mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118742 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1216 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1216 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the SplitAnalysis class as well as mutator functions for
 | |
| // live range splitting.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "regalloc"
 | |
| #include "SplitKit.h"
 | |
| #include "LiveRangeEdit.h"
 | |
| #include "VirtRegMap.h"
 | |
| #include "llvm/CodeGen/CalcSpillWeights.h"
 | |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<bool>
 | |
| AllowSplit("spiller-splits-edges",
 | |
|            cl::desc("Allow critical edge splitting during spilling"));
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                                 Split Analysis
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| SplitAnalysis::SplitAnalysis(const MachineFunction &mf,
 | |
|                              const LiveIntervals &lis,
 | |
|                              const MachineLoopInfo &mli)
 | |
|   : mf_(mf),
 | |
|     lis_(lis),
 | |
|     loops_(mli),
 | |
|     tii_(*mf.getTarget().getInstrInfo()),
 | |
|     curli_(0) {}
 | |
| 
 | |
| void SplitAnalysis::clear() {
 | |
|   usingInstrs_.clear();
 | |
|   usingBlocks_.clear();
 | |
|   usingLoops_.clear();
 | |
|   curli_ = 0;
 | |
| }
 | |
| 
 | |
| bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) {
 | |
|   MachineBasicBlock *T, *F;
 | |
|   SmallVector<MachineOperand, 4> Cond;
 | |
|   return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond);
 | |
| }
 | |
| 
 | |
| /// analyzeUses - Count instructions, basic blocks, and loops using curli.
 | |
| void SplitAnalysis::analyzeUses() {
 | |
|   const MachineRegisterInfo &MRI = mf_.getRegInfo();
 | |
|   for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg);
 | |
|        MachineInstr *MI = I.skipInstruction();) {
 | |
|     if (MI->isDebugValue() || !usingInstrs_.insert(MI))
 | |
|       continue;
 | |
|     MachineBasicBlock *MBB = MI->getParent();
 | |
|     if (usingBlocks_[MBB]++)
 | |
|       continue;
 | |
|     for (MachineLoop *Loop = loops_.getLoopFor(MBB); Loop;
 | |
|          Loop = Loop->getParentLoop())
 | |
|       usingLoops_[Loop]++;
 | |
|   }
 | |
|   DEBUG(dbgs() << "  counted "
 | |
|                << usingInstrs_.size() << " instrs, "
 | |
|                << usingBlocks_.size() << " blocks, "
 | |
|                << usingLoops_.size()  << " loops.\n");
 | |
| }
 | |
| 
 | |
| void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const {
 | |
|   for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) {
 | |
|     unsigned count = usingBlocks_.lookup(*I);
 | |
|     OS << " BB#" << (*I)->getNumber();
 | |
|     if (count)
 | |
|       OS << '(' << count << ')';
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Get three sets of basic blocks surrounding a loop: Blocks inside the loop,
 | |
| // predecessor blocks, and exit blocks.
 | |
| void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) {
 | |
|   Blocks.clear();
 | |
| 
 | |
|   // Blocks in the loop.
 | |
|   Blocks.Loop.insert(Loop->block_begin(), Loop->block_end());
 | |
| 
 | |
|   // Predecessor blocks.
 | |
|   const MachineBasicBlock *Header = Loop->getHeader();
 | |
|   for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(),
 | |
|        E = Header->pred_end(); I != E; ++I)
 | |
|     if (!Blocks.Loop.count(*I))
 | |
|       Blocks.Preds.insert(*I);
 | |
| 
 | |
|   // Exit blocks.
 | |
|   for (MachineLoop::block_iterator I = Loop->block_begin(),
 | |
|        E = Loop->block_end(); I != E; ++I) {
 | |
|     const MachineBasicBlock *MBB = *I;
 | |
|     for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
 | |
|        SE = MBB->succ_end(); SI != SE; ++SI)
 | |
|       if (!Blocks.Loop.count(*SI))
 | |
|         Blocks.Exits.insert(*SI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SplitAnalysis::print(const LoopBlocks &B, raw_ostream &OS) const {
 | |
|   OS << "Loop:";
 | |
|   print(B.Loop, OS);
 | |
|   OS << ", preds:";
 | |
|   print(B.Preds, OS);
 | |
|   OS << ", exits:";
 | |
|   print(B.Exits, OS);
 | |
| }
 | |
| 
 | |
| /// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in
 | |
| /// and around the Loop.
 | |
| SplitAnalysis::LoopPeripheralUse SplitAnalysis::
 | |
| analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) {
 | |
|   LoopPeripheralUse use = ContainedInLoop;
 | |
|   for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
 | |
|        I != E; ++I) {
 | |
|     const MachineBasicBlock *MBB = I->first;
 | |
|     // Is this a peripheral block?
 | |
|     if (use < MultiPeripheral &&
 | |
|         (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) {
 | |
|       if (I->second > 1) use = MultiPeripheral;
 | |
|       else               use = SinglePeripheral;
 | |
|       continue;
 | |
|     }
 | |
|     // Is it a loop block?
 | |
|     if (Blocks.Loop.count(MBB))
 | |
|       continue;
 | |
|     // It must be an unrelated block.
 | |
|     DEBUG(dbgs() << ", outside: BB#" << MBB->getNumber());
 | |
|     return OutsideLoop;
 | |
|   }
 | |
|   return use;
 | |
| }
 | |
| 
 | |
| /// getCriticalExits - It may be necessary to partially break critical edges
 | |
| /// leaving the loop if an exit block has predecessors from outside the loop
 | |
| /// periphery.
 | |
| void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
 | |
|                                      BlockPtrSet &CriticalExits) {
 | |
|   CriticalExits.clear();
 | |
| 
 | |
|   // A critical exit block has curli live-in, and has a predecessor that is not
 | |
|   // in the loop nor a loop predecessor. For such an exit block, the edges
 | |
|   // carrying the new variable must be moved to a new pre-exit block.
 | |
|   for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end();
 | |
|        I != E; ++I) {
 | |
|     const MachineBasicBlock *Exit = *I;
 | |
|     // A single-predecessor exit block is definitely not a critical edge.
 | |
|     if (Exit->pred_size() == 1)
 | |
|       continue;
 | |
|     // This exit may not have curli live in at all. No need to split.
 | |
|     if (!lis_.isLiveInToMBB(*curli_, Exit))
 | |
|       continue;
 | |
|     // Does this exit block have a predecessor that is not a loop block or loop
 | |
|     // predecessor?
 | |
|     for (MachineBasicBlock::const_pred_iterator PI = Exit->pred_begin(),
 | |
|          PE = Exit->pred_end(); PI != PE; ++PI) {
 | |
|       const MachineBasicBlock *Pred = *PI;
 | |
|       if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred))
 | |
|         continue;
 | |
|       // This is a critical exit block, and we need to split the exit edge.
