mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@22992 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			688 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			688 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- RegAllocLocal.cpp - A BasicBlock generic register allocator -------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This register allocator allocates registers to a basic block at a time,
 | 
						|
// attempting to keep values in registers and reusing registers as appropriate.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "regalloc"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/SSARegMap.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/LiveVariables.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
  Statistic<> NumStores("ra-local", "Number of stores added");
 | 
						|
  Statistic<> NumLoads ("ra-local", "Number of loads added");
 | 
						|
  Statistic<> NumFolded("ra-local", "Number of loads/stores folded into "
 | 
						|
                        "instructions");
 | 
						|
  class RA : public MachineFunctionPass {
 | 
						|
    const TargetMachine *TM;
 | 
						|
    MachineFunction *MF;
 | 
						|
    const MRegisterInfo *RegInfo;
 | 
						|
    LiveVariables *LV;
 | 
						|
    bool *PhysRegsEverUsed;
 | 
						|
 | 
						|
    // StackSlotForVirtReg - Maps virtual regs to the frame index where these
 | 
						|
    // values are spilled.
 | 
						|
    std::map<unsigned, int> StackSlotForVirtReg;
 | 
						|
 | 
						|
    // Virt2PhysRegMap - This map contains entries for each virtual register
 | 
						|
    // that is currently available in a physical register.
 | 
						|
    DenseMap<unsigned, VirtReg2IndexFunctor> Virt2PhysRegMap;
 | 
						|
 | 
						|
    unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) {
 | 
						|
      return Virt2PhysRegMap[VirtReg];
 | 
						|
    }
 | 
						|
 | 
						|
    // PhysRegsUsed - This array is effectively a map, containing entries for
 | 
						|
    // each physical register that currently has a value (ie, it is in
 | 
						|
    // Virt2PhysRegMap).  The value mapped to is the virtual register
 | 
						|
    // corresponding to the physical register (the inverse of the
 | 
						|
    // Virt2PhysRegMap), or 0.  The value is set to 0 if this register is pinned
 | 
						|
    // because it is used by a future instruction.  If the entry for a physical
 | 
						|
    // register is -1, then the physical register is "not in the map".
 | 
						|
    //
 | 
						|
    std::vector<int> PhysRegsUsed;
 | 
						|
 | 
						|
    // PhysRegsUseOrder - This contains a list of the physical registers that
 | 
						|
    // currently have a virtual register value in them.  This list provides an
 | 
						|
    // ordering of registers, imposing a reallocation order.  This list is only
 | 
						|
    // used if all registers are allocated and we have to spill one, in which
 | 
						|
    // case we spill the least recently used register.  Entries at the front of
 | 
						|
    // the list are the least recently used registers, entries at the back are
 | 
						|
    // the most recently used.
 | 
						|
    //
 | 
						|
    std::vector<unsigned> PhysRegsUseOrder;
 | 
						|
 | 
						|
    // VirtRegModified - This bitset contains information about which virtual
 | 
						|
    // registers need to be spilled back to memory when their registers are
 | 
						|
    // scavenged.  If a virtual register has simply been rematerialized, there
 | 
						|
    // is no reason to spill it to memory when we need the register back.
