 
						|
  /// @return The RegionNode representing the current Region.
 | 
						|
  RegionNodeT *getNode() const {
 | 
						|
    return const_cast<RegionNodeT *>(
 | 
						|
        reinterpret_cast<const RegionNodeT *>(this));
 | 
						|
  }
 | 
						|
 | 
						|
  /// @brief Get the nesting level of this Region.
 | 
						|
  ///
 | 
						|
  /// An toplevel Region has depth 0.
 | 
						|
  ///
 | 
						|
  /// @return The depth of the region.
 | 
						|
  unsigned getDepth() const;
 | 
						|
 | 
						|
  /// @brief Check if a Region is the TopLevel region.
 | 
						|
  ///
 | 
						|
  /// The toplevel region represents the whole function.
 | 
						|
  bool isTopLevelRegion() const { return exit == nullptr; }
 | 
						|
 | 
						|
  /// @brief Return a new (non-canonical) region, that is obtained by joining
 | 
						|
  ///        this region with its predecessors.
 | 
						|
  ///
 | 
						|
  /// @return A region also starting at getEntry(), but reaching to the next
 | 
						|
  ///         basic block that forms with getEntry() a (non-canonical) region.
 | 
						|
  ///         NULL if such a basic block does not exist.
 | 
						|
  RegionT *getExpandedRegion() const;
 | 
						|
 | 
						|
  /// @brief Return the first block of this region's single entry edge,
 | 
						|
  ///        if existing.
 | 
						|
  ///
 | 
						|
  /// @return The BasicBlock starting this region's single entry edge,
 | 
						|
  ///         else NULL.
 | 
						|
  BlockT *getEnteringBlock() const;
 | 
						|
 | 
						|
  /// @brief Return the first block of this region's single exit edge,
 | 
						|
  ///        if existing.
 | 
						|
  ///
 | 
						|
  /// @return The BasicBlock starting this region's single exit edge,
 | 
						|
  ///         else NULL.
 | 
						|
  BlockT *getExitingBlock() const;
 | 
						|
 | 
						|
  /// @brief Is this a simple region?
 | 
						|
  ///
 | 
						|
  /// A region is simple if it has exactly one exit and one entry edge.
 | 
						|
  ///
 | 
						|
  /// @return True if the Region is simple.
 | 
						|
  bool isSimple() const;
 | 
						|
 | 
						|
  /// @brief Returns the name of the Region.
 | 
						|
  /// @return The Name of the Region.
 | 
						|
  std::string getNameStr() const;
 | 
						|
 | 
						|
  /// @brief Return the RegionInfo object, that belongs to this Region.
 | 
						|
  RegionInfoT *getRegionInfo() const { return RI; }
 | 
						|
 | 
						|
  /// PrintStyle - Print region in difference ways.
 | 
						|
  enum PrintStyle { PrintNone, PrintBB, PrintRN };
 | 
						|
 | 
						|
  /// @brief Print the region.
 | 
						|
  ///
 | 
						|
  /// @param OS The output stream the Region is printed to.
 | 
						|
  /// @param printTree Print also the tree of subregions.
 | 
						|
  /// @param level The indentation level used for printing.
 | 
						|
  void print(raw_ostream &OS, bool printTree = true, unsigned level = 0,
 | 
						|
             PrintStyle Style = PrintNone) const;
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
  /// @brief Print the region to stderr.
 | 
						|
  void dump() const;
 | 
						|
#endif
 | 
						|
 | 
						|
  /// @brief Check if the region contains a BasicBlock.
 | 
						|
  ///
 | 
						|
  /// @param BB The BasicBlock that might be contained in this Region.
 | 
						|
  /// @return True if the block is contained in the region otherwise false.
 | 
						|
  bool contains(const BlockT *BB) const;
 | 
						|
 | 
						|
  /// @brief Check if the region contains another region.
 | 
						|
  ///
 | 
						|
  /// @param SubRegion The region that might be contained in this Region.
 | 
						|
  /// @return True if SubRegion is contained in the region otherwise false.
 | 
						|
  bool contains(const RegionT *SubRegion) const {
 | 
						|
    // Toplevel Region.