 | |
|       CriticalExits.insert(Exit);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SplitAnalysis::getCriticalPreds(const SplitAnalysis::LoopBlocks &Blocks,
 | |
|                                      BlockPtrSet &CriticalPreds) {
 | |
|   CriticalPreds.clear();
 | |
| 
 | |
|   // A critical predecessor block has curli live-out, and has a successor that
 | |
|   // has curli live-in and is not in the loop nor a loop exit block. For such a
 | |
|   // predecessor block, we must carry the value in both the 'inside' and
 | |
|   // 'outside' registers.
 | |
|   for (BlockPtrSet::iterator I = Blocks.Preds.begin(), E = Blocks.Preds.end();
 | |
|        I != E; ++I) {
 | |
|     const MachineBasicBlock *Pred = *I;
 | |
|     // Definitely not a critical edge.
 | |
|     if (Pred->succ_size() == 1)
 | |
|       continue;
 | |
|     // This block may not have curli live out at all if there is a PHI.
 | |
|     if (!lis_.isLiveOutOfMBB(*curli_, Pred))
 | |
|       continue;
 | |
|     // Does this block have a successor outside the loop?
 | |
|     for (MachineBasicBlock::const_pred_iterator SI = Pred->succ_begin(),
 | |
|          SE = Pred->succ_end(); SI != SE; ++SI) {
 | |
|       const MachineBasicBlock *Succ = *SI;
 | |
|       if (Blocks.Loop.count(Succ) || Blocks.Exits.count(Succ))
 | |
|         continue;
 | |
|       if (!lis_.isLiveInToMBB(*curli_, Succ))
 | |
|         continue;
 | |
|       // This is a critical predecessor block.
 | |
|       CriticalPreds.insert(Pred);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// canSplitCriticalExits - Return true if it is possible to insert new exit
 | |
| /// blocks before the blocks in CriticalExits.
 | |
| bool
 | |
| SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
 | |
|                                      BlockPtrSet &CriticalExits) {
 | |
|   // If we don't allow critical edge splitting, require no critical exits.
 | |
|   if (!AllowSplit)
 | |
|     return CriticalExits.empty();
 | |
| 
 | |
|   for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end();
 | |
|        I != E; ++I) {
 | |
|     const MachineBasicBlock *Succ = *I;
 | |
|     // We want to insert a new pre-exit MBB before Succ, and change all the
 | |
|     // in-loop blocks to branch to the pre-exit instead of Succ.
 | |
|     // Check that all the in-loop predecessors can be changed.
 | |
|     for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(),
 | |
|          PE = Succ->pred_end(); PI != PE; ++PI) {
 | |
|       const MachineBasicBlock *Pred = *PI;
 | |
|       // The external predecessors won't be altered.
 | |
|       if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred))
 | |
|         continue;
 | |
|       if (!canAnalyzeBranch(Pred))
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // If Succ's layout predecessor falls through, that too must be analyzable.
 | |
|     // We need to insert the pre-exit block in the gap.
 | |
|     MachineFunction::const_iterator MFI = Succ;
 | |
|     if (MFI == mf_.begin())
 | |
|       continue;
 | |
|     if (!canAnalyzeBranch(--MFI))
 | |
|       return false;
 | |
|   }
 | |
|   // No problems found.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void SplitAnalysis::analyze(const LiveInterval *li) {
 | |
|   clear();
 | |
|   curli_ = li;
 | |
|   analyzeUses();
 | |
| }
 | |
| 
 | |
| const MachineLoop *SplitAnalysis::getBestSplitLoop() {
 | |
|   assert(curli_ && "Call analyze() before getBestSplitLoop");
 | |
|   if (usingLoops_.empty())
 | |
|     return 0;
 | |
| 
 | |
|   LoopPtrSet Loops;
 | |
|   LoopBlocks Blocks;
 | |
|   BlockPtrSet CriticalExits;
 | |
| 
 | |
|   // We split around loops where curli is used outside the periphery.
 | |
|   for (LoopCountMap::const_iterator I = usingLoops_.begin(),
 | |
|        E = usingLoops_.end(); I != E; ++I) {
 | |
|     const MachineLoop *Loop = I->first;
 | |
|     getLoopBlocks(Loop, Blocks);
 | |
|     DEBUG({ dbgs() << "  "; print(Blocks, dbgs()); });
 | |
| 
 | |
|     switch(analyzeLoopPeripheralUse(Blocks)) {
 | |
|     case OutsideLoop:
 | |
|       break;
 | |
|     case MultiPeripheral:
 | |
|       // FIXME: We could split a live range with multiple uses in a peripheral
 | |
|       // block and still make progress. However, it is possible that splitting
 | |
|       // another live range will insert copies into a peripheral block, and
 | |
|       // there is a small chance we can enter an infinity loop, inserting copies
 | |
|       // forever.
 | |
|       // For safety, stick to splitting live ranges with uses outside the
 | |
|       // periphery.
 | |
|       DEBUG(dbgs() << ": multiple peripheral uses\n");
 | |
|       break;
 | |
|     case ContainedInLoop:
 | |
|       DEBUG(dbgs() << ": fully contained\n");
 | |
|       continue;
 | |
|     case SinglePeripheral:
 | |
|       DEBUG(dbgs() << ": single peripheral use\n");
 | |
|       continue;
 | |
|     }
 | |
|     // Will it be possible to split around this loop?
 | |
|     getCriticalExits(Blocks, CriticalExits);
 | |
|     DEBUG(dbgs() << ": " << CriticalExits.size() << " critical exits\n");
 | |
|     if (!canSplitCriticalExits(Blocks, CriticalExits))
 | |
|       continue;
 | |
|     // This is a possible split.
 | |
|     Loops.insert(Loop);
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "  getBestSplitLoop found " << Loops.size()
 | |
|                << " candidate loops.\n");
 | |
| 
 | |
|   if (Loops.empty())
 | |
|     return 0;
 | |
| 
 | |
|   // Pick the earliest loop.
 | |
|   // FIXME: Are there other heuristics to consider?
 | |
|   const MachineLoop *Best = 0;
 | |
|   SlotIndex BestIdx;
 | |
|   for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E;
 | |
|        ++I) {
 | |
|     SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader());
 | |
|     if (!Best || Idx < BestIdx)
 | |
|       Best = *I, BestIdx = Idx;
 | |
|   }
 | |
|   DEBUG(dbgs() << "  getBestSplitLoop found " << *Best);
 | |
|   return Best;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                               LiveIntervalMap
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Work around the fact that the std::pair constructors are broken for pointer
 | |
| // pairs in some implementations. makeVV(x, 0) works.
 | |
| static inline std::pair<const VNInfo*, VNInfo*>
 | |
| makeVV(const VNInfo *a, VNInfo *b) {
 | |
|   return std::make_pair(a, b);
 | |
| }
 | |
| 
 | |
| void LiveIntervalMap::reset(LiveInterval *li) {
 | |
|   li_ = li;
 | |
|   valueMap_.clear();
 | |
|   liveOutCache_.clear();
 | |
| }
 | |
| 
 | |
| bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const {
 | |
|   ValueMap::const_iterator i = valueMap_.find(ParentVNI);
 | |
|   return i != valueMap_.end() && i->second == 0;
 | |
| }
 | |
| 
 | |
| // defValue - Introduce a li_ def for ParentVNI that could be later than
 | |
| // ParentVNI->def.