 | 
						|
    //
 | 
						|
    std::vector<bool> VirtRegModified;
 | 
						|
 | 
						|
    void markVirtRegModified(unsigned Reg, bool Val = true) {
 | 
						|
      assert(MRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
 | 
						|
      Reg -= MRegisterInfo::FirstVirtualRegister;
 | 
						|
      if (VirtRegModified.size() <= Reg) VirtRegModified.resize(Reg+1);
 | 
						|
      VirtRegModified[Reg] = Val;
 | 
						|
    }
 | 
						|
 | 
						|
    bool isVirtRegModified(unsigned Reg) const {
 | 
						|
      assert(MRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
 | 
						|
      assert(Reg - MRegisterInfo::FirstVirtualRegister < VirtRegModified.size()
 | 
						|
             && "Illegal virtual register!");
 | 
						|
      return VirtRegModified[Reg - MRegisterInfo::FirstVirtualRegister];
 | 
						|
    }
 | 
						|
 | 
						|
    void MarkPhysRegRecentlyUsed(unsigned Reg) {
 | 
						|
      if(PhysRegsUseOrder.empty() ||
 | 
						|
         PhysRegsUseOrder.back() == Reg) return;  // Already most recently used
 | 
						|
 | 
						|
      for (unsigned i = PhysRegsUseOrder.size(); i != 0; --i)
 | 
						|
        if (areRegsEqual(Reg, PhysRegsUseOrder[i-1])) {
 | 
						|
          unsigned RegMatch = PhysRegsUseOrder[i-1];       // remove from middle
 | 
						|
          PhysRegsUseOrder.erase(PhysRegsUseOrder.begin()+i-1);
 | 
						|
          // Add it to the end of the list
 | 
						|
          PhysRegsUseOrder.push_back(RegMatch);
 | 
						|
          if (RegMatch == Reg)
 | 
						|
            return;    // Found an exact match, exit early
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
  public:
 | 
						|
    virtual const char *getPassName() const {
 | 
						|
      return "Local Register Allocator";
 | 
						|
    }
 | 
						|
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.addRequired<LiveVariables>();
 | 
						|
      AU.addRequiredID(PHIEliminationID);
 | 
						|
      AU.addRequiredID(TwoAddressInstructionPassID);
 | 
						|
      MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    /// runOnMachineFunction - Register allocate the whole function
 | 
						|
    bool runOnMachineFunction(MachineFunction &Fn);
 | 
						|
 | 
						|
    /// AllocateBasicBlock - Register allocate the specified basic block.
 | 
						|
    void AllocateBasicBlock(MachineBasicBlock &MBB);
 | 
						|
 | 
						|
 | 
						|
    /// areRegsEqual - This method returns true if the specified registers are
 | 
						|
    /// related to each other.  To do this, it checks to see if they are equal
 | 
						|
    /// or if the first register is in the alias set of the second register.
 | 
						|
    ///
 | 
						|
    bool areRegsEqual(unsigned R1, unsigned R2) const {
 | 
						|
      if (R1 == R2) return true;
 | 
						|
      for (const unsigned *AliasSet = RegInfo->getAliasSet(R2);
 | 
						|
           *AliasSet; ++AliasSet) {
 | 
						|
        if (*AliasSet == R1) return true;
 | 
						|
      }
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    /// getStackSpaceFor - This returns the frame index of the specified virtual
 | 
						|
    /// register on the stack, allocating space if necessary.
 | 
						|
    int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
 | 
						|
 | 
						|
    /// removePhysReg - This method marks the specified physical register as no
 | 
						|
    /// longer being in use.
 | 
						|
    ///
 | 
						|
    void removePhysReg(unsigned PhysReg);
 | 
						|
 | 
						|
    /// spillVirtReg - This method spills the value specified by PhysReg into
 | 
						|
    /// the virtual register slot specified by VirtReg.  It then updates the RA
 | 
						|
    /// data structures to indicate the fact that PhysReg is now available.
 | 
						|
    ///
 | 
						|
    void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
 | 
						|
                      unsigned VirtReg, unsigned PhysReg);
 | 
						|
 | 
						|
    /// spillPhysReg - This method spills the specified physical register into
 | 
						|
    /// the virtual register slot associated with it.  If OnlyVirtRegs is set to
 | 
						|
    /// true, then the request is ignored if the physical register does not
 | 
						|
    /// contain a virtual register.
 | 
						|
    ///
 | 
						|
    void spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
 | 
						|
                      unsigned PhysReg, bool OnlyVirtRegs = false);
 | 
						|
 | 
						|
    /// assignVirtToPhysReg - This method updates local state so that we know
 | 
						|
    /// that PhysReg is the proper container for VirtReg now.  The physical
 | 
						|
    /// register must not be used for anything else when this is called.
 | 
						|
    ///
 | 
						|
    void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg);
 | 
						|
 | 
						|
    /// liberatePhysReg - Make sure the specified physical register is available
 | 
						|
    /// for use.  If there is currently a value in it, it is either moved out of
 | 
						|
    /// the way or spilled to memory.
 | 
						|
    ///
 | 
						|
    void liberatePhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
 | 
						|
                         unsigned PhysReg);
 | 
						|
 | 
						|
    /// isPhysRegAvailable - Return true if the specified physical register is
 | 
						|
    /// free and available for use.  This also includes checking to see if
 | 
						|
    /// aliased registers are all free...