 | 
						|
    if (!getExit())
 | 
						|
      return true;
 | 
						|
 | 
						|
    return contains(SubRegion->getEntry()) &&
 | 
						|
           (contains(SubRegion->getExit()) ||
 | 
						|
            SubRegion->getExit() == getExit());
 | 
						|
  }
 | 
						|
 | 
						|
  /// @brief Check if the region contains an Instruction.
 | 
						|
  ///
 | 
						|
  /// @param Inst The Instruction that might be contained in this region.
 | 
						|
  /// @return True if the Instruction is contained in the region otherwise
 | 
						|
  /// false.
 | 
						|
  bool contains(const InstT *Inst) const { return contains(Inst->getParent()); }
 | 
						|
 | 
						|
  /// @brief Check if the region contains a loop.
 | 
						|
  ///
 | 
						|
  /// @param L The loop that might be contained in this region.
 | 
						|
  /// @return True if the loop is contained in the region otherwise false.
 | 
						|
  ///         In case a NULL pointer is passed to this function the result
 | 
						|
  ///         is false, except for the region that describes the whole function.
 | 
						|
  ///         In that case true is returned.
 | 
						|
  bool contains(const LoopT *L) const;
 | 
						|
 | 
						|
  /// @brief Get the outermost loop in the region that contains a loop.
 | 
						|
  ///
 | 
						|
  /// Find for a Loop L the outermost loop OuterL that is a parent loop of L
 | 
						|
  /// and is itself contained in the region.
 | 
						|
  ///
 | 
						|
  /// @param L The loop the lookup is started.
 | 
						|
  /// @return The outermost loop in the region, NULL if such a loop does not
 | 
						|
  ///         exist or if the region describes the whole function.
 | 
						|
  LoopT *outermostLoopInRegion(LoopT *L) const;
 | 
						|
 | 
						|
  /// @brief Get the outermost loop in the region that contains a basic block.
 | 
						|
  ///
 | 
						|
  /// Find for a basic block BB the outermost loop L that contains BB and is
 | 
						|
  /// itself contained in the region.
 | 
						|
  ///
 | 
						|
  /// @param LI A pointer to a LoopInfo analysis.
 | 
						|
  /// @param BB The basic block surrounded by the loop.
 | 
						|
  /// @return The outermost loop in the region, NULL if such a loop does not
 | 
						|
  ///         exist or if the region describes the whole function.
 | 
						|
  LoopT *outermostLoopInRegion(LoopInfoT *LI, BlockT *BB) const;
 | 
						|
 | 
						|
  /// @brief Get the subregion that starts at a BasicBlock
 | 
						|
  ///
 | 
						|
  /// @param BB The BasicBlock the subregion should start.
 | 
						|
  /// @return The Subregion if available, otherwise NULL.
 | 
						|
  RegionT *getSubRegionNode(BlockT *BB) const;
 | 
						|
 | 
						|
  /// @brief Get the RegionNode for a BasicBlock
 | 
						|
  ///
 | 
						|
  /// @param BB The BasicBlock at which the RegionNode should start.
 | 
						|
  /// @return If available, the RegionNode that represents the subregion
 | 
						|
  ///         starting at BB. If no subregion starts at BB, the RegionNode
 | 
						|
  ///         representing BB.
 | 
						|
  RegionNodeT *getNode(BlockT *BB) const;
 | 
						|
 | 
						|
  /// @brief Get the BasicBlock RegionNode for a BasicBlock
 | 
						|
  ///
 | 
						|
  /// @param BB The BasicBlock for which the RegionNode is requested.
 | 
						|
  /// @return The RegionNode representing the BB.
 | 
						|
  RegionNodeT *getBBNode(BlockT *BB) const;
 | 
						|
 | 
						|
  /// @brief Add a new subregion to this Region.
 | 
						|
  ///
 | 
						|
  /// @param SubRegion The new subregion that will be added.
 | 
						|
  /// @param moveChildren Move the children of this region, that are also
 | 
						|
  ///                     contained in SubRegion into SubRegion.
 | 
						|
  void addSubRegion(RegionT *SubRegion, bool moveChildren = false);
 | 
						|
 | 
						|
  /// @brief Remove a subregion from this Region.
