mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@22523 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			3156 lines
		
	
	
		
			115 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3156 lines
		
	
	
		
			115 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- ModuloSchedulingSuperBlock.cpp - ModuloScheduling--------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This ModuloScheduling pass is based on the Swing Modulo Scheduling
 | |
| //  algorithm, but has been extended to support SuperBlocks (multiple
 | |
| //  basic block, single entry, multipl exit loops).
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "ModuloSchedSB"
 | |
| 
 | |
| #include "DependenceAnalyzer.h"
 | |
| #include "ModuloSchedulingSuperBlock.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/GraphWriter.h"
 | |
| #include "llvm/Support/Timer.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/ADT/SCCIterator.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "../MachineCodeForInstruction.h"
 | |
| #include "../SparcV9RegisterInfo.h"
 | |
| #include "../SparcV9Internals.h"
 | |
| #include "../SparcV9TmpInstr.h"
 | |
| #include <fstream>
 | |
| #include <sstream>
 | |
| #include <cmath>
 | |
| #include <utility>
 | |
| 
 | |
| using namespace llvm;
 | |
| /// Create ModuloSchedulingSBPass
 | |
| ///
 | |
| FunctionPass *llvm::createModuloSchedulingSBPass(TargetMachine & targ) {
 | |
|   DEBUG(std::cerr << "Created ModuloSchedulingSBPass\n");
 | |
|   return new ModuloSchedulingSBPass(targ);
 | |
| }
 | |
| 
 | |
| 
 | |
| #if 1
 | |
| #define TIME_REGION(VARNAME, DESC) \
 | |
|    NamedRegionTimer VARNAME(DESC)
 | |
| #else
 | |
| #define TIME_REGION(VARNAME, DESC)
 | |
| #endif
 | |
| 
 | |
| 
 | |
| //Graph Traits for printing out the dependence graph
 | |
| template<typename GraphType>
 | |
| static void WriteGraphToFileSB(std::ostream &O, const std::string &GraphName,
 | |
|                              const GraphType >) {
 | |
|   std::string Filename = GraphName + ".dot";
 | |
|   O << "Writing '" << Filename << "'...";
 | |
|   std::ofstream F(Filename.c_str());
 | |
| 
 | |
|   if (F.good())
 | |
|     WriteGraph(F, GT);
 | |
|   else
 | |
|     O << "  error opening file for writing!";
 | |
|   O << "\n";
 | |
| };
 | |
| 
 | |
| namespace llvm {
 | |
|   Statistic<> NumLoops("moduloschedSB-numLoops", "Total Number of Loops");
 | |
|   Statistic<> NumSB("moduloschedSB-numSuperBlocks", "Total Number of SuperBlocks");
 | |
|   Statistic<> BBWithCalls("modulosched-BBCalls", "Basic Blocks rejected due to calls");
 | |
|   Statistic<> BBWithCondMov("modulosched-loopCondMov",
 | |
|                             "Basic Blocks rejected due to conditional moves");
 | |
|   Statistic<> SBResourceConstraint("modulosched-resourceConstraint",
 | |
|                                  "Loops constrained by resources");
 | |
|   Statistic<> SBRecurrenceConstraint("modulosched-recurrenceConstraint",
 | |
|                                    "Loops constrained by recurrences");
 | |
|   Statistic<> SBFinalIISum("modulosched-finalIISum", "Sum of all final II");
 | |
|   Statistic<> SBIISum("modulosched-IISum", "Sum of all theoretical II");
 | |
|   Statistic<> SBMSLoops("modulosched-schedLoops", "Number of loops successfully modulo-scheduled");
 | |
|   Statistic<> SBNoSched("modulosched-noSched", "No schedule");
 | |
|   Statistic<> SBSameStage("modulosched-sameStage", "Max stage is 0");
 | |
|   Statistic<> SBBLoops("modulosched-SBBLoops", "Number single basic block loops");
 | |
|   Statistic<> SBInvalid("modulosched-SBInvalid", "Number invalid superblock loops");
 | |
|   Statistic<> SBValid("modulosched-SBValid", "Number valid superblock loops");
 | |
|  Statistic<> SBSize("modulosched-SBSize", "Total size of all valid superblocks");
 | |
| 
 | |
|   template<>
 | |
|   struct DOTGraphTraits<MSchedGraphSB*> : public DefaultDOTGraphTraits {
 | |
|     static std::string getGraphName(MSchedGraphSB *F) {
 | |
|       return "Dependence Graph";
 | |
|     }
 | |
| 
 | |
|     static std::string getNodeLabel(MSchedGraphSBNode *Node, MSchedGraphSB *Graph) {
 | |
|       if(!Node->isPredicate()) {
 | |
|         if (Node->getInst()) {
 | |
|           std::stringstream ss;
 | |
|           ss << *(Node->getInst());
 | |
|           return ss.str(); //((MachineInstr*)Node->getInst());
 | |
|         }
 | |
|         else
 | |
|           return "No Inst";
 | |
|       }
 | |
|       else
 | |
|         return "Pred Node";
 | |
|     }
 | |
|     static std::string getEdgeSourceLabel(MSchedGraphSBNode *Node,
 | |
|                                           MSchedGraphSBNode::succ_iterator I) {
 | |
|       //Label each edge with the type of dependence
 | |
|       std::string edgelabel = "";
 | |
|       switch (I.getEdge().getDepOrderType()) {
 | |
| 
 | |
|       case MSchedGraphSBEdge::TrueDep:
 | |
|         edgelabel = "True";
 | |
|         break;
 | |
| 
 | |
|       case MSchedGraphSBEdge::AntiDep:
 | |
|         edgelabel =  "Anti";
 | |
|         break;
 | |
| 
 | |
|       case MSchedGraphSBEdge::OutputDep:
 | |
|         edgelabel = "Output";
 | |
|         break;
 | |
| 
 | |
|       case MSchedGraphSBEdge::NonDataDep:
 | |
|         edgelabel = "Pred";
 | |
|         break;
 | |
| 
 | |
|       default:
 | |
|         edgelabel = "Unknown";
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       //FIXME
 | |
|       int iteDiff = I.getEdge().getIteDiff();
 | |
|       std::string intStr = "(IteDiff: ";
 | |
|       intStr += itostr(iteDiff);
 | |
| 
 | |
|       intStr += ")";
 | |
|       edgelabel += intStr;
 | |
| 
 | |
|       return edgelabel;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   bool ModuloSchedulingSBPass::runOnFunction(Function &F) {
 | |
|     bool Changed = false;
 | |
| 
 | |
|     //Get MachineFunction
 | |
|     MachineFunction &MF = MachineFunction::get(&F);
 | |
| 
 | |
|     //Get Loop Info & Dependence Anaysis info
 | |
|     LoopInfo &LI = getAnalysis<LoopInfo>();
 | |
|     DependenceAnalyzer &DA = getAnalysis<DependenceAnalyzer>();
 | |
| 
 | |
|     //Worklist of superblocks
 | |
|     std::vector<std::vector<const MachineBasicBlock*> > Worklist;
 | |
|     FindSuperBlocks(F, LI, Worklist);
 | |
| 
 | |
|     DEBUG(if(Worklist.size() == 0) std::cerr << "No superblocks in function to ModuloSchedule\n");
 | |
| 
 | |
|     //Loop over worklist and ModuloSchedule each SuperBlock
 | |
|     for(std::vector<std::vector<const MachineBasicBlock*> >::iterator SB = Worklist.begin(),
 | |
|           SBE = Worklist.end(); SB != SBE; ++SB) {
 | |
| 
 | |
|       //Print out Superblock
 | |
|       DEBUG(std::cerr << "ModuloScheduling SB: \n";
 | |
|             for(std::vector<const MachineBasicBlock*>::const_iterator BI = SB->begin(),
 | |
|                   BE = SB->end(); BI != BE; ++BI) {
 | |
|               (*BI)->print(std::cerr);});
 | |
| 
 | |
|       if(!CreateDefMap(*SB)) {
 | |
|         defaultInst = 0;
 | |
|         defMap.clear();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       MSchedGraphSB *MSG = new MSchedGraphSB(*SB, target, indVarInstrs[*SB], DA,
 | |
|                                          machineTollvm[*SB]);
 | |
| 
 | |
|       //Write Graph out to file
 | |
|       DEBUG(WriteGraphToFileSB(std::cerr, F.getName(), MSG));
 | |
| 
 | |
|       //Calculate Resource II
 | |
|       int ResMII = calculateResMII(*SB);
 | |
| 
 | |
|       //Calculate Recurrence II
 | |
|       int RecMII = calculateRecMII(MSG, ResMII);
 | |
| 
 | |
|       DEBUG(std::cerr << "Number of reccurrences found: " << recurrenceList.size() << "\n");
 | |
| 
 | |
|       //Our starting initiation interval is the maximum of RecMII and ResMII
 | |
|       if(RecMII < ResMII)
 | |
|         ++SBRecurrenceConstraint;
 | |
|       else
 | |
|         ++SBResourceConstraint;
 | |
| 
 | |
|       II = std::max(RecMII, ResMII);
 | |
|       int mII = II;
 | |
| 
 | |
| 
 | |
|       //Print out II, RecMII, and ResMII
 | |
|       DEBUG(std::cerr << "II starts out as " << II << " ( RecMII=" << RecMII << " and ResMII=" << ResMII << ")\n");