 | |
| VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) {
 | |
|   assert(li_ && "call reset first");
 | |
|   assert(ParentVNI && "Mapping  NULL value");
 | |
|   assert(Idx.isValid() && "Invalid SlotIndex");
 | |
|   assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
 | |
| 
 | |
|   // Create a new value.
 | |
|   VNInfo *VNI = li_->getNextValue(Idx, 0, lis_.getVNInfoAllocator());
 | |
| 
 | |
|   // Preserve the PHIDef bit.
 | |
|   if (ParentVNI->isPHIDef() && Idx == ParentVNI->def)
 | |
|     VNI->setIsPHIDef(true);
 | |
| 
 | |
|   // Use insert for lookup, so we can add missing values with a second lookup.
 | |
|   std::pair<ValueMap::iterator,bool> InsP =
 | |
|     valueMap_.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0));
 | |
| 
 | |
|   // This is now a complex def. Mark with a NULL in valueMap.
 | |
|   if (!InsP.second)
 | |
|     InsP.first->second = 0;
 | |
| 
 | |
|   return VNI;
 | |
| }
 | |
| 
 | |
| 
 | |
| // mapValue - Find the mapped value for ParentVNI at Idx.
 | |
| // Potentially create phi-def values.
 | |
| VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
 | |
|                                   bool *simple) {
 | |
|   assert(li_ && "call reset first");
 | |
|   assert(ParentVNI && "Mapping  NULL value");
 | |
|   assert(Idx.isValid() && "Invalid SlotIndex");
 | |
|   assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
 | |
| 
 | |
|   // Use insert for lookup, so we can add missing values with a second lookup.
 | |
|   std::pair<ValueMap::iterator,bool> InsP =
 | |
|     valueMap_.insert(makeVV(ParentVNI, 0));
 | |
| 
 | |
|   // This was an unknown value. Create a simple mapping.
 | |
|   if (InsP.second) {
 | |
|     if (simple) *simple = true;
 | |
|     return InsP.first->second = li_->createValueCopy(ParentVNI,
 | |
|                                                      lis_.getVNInfoAllocator());
 | |
|   }
 | |
| 
 | |
|   // This was a simple mapped value.
 | |
|   if (InsP.first->second) {
 | |
|     if (simple) *simple = true;
 | |
|     return InsP.first->second;
 | |
|   }
 | |
| 
 | |
|   // This is a complex mapped value. There may be multiple defs, and we may need
 | |
|   // to create phi-defs.
 | |
|   if (simple) *simple = false;
 | |
|   MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx);
 | |
|   assert(IdxMBB && "No MBB at Idx");
 | |
| 
 | |
|   // Is there a def in the same MBB we can extend?
 | |
|   if (VNInfo *VNI = extendTo(IdxMBB, Idx))
 | |
|     return VNI;
 | |
| 
 | |
|   // Now for the fun part. We know that ParentVNI potentially has multiple defs,
 | |
|   // and we may need to create even more phi-defs to preserve VNInfo SSA form.
 | |
|   // Perform a search for all predecessor blocks where we know the dominating
 | |
|   // VNInfo. Insert phi-def VNInfos along the path back to IdxMBB.
 | |
|   DEBUG(dbgs() << "\n  Reaching defs for BB#" << IdxMBB->getNumber()
 | |
|                << " at " << Idx << " in " << *li_ << '\n');
 | |
| 
 | |
|   // Blocks where li_ should be live-in.
 | |
|   SmallVector<MachineDomTreeNode*, 16> LiveIn;
 | |
|   LiveIn.push_back(mdt_[IdxMBB]);
 | |
| 
 | |
|   // Using liveOutCache_ as a visited set, perform a BFS for all reaching defs.
 | |
|   for (unsigned i = 0; i != LiveIn.size(); ++i) {
 | |
|     MachineBasicBlock *MBB = LiveIn[i]->getBlock();
 | |
|     for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
 | |
|            PE = MBB->pred_end(); PI != PE; ++PI) {
 | |
|        MachineBasicBlock *Pred = *PI;
 | |
|        // Is this a known live-out block?
 | |
|        std::pair<LiveOutMap::iterator,bool> LOIP =
 | |
|          liveOutCache_.insert(std::make_pair(Pred, LiveOutPair()));
 | |
|        // Yes, we have been here before.
 | |
|        if (!LOIP.second) {
 | |
|          DEBUG(if (VNInfo *VNI = LOIP.first->second.first)
 | |
|                  dbgs() << "    known valno #" << VNI->id
 | |
|                         << " at BB#" << Pred->getNumber() << '\n');
 | |
|          continue;
 | |
|        }
 | |
| 
 | |
|        // Does Pred provide a live-out value?
 | |
|        SlotIndex Last = lis_.getMBBEndIdx(Pred).getPrevSlot();
 | |
|        if (VNInfo *VNI = extendTo(Pred, Last)) {
 | |
|          MachineBasicBlock *DefMBB = lis_.getMBBFromIndex(VNI->def);
 | |
|          DEBUG(dbgs() << "    found valno #" << VNI->id
 | |
|                       << " from BB#" << DefMBB->getNumber()
 | |
|                       << " at BB#" << Pred->getNumber() << '\n');
 | |
|          LiveOutPair &LOP = LOIP.first->second;
 | |
|          LOP.first = VNI;
 | |
|          LOP.second = mdt_[DefMBB];
 | |
|          continue;
 | |
|        }
 | |
|        // No, we need a live-in value for Pred as well
 | |
|        if (Pred != IdxMBB)
 | |
|          LiveIn.push_back(mdt_[Pred]);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We may need to add phi-def values to preserve the SSA form.
 | |
|   // This is essentially the same iterative algorithm that SSAUpdater uses,
 | |
|   // except we already have a dominator tree, so we don't have to recompute it.
 | |
|   VNInfo *IdxVNI = 0;
 | |
|   unsigned Changes;
 | |
|   do {
 | |
|     Changes = 0;
 | |
|     DEBUG(dbgs() << "  Iterating over " << LiveIn.size() << " blocks.\n");
 | |
|     // Propagate live-out values down the dominator tree, inserting phi-defs when
 | |
|     // necessary. Since LiveIn was created by a BFS, going backwards makes it more
 | |
|     // likely for us to visit immediate dominators before their children.
 | |
|     for (unsigned i = LiveIn.size(); i; --i) {
 | |
|       MachineDomTreeNode *Node = LiveIn[i-1];
 | |
|       MachineBasicBlock *MBB = Node->getBlock();
 | |
|       MachineDomTreeNode *IDom = Node->getIDom();
 | |
|       LiveOutPair IDomValue;
 | |
|       // We need a live-in value to a block with no immediate dominator?
 | |
|       // This is probably an unreachable block that has survived somehow.