 | 
						|
  ///
 | 
						|
  /// The subregion is not deleted, as it will probably be inserted into another
 | 
						|
  /// region.
 | 
						|
  /// @param SubRegion The SubRegion that will be removed.
 | 
						|
  RegionT *removeSubRegion(RegionT *SubRegion);
 | 
						|
 | 
						|
  /// @brief Move all direct child nodes of this Region to another Region.
 | 
						|
  ///
 | 
						|
  /// @param To The Region the child nodes will be transferred to.
 | 
						|
  void transferChildrenTo(RegionT *To);
 | 
						|
 | 
						|
  /// @brief Verify if the region is a correct region.
 | 
						|
  ///
 | 
						|
  /// Check if this is a correctly build Region. This is an expensive check, as
 | 
						|
  /// the complete CFG of the Region will be walked.
 | 
						|
  void verifyRegion() const;
 | 
						|
 | 
						|
  /// @brief Clear the cache for BB RegionNodes.
 | 
						|
  ///
 | 
						|
  /// After calling this function the BasicBlock RegionNodes will be stored at
 | 
						|
  /// different memory locations. RegionNodes obtained before this function is
 | 
						|
  /// called are therefore not comparable to RegionNodes abtained afterwords.
 | 
						|
  void clearNodeCache();
 | 
						|
 | 
						|
  /// @name Subregion Iterators
 | 
						|
  ///
 | 
						|
  /// These iterators iterator over all subregions of this Region.
 | 
						|
  //@{
 | 
						|
  typedef typename RegionSet::iterator iterator;
 | 
						|
  typedef typename RegionSet::const_iterator const_iterator;
 | 
						|
 | 
						|
  iterator begin() { return children.begin(); }
 | 
						|
  iterator end() { return children.end(); }
 | 
						|
 | 
						|
  const_iterator begin() const { return children.begin(); }
 | 
						|
  const_iterator end() const { return children.end(); }
 | 
						|
  //@}
 | 
						|
 | 
						|
  /// @name BasicBlock Iterators
 | 
						|
  ///
 | 
						|
  /// These iterators iterate over all BasicBlocks that are contained in this
 | 
						|
  /// Region. The iterator also iterates over BasicBlocks that are elements of
 | 
						|
  /// a subregion of this Region. It is therefore called a flat iterator.
 | 
						|
  //@{
 | 
						|
  template <bool IsConst>
 | 
						|
  class block_iterator_wrapper
 | 
						|
      : public df_iterator<
 | 
						|
            typename std::conditional<IsConst, const BlockT, BlockT>::type *> {
 | 
						|
    typedef df_iterator<
 | 
						|
        typename std::conditional<IsConst, const BlockT, BlockT>::type *> super;
 | 
						|
 | 
						|
  public:
 | 
						|
    typedef block_iterator_wrapper<IsConst> Self;
 | 
						|
    typedef typename super::pointer pointer;
 | 
						|
 | 
						|
    // Construct the begin iterator.
 | 
						|
    block_iterator_wrapper(pointer Entry, pointer Exit)
 | 
						|
        : super(df_begin(Entry)) {
 | 
						|
      // Mark the exit of the region as visited, so that the children of the
 | 
						|
      // exit and the exit itself, i.e. the block outside the region will never
 | 
						|
      // be visited.
 | 
						|
      super::Visited.insert(Exit);
 | 
						|
    }
 | 
						|
 | 
						|
    // Construct the end iterator.
 | 
						|
    block_iterator_wrapper() : super(df_end<pointer>((BlockT *)nullptr)) {}
 | 
						|
 | 
						|
    /*implicit*/ block_iterator_wrapper(super I) : super(I) {}
 | 
						|
 | 
						|
    // FIXME: Even a const_iterator returns a non-const BasicBlock pointer.
 | 
						|
    //        This was introduced for backwards compatibility, but should
 | 
						|
    //        be removed as soon as all users are fixed.