 | 
						|
    ///
 | 
						|
    bool isPhysRegAvailable(unsigned PhysReg) const;
 | 
						|
 | 
						|
    /// getFreeReg - Look to see if there is a free register available in the
 | 
						|
    /// specified register class.  If not, return 0.
 | 
						|
    ///
 | 
						|
    unsigned getFreeReg(const TargetRegisterClass *RC);
 | 
						|
 | 
						|
    /// getReg - Find a physical register to hold the specified virtual
 | 
						|
    /// register.  If all compatible physical registers are used, this method
 | 
						|
    /// spills the last used virtual register to the stack, and uses that
 | 
						|
    /// register.
 | 
						|
    ///
 | 
						|
    unsigned getReg(MachineBasicBlock &MBB, MachineInstr *MI,
 | 
						|
                    unsigned VirtReg);
 | 
						|
 | 
						|
    /// reloadVirtReg - This method transforms the specified specified virtual
 | 
						|
    /// register use to refer to a physical register.  This method may do this
 | 
						|
    /// in one of several ways: if the register is available in a physical
 | 
						|
    /// register already, it uses that physical register.  If the value is not
 | 
						|
    /// in a physical register, and if there are physical registers available,
 | 
						|
    /// it loads it into a register.  If register pressure is high, and it is
 | 
						|
    /// possible, it tries to fold the load of the virtual register into the
 | 
						|
    /// instruction itself.  It avoids doing this if register pressure is low to
 | 
						|
    /// improve the chance that subsequent instructions can use the reloaded
 | 
						|
    /// value.  This method returns the modified instruction.
 | 
						|
    ///
 | 
						|
    MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
 | 
						|
                                unsigned OpNum);
 | 
						|
 | 
						|
 | 
						|
    void reloadPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
 | 
						|
                       unsigned PhysReg);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// getStackSpaceFor - This allocates space for the specified virtual register
 | 
						|
/// to be held on the stack.
 | 
						|
int RA::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
 | 
						|
  // Find the location Reg would belong...
 | 
						|
  std::map<unsigned, int>::iterator I =StackSlotForVirtReg.lower_bound(VirtReg);
 | 
						|
 | 
						|
  if (I != StackSlotForVirtReg.end() && I->first == VirtReg)
 | 
						|
    return I->second;          // Already has space allocated?
 | 
						|
 | 
						|
  // Allocate a new stack object for this spill location...
 | 
						|
  int FrameIdx = MF->getFrameInfo()->CreateStackObject(RC->getSize(),
 | 
						|
                                                       RC->getAlignment());
 | 
						|
 | 
						|
  // Assign the slot...
 | 
						|
  StackSlotForVirtReg.insert(I, std::make_pair(VirtReg, FrameIdx));
 | 
						|
  return FrameIdx;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// removePhysReg - This method marks the specified physical register as no
 | 
						|
/// longer being in use.
 | 
						|
///
 | 
						|
void RA::removePhysReg(unsigned PhysReg) {
 | 
						|
  PhysRegsUsed[PhysReg] = -1;      // PhyReg no longer used
 | 
						|
 | 
						|
  std::vector<unsigned>::iterator It =
 | 
						|
    std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), PhysReg);
 | 
						|
  if (It != PhysRegsUseOrder.end())
 | 
						|
    PhysRegsUseOrder.erase(It);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// spillVirtReg - This method spills the value specified by PhysReg into the
 | 
						|
/// virtual register slot specified by VirtReg.  It then updates the RA data
 | 
						|
/// structures to indicate the fact that PhysReg is now available.
 | 
						|
///
 | 
						|
void RA::spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
 | 
						|
                      unsigned VirtReg, unsigned PhysReg) {
 | 
						|
  assert(VirtReg && "Spilling a physical register is illegal!"
 | 
						|
         " Must not have appropriate kill for the register or use exists beyond"
 | 
						|
         " the intended one.");
 | 
						|
  DEBUG(std::cerr << "  Spilling register " << RegInfo->getName(PhysReg);
 | 
						|
        std::cerr << " containing %reg" << VirtReg;
 | 
						|
        if (!isVirtRegModified(VirtReg))
 | 
						|
        std::cerr << " which has not been modified, so no store necessary!");
 | 
						|
 | 
						|
  // Otherwise, there is a virtual register corresponding to this physical
 | 
						|
  // register.  We only need to spill it into its stack slot if it has been
 | 
						|
  // modified.