 | |
|       bool needPHI = !IDom;
 | |
| 
 | |
|       // Get the IDom live-out value.
 | |
|       if (!needPHI) {
 | |
|         LiveOutMap::iterator I = liveOutCache_.find(IDom->getBlock());
 | |
|         if (I != liveOutCache_.end())
 | |
|           IDomValue = I->second;
 | |
|         else
 | |
|           // If IDom is outside our set of live-out blocks, there must be new
 | |
|           // defs, and we need a phi-def here.
 | |
|           needPHI = true;
 | |
|       }
 | |
| 
 | |
|       // IDom dominates all of our predecessors, but it may not be the immediate
 | |
|       // dominator. Check if any of them have live-out values that are properly
 | |
|       // dominated by IDom. If so, we need a phi-def here.
 | |
|       if (!needPHI) {
 | |
|         for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
 | |
|                PE = MBB->pred_end(); PI != PE; ++PI) {
 | |
|           LiveOutPair Value = liveOutCache_[*PI];
 | |
|           if (!Value.first || Value.first == IDomValue.first)
 | |
|             continue;
 | |
|           // This predecessor is carrying something other than IDomValue.
 | |
|           // It could be because IDomValue hasn't propagated yet, or it could be
 | |
|           // because MBB is in the dominance frontier of that value.
 | |
|           if (mdt_.dominates(IDom, Value.second)) {
 | |
|             needPHI = true;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Create a phi-def if required.
 | |
|       if (needPHI) {
 | |
|         ++Changes;
 | |
|         SlotIndex Start = lis_.getMBBStartIdx(MBB);
 | |
|         VNInfo *VNI = li_->getNextValue(Start, 0, lis_.getVNInfoAllocator());
 | |
|         VNI->setIsPHIDef(true);
 | |
|         DEBUG(dbgs() << "    - BB#" << MBB->getNumber()
 | |
|                      << " phi-def #" << VNI->id << " at " << Start << '\n');
 | |
|         // We no longer need li_ to be live-in.
 | |
|         LiveIn.erase(LiveIn.begin()+(i-1));
 | |
|         // Blocks in LiveIn are either IdxMBB, or have a value live-through.
 | |
|         if (MBB == IdxMBB)
 | |
|           IdxVNI = VNI;
 | |
|         // Check if we need to update live-out info.
 | |
|         LiveOutMap::iterator I = liveOutCache_.find(MBB);
 | |
|         if (I == liveOutCache_.end() || I->second.second == Node) {
 | |
|           // We already have a live-out defined in MBB, so this must be IdxMBB.
 | |
|           assert(MBB == IdxMBB && "Adding phi-def to known live-out");
 | |
|           li_->addRange(LiveRange(Start, Idx.getNextSlot(), VNI));
 | |
|         } else {
 | |
|           // This phi-def is also live-out, so color the whole block.
 | |
|           li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
 | |
|           I->second = LiveOutPair(VNI, Node);
 | |
|         }
 | |
|       } else if (IDomValue.first) {
 | |
|         // No phi-def here. Remember incoming value for IdxMBB.
 | |
|         if (MBB == IdxMBB)
 | |
|           IdxVNI = IDomValue.first;
 | |
|         // Propagate IDomValue if needed:
 | |
|         // MBB is live-out and doesn't define its own value.
 | |
|         LiveOutMap::iterator I = liveOutCache_.find(MBB);
 | |
|         if (I != liveOutCache_.end() && I->second.second != Node &&
 | |
|             I->second.first != IDomValue.first) {
 | |
|           ++Changes;
 | |
|           I->second = IDomValue;
 | |
|           DEBUG(dbgs() << "    - BB#" << MBB->getNumber()
 | |
|                        << " idom valno #" << IDomValue.first->id
 | |
|                        << " from BB#" << IDom->getBlock()->getNumber() << '\n');
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     DEBUG(dbgs() << "  - made " << Changes << " changes.\n");
 | |
|   } while (Changes);
 | |
| 
 | |
|   assert(IdxVNI && "Didn't find value for Idx");
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // Check the liveOutCache_ invariants.
 | |
|   for (LiveOutMap::iterator I = liveOutCache_.begin(), E = liveOutCache_.end();
 | |
|          I != E; ++I) {
 | |
|     assert(I->first && "Null MBB entry in cache");
 | |
|     assert(I->second.first && "Null VNInfo in cache");
 | |
|     assert(I->second.second && "Null DomTreeNode in cache");
 | |
|     if (I->second.second->getBlock() == I->first)
 | |
|       continue;
 | |
|     for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(),
 | |
|            PE = I->first->pred_end(); PI != PE; ++PI)
 | |
|       assert(liveOutCache_.lookup(*PI) == I->second && "Bad invariant");
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   // Since we went through the trouble of a full BFS visiting all reaching defs,
 | |
|   // the values in LiveIn are now accurate. No more phi-defs are needed
 | |
|   // for these blocks, so we can color the live ranges.
 | |
|   // This makes the next mapValue call much faster.
 | |
|   for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) {
 | |
|     MachineBasicBlock *MBB = LiveIn[i]->getBlock();
 | |
|     SlotIndex Start = lis_.getMBBStartIdx(MBB);
 | |
|     if (MBB == IdxMBB) {
 | |
|       li_->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI));
 | |
|       continue;
 | |
|     }
 | |
|     // Anything in LiveIn other than IdxMBB is live-through.
 | |
|     VNInfo *VNI = liveOutCache_.lookup(MBB).first;
 | |
|     assert(VNI && "Missing block value");
 | |
|     li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
 | |
|   }
 | |
| 
 | |
|   return IdxVNI;
 | |
| }
 | |
| 
 | |
| // extendTo - Find the last li_ value defined in MBB at or before Idx. The
 | |
| // parentli_ is assumed to be live at Idx. Extend the live range to Idx.
 | |
| // Return the found VNInfo, or NULL.
 | |
| VNInfo *LiveIntervalMap::extendTo(const MachineBasicBlock *MBB, SlotIndex Idx) {
 | |
|   assert(li_ && "call reset first");
 | |
|   LiveInterval::iterator I = std::upper_bound(li_->begin(), li_->end(), Idx);
 | |
|   if (I == li_->begin())
 | |
|     return 0;
 | |
|   --I;
 | |
|   if (I->end <= lis_.getMBBStartIdx(MBB))
 | |
|     return 0;
 | |
|   if (I->end <= Idx)
 | |
|     I->end = Idx.getNextSlot();
 | |
|   return I->valno;
 | |
| }
 | |
| 
 | |
| // addSimpleRange - Add a simple range from parentli_ to li_.
 | |
| // ParentVNI must be live in the [Start;End) interval.
 | |
| void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End,
 | |
|                                      const VNInfo *ParentVNI) {
 | |
|   assert(li_ && "call reset first");
 | |
|   bool simple;
 | |
|   VNInfo *VNI = mapValue(ParentVNI, Start, &simple);
 | |
|   // A simple mapping is easy.