 | 
						|
    BlockT *operator*() const {
 | 
						|
      return const_cast<BlockT *>(super::operator*());
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  typedef block_iterator_wrapper<false> block_iterator;
 | 
						|
  typedef block_iterator_wrapper<true> const_block_iterator;
 | 
						|
 | 
						|
  block_iterator block_begin() { return block_iterator(getEntry(), getExit()); }
 | 
						|
 | 
						|
  block_iterator block_end() { return block_iterator(); }
 | 
						|
 | 
						|
  const_block_iterator block_begin() const {
 | 
						|
    return const_block_iterator(getEntry(), getExit());
 | 
						|
  }
 | 
						|
  const_block_iterator block_end() const { return const_block_iterator(); }
 | 
						|
 | 
						|
  typedef iterator_range<block_iterator> block_range;
 | 
						|
  typedef iterator_range<const_block_iterator> const_block_range;
 | 
						|
 | 
						|
  /// @brief Returns a range view of the basic blocks in the region.
 | 
						|
  inline block_range blocks() {
 | 
						|
    return block_range(block_begin(), block_end());
 | 
						|
  }
 | 
						|
 | 
						|
  /// @brief Returns a range view of the basic blocks in the region.
 | 
						|
  ///
 | 
						|
  /// This is the 'const' version of the range view.
 | 
						|
  inline const_block_range blocks() const {
 | 
						|
    return const_block_range(block_begin(), block_end());
 | 
						|
  }
 | 
						|
  //@}
 | 
						|
 | 
						|
  /// @name Element Iterators
 | 
						|
  ///
 | 
						|
  /// These iterators iterate over all BasicBlock and subregion RegionNodes that
 | 
						|
  /// are direct children of this Region. It does not iterate over any
 | 
						|
  /// RegionNodes that are also element of a subregion of this Region.
 | 
						|
  //@{
 | 
						|
  typedef df_iterator<RegionNodeT *, SmallPtrSet<RegionNodeT *, 8>, false,
 | 
						|
                      GraphTraits<RegionNodeT *>> element_iterator;
 | 
						|
 | 
						|
  typedef df_iterator<const RegionNodeT *, SmallPtrSet<const RegionNodeT *, 8>,
 | 
						|
                      false,
 | 
						|
                      GraphTraits<const RegionNodeT *>> const_element_iterator;
 | 
						|
 | 
						|
  element_iterator element_begin();
 | 
						|
  element_iterator element_end();
 | 
						|
 | 
						|
  const_element_iterator element_begin() const;
 | 
						|
  const_element_iterator element_end() const;
 | 
						|
  //@}
 | 
						|
};
 | 
						|
 | 
						|
/// Print a RegionNode.
 | 
						|
template <class Tr>
 | 
						|
inline raw_ostream &operator<<(raw_ostream &OS, const RegionNodeBase<Tr> &Node);
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// @brief Analysis that detects all canonical Regions.
 | 
						|
///
 | 
						|
/// The RegionInfo pass detects all canonical regions in a function. The Regions
 | 
						|
/// are connected using the parent relation. This builds a Program Structure
 | 
						|
/// Tree.
 | 
						|
template <class Tr>
 | 
						|
class RegionInfoBase {
 | 
						|
  typedef typename Tr::BlockT BlockT;
 | 
						|
  typedef typename Tr::FuncT FuncT;
 | 
						|
  typedef typename Tr::RegionT RegionT;
 | 
						|
  typedef typename Tr::RegionInfoT RegionInfoT;
 | 
						|
  typedef typename Tr::DomTreeT DomTreeT;
 | 
						|
  typedef typename Tr::DomTreeNodeT DomTreeNodeT;
 | 
						|
  typedef typename Tr::PostDomTreeT PostDomTreeT;
 | 
						|
  typedef typename Tr::DomFrontierT DomFrontierT;
 | 
						|
  typedef GraphTraits<BlockT *> BlockTraits;
 | 
						|
  typedef GraphTraits<Inverse<BlockT *>> InvBlockTraits;
 | 
						|
  typedef typename BlockTraits::ChildIteratorType SuccIterTy;
 | 
						|
  typedef typename InvBlockTraits::ChildIteratorType PredIterTy;
 | 
						|
 | 
						|
  friend class RegionInfo;
 | 
						|
  friend class MachineRegionInfo;
 | 
						|
  typedef DenseMap<BlockT *, BlockT *> BBtoBBMap;
 | 
						|
  typedef DenseMap<BlockT *, RegionT *> BBtoRegionMap;
 | 
						|
  typedef SmallPtrSet<RegionT *, 4> RegionSet;
 | 
						|
 | 
						|
  RegionInfoBase();
 | 
						|
  virtual ~RegionInfoBase();
 | 
						|
 | 
						|
  RegionInfoBase(const RegionInfoBase &) LLVM_DELETED_FUNCTION;
 | 
						|
  const RegionInfoBase &operator=(const RegionInfoBase &) LLVM_DELETED_FUNCTION;
 | 
						|
 | 
						|
  DomTreeT *DT;
 | 
						|
  PostDomTreeT *PDT;
 | 
						|
  DomFrontierT *DF;
 | 
						|
 | 
						|
  /// The top level region.