 | |
| 
 | |
|       //Calculate Node Properties
 | |
|       calculateNodeAttributes(MSG, ResMII);
 | |
| 
 | |
|       //Dump node properties if in debug mode
 | |
|       DEBUG(for(std::map<MSchedGraphSBNode*, MSNodeSBAttributes>::iterator I =  nodeToAttributesMap.begin(),
 | |
|                   E = nodeToAttributesMap.end(); I !=E; ++I) {
 | |
|               std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: "
 | |
|                         << I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth
 | |
|                         << " Height: " << I->second.height << "\n";
 | |
|             });
 | |
| 
 | |
| 
 | |
|       //Put nodes in order to schedule them
 | |
|       computePartialOrder();
 | |
| 
 | |
|       //Dump out partial order
 | |
|       DEBUG(for(std::vector<std::set<MSchedGraphSBNode*> >::iterator I = partialOrder.begin(),
 | |
|                   E = partialOrder.end(); I !=E; ++I) {
 | |
|               std::cerr << "Start set in PO\n";
 | |
|               for(std::set<MSchedGraphSBNode*>::iterator J = I->begin(), JE = I->end(); J != JE; ++J)
 | |
|                 std::cerr << "PO:" << **J << "\n";
 | |
|             });
 | |
| 
 | |
|       //Place nodes in final order
 | |
|       orderNodes();
 | |
| 
 | |
|       //Dump out order of nodes
 | |
|       DEBUG(for(std::vector<MSchedGraphSBNode*>::iterator I = FinalNodeOrder.begin(), E = FinalNodeOrder.end(); I != E; ++I) {
 | |
|               std::cerr << "FO:" << **I << "\n";
 | |
|             });
 | |
| 
 | |
| 
 | |
|       //Finally schedule nodes
 | |
|       bool haveSched = computeSchedule(*SB, MSG);
 | |
| 
 | |
|       //Print out final schedule
 | |
|       DEBUG(schedule.print(std::cerr));
 | |
| 
 | |
|       //Final scheduling step is to reconstruct the loop only if we actual have
 | |
|       //stage > 0
 | |
|       if(haveSched) {
 | |
|         //schedule.printSchedule(std::cerr);
 | |
|         reconstructLoop(*SB);
 | |
|         ++SBMSLoops;
 | |
|         //Changed = true;
 | |
|         SBIISum += mII;
 | |
|         SBFinalIISum += II;
 | |
| 
 | |
|       if(schedule.getMaxStage() == 0)
 | |
|         ++SBSameStage;
 | |
|       }
 | |
|       else
 | |
|         ++SBNoSched;
 | |
| 
 | |
|       //Clear out our maps for the next basic block that is processed
 | |
|       nodeToAttributesMap.clear();
 | |
|       partialOrder.clear();
 | |
|       recurrenceList.clear();
 | |
|       FinalNodeOrder.clear();
 | |
|       schedule.clear();
 | |
|       defMap.clear();
 | |
| 
 | |
|     }
 | |
|     return Changed;
 | |
|   }
 | |
| 
 | |
|   void ModuloSchedulingSBPass::FindSuperBlocks(Function &F, LoopInfo &LI,
 | |
|                       std::vector<std::vector<const MachineBasicBlock*> > &Worklist) {
 | |
| 
 | |
|     //Get MachineFunction
 | |
|     MachineFunction &MF = MachineFunction::get(&F);
 | |
| 
 | |
|     //Map of LLVM BB to machine BB
 | |
|     std::map<BasicBlock*, MachineBasicBlock*> bbMap;
 | |
| 
 | |
|     for (MachineFunction::iterator BI = MF.begin(); BI != MF.end(); ++BI) {
 | |
|       BasicBlock *llvmBB = (BasicBlock*) BI->getBasicBlock();
 | |
|       assert(!bbMap.count(llvmBB) && "LLVM BB already in map!");
 | |
|       bbMap[llvmBB] = &*BI;
 | |
|     }
 | |
| 
 | |
|     //Iterate over the loops, and find super blocks
 | |
|     for(LoopInfo::iterator LB = LI.begin(), LE = LI.end(); LB != LE; ++LB) {
 | |
|       Loop *L = *LB;
 | |
|       ++NumLoops;
 | |
| 
 | |
|       //If loop is not single entry, try the next one
 | |
|       if(!L->getLoopPreheader())
 | |
|         continue;
 | |
| 
 | |
|       //Check size of this loop, we don't want SBB loops
 | |
|       if(L->getBlocks().size() == 1)
 | |
|         continue;
 | |
| 
 | |
|       //Check if this loop contains no sub loops
 | |
|       if(L->getSubLoops().size() == 0) {
 | |
| 
 | |
|         std::vector<const MachineBasicBlock*> superBlock;
 | |
| 
 | |
|         //Get Loop Headers
 | |
|         BasicBlock *header = L->getHeader();
 | |
| 
 | |
|         //Follow the header and make sure each BB only has one entry and is valid
 | |
|         BasicBlock *current = header;
 | |
|         assert(bbMap.count(current) && "LLVM BB must have corresponding Machine BB\n");
 | |
|         MachineBasicBlock *currentMBB = bbMap[header];
 | |
|         bool done = false;
 | |
|         bool success = true;
 | |
|         unsigned offset = 0;
 | |
|         std::map<const MachineInstr*, unsigned> indexMap;
 | |
| 
 | |
|         while(!done) {
 | |
|           //Loop over successors of this BB, they should be in the
 | |
|           //loop block and be valid
 | |
|           BasicBlock *next = 0;
 | |
|           for(succ_iterator I = succ_begin(current), E = succ_end(current);
 | |
|               I != E; ++I) {
 | |
|             if(L->contains(*I)) {
 | |
|               if(!next)
 | |
|                 next = *I;
 | |
|               else {
 | |
|                 done = true;
 | |
|                 success = false;
 | |
|                 break;
 | |
|               }
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           if(success) {
 | |
|             superBlock.push_back(currentMBB);
 | |
|             if(next == header)
 | |
|               done = true;
 | |
|             else if(!next->getSinglePredecessor()) {
 | |
|               done = true;
 | |
|               success = false;
 | |
|             }
 | |
|             else {
 | |
|               //Check that the next BB only has one entry
 | |
|               current = next;
 | |
|               assert(bbMap.count(current) && "LLVM BB must have corresponding Machine BB");
 | |
|               currentMBB = bbMap[current];
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
|         if(success) {
 | |
|           ++NumSB;
 | |
| 
 | |
|           //Loop over all the blocks in the superblock
 | |
|           for(std::vector<const MachineBasicBlock*>::iterator currentMBB = superBlock.begin(), MBBEnd = superBlock.end(); currentMBB != MBBEnd; ++currentMBB) {
 | |
|             if(!MachineBBisValid(*currentMBB, indexMap, offset)) {
 | |
|               success = false;
 | |
|               break;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if(success) {
 | |
|           if(getIndVar(superBlock, bbMap, indexMap)) {
 | |
|             ++SBValid;
 | |
|             Worklist.push_back(superBlock);
 | |
|             SBSize += superBlock.size();
 | |
|           }
 | |
|           else
 | |
|             ++SBInvalid;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
| 
 | |
|   bool ModuloSchedulingSBPass::getIndVar(std::vector<const MachineBasicBlock*> &superBlock, std::map<BasicBlock*, MachineBasicBlock*> &bbMap,
 | |
|                                   std::map<const MachineInstr*, unsigned> &indexMap) {
 | |
|     //See if we can get induction var instructions
 | |
|     std::set<const BasicBlock*> llvmSuperBlock;
 | |
| 
 | |
|     for(unsigned i =0; i < superBlock.size(); ++i)
 | |
|       llvmSuperBlock.insert(superBlock[i]->getBasicBlock());
 | |
| 
 | |
|     //Get Target machine instruction info
 | |
|     const TargetInstrInfo *TMI = target.getInstrInfo();
 | |
| 
 | |
|     //Get the loop back branch
 | |
|     BranchInst *b = dyn_cast<BranchInst>(((BasicBlock*) (superBlock[superBlock.size()-1])->getBasicBlock())->getTerminator());
 | |
|      std::set<Instruction*> indVar;
 | |
| 
 | |
|     if(b->isConditional()) {
 | |
|       //Get the condition for the branch
 | |
|       Value *cond = b->getCondition();
 | |
| 
 | |
|       DEBUG(std::cerr << "Condition: " << *cond << "\n");
 | |
| 
 | |
|       //List of instructions associated with induction variable
 | |
|       std::vector<Instruction*> stack;
 | |
| 
 | |
|       //Add branch
 | |
|       indVar.insert(b);
 | |
| 
 | |
|       if(Instruction *I = dyn_cast<Instruction>(cond))
 | |
|         if(bbMap.count(I->getParent())) {
 | |
|           if (!assocIndVar(I, indVar, stack, bbMap, superBlock[(superBlock.size()-1)]->getBasicBlock(), llvmSuperBlock))
 | |
|             return false;
 | |
|         }
 | |