 | 
						|
  if (isVirtRegModified(VirtReg)) {
 | 
						|
    const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
 | 
						|
    int FrameIndex = getStackSpaceFor(VirtReg, RC);
 | 
						|
    DEBUG(std::cerr << " to stack slot #" << FrameIndex);
 | 
						|
    RegInfo->storeRegToStackSlot(MBB, I, PhysReg, FrameIndex);
 | 
						|
    ++NumStores;   // Update statistics
 | 
						|
  }
 | 
						|
 | 
						|
  getVirt2PhysRegMapSlot(VirtReg) = 0;   // VirtReg no longer available
 | 
						|
 | 
						|
  DEBUG(std::cerr << "\n");
 | 
						|
  removePhysReg(PhysReg);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// spillPhysReg - This method spills the specified physical register into the
 | 
						|
/// virtual register slot associated with it.  If OnlyVirtRegs is set to true,
 | 
						|
/// then the request is ignored if the physical register does not contain a
 | 
						|
/// virtual register.
 | 
						|
///
 | 
						|
void RA::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
 | 
						|
                      unsigned PhysReg, bool OnlyVirtRegs) {
 | 
						|
  if (PhysRegsUsed[PhysReg] != -1) {            // Only spill it if it's used!
 | 
						|
    if (PhysRegsUsed[PhysReg] || !OnlyVirtRegs)
 | 
						|
      spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg);
 | 
						|
  } else {
 | 
						|
    // If the selected register aliases any other registers, we must make
 | 
						|
    // sure that one of the aliases isn't alive...
 | 
						|
    for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
 | 
						|
         *AliasSet; ++AliasSet)
 | 
						|
      if (PhysRegsUsed[*AliasSet] != -1)     // Spill aliased register...
 | 
						|
        if (PhysRegsUsed[*AliasSet] || !OnlyVirtRegs)
 | 
						|
          spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// assignVirtToPhysReg - This method updates local state so that we know
 | 
						|
/// that PhysReg is the proper container for VirtReg now.  The physical
 | 
						|
/// register must not be used for anything else when this is called.
 | 
						|
///
 | 
						|
void RA::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
 | 
						|
  assert(PhysRegsUsed[PhysReg] == -1 && "Phys reg already assigned!");
 | 
						|
  // Update information to note the fact that this register was just used, and
 | 
						|
  // it holds VirtReg.
 | 
						|
  PhysRegsUsed[PhysReg] = VirtReg;
 | 
						|
  getVirt2PhysRegMapSlot(VirtReg) = PhysReg;
 | 
						|
  PhysRegsUseOrder.push_back(PhysReg);   // New use of PhysReg
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// isPhysRegAvailable - Return true if the specified physical register is free
 | 
						|
/// and available for use.  This also includes checking to see if aliased
 | 
						|
/// registers are all free...
 | 
						|
///
 | 
						|
bool RA::isPhysRegAvailable(unsigned PhysReg) const {
 | 
						|
  if (PhysRegsUsed[PhysReg] != -1) return false;
 | 
						|
 | 
						|
  // If the selected register aliases any other allocated registers, it is
 | 
						|
  // not free!
 | 
						|
  for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
 | 
						|
       *AliasSet; ++AliasSet)
 | 
						|
    if (PhysRegsUsed[*AliasSet] != -1) // Aliased register in use?
 | 
						|
      return false;                    // Can't use this reg then.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getFreeReg - Look to see if there is a free register available in the
 | 
						|
/// specified register class.  If not, return 0.
 | 
						|
///
 | 
						|
unsigned RA::getFreeReg(const TargetRegisterClass *RC) {
 | 
						|
  // Get iterators defining the range of registers that are valid to allocate in
 | 
						|
  // this class, which also specifies the preferred allocation order.
 | 
						|
  TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF);
 | 
						|
  TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF);
 | 
						|
 | 
						|
  for (; RI != RE; ++RI)
 | 
						|
    if (isPhysRegAvailable(*RI)) {       // Is reg unused?
 | 
						|
      assert(*RI != 0 && "Cannot use register!");
 | 
						|
      return *RI; // Found an unused register!
 | 
						|
    }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// liberatePhysReg - Make sure the specified physical register is available for
 | 
						|
/// use.  If there is currently a value in it, it is either moved out of the way
 | 
						|
/// or spilled to memory.