 | 
						|
  RegionT *TopLevelRegion;
 | 
						|
 | 
						|
private:
 | 
						|
  /// Map every BB to the smallest region, that contains BB.
 | 
						|
  BBtoRegionMap BBtoRegion;
 | 
						|
 | 
						|
  // isCommonDomFrontier - Returns true if BB is in the dominance frontier of
 | 
						|
  // entry, because it was inherited from exit. In the other case there is an
 | 
						|
  // edge going from entry to BB without passing exit.
 | 
						|
  bool isCommonDomFrontier(BlockT *BB, BlockT *entry, BlockT *exit) const;
 | 
						|
 | 
						|
  // isRegion - Check if entry and exit surround a valid region, based on
 | 
						|
  // dominance tree and dominance frontier.
 | 
						|
  bool isRegion(BlockT *entry, BlockT *exit) const;
 | 
						|
 | 
						|
  // insertShortCut - Saves a shortcut pointing from entry to exit.
 | 
						|
  // This function may extend this shortcut if possible.
 | 
						|
  void insertShortCut(BlockT *entry, BlockT *exit, BBtoBBMap *ShortCut) const;
 | 
						|
 | 
						|
  // getNextPostDom - Returns the next BB that postdominates N, while skipping
 | 
						|
  // all post dominators that cannot finish a canonical region.
 | 
						|
  DomTreeNodeT *getNextPostDom(DomTreeNodeT *N, BBtoBBMap *ShortCut) const;
 | 
						|
 | 
						|
  // isTrivialRegion - A region is trivial, if it contains only one BB.
 | 
						|
  bool isTrivialRegion(BlockT *entry, BlockT *exit) const;
 | 
						|
 | 
						|
  // createRegion - Creates a single entry single exit region.
 | 
						|
  RegionT *createRegion(BlockT *entry, BlockT *exit);
 | 
						|
 | 
						|
  // findRegionsWithEntry - Detect all regions starting with bb 'entry'.
 | 
						|
  void findRegionsWithEntry(BlockT *entry, BBtoBBMap *ShortCut);
 | 
						|
 | 
						|
  // scanForRegions - Detects regions in F.
 | 
						|
  void scanForRegions(FuncT &F, BBtoBBMap *ShortCut);
 | 
						|
 | 
						|
  // getTopMostParent - Get the top most parent with the same entry block.
 | 
						|
  RegionT *getTopMostParent(RegionT *region);
 | 
						|
 | 
						|
  // buildRegionsTree - build the region hierarchy after all region detected.
 | 
						|
  void buildRegionsTree(DomTreeNodeT *N, RegionT *region);
 | 
						|
 | 
						|
  // updateStatistics - Update statistic about created regions.
 | 
						|
  virtual void updateStatistics(RegionT *R) = 0;
 | 
						|
 | 
						|
  // calculate - detect all regions in function and build the region tree.
 | 
						|
  void calculate(FuncT &F);
 | 
						|
 | 
						|
public:
 | 
						|
  static bool VerifyRegionInfo;
 | 
						|
  static typename RegionT::PrintStyle printStyle;
 | 
						|
 | 
						|
  void print(raw_ostream &OS) const;
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
  void dump() const;
 | 
						|
#endif
 | 
						|
 | 
						|
  void releaseMemory();
 | 
						|
 | 
						|
  /// @brief Get the smallest region that contains a BasicBlock.
 | 
						|
  ///
 | 
						|
  /// @param BB The basic block.
 | 
						|
  /// @return The smallest region, that contains BB or NULL, if there is no
 | 
						|
  /// region containing BB.