|         else
 | |
|           return false;
 | |
|       else
 | |
|         return false;
 | |
|     }
 | |
|     else {
 | |
|       indVar.insert(b);
 | |
|     }
 | |
| 
 | |
|     //Dump out instructions associate with indvar for debug reasons
 | |
|     DEBUG(for(std::set<Instruction*>::iterator N = indVar.begin(), NE = indVar.end();
 | |
|               N != NE; ++N) {
 | |
|             std::cerr << **N << "\n";
 | |
|           });
 | |
| 
 | |
|     //Create map of machine instr to llvm instr
 | |
|     std::map<MachineInstr*, Instruction*> mllvm;
 | |
|     for(std::vector<const MachineBasicBlock*>::iterator MBB = superBlock.begin(), MBE = superBlock.end(); MBB != MBE; ++MBB) {
 | |
|       BasicBlock *BB = (BasicBlock*) (*MBB)->getBasicBlock();
 | |
|       for(BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
 | |
|         MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(I);
 | |
|         for (unsigned j = 0; j < tempMvec.size(); j++) {
 | |
|           mllvm[tempMvec[j]] = I;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|       //Convert list of LLVM Instructions to list of Machine instructions
 | |
|       std::map<const MachineInstr*, unsigned> mIndVar;
 | |
|       for(std::set<Instruction*>::iterator N = indVar.begin(),
 | |
|             NE = indVar.end(); N != NE; ++N) {
 | |
| 
 | |
|         //If we have a load, we can't handle this loop because
 | |
|         //there is no way to preserve dependences between loads
 | |
|         //and stores
 | |
|         if(isa<LoadInst>(*N))
 | |
|           return false;
 | |
| 
 | |
|         MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(*N);
 | |
|         for (unsigned j = 0; j < tempMvec.size(); j++) {
 | |
|           MachineOpCode OC = (tempMvec[j])->getOpcode();
 | |
|           if(TMI->isNop(OC))
 | |
|             continue;
 | |
|           if(!indexMap.count(tempMvec[j]))
 | |
|             continue;
 | |
|           mIndVar[(MachineInstr*) tempMvec[j]] = indexMap[(MachineInstr*) tempMvec[j]];
 | |
|           DEBUG(std::cerr << *(tempMvec[j]) << " at index " << indexMap[(MachineInstr*) tempMvec[j]] << "\n");
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       //Put into a map for future access
 | |
|       indVarInstrs[superBlock] = mIndVar;
 | |
|       machineTollvm[superBlock] = mllvm;
 | |
| 
 | |
|       return true;
 | |
| 
 | |
|   }
 | |
| 
 | |
|   bool ModuloSchedulingSBPass::assocIndVar(Instruction *I,
 | |
|                                            std::set<Instruction*> &indVar,
 | |
|                                            std::vector<Instruction*> &stack,
 | |
|                                        std::map<BasicBlock*, MachineBasicBlock*> &bbMap,
 | |
|                                            const BasicBlock *last, std::set<const BasicBlock*> &llvmSuperBlock) {
 | |
| 
 | |
|     stack.push_back(I);
 | |
| 
 | |
|     //If this is a phi node, check if its the canonical indvar
 | |
|     if(PHINode *PN = dyn_cast<PHINode>(I)) {
 | |
|       if(llvmSuperBlock.count(PN->getParent())) {
 | |
|         if (Instruction *Inc =
 | |
|             dyn_cast<Instruction>(PN->getIncomingValueForBlock(last)))
 | |
|           if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN)
 | |
|             if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
 | |
|               if (CI->equalsInt(1)) {
 | |
|                 //We have found the indvar, so add the stack, and inc instruction to the set
 | |
|                 indVar.insert(stack.begin(), stack.end());
 | |
|                 indVar.insert(Inc);
 | |
|                 stack.pop_back();
 | |
|                 return true;
 | |
|               }
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|     else {
 | |
|       //Loop over each of the instructions operands, check if they are an instruction and in this BB
 | |
|       for(unsigned i = 0; i < I->getNumOperands(); ++i) {
 | |
|         if(Instruction *N =  dyn_cast<Instruction>(I->getOperand(i))) {
 | |
|           if(bbMap.count(N->getParent()))
 | |
|             if(!assocIndVar(N, indVar, stack, bbMap, last, llvmSuperBlock))
 | |
|               return false;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     stack.pop_back();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /// This function checks if a Machine Basic Block is valid for modulo
 | |
|   /// scheduling. This means that it has no control flow (if/else or
 | |
|   /// calls) in the block.  Currently ModuloScheduling only works on
 | |
|   /// single basic block loops.
 | |
|   bool ModuloSchedulingSBPass::MachineBBisValid(const MachineBasicBlock *BI,
 | |
|                         std::map<const MachineInstr*, unsigned> &indexMap,
 | |
|                                                 unsigned &offset) {
 | |
| 
 | |
|     //Check size of our basic block.. make sure we have more then just the terminator in it
 | |
|     if(BI->getBasicBlock()->size() == 1)
 | |
|       return false;
 | |
| 
 | |
|     //Get Target machine instruction info
 | |
|     const TargetInstrInfo *TMI = target.getInstrInfo();
 | |
| 
 | |
|     unsigned count = 0;
 | |
|     for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) {
 | |
|       //Get opcode to check instruction type
 | |
|       MachineOpCode OC = I->getOpcode();
 | |
| 
 | |
|       //Look for calls
 | |
|       if(TMI->isCall(OC)) {
 | |
|         ++BBWithCalls;
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       //Look for conditional move
 | |
|       if(OC == V9::MOVRZr || OC == V9::MOVRZi || OC == V9::MOVRLEZr || OC == V9::MOVRLEZi
 | |
|          || OC == V9::MOVRLZr || OC == V9::MOVRLZi || OC == V9::MOVRNZr || OC == V9::MOVRNZi
 | |
|          || OC == V9::MOVRGZr || OC == V9::MOVRGZi || OC == V9::MOVRGEZr
 | |
|          || OC == V9::MOVRGEZi || OC == V9::MOVLEr || OC == V9::MOVLEi || OC == V9::MOVLEUr
 | |
|          || OC == V9::MOVLEUi || OC == V9::MOVFLEr || OC == V9::MOVFLEi
 | |
|          || OC == V9::MOVNEr || OC == V9::MOVNEi || OC == V9::MOVNEGr || OC == V9::MOVNEGi
 | |
|          || OC == V9::MOVFNEr || OC == V9::MOVFNEi) {
 | |
|         ++BBWithCondMov;
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       indexMap[I] = count + offset;
 | |
| 
 | |
|       if(TMI->isNop(OC))
 | |
|         continue;
 | |
| 
 | |
|       ++count;
 | |
|     }
 | |
| 
 | |
|     offset += count;
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool ModuloSchedulingSBPass::CreateDefMap(std::vector<const MachineBasicBlock*> &SB) {
 | |
|   defaultInst = 0;
 | |
| 
 | |
|   for(std::vector<const MachineBasicBlock*>::iterator BI = SB.begin(),
 | |
|         BE = SB.end(); BI != BE; ++BI) {
 | |
| 
 | |
|     for(MachineBasicBlock::const_iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I) {
 | |
|       for(unsigned opNum = 0; opNum < I->getNumOperands(); ++opNum) {
 | |
|         const MachineOperand &mOp = I->getOperand(opNum);
 | |
|         if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) {
 | |
|           Value *V = mOp.getVRegValue();
 | |
|           //assert if this is the second def we have seen
 | |
|           if(defMap.count(V) && isa<PHINode>(V))
 | |
|             DEBUG(std::cerr << "FIXME: Dup def for phi!\n");
 | |
|           else {
 | |
|             //assert(!defMap.count(V) && "Def already in the map");
 | |
|             if(defMap.count(V))
 | |
|               return false;
 | |
|             defMap[V] = (MachineInstr*) &*I;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         //See if we can use this Value* as our defaultInst
 | |
|         if(!defaultInst && mOp.getType() == MachineOperand::MO_VirtualRegister) {
 | |
|           Value *V = mOp.getVRegValue();
 | |
|           if(!isa<TmpInstruction>(V) && !isa<Argument>(V) && !isa<Constant>(V) && !isa<PHINode>(V))
 | |
|             defaultInst = (Instruction*) V;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if(!defaultInst)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| //ResMII is calculated by determining the usage count for each resource
 | |
| //and using the maximum.