 | 
						|
///
 | 
						|
void RA::liberatePhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
 | 
						|
                         unsigned PhysReg) {
 | 
						|
  spillPhysReg(MBB, I, PhysReg);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getReg - Find a physical register to hold the specified virtual
 | 
						|
/// register.  If all compatible physical registers are used, this method spills
 | 
						|
/// the last used virtual register to the stack, and uses that register.
 | 
						|
///
 | 
						|
unsigned RA::getReg(MachineBasicBlock &MBB, MachineInstr *I,
 | 
						|
                    unsigned VirtReg) {
 | 
						|
  const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
 | 
						|
 | 
						|
  // First check to see if we have a free register of the requested type...
 | 
						|
  unsigned PhysReg = getFreeReg(RC);
 | 
						|
 | 
						|
  // If we didn't find an unused register, scavenge one now!
 | 
						|
  if (PhysReg == 0) {
 | 
						|
    assert(!PhysRegsUseOrder.empty() && "No allocated registers??");
 | 
						|
 | 
						|
    // Loop over all of the preallocated registers from the least recently used
 | 
						|
    // to the most recently used.  When we find one that is capable of holding
 | 
						|
    // our register, use it.
 | 
						|
    for (unsigned i = 0; PhysReg == 0; ++i) {
 | 
						|
      assert(i != PhysRegsUseOrder.size() &&
 | 
						|
             "Couldn't find a register of the appropriate class!");
 | 
						|
 | 
						|
      unsigned R = PhysRegsUseOrder[i];
 | 
						|
 | 
						|
      // We can only use this register if it holds a virtual register (ie, it
 | 
						|
      // can be spilled).  Do not use it if it is an explicitly allocated
 | 
						|
      // physical register!
 | 
						|
      assert(PhysRegsUsed[R] != -1 &&
 | 
						|
             "PhysReg in PhysRegsUseOrder, but is not allocated?");
 | 
						|
      if (PhysRegsUsed[R]) {
 | 
						|
        // If the current register is compatible, use it.
 | 
						|
        if (RC->contains(R)) {
 | 
						|
          PhysReg = R;
 | 
						|
          break;
 | 
						|
        } else {
 | 
						|
          // If one of the registers aliased to the current register is
 | 
						|
          // compatible, use it.
 | 
						|
          for (const unsigned *AliasSet = RegInfo->getAliasSet(R);
 | 
						|
               *AliasSet; ++AliasSet) {
 | 
						|
            if (RC->contains(*AliasSet)) {
 | 
						|
              PhysReg = *AliasSet;    // Take an aliased register
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    assert(PhysReg && "Physical register not assigned!?!?");
 | 
						|
 | 
						|
    // At this point PhysRegsUseOrder[i] is the least recently used register of
 | 
						|
    // compatible register class.  Spill it to memory and reap its remains.
 | 
						|
    spillPhysReg(MBB, I, PhysReg);
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that we know which register we need to assign this to, do it now!
 | 
						|
  assignVirtToPhysReg(VirtReg, PhysReg);
 | 
						|
  return PhysReg;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// reloadVirtReg - This method transforms the specified specified virtual
 | 
						|
/// register use to refer to a physical register.  This method may do this in
 | 
						|
/// one of several ways: if the register is available in a physical register
 | 
						|
/// already, it uses that physical register.  If the value is not in a physical
 | 
						|
/// register, and if there are physical registers available, it loads it into a
 | 
						|
/// register.  If register pressure is high, and it is possible, it tries to
 | 
						|
/// fold the load of the virtual register into the instruction itself.  It
 | 
						|
/// avoids doing this if register pressure is low to improve the chance that
 | 
						|
/// subsequent instructions can use the reloaded value.  This method returns the
 | 
						|
/// modified instruction.
 | 
						|
///
 | 
						|
MachineInstr *RA::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
 | 
						|
                                unsigned OpNum) {
 | 
						|
  unsigned VirtReg = MI->getOperand(OpNum).getReg();
 | 
						|
 | 
						|
  // If the virtual register is already available, just update the instruction
 | 
						|
  // and return.
 | 
						|
  if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) {
 | 
						|
    MarkPhysRegRecentlyUsed(PR);          // Already have this value available!