 | |
|   if (simple) {
 | |
|     li_->addRange(LiveRange(Start, End, VNI));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // ParentVNI is a complex value. We must map per MBB.
 | |
|   MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start);
 | |
|   MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End.getPrevSlot());
 | |
| 
 | |
|   if (MBB == MBBE) {
 | |
|     li_->addRange(LiveRange(Start, End, VNI));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // First block.
 | |
|   li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
 | |
| 
 | |
|   // Run sequence of full blocks.
 | |
|   for (++MBB; MBB != MBBE; ++MBB) {
 | |
|     Start = lis_.getMBBStartIdx(MBB);
 | |
|     li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB),
 | |
|                             mapValue(ParentVNI, Start)));
 | |
|   }
 | |
| 
 | |
|   // Final block.
 | |
|   Start = lis_.getMBBStartIdx(MBB);
 | |
|   if (Start != End)
 | |
|     li_->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start)));
 | |
| }
 | |
| 
 | |
| /// addRange - Add live ranges to li_ where [Start;End) intersects parentli_.
 | |
| /// All needed values whose def is not inside [Start;End) must be defined
 | |
| /// beforehand so mapValue will work.
 | |
| void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) {
 | |
|   assert(li_ && "call reset first");
 | |
|   LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end();
 | |
|   LiveInterval::const_iterator I = std::lower_bound(B, E, Start);
 | |
| 
 | |
|   // Check if --I begins before Start and overlaps.
 | |
|   if (I != B) {
 | |
|     --I;
 | |
|     if (I->end > Start)
 | |
|       addSimpleRange(Start, std::min(End, I->end), I->valno);
 | |
|     ++I;
 | |
|   }
 | |
| 
 | |
|   // The remaining ranges begin after Start.
 | |
|   for (;I != E && I->start < End; ++I)
 | |
|     addSimpleRange(I->start, std::min(End, I->end), I->valno);
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                               Split Editor
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
 | |
| SplitEditor::SplitEditor(SplitAnalysis &sa,
 | |
|                          LiveIntervals &lis,
 | |
|                          VirtRegMap &vrm,
 | |
|                          MachineDominatorTree &mdt,
 | |
|                          LiveRangeEdit &edit)
 | |
|   : sa_(sa), lis_(lis), vrm_(vrm),
 | |
|     mri_(vrm.getMachineFunction().getRegInfo()),
 | |
|     tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()),
 | |
|     tri_(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
 | |
|     edit_(edit),
 | |
|     dupli_(lis_, mdt, edit.getParent()),
 | |
|     openli_(lis_, mdt, edit.getParent())
 | |
| {
 | |
|   // We don't need an AliasAnalysis since we will only be performing
 | |
|   // cheap-as-a-copy remats anyway.
 | |
|   edit_.anyRematerializable(lis_, tii_, 0);
 | |
| }
 | |
| 
 | |
| bool SplitEditor::intervalsLiveAt(SlotIndex Idx) const {
 | |
|   for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I)
 | |
|     if (*I != dupli_.getLI() && (*I)->liveAt(Idx))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| VNInfo *SplitEditor::defFromParent(LiveIntervalMap &Reg,
 | |
|                                    VNInfo *ParentVNI,
 | |
|                                    SlotIndex UseIdx,
 | |
|                                    MachineBasicBlock &MBB,
 | |
|                                    MachineBasicBlock::iterator I) {
 | |
|   VNInfo *VNI = 0;
 | |
|   MachineInstr *CopyMI = 0;
 | |
|   SlotIndex Def;
 | |
| 
 | |
|   // Attempt cheap-as-a-copy rematerialization.
 | |
|   LiveRangeEdit::Remat RM(ParentVNI);
 | |
|   if (edit_.canRematerializeAt(RM, UseIdx, true, lis_)) {
 | |
|     Def = edit_.rematerializeAt(MBB, I, Reg.getLI()->reg, RM,
 | |
|                                           lis_, tii_, tri_);
 | |
|   } else {
 | |
|     // Can't remat, just insert a copy from parent.
 | |
|     CopyMI = BuildMI(MBB, I, DebugLoc(), tii_.get(TargetOpcode::COPY),
 | |
|                      Reg.getLI()->reg).addReg(edit_.getReg());
 | |
|     Def = lis_.InsertMachineInstrInMaps(CopyMI).getDefIndex();
 | |
|   }
 | |
| 
 | |
|   // Define the value in Reg.
 | |
|   VNI = Reg.defValue(ParentVNI, Def);
 | |
|   VNI->setCopy(CopyMI);
 | |
| 
 | |
|   // Add minimal liveness for the new value.
 | |
|   if (UseIdx < Def)
 | |
|     UseIdx = Def;
 | |
|   Reg.getLI()->addRange(LiveRange(Def, UseIdx.getNextSlot(), VNI));
 | |
|   return VNI;
 | |
| }
 | |
| 
 | |
| /// Create a new virtual register and live interval.
 | |
| void SplitEditor::openIntv() {
 | |
|   assert(!openli_.getLI() && "Previous LI not closed before openIntv");
 | |
|   if (!dupli_.getLI())
 | |
|     dupli_.reset(&edit_.create(mri_, lis_, vrm_));
 | |
| 
 | |
|   openli_.reset(&edit_.create(mri_, lis_, vrm_));
 | |
| }
 | |
| 
 | |
| /// enterIntvBefore - Enter openli before the instruction at Idx. If curli is
 | |
| /// not live before Idx, a COPY is not inserted.
 | |
| void SplitEditor::enterIntvBefore(SlotIndex Idx) {
 | |
|   assert(openli_.getLI() && "openIntv not called before enterIntvBefore");
 | |
|   Idx = Idx.getUseIndex();
 | |
|   DEBUG(dbgs() << "    enterIntvBefore " << Idx);
 | |
|   VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx);
 | |
|   if (!ParentVNI) {
 | |
|     DEBUG(dbgs() << ": not live\n");
 | |
|     return;
 | |
|   }
 | |
|   DEBUG(dbgs() << ": valno " << ParentVNI->id);
 | |
|   truncatedValues.insert(ParentVNI);
 | |
|   MachineInstr *MI = lis_.getInstructionFromIndex(Idx);
 | |
|   assert(MI && "enterIntvBefore called with invalid index");
 | |
| 
 | |
|   defFromParent(openli_, ParentVNI, Idx, *MI->getParent(), MI);
 | |
| 
 | |
|   DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
 | |
| }
 | |
| 
 | |
| /// enterIntvAtEnd - Enter openli at the end of MBB.
 | |
| void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
 | |
|   assert(openli_.getLI() && "openIntv not called before enterIntvAtEnd");
 | |
|   SlotIndex End = lis_.getMBBEndIdx(&MBB).getPrevSlot();
 | |
|   DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << End);
 | |
|   VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(End);
 | |
|   if (!ParentVNI) {
 | |
|     DEBUG(dbgs() << ": not live\n");
 | |
|     return;
 | |
|   }
 | |
|   DEBUG(dbgs() << ": valno " << ParentVNI->id);
 | |
|   truncatedValues.insert(ParentVNI);
 | |
|   defFromParent(openli_, ParentVNI, End, MBB, MBB.getFirstTerminator());
 | |
|   DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
 | |
| }
 | |
| 
 | |
| /// useIntv - indicate that all instructions in MBB should use openli.