 | |
| //FIXME: In future there should be a way to get alternative resources
 | |
| //for each instruction
 | |
| int ModuloSchedulingSBPass::calculateResMII(std::vector<const MachineBasicBlock*> &superBlock) {
 | |
| 
 | |
|   TIME_REGION(X, "calculateResMII");
 | |
| 
 | |
|   const TargetInstrInfo *mii = target.getInstrInfo();
 | |
|   const TargetSchedInfo *msi = target.getSchedInfo();
 | |
| 
 | |
|   int ResMII = 0;
 | |
| 
 | |
|   //Map to keep track of usage count of each resource
 | |
|   std::map<unsigned, unsigned> resourceUsageCount;
 | |
| 
 | |
|   for(std::vector<const MachineBasicBlock*>::iterator BI = superBlock.begin(), BE = superBlock.end(); BI != BE; ++BI) {
 | |
|     for(MachineBasicBlock::const_iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I) {
 | |
| 
 | |
|       //Get resource usage for this instruction
 | |
|       InstrRUsage rUsage = msi->getInstrRUsage(I->getOpcode());
 | |
|       std::vector<std::vector<resourceId_t> > resources = rUsage.resourcesByCycle;
 | |
| 
 | |
|       //Loop over resources in each cycle and increments their usage count
 | |
|       for(unsigned i=0; i < resources.size(); ++i)
 | |
|         for(unsigned j=0; j < resources[i].size(); ++j) {
 | |
|           if(!resourceUsageCount.count(resources[i][j])) {
 | |
|             resourceUsageCount[resources[i][j]] = 1;
 | |
|           }
 | |
|           else {
 | |
|             resourceUsageCount[resources[i][j]] =  resourceUsageCount[resources[i][j]] + 1;
 | |
|           }
 | |
|         }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //Find maximum usage count
 | |
| 
 | |
|   //Get max number of instructions that can be issued at once. (FIXME)
 | |
|   int issueSlots = msi->maxNumIssueTotal;
 | |
| 
 | |
|   for(std::map<unsigned,unsigned>::iterator RB = resourceUsageCount.begin(), RE = resourceUsageCount.end(); RB != RE; ++RB) {
 | |
| 
 | |
|     //Get the total number of the resources in our cpu
 | |
|     int resourceNum = CPUResource::getCPUResource(RB->first)->maxNumUsers;
 | |
| 
 | |
|     //Get total usage count for this resources
 | |
|     unsigned usageCount = RB->second;
 | |
| 
 | |
|     //Divide the usage count by either the max number we can issue or the number of
 | |
|     //resources (whichever is its upper bound)
 | |
|     double finalUsageCount;
 | |
|     DEBUG(std::cerr << "Resource Num: " << RB->first << " Usage: " << usageCount << " TotalNum: " << resourceNum << "\n");
 | |
| 
 | |
|     if( resourceNum <= issueSlots)
 | |
|       finalUsageCount = ceil(1.0 * usageCount / resourceNum);
 | |
|     else
 | |
|       finalUsageCount = ceil(1.0 * usageCount / issueSlots);
 | |
| 
 | |
| 
 | |
|     //Only keep track of the max
 | |
|     ResMII = std::max( (int) finalUsageCount, ResMII);
 | |
| 
 | |
|   }
 | |
| 
 | |
|   return ResMII;
 | |
| 
 | |
| }
 | |
| 
 | |
| /// calculateRecMII - Calculates the value of the highest recurrence
 | |
| /// By value we mean the total latency/distance
 | |
| int ModuloSchedulingSBPass::calculateRecMII(MSchedGraphSB *graph, int MII) {
 | |
| 
 | |
|   TIME_REGION(X, "calculateRecMII");
 | |
| 
 | |
|   findAllCircuits(graph, MII);
 | |
|   int RecMII = 0;
 | |
| 
 | |
|   for(std::set<std::pair<int, std::vector<MSchedGraphSBNode*> > >::iterator I = recurrenceList.begin(), E=recurrenceList.end(); I !=E; ++I) {
 | |
|     RecMII = std::max(RecMII, I->first);
 | |
|   }
 | |
| 
 | |
|   return MII;
 | |
| }
 | |
| 
 | |
| int CircCountSB;
 | |
| 
 | |
| void ModuloSchedulingSBPass::unblock(MSchedGraphSBNode *u, std::set<MSchedGraphSBNode*> &blocked,
 | |
|              std::map<MSchedGraphSBNode*, std::set<MSchedGraphSBNode*> > &B) {
 | |
| 
 | |
|   //Unblock u
 | |
|   DEBUG(std::cerr << "Unblocking: " << *u << "\n");
 | |
|   blocked.erase(u);
 | |
| 
 | |
|   //std::set<MSchedGraphSBNode*> toErase;
 | |
|   while (!B[u].empty()) {
 | |
|     MSchedGraphSBNode *W = *B[u].begin();
 | |
|     B[u].erase(W);
 | |
|     //toErase.insert(*W);
 | |
|     DEBUG(std::cerr << "Removed: " << *W << "from B-List\n");
 | |
|     if(blocked.count(W))
 | |
|       unblock(W, blocked, B);
 | |
|   }
 | |
| 
 | |
| }
 | |
| 
 | |
| void ModuloSchedulingSBPass::addSCC(std::vector<MSchedGraphSBNode*> &SCC, std::map<MSchedGraphSBNode*, MSchedGraphSBNode*> &newNodes) {
 | |
| 
 | |
|   int totalDelay = 0;
 | |
|   int totalDistance = 0;
 | |
|   std::vector<MSchedGraphSBNode*> recc;
 | |
|   MSchedGraphSBNode *start = 0;
 | |
|   MSchedGraphSBNode *end = 0;
 | |
| 
 | |
|   //Loop over recurrence, get delay and distance
 | |
|   for(std::vector<MSchedGraphSBNode*>::iterator N = SCC.begin(), NE = SCC.end(); N != NE; ++N) {
 | |
|     DEBUG(std::cerr << **N << "\n");
 | |
|     totalDelay += (*N)->getLatency();
 | |
| 
 | |
|     for(unsigned i = 0; i < (*N)->succ_size(); ++i) {
 | |
|       MSchedGraphSBEdge *edge = (*N)->getSuccessor(i);
 | |
|       if(find(SCC.begin(), SCC.end(), edge->getDest()) != SCC.end()) {
 | |
|         totalDistance += edge->getIteDiff();
 | |
|         if(edge->getIteDiff() > 0)
 | |
|           if(!start && !end) {
 | |
|             start = *N;
 | |
|             end = edge->getDest();
 | |
|           }
 | |
| 
 | |
|       }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     //Get the original node
 | |
|     recc.push_back(newNodes[*N]);
 | |
| 
 | |
| 
 | |
|   }
 | |
| 
 | |
|   DEBUG(std::cerr << "End Recc\n");
 | |
| 
 | |
| 
 | |
|   assert( (start && end) && "Must have start and end node to ignore edge for SCC");
 | |
| 
 | |
|   if(start && end) {
 | |
|     //Insert reccurrence into the list
 | |
|     DEBUG(std::cerr << "Ignore Edge from!!: " << *start << " to " << *end << "\n");
 | |
|     edgesToIgnore.insert(std::make_pair(newNodes[start], (newNodes[end])->getInEdgeNum(newNodes[start])));
 | |
|   }
 | |
| 
 | |
|   int lastII = totalDelay / totalDistance;
 | |
| 
 | |
| 
 | |
|   recurrenceList.insert(std::make_pair(lastII, recc));
 | |
| 
 | |
| }
 | |
| 
 | |
| bool ModuloSchedulingSBPass::circuit(MSchedGraphSBNode *v, std::vector<MSchedGraphSBNode*> &stack,
 | |
|              std::set<MSchedGraphSBNode*> &blocked, std::vector<MSchedGraphSBNode*> &SCC,
 | |
|              MSchedGraphSBNode *s, std::map<MSchedGraphSBNode*, std::set<MSchedGraphSBNode*> > &B,
 | |
|                                    int II, std::map<MSchedGraphSBNode*, MSchedGraphSBNode*> &newNodes) {
 | |
|   bool f = false;
 | |
| 
 | |