 | 
						|
    MI->SetMachineOperandReg(OpNum, PR);  // Assign the input register
 | 
						|
    return MI;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we need to fold it into the current instruction, or reload it.
 | 
						|
  // If we have registers available to hold the value, use them.
 | 
						|
  const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
 | 
						|
  unsigned PhysReg = getFreeReg(RC);
 | 
						|
  int FrameIndex = getStackSpaceFor(VirtReg, RC);
 | 
						|
 | 
						|
  if (PhysReg) {   // Register is available, allocate it!
 | 
						|
    assignVirtToPhysReg(VirtReg, PhysReg);
 | 
						|
  } else {         // No registers available.
 | 
						|
    // If we can fold this spill into this instruction, do so now.
 | 
						|
    if (MachineInstr* FMI = RegInfo->foldMemoryOperand(MI, OpNum, FrameIndex)){
 | 
						|
      ++NumFolded;
 | 
						|
      // Since we changed the address of MI, make sure to update live variables
 | 
						|
      // to know that the new instruction has the properties of the old one.
 | 
						|
      LV->instructionChanged(MI, FMI);
 | 
						|
      return MBB.insert(MBB.erase(MI), FMI);
 | 
						|
    }
 | 
						|
 | 
						|
    // It looks like we can't fold this virtual register load into this
 | 
						|
    // instruction.  Force some poor hapless value out of the register file to
 | 
						|
    // make room for the new register, and reload it.
 | 
						|
    PhysReg = getReg(MBB, MI, VirtReg);
 | 
						|
  }
 | 
						|
 | 
						|
  markVirtRegModified(VirtReg, false);   // Note that this reg was just reloaded
 | 
						|
 | 
						|
  DEBUG(std::cerr << "  Reloading %reg" << VirtReg << " into "
 | 
						|
                  << RegInfo->getName(PhysReg) << "\n");
 | 
						|
 | 
						|
  // Add move instruction(s)
 | 
						|
  RegInfo->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex);
 | 
						|
  ++NumLoads;    // Update statistics
 | 
						|
 | 
						|
  PhysRegsEverUsed[PhysReg] = true;
 | 
						|
  MI->SetMachineOperandReg(OpNum, PhysReg);  // Assign the input register
 | 
						|
  return MI;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
void RA::AllocateBasicBlock(MachineBasicBlock &MBB) {
 | 
						|
  // loop over each instruction
 | 
						|
  MachineBasicBlock::iterator MI = MBB.begin();
 | 
						|
  for (; MI != MBB.end(); ++MI) {
 | 
						|
    const TargetInstrDescriptor &TID = TM->getInstrInfo()->get(MI->getOpcode());
 | 
						|
    DEBUG(std::cerr << "\nStarting RegAlloc of: " << *MI;
 | 
						|
          std::cerr << "  Regs have values: ";
 | 
						|
          for (unsigned i = 0; i != RegInfo->getNumRegs(); ++i)
 | 
						|
            if (PhysRegsUsed[i] != -1)
 | 
						|
               std::cerr << "[" << RegInfo->getName(i)
 | 
						|
                         << ",%reg" << PhysRegsUsed[i] << "] ";
 | 
						|
          std::cerr << "\n");
 | 
						|
 | 
						|
    // Loop over the implicit uses, making sure that they are at the head of the
 | 
						|
    // use order list, so they don't get reallocated.
 | 
						|
    for (const unsigned *ImplicitUses = TID.ImplicitUses;
 | 
						|
         *ImplicitUses; ++ImplicitUses)
 | 
						|
      MarkPhysRegRecentlyUsed(*ImplicitUses);
 | 
						|
 | 
						|
    // Get the used operands into registers.  This has the potential to spill
 | 
						|
    // incoming values if we are out of registers.  Note that we completely
 | 
						|
    // ignore physical register uses here.  We assume that if an explicit
 | 
						|
    // physical register is referenced by the instruction, that it is guaranteed
 | 
						|
    // to be live-in, or the input is badly hosed.