 | 
						|
  RegionT *getRegionFor(BlockT *BB) const;
 | 
						|
 | 
						|
  /// @brief  Set the smallest region that surrounds a basic block.
 | 
						|
  ///
 | 
						|
  /// @param BB The basic block surrounded by a region.
 | 
						|
  /// @param R The smallest region that surrounds BB.
 | 
						|
  void setRegionFor(BlockT *BB, RegionT *R);
 | 
						|
 | 
						|
  /// @brief A shortcut for getRegionFor().
 | 
						|
  ///
 | 
						|
  /// @param BB The basic block.
 | 
						|
  /// @return The smallest region, that contains BB or NULL, if there is no
 | 
						|
  /// region containing BB.
 | 
						|
  RegionT *operator[](BlockT *BB) const;
 | 
						|
 | 
						|
  /// @brief Return the exit of the maximal refined region, that starts at a
 | 
						|
  /// BasicBlock.
 | 
						|
  ///
 | 
						|
  /// @param BB The BasicBlock the refined region starts.
 | 
						|
  BlockT *getMaxRegionExit(BlockT *BB) const;
 | 
						|
 | 
						|
  /// @brief Find the smallest region that contains two regions.
 | 
						|
  ///
 | 
						|
  /// @param A The first region.
 | 
						|
  /// @param B The second region.
 | 
						|
  /// @return The smallest region containing A and B.
 | 
						|
  RegionT *getCommonRegion(RegionT *A, RegionT *B) const;
 | 
						|
 | 
						|
  /// @brief Find the smallest region that contains two basic blocks.
 | 
						|
  ///
 | 
						|
  /// @param A The first basic block.
 | 
						|
  /// @param B The second basic block.
 | 
						|
  /// @return The smallest region that contains A and B.
 | 
						|
  RegionT *getCommonRegion(BlockT *A, BlockT *B) const {
 | 
						|
    return getCommonRegion(getRegionFor(A), getRegionFor(B));
 | 
						|
  }
 | 
						|
 | 
						|
  /// @brief Find the smallest region that contains a set of regions.
 | 
						|
  ///
 | 
						|
  /// @param Regions A vector of regions.
 | 
						|
  /// @return The smallest region that contains all regions in Regions.
 | 
						|
  RegionT *getCommonRegion(SmallVectorImpl<RegionT *> &Regions) const;
 | 
						|
 | 
						|
  /// @brief Find the smallest region that contains a set of basic blocks.
 | 
						|
  ///
 | 
						|
  /// @param BBs A vector of basic blocks.
 | 
						|
  /// @return The smallest region that contains all basic blocks in BBS.
 | 
						|
  RegionT *getCommonRegion(SmallVectorImpl<BlockT *> &BBs) const;
 | 
						|
 | 
						|
  RegionT *getTopLevelRegion() const { return TopLevelRegion; }
 | 
						|
 | 
						|
  /// @brief Update RegionInfo after a basic block was split.
 | 
						|
  ///
 | 
						|
  /// @param NewBB The basic block that was created before OldBB.
 | 
						|
  /// @param OldBB The old basic block.
 | 
						|
  void splitBlock(BlockT *NewBB, BlockT *OldBB);
 | 
						|
 | 
						|
  /// @brief Clear the Node Cache for all Regions.