|   DEBUG(std::cerr << "Finding Circuits Starting with: ( " << v << ")"<< *v << "\n");
 | |
| 
 | |
|   //Push node onto the stack
 | |
|   stack.push_back(v);
 | |
| 
 | |
|   //block this node
 | |
|   blocked.insert(v);
 | |
| 
 | |
|   //Loop over all successors of node v that are in the scc, create Adjaceny list
 | |
|   std::set<MSchedGraphSBNode*> AkV;
 | |
|   for(MSchedGraphSBNode::succ_iterator I = v->succ_begin(), E = v->succ_end(); I != E; ++I) {
 | |
|     if((std::find(SCC.begin(), SCC.end(), *I) != SCC.end())) {
 | |
|       AkV.insert(*I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for(std::set<MSchedGraphSBNode*>::iterator I = AkV.begin(), E = AkV.end(); I != E; ++I) {
 | |
|     if(*I == s) {
 | |
|       //We have a circuit, so add it to our list
 | |
|       addRecc(stack, newNodes);
 | |
|       f = true;
 | |
|     }
 | |
|     else if(!blocked.count(*I)) {
 | |
|       if(circuit(*I, stack, blocked, SCC, s, B, II, newNodes))
 | |
|         f = true;
 | |
|     }
 | |
|     else
 | |
|       DEBUG(std::cerr << "Blocked: " << **I << "\n");
 | |
|   }
 | |
| 
 | |
| 
 | |
|   if(f) {
 | |
|     unblock(v, blocked, B);
 | |
|   }
 | |
|   else {
 | |
|     for(std::set<MSchedGraphSBNode*>::iterator I = AkV.begin(), E = AkV.end(); I != E; ++I)
 | |
|       B[*I].insert(v);
 | |
| 
 | |
|   }
 | |
| 
 | |
|   //Pop v
 | |
|   stack.pop_back();
 | |
| 
 | |
|   return f;
 | |
| 
 | |
| }
 | |
| 
 | |
| void ModuloSchedulingSBPass::addRecc(std::vector<MSchedGraphSBNode*> &stack, std::map<MSchedGraphSBNode*, MSchedGraphSBNode*> &newNodes) {
 | |
|   std::vector<MSchedGraphSBNode*> recc;
 | |
|   //Dump recurrence for now
 | |
|   DEBUG(std::cerr << "Starting Recc\n");
 | |
| 
 | |
|   int totalDelay = 0;
 | |
|   int totalDistance = 0;
 | |
|   MSchedGraphSBNode *lastN = 0;
 | |
|   MSchedGraphSBNode *start = 0;
 | |
|   MSchedGraphSBNode *end = 0;
 | |
| 
 | |
|   //Loop over recurrence, get delay and distance
 | |
|   for(std::vector<MSchedGraphSBNode*>::iterator N = stack.begin(), NE = stack.end(); N != NE; ++N) {
 | |
|     DEBUG(std::cerr << **N << "\n");
 | |
|     totalDelay += (*N)->getLatency();
 | |
|     if(lastN) {
 | |
|       int iteDiff = (*N)->getInEdge(lastN).getIteDiff();
 | |
|       totalDistance += iteDiff;
 | |
| 
 | |
|       if(iteDiff > 0) {
 | |
|         start = lastN;
 | |
|         end = *N;
 | |
|       }
 | |
|     }
 | |
|     //Get the original node
 | |
|     lastN = *N;
 | |
|     recc.push_back(newNodes[*N]);
 | |
| 
 | |
| 
 | |
|   }
 | |
| 
 | |
|   //Get the loop edge
 | |
|   totalDistance += lastN->getIteDiff(*stack.begin());
 | |
| 
 | |
|   DEBUG(std::cerr << "End Recc\n");
 | |
|   CircCountSB++;
 | |
| 
 | |
|   if(start && end) {
 | |
|     //Insert reccurrence into the list
 | |
|     DEBUG(std::cerr << "Ignore Edge from!!: " << *start << " to " << *end << "\n");
 | |
|     edgesToIgnore.insert(std::make_pair(newNodes[start], (newNodes[end])->getInEdgeNum(newNodes[start])));
 | |
|   }
 | |
|   else {
 | |
|     //Insert reccurrence into the list
 | |
|     DEBUG(std::cerr << "Ignore Edge from: " << *lastN << " to " << **stack.begin() << "\n");
 | |
|     edgesToIgnore.insert(std::make_pair(newNodes[lastN], newNodes[(*stack.begin())]->getInEdgeNum(newNodes[lastN])));
 | |
| 
 | |
|   }
 | |
|   //Adjust II until we get close to the inequality delay - II*distance <= 0
 | |
|   int RecMII = II; //Starting value
 | |
|   int value = totalDelay-(RecMII * totalDistance);
 | |
|   int lastII = II;
 | |
|   while(value < 0) {
 | |
| 
 | |
|     lastII = RecMII;
 | |
|     RecMII--;
 | |
|     value = totalDelay-(RecMII * totalDistance);
 | |
|   }
 | |
| 
 | |
|   recurrenceList.insert(std::make_pair(lastII, recc));
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| void ModuloSchedulingSBPass::findAllCircuits(MSchedGraphSB *g, int II) {
 | |
| 
 | |
|   CircCountSB = 0;
 | |
| 
 | |
|   //Keep old to new node mapping information
 | |
|   std::map<MSchedGraphSBNode*, MSchedGraphSBNode*> newNodes;
 | |
| 
 | |
|   //copy the graph
 | |
|   MSchedGraphSB *MSG = new MSchedGraphSB(*g, newNodes);
 | |
| 
 | |
|   DEBUG(std::cerr << "Finding All Circuits\n");
 | |
| 
 | |
|   //Set of blocked nodes
 | |
|   std::set<MSchedGraphSBNode*> blocked;
 | |
| 
 | |
|   //Stack holding current circuit
 | |
|   std::vector<MSchedGraphSBNode*> stack;
 | |
| 
 | |
|   //Map for B Lists
 | |
|   std::map<MSchedGraphSBNode*, std::set<MSchedGraphSBNode*> > B;
 | |
| 
 | |
|   //current node
 | |
|   MSchedGraphSBNode *s;
 | |
| 
 | |
| 
 | |
|   //Iterate over the graph until its down to one node or empty
 | |
|   while(MSG->size() > 1) {
 | |
| 
 | |
|     //Write Graph out to file
 | |
|     //WriteGraphToFile(std::cerr, "Graph" + utostr(MSG->size()), MSG);
 | |
| 
 | |
|     DEBUG(std::cerr << "Graph Size: " << MSG->size() << "\n");
 | |
|     DEBUG(std::cerr << "Finding strong component Vk with least vertex\n");
 | |
| 
 | |
|     //Iterate over all the SCCs in the graph
 | |
|     std::set<MSchedGraphSBNode*> Visited;
 | |
|     std::vector<MSchedGraphSBNode*> Vk;
 | |
|     MSchedGraphSBNode* s = 0;
 | |
|     int numEdges = 0;
 | |
| 
 | |
|     //Find scc with the least vertex
 | |
|     for (MSchedGraphSB::iterator GI = MSG->begin(), E = MSG->end(); GI != E; ++GI)
 | |
|       if (Visited.insert(GI->second).second) {
 | |
|         for (scc_iterator<MSchedGraphSBNode*> SCCI = scc_begin(GI->second),
 | |
|                E = scc_end(GI->second); SCCI != E; ++SCCI) {
 | |
|           std::vector<MSchedGraphSBNode*> &nextSCC = *SCCI;
 | |
| 
 | |
|           if (Visited.insert(nextSCC[0]).second) {
 | |
|             Visited.insert(nextSCC.begin()+1, nextSCC.end());
 | |
| 
 | |
|             if(nextSCC.size() > 1) {
 | |
|               DEBUG(std::cerr << "SCC size: " << nextSCC.size() << "\n");
 | |
| 
 | |
|               for(unsigned i = 0; i < nextSCC.size(); ++i) {
 | |
|                 //Loop over successor and see if in scc, then count edge
 | |
|                 MSchedGraphSBNode *node = nextSCC[i];
 | |
|                 for(MSchedGraphSBNode::succ_iterator S = node->succ_begin(), SE = node->succ_end(); S != SE; ++S) {
 | |
|                   if(find(nextSCC.begin(), nextSCC.end(), *S) != nextSCC.end())
 | |
|                     numEdges++;
 | |
|                 }
 | |
|               }
 | |
|               DEBUG(std::cerr << "Num Edges: " << numEdges << "\n");
 | |
|             }
 | |
| 
 | |