 | 
						|
    //
 | 
						|
    for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
 | 
						|
      MachineOperand& MO = MI->getOperand(i);
 | 
						|
      // here we are looking for only used operands (never def&use)
 | 
						|
      if (!MO.isDef() && MO.isRegister() && MO.getReg() &&
 | 
						|
          MRegisterInfo::isVirtualRegister(MO.getReg()))
 | 
						|
        MI = reloadVirtReg(MBB, MI, i);
 | 
						|
    }
 | 
						|
 | 
						|
    // If this instruction is the last user of anything in registers, kill the
 | 
						|
    // value, freeing the register being used, so it doesn't need to be
 | 
						|
    // spilled to memory.
 | 
						|
    //
 | 
						|
    for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
 | 
						|
           KE = LV->killed_end(MI); KI != KE; ++KI) {
 | 
						|
      unsigned VirtReg = *KI;
 | 
						|
      unsigned PhysReg = VirtReg;
 | 
						|
      if (MRegisterInfo::isVirtualRegister(VirtReg)) {
 | 
						|
        // If the virtual register was never materialized into a register, it
 | 
						|
        // might not be in the map, but it won't hurt to zero it out anyway.
 | 
						|
        unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
 | 
						|
        PhysReg = PhysRegSlot;
 | 
						|
        PhysRegSlot = 0;
 | 
						|
      }
 | 
						|
 | 
						|
      if (PhysReg) {
 | 
						|
        DEBUG(std::cerr << "  Last use of " << RegInfo->getName(PhysReg)
 | 
						|
              << "[%reg" << VirtReg <<"], removing it from live set\n");
 | 
						|
        removePhysReg(PhysReg);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Loop over all of the operands of the instruction, spilling registers that
 | 
						|
    // are defined, and marking explicit destinations in the PhysRegsUsed map.
 | 
						|
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
      MachineOperand& MO = MI->getOperand(i);
 | 
						|
      if (MO.isDef() && MO.isRegister() && MO.getReg() &&
 | 
						|
          MRegisterInfo::isPhysicalRegister(MO.getReg())) {
 | 
						|
        unsigned Reg = MO.getReg();
 | 
						|
        PhysRegsEverUsed[Reg] = true;
 | 
						|
        spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in the reg
 | 
						|
        PhysRegsUsed[Reg] = 0;            // It is free and reserved now
 | 
						|
        PhysRegsUseOrder.push_back(Reg);
 | 
						|
        for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
 | 
						|
             *AliasSet; ++AliasSet) {
 | 
						|
          PhysRegsUseOrder.push_back(*AliasSet);
 | 
						|
          PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now
 | 
						|
          PhysRegsEverUsed[*AliasSet] = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Loop over the implicit defs, spilling them as well.
 | 
						|
    for (const unsigned *ImplicitDefs = TID.ImplicitDefs;
 | 
						|
         *ImplicitDefs; ++ImplicitDefs) {
 | 
						|
      unsigned Reg = *ImplicitDefs;
 | 
						|
      spillPhysReg(MBB, MI, Reg, true);
 | 
						|
      PhysRegsUseOrder.push_back(Reg);
 | 
						|
      PhysRegsUsed[Reg] = 0;            // It is free and reserved now
 | 
						|
      PhysRegsEverUsed[Reg] = true;
 | 
						|
 | 
						|
      for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
 | 
						|
           *AliasSet; ++AliasSet) {
 | 
						|
        PhysRegsUseOrder.push_back(*AliasSet);
 | 
						|
        PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now
 | 
						|
        PhysRegsEverUsed[*AliasSet] = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Okay, we have allocated all of the source operands and spilled any values
 | 
						|
    // that would be destroyed by defs of this instruction.  Loop over the
 | 
						|
    // explicit defs and assign them to a register, spilling incoming values if
 | 
						|
    // we need to scavenge a register.
 | 
						|
    //
 | 
						|
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
      MachineOperand& MO = MI->getOperand(i);
 | 
						|
      if (MO.isDef() && MO.isRegister() && MO.getReg() &&
 | 
						|
          MRegisterInfo::isVirtualRegister(MO.getReg())) {
 | 
						|
        unsigned DestVirtReg = MO.getReg();
 | 
						|
        unsigned DestPhysReg;
 | 
						|
 | 
						|
        // If DestVirtReg already has a value, use it.
 | 
						|
        if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg)))
 | 
						|
          DestPhysReg = getReg(MBB, MI, DestVirtReg);
 | 
						|
        PhysRegsEverUsed[DestPhysReg] = true;
 | 
						|
        markVirtRegModified(DestVirtReg);
 | 
						|
        MI->SetMachineOperandReg(i, DestPhysReg);  // Assign the output register
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If this instruction defines any registers that are immediately dead,
 | 
						|
    // kill them now.