 | 
						|
  ///
 | 
						|
  /// @see Region::clearNodeCache()
 | 
						|
  void clearNodeCache() {
 | 
						|
    if (TopLevelRegion)
 | 
						|
      TopLevelRegion->clearNodeCache();
 | 
						|
  }
 | 
						|
 | 
						|
  void verifyAnalysis() const;
 | 
						|
};
 | 
						|
 | 
						|
class Region;
 | 
						|
 | 
						|
class RegionNode : public RegionNodeBase<RegionTraits<Function>> {
 | 
						|
public:
 | 
						|
  inline RegionNode(Region *Parent, BasicBlock *Entry, bool isSubRegion = false)
 | 
						|
      : RegionNodeBase<RegionTraits<Function>>(Parent, Entry, isSubRegion) {}
 | 
						|
 | 
						|
  ~RegionNode() {}
 | 
						|
 | 
						|
  bool operator==(const Region &RN) const {
 | 
						|
    return this == reinterpret_cast<const RegionNode *>(&RN);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class Region : public RegionBase<RegionTraits<Function>> {
 | 
						|
public:
 | 
						|
  Region(BasicBlock *Entry, BasicBlock *Exit, RegionInfo *RI, DominatorTree *DT,
 | 
						|
         Region *Parent = nullptr);
 | 
						|
  ~Region();
 | 
						|
 | 
						|
  bool operator==(const RegionNode &RN) const {
 | 
						|
    return &RN == reinterpret_cast<const RegionNode *>(this);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class RegionInfo : public RegionInfoBase<RegionTraits<Function>> {
 | 
						|
public:
 | 
						|
  explicit RegionInfo();
 | 
						|
 | 
						|
  virtual ~RegionInfo();
 | 
						|
 | 
						|
  // updateStatistics - Update statistic about created regions.
 | 
						|
  void updateStatistics(Region *R) final;
 | 
						|
 | 
						|
  void recalculate(Function &F, DominatorTree *DT, PostDominatorTree *PDT,
 | 
						|
                   DominanceFrontier *DF);
 | 
						|
};
 | 
						|
 | 
						|
class RegionInfoPass : public FunctionPass {
 | 
						|
  RegionInfo RI;
 | 
						|
 | 
						|
public:
 | 
						|
  static char ID;
 | 
						|
  explicit RegionInfoPass();
 | 
						|
 | 
						|
  ~RegionInfoPass();
 | 
						|
 | 
						|
  RegionInfo &getRegionInfo() { return RI; }
 | 
						|
 | 
						|
  const RegionInfo &getRegionInfo() const { return RI; }
 | 
						|
 | 
						|
  /// @name FunctionPass interface
 | 
						|
  //@{
 | 
						|
  bool runOnFunction(Function &F) override;
 | 
						|
  void releaseMemory() override;
 | 
						|
  void verifyAnalysis() const override;
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override;
 | 
						|
  void print(raw_ostream &OS, const Module *) const override;
 | 
						|
  void dump() const;
 | 
						|
  //@}
 | 
						|
};
 | 
						|
 | 
						|
template <>
 | 
						|
template <>
 | 
						|
inline BasicBlock *
 | 
						|
RegionNodeBase<RegionTraits<Function>>::getNodeAs<BasicBlock>() const {
 | 
						|
  assert(!isSubRegion() && "This is not a BasicBlock RegionNode!");
 | 
						|
  return getEntry();
 | 
						|
}
 | 
						|
 | 
						|
template <>
 | 
						|
template <>
 | 
						|
inline Region *
 | 
						|
RegionNodeBase<RegionTraits<Function>>::getNodeAs<Region>() const {
 | 
						|
  assert(isSubRegion() && "This is not a subregion RegionNode!");
 | 
						|
  auto Unconst = const_cast<RegionNodeBase<RegionTraits<Function>> *>(this);
 | 
						|
  return reinterpret_cast<Region *>(Unconst);
 | 
						|
}
 | 
						|
 | 
						|
template <class Tr>
 | 
						|
inline raw_ostream &operator<<(raw_ostream &OS,
 | 
						|
                               const RegionNodeBase<Tr> &Node) {
 | 
						|
  typedef typename Tr::BlockT BlockT;
 | 
						|
  typedef typename Tr::RegionT RegionT;
 | 
						|
 | 
						|
  if (Node.isSubRegion())
 | 
						|
    return OS << Node.template getNodeAs<RegionT>()->getNameStr();
 | 
						|
  else
 | 
						|
    return OS << Node.template getNodeAs<BlockT>()->getName();
 | 
						|
}
 | 
						|
 | 
						|
EXTERN_TEMPLATE_INSTANTIATION(class RegionBase<RegionTraits<Function>>);
 | 
						|
EXTERN_TEMPLATE_INSTANTIATION(class RegionNodeBase<RegionTraits<Function>>);
 | 
						|
EXTERN_TEMPLATE_INSTANTIATION(class RegionInfoBase<RegionTraits<Function>>);
 | 
						|
 | 
						|
} // End llvm namespace
 | 
						|
#endif
 |