|             //Ignore self loops
 | |
|             if(nextSCC.size() > 1) {
 | |
| 
 | |
|               //Get least vertex in Vk
 | |
|               if(!s) {
 | |
|                 s = nextSCC[0];
 | |
|                 Vk = nextSCC;
 | |
|               }
 | |
| 
 | |
|               for(unsigned i = 0; i < nextSCC.size(); ++i) {
 | |
|                 if(nextSCC[i] < s) {
 | |
|                   s = nextSCC[i];
 | |
|                   Vk = nextSCC;
 | |
|                 }
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
| 
 | |
| 
 | |
|     //Process SCC
 | |
|     DEBUG(for(std::vector<MSchedGraphSBNode*>::iterator N = Vk.begin(), NE = Vk.end();
 | |
|               N != NE; ++N) { std::cerr << *((*N)->getInst()); });
 | |
| 
 | |
|     //Iterate over all nodes in this scc
 | |
|     for(std::vector<MSchedGraphSBNode*>::iterator N = Vk.begin(), NE = Vk.end();
 | |
|         N != NE; ++N) {
 | |
|       blocked.erase(*N);
 | |
|       B[*N].clear();
 | |
|     }
 | |
|     if(Vk.size() > 1) {
 | |
|       if(numEdges < 98)
 | |
|         circuit(s, stack, blocked, Vk, s, B, II, newNodes);
 | |
|       else
 | |
|         addSCC(Vk, newNodes);
 | |
| 
 | |
| 
 | |
|       //Delete nodes from the graph
 | |
|       //Find all nodes up to s and delete them
 | |
|       std::vector<MSchedGraphSBNode*> nodesToRemove;
 | |
|       nodesToRemove.push_back(s);
 | |
|       for(MSchedGraphSB::iterator N = MSG->begin(), NE = MSG->end(); N != NE; ++N) {
 | |
|         if(N->second < s )
 | |
|             nodesToRemove.push_back(N->second);
 | |
|       }
 | |
|       for(std::vector<MSchedGraphSBNode*>::iterator N = nodesToRemove.begin(), NE = nodesToRemove.end(); N != NE; ++N) {
 | |
|         DEBUG(std::cerr << "Deleting Node: " << **N << "\n");
 | |
|         MSG->deleteNode(*N);
 | |
|       }
 | |
|     }
 | |
|     else
 | |
|       break;
 | |
|   }
 | |
|   DEBUG(std::cerr << "Num Circuits found: " << CircCountSB << "\n");
 | |
| }
 | |
| /// calculateNodeAttributes - The following properties are calculated for
 | |
| /// each node in the dependence graph: ASAP, ALAP, Depth, Height, and
 | |
| /// MOB.
 | |
| void ModuloSchedulingSBPass::calculateNodeAttributes(MSchedGraphSB *graph, int MII) {
 | |
| 
 | |
|   TIME_REGION(X, "calculateNodeAttributes");
 | |
| 
 | |
|   assert(nodeToAttributesMap.empty() && "Node attribute map was not cleared");
 | |
| 
 | |
|   //Loop over the nodes and add them to the map
 | |
|   for(MSchedGraphSB::iterator I = graph->begin(), E = graph->end(); I != E; ++I) {
 | |
| 
 | |
|     DEBUG(std::cerr << "Inserting node into attribute map: " << *I->second << "\n");
 | |
| 
 | |
|     //Assert if its already in the map
 | |
|     assert(nodeToAttributesMap.count(I->second) == 0 &&
 | |
|            "Node attributes are already in the map");
 | |
| 
 | |
|     //Put into the map with default attribute values
 | |
|     nodeToAttributesMap[I->second] = MSNodeSBAttributes();
 | |
|   }
 | |
| 
 | |
|   //Create set to deal with reccurrences
 | |
|   std::set<MSchedGraphSBNode*> visitedNodes;
 | |
| 
 | |
|   //Now Loop over map and calculate the node attributes
 | |
|   for(std::map<MSchedGraphSBNode*, MSNodeSBAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
 | |
|     calculateASAP(I->first, MII, (MSchedGraphSBNode*) 0);
 | |
|     visitedNodes.clear();
 | |
|   }
 | |
| 
 | |
|   int maxASAP = findMaxASAP();
 | |
|   //Calculate ALAP which depends on ASAP being totally calculated
 | |
|   for(std::map<MSchedGraphSBNode*, MSNodeSBAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
 | |
|     calculateALAP(I->first, MII, maxASAP, (MSchedGraphSBNode*) 0);
 | |
|     visitedNodes.clear();
 | |
|   }
 | |
| 
 | |
|   //Calculate MOB which depends on ASAP being totally calculated, also do depth and height
 | |
|   for(std::map<MSchedGraphSBNode*, MSNodeSBAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
 | |
|     (I->second).MOB = std::max(0,(I->second).ALAP - (I->second).ASAP);
 | |
| 
 | |
|     DEBUG(std::cerr << "MOB: " << (I->second).MOB << " (" << *(I->first) << ")\n");
 | |
|     calculateDepth(I->first, (MSchedGraphSBNode*) 0);
 | |
|     calculateHeight(I->first, (MSchedGraphSBNode*) 0);
 | |
|   }
 | |
| 
 | |
| 
 | |
| }
 | |
| 
 | |
| /// ignoreEdge - Checks to see if this edge of a recurrence should be ignored or not
 | |
| bool ModuloSchedulingSBPass::ignoreEdge(MSchedGraphSBNode *srcNode, MSchedGraphSBNode *destNode) {
 | |
|   if(destNode == 0 || srcNode ==0)
 | |
|     return false;
 | |
| 
 | |
|   bool findEdge = edgesToIgnore.count(std::make_pair(srcNode, destNode->getInEdgeNum(srcNode)));
 | |
| 
 | |
|   DEBUG(std::cerr << "Ignoring edge? from: " << *srcNode << " to " << *destNode << "\n");
 | |
| 
 | |
|   return findEdge;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// calculateASAP - Calculates the
 | |
| int  ModuloSchedulingSBPass::calculateASAP(MSchedGraphSBNode *node, int MII, MSchedGraphSBNode *destNode) {
 | |
| 
 | |
|   DEBUG(std::cerr << "Calculating ASAP for " << *node << "\n");
 | |
| 
 | |
|   //Get current node attributes
 | |
|   MSNodeSBAttributes &attributes = nodeToAttributesMap.find(node)->second;
 | |
| 
 | |
|   if(attributes.ASAP != -1)
 | |
|     return attributes.ASAP;
 | |
| 
 | |
|   int maxPredValue = 0;
 | |
| 
 | |
|   //Iterate over all of the predecessors and find max
 | |
|   for(MSchedGraphSBNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) {
 | |
| 
 | |
|     //Only process if we are not ignoring the edge
 | |
|     if(!ignoreEdge(*P, node)) {
 | |
|       int predASAP = -1;
 | |
|       predASAP = calculateASAP(*P, MII, node);
 | |
| 
 | |
|       assert(predASAP != -1 && "ASAP has not been calculated");
 | |
|       int iteDiff = node->getInEdge(*P).getIteDiff();
 | |
| 
 | |
|       int currentPredValue = predASAP + (*P)->getLatency() - (iteDiff * MII);
 | |
|       DEBUG(std::cerr << "pred ASAP: " << predASAP << ", iteDiff: " << iteDiff << ", PredLatency: " << (*P)->getLatency() << ", Current ASAP pred: " << currentPredValue << "\n");
 | |
|       maxPredValue = std::max(maxPredValue, currentPredValue);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   attributes.ASAP = maxPredValue;
 | |
| 
 | |
|   DEBUG(std::cerr << "ASAP: " << attributes.ASAP << " (" << *node << ")\n");
 | |
| 
 | |
|   return maxPredValue;
 | |
| }
 | |
| 
 | |
| 
 | |
| int ModuloSchedulingSBPass::calculateALAP(MSchedGraphSBNode *node, int MII,