 | |
| void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
 | |
|   useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB));
 | |
| }
 | |
| 
 | |
| void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
 | |
|   assert(openli_.getLI() && "openIntv not called before useIntv");
 | |
|   openli_.addRange(Start, End);
 | |
|   DEBUG(dbgs() << "    use [" << Start << ';' << End << "): "
 | |
|                << *openli_.getLI() << '\n');
 | |
| }
 | |
| 
 | |
| /// leaveIntvAfter - Leave openli after the instruction at Idx.
 | |
| void SplitEditor::leaveIntvAfter(SlotIndex Idx) {
 | |
|   assert(openli_.getLI() && "openIntv not called before leaveIntvAfter");
 | |
|   DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
 | |
| 
 | |
|   // The interval must be live beyond the instruction at Idx.
 | |
|   Idx = Idx.getBoundaryIndex();
 | |
|   VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx);
 | |
|   if (!ParentVNI) {
 | |
|     DEBUG(dbgs() << ": not live\n");
 | |
|     return;
 | |
|   }
 | |
|   DEBUG(dbgs() << ": valno " << ParentVNI->id);
 | |
| 
 | |
|   MachineBasicBlock::iterator MII = lis_.getInstructionFromIndex(Idx);
 | |
|   VNInfo *VNI = defFromParent(dupli_, ParentVNI, Idx,
 | |
|                               *MII->getParent(), llvm::next(MII));
 | |
| 
 | |
|   // Make sure that openli is properly extended from Idx to the new copy.
 | |
|   // FIXME: This shouldn't be necessary for remats.
 | |
|   openli_.addSimpleRange(Idx, VNI->def, ParentVNI);
 | |
| 
 | |
|   DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
 | |
| }
 | |
| 
 | |
| /// leaveIntvAtTop - Leave the interval at the top of MBB.
 | |
| /// Currently, only one value can leave the interval.
 | |
| void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
 | |
|   assert(openli_.getLI() && "openIntv not called before leaveIntvAtTop");
 | |
|   SlotIndex Start = lis_.getMBBStartIdx(&MBB);
 | |
|   DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
 | |
| 
 | |
|   VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Start);
 | |
|   if (!ParentVNI) {
 | |
|     DEBUG(dbgs() << ": not live\n");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   VNInfo *VNI = defFromParent(dupli_, ParentVNI, Start, MBB,
 | |
|                               MBB.SkipPHIsAndLabels(MBB.begin()));
 | |
| 
 | |
|   // Finally we must make sure that openli is properly extended from Start to
 | |
|   // the new copy.
 | |
|   openli_.addSimpleRange(Start, VNI->def, ParentVNI);
 | |
|   DEBUG(dbgs() << ": " << *openli_.getLI() << '\n');
 | |
| }
 | |
| 
 | |
| /// closeIntv - Indicate that we are done editing the currently open
 | |
| /// LiveInterval, and ranges can be trimmed.
 | |
| void SplitEditor::closeIntv() {
 | |
|   assert(openli_.getLI() && "openIntv not called before closeIntv");
 | |
| 
 | |
|   DEBUG(dbgs() << "    closeIntv cleaning up\n");
 | |
|   DEBUG(dbgs() << "    open " << *openli_.getLI() << '\n');
 | |
|   openli_.reset(0);
 | |
| }
 | |
| 
 | |
| /// rewrite - Rewrite all uses of reg to use the new registers.
 | |
| void SplitEditor::rewrite(unsigned reg) {
 | |
|   for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(reg),
 | |
|        RE = mri_.reg_end(); RI != RE;) {
 | |
|     MachineOperand &MO = RI.getOperand();
 | |
|     unsigned OpNum = RI.getOperandNo();
 | |
|     MachineInstr *MI = MO.getParent();
 | |
|     ++RI;
 | |
|     if (MI->isDebugValue()) {
 | |
|       DEBUG(dbgs() << "Zapping " << *MI);
 | |
|       // FIXME: We can do much better with debug values.
 | |
|       MO.setReg(0);
 | |
|       continue;
 | |
|     }
 | |
|     SlotIndex Idx = lis_.getInstructionIndex(MI);
 | |
|     Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
 | |
|     LiveInterval *LI = 0;
 | |
|     for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E;
 | |
|          ++I) {
 | |
|       LiveInterval *testli = *I;
 | |
|       if (testli->liveAt(Idx)) {
 | |
|         LI = testli;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'<< Idx);
 | |
|     assert(LI && "No register was live at use");
 | |
|     MO.setReg(LI->reg);
 | |
|     if (MO.isUse() && !MI->isRegTiedToDefOperand(OpNum))
 | |
|       MO.setIsKill(LI->killedAt(Idx.getDefIndex()));
 | |
|     DEBUG(dbgs() << '\t' << *MI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void
 | |
| SplitEditor::addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI) {
 | |
|   // Build vector of iterator pairs from the intervals.
 | |
|   typedef std::pair<LiveInterval::const_iterator,
 | |
|                     LiveInterval::const_iterator> IIPair;
 | |
|   SmallVector<IIPair, 8> Iters;
 | |
|   for (LiveRangeEdit::iterator LI = edit_.begin(), LE = edit_.end(); LI != LE;
 | |
|        ++LI) {
 | |
|     if (*LI == dupli_.getLI())
 | |
|       continue;
 | |
|     LiveInterval::const_iterator I = (*LI)->find(Start);
 | |
|     LiveInterval::const_iterator E = (*LI)->end();
 | |
|     if (I != E)
 | |
|       Iters.push_back(std::make_pair(I, E));
 | |
|   }
 | |
| 
 | |
|   SlotIndex sidx = Start;
 | |
|   // Break [Start;End) into segments that don't overlap any intervals.
 | |
|   for (;;) {
 | |
|     SlotIndex next = sidx, eidx = End;
 | |
|     // Find overlapping intervals.
 | |
|     for (unsigned i = 0; i != Iters.size() && sidx < eidx; ++i) {
 | |
|       LiveInterval::const_iterator I = Iters[i].first;
 | |
|       // Interval I is overlapping [sidx;eidx). Trim sidx.
 | |
|       if (I->start <= sidx) {
 | |
|         sidx = I->end;
 | |
|         // Move to the next run, remove iters when all are consumed.
 | |
|         I = ++Iters[i].first;
 | |
|         if (I == Iters[i].second) {
 | |
|           Iters.erase(Iters.begin() + i);
 | |
|           --i;
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|       // Trim eidx too if needed.
 | |
|       if (I->start >= eidx)
 | |
|         continue;
 | |
|       eidx = I->start;
 | |
|       next = I->end;
 | |
|     }
 | |
|     // Now, [sidx;eidx) doesn't overlap anything in intervals_.