 | 
						|
    //
 | 
						|
    for (LiveVariables::killed_iterator KI = LV->dead_begin(MI),
 | 
						|
           KE = LV->dead_end(MI); KI != KE; ++KI) {
 | 
						|
      unsigned VirtReg = *KI;
 | 
						|
      unsigned PhysReg = VirtReg;
 | 
						|
      if (MRegisterInfo::isVirtualRegister(VirtReg)) {
 | 
						|
        unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
 | 
						|
        PhysReg = PhysRegSlot;
 | 
						|
        assert(PhysReg != 0);
 | 
						|
        PhysRegSlot = 0;
 | 
						|
      }
 | 
						|
 | 
						|
      if (PhysReg) {
 | 
						|
        DEBUG(std::cerr << "  Register " << RegInfo->getName(PhysReg)
 | 
						|
              << " [%reg" << VirtReg
 | 
						|
              << "] is never used, removing it frame live list\n");
 | 
						|
        removePhysReg(PhysReg);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  MI = MBB.getFirstTerminator();
 | 
						|
 | 
						|
  // Spill all physical registers holding virtual registers now.
 | 
						|
  for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i)
 | 
						|
    if (PhysRegsUsed[i] != -1)
 | 
						|
      if (unsigned VirtReg = PhysRegsUsed[i])
 | 
						|
        spillVirtReg(MBB, MI, VirtReg, i);
 | 
						|
      else
 | 
						|
        removePhysReg(i);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  bool AllOk = true;
 | 
						|
  for (unsigned i = MRegisterInfo::FirstVirtualRegister,
 | 
						|
           e = MF->getSSARegMap()->getLastVirtReg(); i <= e; ++i)
 | 
						|
    if (unsigned PR = Virt2PhysRegMap[i]) {
 | 
						|
      std::cerr << "Register still mapped: " << i << " -> " << PR << "\n";
 | 
						|
      AllOk = false;
 | 
						|
    }
 | 
						|
  assert(AllOk && "Virtual registers still in phys regs?");
 | 
						|
#endif
 | 
						|
 | 
						|
  // Clear any physical register which appear live at the end of the basic
 | 
						|
  // block, but which do not hold any virtual registers.  e.g., the stack
 | 
						|
  // pointer.
 | 
						|
  PhysRegsUseOrder.clear();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// runOnMachineFunction - Register allocate the whole function
 | 
						|
///
 | 
						|
bool RA::runOnMachineFunction(MachineFunction &Fn) {
 | 
						|
  DEBUG(std::cerr << "Machine Function " << "\n");
 | 
						|
  MF = &Fn;
 | 
						|
  TM = &Fn.getTarget();
 | 
						|
  RegInfo = TM->getRegisterInfo();
 | 
						|
  LV = &getAnalysis<LiveVariables>();
 | 
						|
 | 
						|
  PhysRegsEverUsed = new bool[RegInfo->getNumRegs()];
 | 
						|
  std::fill(PhysRegsEverUsed, PhysRegsEverUsed+RegInfo->getNumRegs(), false);
 | 
						|
  Fn.setUsedPhysRegs(PhysRegsEverUsed);
 | 
						|
 | 
						|
  PhysRegsUsed.assign(RegInfo->getNumRegs(), -1);
 | 
						|
 | 
						|
  // initialize the virtual->physical register map to have a 'null'
 | 
						|
  // mapping for all virtual registers
 | 
						|
  Virt2PhysRegMap.grow(MF->getSSARegMap()->getLastVirtReg());
 | 
						|
 | 
						|
  // Loop over all of the basic blocks, eliminating virtual register references
 | 
						|
  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
 | 
						|
       MBB != MBBe; ++MBB)
 | 
						|
    AllocateBasicBlock(*MBB);
 | 
						|
 | 
						|
  StackSlotForVirtReg.clear();
 | 
						|
  PhysRegsUsed.clear();
 | 
						|
  VirtRegModified.clear();
 | 
						|
  Virt2PhysRegMap.clear();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
FunctionPass *llvm::createLocalRegisterAllocator() {
 | 
						|
  return new RA();
 | 
						|
}
 |