 | |
|                                         int maxASAP, MSchedGraphSBNode *srcNode) {
 | |
| 
 | |
|   DEBUG(std::cerr << "Calculating ALAP for " << *node << "\n");
 | |
| 
 | |
|   MSNodeSBAttributes &attributes = nodeToAttributesMap.find(node)->second;
 | |
| 
 | |
|   if(attributes.ALAP != -1)
 | |
|     return attributes.ALAP;
 | |
| 
 | |
|   if(node->hasSuccessors()) {
 | |
| 
 | |
|     //Trying to deal with the issue where the node has successors, but
 | |
|     //we are ignoring all of the edges to them. So this is my hack for
 | |
|     //now.. there is probably a more elegant way of doing this (FIXME)
 | |
|     bool processedOneEdge = false;
 | |
| 
 | |
|     //FIXME, set to something high to start
 | |
|     int minSuccValue = 9999999;
 | |
| 
 | |
|     //Iterate over all of the predecessors and fine max
 | |
|     for(MSchedGraphSBNode::succ_iterator P = node->succ_begin(),
 | |
|           E = node->succ_end(); P != E; ++P) {
 | |
| 
 | |
|       //Only process if we are not ignoring the edge
 | |
|       if(!ignoreEdge(node, *P)) {
 | |
|         processedOneEdge = true;
 | |
|         int succALAP = -1;
 | |
|         succALAP = calculateALAP(*P, MII, maxASAP, node);
 | |
| 
 | |
|         assert(succALAP != -1 && "Successors ALAP should have been caclulated");
 | |
| 
 | |
|         int iteDiff = P.getEdge().getIteDiff();
 | |
| 
 | |
|         int currentSuccValue = succALAP - node->getLatency() + iteDiff * MII;
 | |
| 
 | |
|         DEBUG(std::cerr << "succ ALAP: " << succALAP << ", iteDiff: " << iteDiff << ", SuccLatency: " << (*P)->getLatency() << ", Current ALAP succ: " << currentSuccValue << "\n");
 | |
| 
 | |
|         minSuccValue = std::min(minSuccValue, currentSuccValue);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if(processedOneEdge)
 | |
|         attributes.ALAP = minSuccValue;
 | |
| 
 | |
|     else
 | |
|       attributes.ALAP = maxASAP;
 | |
|   }
 | |
|   else
 | |
|     attributes.ALAP = maxASAP;
 | |
| 
 | |
|   DEBUG(std::cerr << "ALAP: " << attributes.ALAP << " (" << *node << ")\n");
 | |
| 
 | |
|   if(attributes.ALAP < 0)
 | |
|     attributes.ALAP = 0;
 | |
| 
 | |
|   return attributes.ALAP;
 | |
| }
 | |
| 
 | |
| int ModuloSchedulingSBPass::findMaxASAP() {
 | |
|   int maxASAP = 0;
 | |
| 
 | |
|   for(std::map<MSchedGraphSBNode*, MSNodeSBAttributes>::iterator I = nodeToAttributesMap.begin(),
 | |
|         E = nodeToAttributesMap.end(); I != E; ++I)
 | |
|     maxASAP = std::max(maxASAP, I->second.ASAP);
 | |
|   return maxASAP;
 | |
| }
 | |
| 
 | |
| 
 | |
| int ModuloSchedulingSBPass::calculateHeight(MSchedGraphSBNode *node,MSchedGraphSBNode *srcNode) {
 | |
| 
 | |
|   MSNodeSBAttributes &attributes = nodeToAttributesMap.find(node)->second;
 | |
| 
 | |
|   if(attributes.height != -1)
 | |
|     return attributes.height;
 | |
| 
 | |
|   int maxHeight = 0;
 | |
| 
 | |
|   //Iterate over all of the predecessors and find max
 | |
|   for(MSchedGraphSBNode::succ_iterator P = node->succ_begin(),
 | |
|         E = node->succ_end(); P != E; ++P) {
 | |
| 
 | |
| 
 | |
|     if(!ignoreEdge(node, *P)) {
 | |
|       int succHeight = calculateHeight(*P, node);
 | |
| 
 | |
|       assert(succHeight != -1 && "Successors Height should have been caclulated");
 | |
| 
 | |
|       int currentHeight = succHeight + node->getLatency();
 | |
|       maxHeight = std::max(maxHeight, currentHeight);
 | |
|     }
 | |
|   }
 | |
|   attributes.height = maxHeight;
 | |
|   DEBUG(std::cerr << "Height: " << attributes.height << " (" << *node << ")\n");
 | |
|   return maxHeight;
 | |
| }
 | |
| 
 | |
| 
 | |
| int ModuloSchedulingSBPass::calculateDepth(MSchedGraphSBNode *node,
 | |
|                                           MSchedGraphSBNode *destNode) {
 | |
| 
 | |
|   MSNodeSBAttributes &attributes = nodeToAttributesMap.find(node)->second;
 | |
| 
 | |
|   if(attributes.depth != -1)
 | |
|     return attributes.depth;
 | |
| 
 | |
|   int maxDepth = 0;
 | |
| 
 | |
|   //Iterate over all of the predecessors and fine max
 | |
|   for(MSchedGraphSBNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) {
 | |
| 
 | |
|     if(!ignoreEdge(*P, node)) {
 | |
|       int predDepth = -1;
 | |
|       predDepth = calculateDepth(*P, node);
 | |
| 
 | |
|       assert(predDepth != -1 && "Predecessors ASAP should have been caclulated");
 | |
| 
 | |
|       int currentDepth = predDepth + (*P)->getLatency();
 | |
|       maxDepth = std::max(maxDepth, currentDepth);
 | |
|     }
 | |
|   }
 | |
|   attributes.depth = maxDepth;
 | |
| 
 | |
|   DEBUG(std::cerr << "Depth: " << attributes.depth << " (" << *node << "*)\n");
 | |
|   return maxDepth;
 | |
| }
 | |
| 
 | |
| void ModuloSchedulingSBPass::computePartialOrder() {
 | |
| 
 | |
|   TIME_REGION(X, "calculatePartialOrder");
 | |
| 
 | |
|   DEBUG(std::cerr << "Computing Partial Order\n");
 | |
| 
 | |
|   //Steps to add a recurrence to the partial order 1) Find reccurrence
 | |
|   //with the highest RecMII. Add it to the partial order.  2) For each
 | |
|   //recurrence with decreasing RecMII, add it to the partial order
 | |
|   //along with any nodes that connect this recurrence to recurrences
 | |
|   //already in the partial order
 | |
|   for(std::set<std::pair<int, std::vector<MSchedGraphSBNode*> > >::reverse_iterator
 | |
|         I = recurrenceList.rbegin(), E=recurrenceList.rend(); I !=E; ++I) {
 | |
| 
 | |
|     std::set<MSchedGraphSBNode*> new_recurrence;
 | |
| 
 | |
|     //Loop through recurrence and remove any nodes already in the partial order
 | |
|     for(std::vector<MSchedGraphSBNode*>::const_iterator N = I->second.begin(),
 | |
|           NE = I->second.end(); N != NE; ++N) {
 | |
| 
 | |
|       bool found = false;
 | |
|       for(std::vector<std::set<MSchedGraphSBNode*> >::iterator PO = partialOrder.begin(),
 | |
|             PE = partialOrder.end(); PO != PE; ++PO) {
 | |
|         if(PO->count(*N))
 | |
|           found = true;
 | |
|       }
 | |
| 
 | |
|       //Check if its a branch, and remove to handle special
 | |
|       if(!found) {
 | |
|         new_recurrence.insert(*N);
 | |
|       }
 | |
| 
 | |
|     }
 | |
| 
 | |
| 
 | |
|     if(new_recurrence.size() > 0) {
 | |
| 
 | |
|       std::vector<MSchedGraphSBNode*> path;
 | |
|       std::set<MSchedGraphSBNode*> nodesToAdd;
 | |
| 
 | |
|       //Dump recc we are dealing with (minus nodes already in PO)
 | |
|       DEBUG(std::cerr << "Recc: ");