 | |
|     if (sidx < eidx)
 | |
|       dupli_.addSimpleRange(sidx, eidx, VNI);
 | |
|     // If the interval end was truncated, we can try again from next.
 | |
|     if (next <= sidx)
 | |
|       break;
 | |
|     sidx = next;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SplitEditor::computeRemainder() {
 | |
|   // First we need to fill in the live ranges in dupli.
 | |
|   // If values were redefined, we need a full recoloring with SSA update.
 | |
|   // If values were truncated, we only need to truncate the ranges.
 | |
|   // If values were partially rematted, we should shrink to uses.
 | |
|   // If values were fully rematted, they should be omitted.
 | |
|   // FIXME: If a single value is redefined, just move the def and truncate.
 | |
|   LiveInterval &parent = edit_.getParent();
 | |
| 
 | |
|   // Values that are fully contained in the split intervals.
 | |
|   SmallPtrSet<const VNInfo*, 8> deadValues;
 | |
|   // Map all curli values that should have live defs in dupli.
 | |
|   for (LiveInterval::const_vni_iterator I = parent.vni_begin(),
 | |
|        E = parent.vni_end(); I != E; ++I) {
 | |
|     const VNInfo *VNI = *I;
 | |
|     // Don't transfer unused values to the new intervals.
 | |
|     if (VNI->isUnused())
 | |
|       continue;
 | |
|     // Original def is contained in the split intervals.
 | |
|     if (intervalsLiveAt(VNI->def)) {
 | |
|       // Did this value escape?
 | |
|       if (dupli_.isMapped(VNI))
 | |
|         truncatedValues.insert(VNI);
 | |
|       else
 | |
|         deadValues.insert(VNI);
 | |
|       continue;
 | |
|     }
 | |
|     // Add minimal live range at the definition.
 | |
|     VNInfo *DVNI = dupli_.defValue(VNI, VNI->def);
 | |
|     dupli_.getLI()->addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), DVNI));
 | |
|   }
 | |
| 
 | |
|   // Add all ranges to dupli.
 | |
|   for (LiveInterval::const_iterator I = parent.begin(), E = parent.end();
 | |
|        I != E; ++I) {
 | |
|     const LiveRange &LR = *I;
 | |
|     if (truncatedValues.count(LR.valno)) {
 | |
|       // recolor after removing intervals_.
 | |
|       addTruncSimpleRange(LR.start, LR.end, LR.valno);
 | |
|     } else if (!deadValues.count(LR.valno)) {
 | |
|       // recolor without truncation.
 | |
|       dupli_.addSimpleRange(LR.start, LR.end, LR.valno);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Extend dupli_ to be live out of any critical loop predecessors.
 | |
|   // This means we have multiple registers live out of those blocks.
 | |
|   // The alternative would be to split the critical edges.
 | |
|   if (criticalPreds_.empty())
 | |
|     return;
 | |
|   for (SplitAnalysis::BlockPtrSet::iterator I = criticalPreds_.begin(),
 | |
|        E = criticalPreds_.end(); I != E; ++I)
 | |
|      dupli_.extendTo(*I, lis_.getMBBEndIdx(*I).getPrevSlot());
 | |
|    criticalPreds_.clear();
 | |
| }
 | |
| 
 | |
| void SplitEditor::finish() {
 | |
|   assert(!openli_.getLI() && "Previous LI not closed before rewrite");
 | |
|   assert(dupli_.getLI() && "No dupli for rewrite. Noop spilt?");
 | |
| 
 | |
|   // Complete dupli liveness.
 | |
|   computeRemainder();
 | |
| 
 | |
|   // Get rid of unused values and set phi-kill flags.
 | |
|   for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I)
 | |
|     (*I)->RenumberValues(lis_);
 | |
| 
 | |
|   // Rewrite instructions.
 | |
|   rewrite(edit_.getReg());
 | |
| 
 | |
|   // Now check if any registers were separated into multiple components.
 | |
|   ConnectedVNInfoEqClasses ConEQ(lis_);
 | |
|   for (unsigned i = 0, e = edit_.size(); i != e; ++i) {
 | |
|     // Don't use iterators, they are invalidated by create() below.
 | |
|     LiveInterval *li = edit_.get(i);
 | |
|     unsigned NumComp = ConEQ.Classify(li);
 | |
|     if (NumComp <= 1)
 | |
|       continue;
 | |
|     DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n');
 | |
|     SmallVector<LiveInterval*, 8> dups;
 | |
|     dups.push_back(li);
 | |
|     for (unsigned i = 1; i != NumComp; ++i)
 | |
|       dups.push_back(&edit_.create(mri_, lis_, vrm_));
 | |
|     ConEQ.Distribute(&dups[0]);
 | |
|     // Rewrite uses to the new regs.
 | |
|     rewrite(li->reg);
 | |
|   }
 | |
| 
 | |
|   // Calculate spill weight and allocation hints for new intervals.
 | |
|   VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_);
 | |
|   for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I){
 | |
|     LiveInterval &li = **I;
 | |
|     vrai.CalculateRegClass(li.reg);
 | |
|     vrai.CalculateWeightAndHint(li);
 | |
|     DEBUG(dbgs() << "  new interval " << mri_.getRegClass(li.reg)->getName()
 | |
|                  << ":" << li << '\n');
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                               Loop Splitting
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void SplitEditor::splitAroundLoop(const MachineLoop *Loop) {
 | |
|   SplitAnalysis::LoopBlocks Blocks;
 | |
|   sa_.getLoopBlocks(Loop, Blocks);
 | |
| 
 | |
|   DEBUG({
 | |
|     dbgs() << "  splitAround"; sa_.print(Blocks, dbgs()); dbgs() << '\n';
 | |
|   });
 | |
| 
 | |
|   // Break critical edges as needed.
 | |
|   SplitAnalysis::BlockPtrSet CriticalExits;
 | |
|   sa_.getCriticalExits(Blocks, CriticalExits);
 | |
|   assert(CriticalExits.empty() && "Cannot break critical exits yet");
 | |
| 
 | |
|   // Get critical predecessors so computeRemainder can deal with them.
 | |
|   sa_.getCriticalPreds(Blocks, criticalPreds_);
 | |
| 
 | |
|   // Create new live interval for the loop.
 | |
|   openIntv();
 | |
| 
 | |
|   // Insert copies in the predecessors.
 | |
|   for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(),
 | |
|        E = Blocks.Preds.end(); I != E; ++I) {
 | |
|     MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
 | |
|     enterIntvAtEnd(MBB);
 | |
|   }
 | |
| 
 | |
|   // Switch all loop blocks.
 | |
|   for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(),
 | |
|        E = Blocks.Loop.end(); I != E; ++I)
 | |
|      useIntv(**I);
 | |
| 
 | |
|   // Insert back copies in the exit blocks.
 | |
|   for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(),
 | |
|        E = Blocks.Exits.end(); I != E; ++I) {
 | |
|     MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
 | |
|     leaveIntvAtTop(MBB);
 | |
|   }
 | |
| 
 | |
|   // Done.
 | |
|   closeIntv();
 | |
|   finish();
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                            Single Block Splitting
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// getMultiUseBlocks - if curli has more than one use in a basic block, it
 | |
| /// may be an advantage to split curli for the duration of the block.
 | |
| bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
 | |
|   // If curli is local to one block, there is no point to splitting it.
 | |
|   if (usingBlocks_.size() <= 1)
 | |
|     return false;
 | |
|   // Add blocks with multiple uses.
 | |
|   for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
 | |
|        I != E; ++I)
 | |
|     switch (I->second) {
 | |
|     case 0:
 | |
|     case 1:
 | |
|       continue;
 | |
|     case 2: {
 | |
|       // When there are only two uses and curli is both live in and live out,
 | |
|       // we don't really win anything by isolating the block since we would be
 | |
|       // inserting two copies.
 | |
|       // The remaing register would still have two uses in the block. (Unless it
 | |
|       // separates into disconnected components).
 | |
|       if (lis_.isLiveInToMBB(*curli_, I->first) &&
 | |
|           lis_.isLiveOutOfMBB(*curli_, I->first))
 | |
|         continue;
 | |
|     } // Fall through.
 | |
|     default:
 | |
|       Blocks.insert(I->first);
 | |
|     }
 | |
|   return !Blocks.empty();
 | |
| }
 | |
| 
 | |
| /// splitSingleBlocks - Split curli into a separate live interval inside each
 | |
| /// basic block in Blocks.
 | |
| void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
 | |
|   DEBUG(dbgs() << "  splitSingleBlocks for " << Blocks.size() << " blocks.\n");
 | |
|   // Determine the first and last instruction using curli in each block.
 | |
|   typedef std::pair<SlotIndex,SlotIndex> IndexPair;
 | |
|   typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap;
 | |
|   IndexPairMap MBBRange;
 | |
|   for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(),
 | |
|        E = sa_.usingInstrs_.end(); I != E; ++I) {
 | |
|     const MachineBasicBlock *MBB = (*I)->getParent();
 | |
|     if (!Blocks.count(MBB))
 | |
|       continue;
 | |
|     SlotIndex Idx = lis_.getInstructionIndex(*I);
 | |
|     DEBUG(dbgs() << "  BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I);
 | |
|     IndexPair &IP = MBBRange[MBB];
 | |
|     if (!IP.first.isValid() || Idx < IP.first)
 | |
|       IP.first = Idx;
 | |
|     if (!IP.second.isValid() || Idx > IP.second)
 | |
|       IP.second = Idx;
 | |
|   }
 | |
| 
 | |
|   // Create a new interval for each block.
 | |
|   for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(),
 | |
|        E = Blocks.end(); I != E; ++I) {
 | |
|     IndexPair &IP = MBBRange[*I];
 | |
|     DEBUG(dbgs() << "  splitting for BB#" << (*I)->getNumber() << ": ["
 | |
|                  << IP.first << ';' << IP.second << ")\n");
 | |
|     assert(IP.first.isValid() && IP.second.isValid());
 | |
| 
 | |
|     openIntv();
 | |
|     enterIntvBefore(IP.first);
 | |
|     useIntv(IP.first.getBaseIndex(), IP.second.getBoundaryIndex());
 | |
|     leaveIntvAfter(IP.second);
 | |
|     closeIntv();
 | |
|   }
 | |
|   finish();
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                            Sub Block Splitting
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// getBlockForInsideSplit - If curli is contained inside a single basic block,
 | |
| /// and it wou pay to subdivide the interval inside that block, return it.
 | |
| /// Otherwise return NULL. The returned block can be passed to
 | |
| /// SplitEditor::splitInsideBlock.
 | |
| const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() {
 | |
|   // The interval must be exclusive to one block.
 | |
|   if (usingBlocks_.size() != 1)
 | |
|     return 0;
 | |
|   // Don't to this for less than 4 instructions. We want to be sure that
 | |
|   // splitting actually reduces the instruction count per interval.
 | |
|   if (usingInstrs_.size() < 4)
 | |
|     return 0;
 | |
|   return usingBlocks_.begin()->first;
 | |
| }
 | |
| 
 | |
| /// splitInsideBlock - Split curli into multiple intervals inside MBB.
 | |
| void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) {
 | |
|   SmallVector<SlotIndex, 32> Uses;
 | |
|   Uses.reserve(sa_.usingInstrs_.size());
 | |
|   for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(),
 | |
|        E = sa_.usingInstrs_.end(); I != E; ++I)
 | |
|     if ((*I)->getParent() == MBB)
 | |
|       Uses.push_back(lis_.getInstructionIndex(*I));
 | |
|   DEBUG(dbgs() << "  splitInsideBlock BB#" << MBB->getNumber() << " for "
 | |
|                << Uses.size() << " instructions.\n");
 | |
|   assert(Uses.size() >= 3 && "Need at least 3 instructions");
 | |
|   array_pod_sort(Uses.begin(), Uses.end());
 | |
| 
 | |
|   // Simple algorithm: Find the largest gap between uses as determined by slot
 | |
|   // indices. Create new intervals for instructions before the gap and after the
 | |
|   // gap.
 | |
|   unsigned bestPos = 0;
 | |
|   int bestGap = 0;
 | |
|   DEBUG(dbgs() << "    dist (" << Uses[0]);
 | |
|   for (unsigned i = 1, e = Uses.size(); i != e; ++i) {
 | |
|     int g = Uses[i-1].distance(Uses[i]);
 | |
|     DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]);
 | |
|     if (g > bestGap)
 | |
|       bestPos = i, bestGap = g;
 | |
|   }
 | |
|   DEBUG(dbgs() << "), best: -" << bestGap << "-\n");
 | |
| 
 | |
|   // bestPos points to the first use after the best gap.
 | |
|   assert(bestPos > 0 && "Invalid gap");
 | |
| 
 | |
|   // FIXME: Don't create intervals for low densities.
 | |
| 
 | |
|   // First interval before the gap. Don't create single-instr intervals.
 | |
|   if (bestPos > 1) {
 | |
|     openIntv();
 | |
|     enterIntvBefore(Uses.front());
 | |
|     useIntv(Uses.front().getBaseIndex(), Uses[bestPos-1].getBoundaryIndex());
 | |
|     leaveIntvAfter(Uses[bestPos-1]);
 | |
|     closeIntv();
 | |
|   }
 | |
| 
 | |
|   // Second interval after the gap.
 | |
|   if (bestPos < Uses.size()-1) {
 | |
|     openIntv();
 | |
|     enterIntvBefore(Uses[bestPos]);
 | |
|     useIntv(Uses[bestPos].getBaseIndex(), Uses.back().getBoundaryIndex());
 | |
|     leaveIntvAfter(Uses.back());
 | |
|     closeIntv();
 | |
|   }
 | |
| 
 | |
|   finish();
 | |
| }
 |