 | |
|       DEBUG(for(std::set<MSchedGraphSBNode*>::iterator R = new_recurrence.begin(), RE = new_recurrence.end(); R != RE; ++R) { std::cerr << **R ; });
 | |
| 
 | |
|       //Add nodes that connect this recurrence to recurrences in the partial path
 | |
|       for(std::set<MSchedGraphSBNode*>::iterator N = new_recurrence.begin(),
 | |
|           NE = new_recurrence.end(); N != NE; ++N)
 | |
|         searchPath(*N, path, nodesToAdd, new_recurrence);
 | |
| 
 | |
|       //Add nodes to this recurrence if they are not already in the partial order
 | |
|       for(std::set<MSchedGraphSBNode*>::iterator N = nodesToAdd.begin(), NE = nodesToAdd.end();
 | |
|           N != NE; ++N) {
 | |
|         bool found = false;
 | |
|         for(std::vector<std::set<MSchedGraphSBNode*> >::iterator PO = partialOrder.begin(),
 | |
|               PE = partialOrder.end(); PO != PE; ++PO) {
 | |
|           if(PO->count(*N))
 | |
|             found = true;
 | |
|         }
 | |
|         if(!found) {
 | |
|           assert("FOUND CONNECTOR");
 | |
|           new_recurrence.insert(*N);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       partialOrder.push_back(new_recurrence);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //Add any nodes that are not already in the partial order
 | |
|   //Add them in a set, one set per connected component
 | |
|   std::set<MSchedGraphSBNode*> lastNodes;
 | |
|   std::set<MSchedGraphSBNode*> noPredNodes;
 | |
|   for(std::map<MSchedGraphSBNode*, MSNodeSBAttributes>::iterator I = nodeToAttributesMap.begin(),
 | |
|         E = nodeToAttributesMap.end(); I != E; ++I) {
 | |
| 
 | |
|     bool found = false;
 | |
| 
 | |
|     //Check if its already in our partial order, if not add it to the final vector
 | |
|     for(std::vector<std::set<MSchedGraphSBNode*> >::iterator PO = partialOrder.begin(),
 | |
|           PE = partialOrder.end(); PO != PE; ++PO) {
 | |
|       if(PO->count(I->first))
 | |
|         found = true;
 | |
|     }
 | |
|     if(!found)
 | |
|       lastNodes.insert(I->first);
 | |
|   }
 | |
| 
 | |
|   //For each node w/out preds, see if there is a path to one of the
 | |
|   //recurrences, and if so add them to that current recc
 | |
|   /*for(std::set<MSchedGraphSBNode*>::iterator N = noPredNodes.begin(), NE = noPredNodes.end();
 | |
|       N != NE; ++N) {
 | |
|     DEBUG(std::cerr << "No Pred Path from: " << **N << "\n");
 | |
|     for(std::vector<std::set<MSchedGraphSBNode*> >::iterator PO = partialOrder.begin(),
 | |
|           PE = partialOrder.end(); PO != PE; ++PO) {
 | |
|       std::vector<MSchedGraphSBNode*> path;
 | |
|       pathToRecc(*N, path, *PO, lastNodes);
 | |
|     }
 | |
|     }*/
 | |
| 
 | |
| 
 | |
|   //Break up remaining nodes that are not in the partial order
 | |
|   ///into their connected compoenents
 | |
|     while(lastNodes.size() > 0) {
 | |
|       std::set<MSchedGraphSBNode*> ccSet;
 | |
|       connectedComponentSet(*(lastNodes.begin()),ccSet, lastNodes);
 | |
|       if(ccSet.size() > 0)
 | |
|         partialOrder.push_back(ccSet);
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| void ModuloSchedulingSBPass::connectedComponentSet(MSchedGraphSBNode *node, std::set<MSchedGraphSBNode*> &ccSet, std::set<MSchedGraphSBNode*> &lastNodes) {
 | |
| 
 | |
|   //Add to final set
 | |
|   if( !ccSet.count(node) && lastNodes.count(node)) {
 | |
|     lastNodes.erase(node);
 | |
|     ccSet.insert(node);
 | |
|   }
 | |
|   else
 | |
|     return;
 | |
| 
 | |
|   //Loop over successors and recurse if we have not seen this node before
 | |
|   for(MSchedGraphSBNode::succ_iterator node_succ = node->succ_begin(), end=node->succ_end(); node_succ != end; ++node_succ) {
 | |
|     connectedComponentSet(*node_succ, ccSet, lastNodes);
 | |
|   }
 | |
| 
 | |
| }
 | |
| 
 | |
| void ModuloSchedulingSBPass::searchPath(MSchedGraphSBNode *node,
 | |
|                                       std::vector<MSchedGraphSBNode*> &path,
 | |
|                                       std::set<MSchedGraphSBNode*> &nodesToAdd,
 | |
|                                      std::set<MSchedGraphSBNode*> &new_reccurrence) {
 | |
|   //Push node onto the path
 | |
|   path.push_back(node);
 | |
| 
 | |
|   //Loop over all successors and see if there is a path from this node to
 | |
|   //a recurrence in the partial order, if so.. add all nodes to be added to recc
 | |
|   for(MSchedGraphSBNode::succ_iterator S = node->succ_begin(), SE = node->succ_end(); S != SE;
 | |
|       ++S) {
 | |
| 
 | |
|     //Check if we should ignore this edge first
 | |
|     if(ignoreEdge(node,*S))
 | |
|       continue;
 | |
| 
 | |
|     //check if successor is in this recurrence, we will get to it eventually
 | |
|     if(new_reccurrence.count(*S))
 | |
|       continue;
 | |
| 
 | |
|     //If this node exists in a recurrence already in the partial
 | |
|     //order, then add all nodes in the path to the set of nodes to add
 | |
|      //Check if its already in our partial order, if not add it to the
 | |
|      //final vector
 | |
|     bool found = false;
 | |
|     for(std::vector<std::set<MSchedGraphSBNode*> >::iterator PO = partialOrder.begin(),
 | |
|           PE = partialOrder.end(); PO != PE; ++PO) {
 | |
| 
 | |
|       if(PO->count(*S)) {
 | |
|         found = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if(!found) {
 | |
|       nodesToAdd.insert(*S);
 | |
|       searchPath(*S, path, nodesToAdd, new_reccurrence);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //Pop Node off the path
 | |
|   path.pop_back();
 | |
| }
 | |
| 
 | |
| void dumpIntersection(std::set<MSchedGraphSBNode*> &IntersectCurrent) {
 | |
|   std::cerr << "Intersection (";
 | |
|   for(std::set<MSchedGraphSBNode*>::iterator I = IntersectCurrent.begin(), E = IntersectCurrent.end(); I != E; ++I)
 | |
|     std::cerr << **I << ", ";
 | |
|   std::cerr << ")\n";
 | |
| }
 | |
| 
 | |
| void ModuloSchedulingSBPass::orderNodes() {
 | |
| 
 | |
|   TIME_REGION(X, "orderNodes");
 | |
| 
 | |
|   int BOTTOM_UP = 0;
 | |
|   int TOP_DOWN = 1;
 | |
| 
 | |
|   //Set default order
 | |
|   int order = BOTTOM_UP;
 | |
| 
 | |
|   //Loop over and find all pred nodes and schedule them first
 | |
|   /*for(std::vector<std::set<MSchedGraphSBNode*> >::iterator CurrentSet = partialOrder.begin(), E= partialOrder.end(); CurrentSet != E; ++CurrentSet) {
 | |
|     for(std::set<MSchedGraphSBNode*>::iterator N = CurrentSet->begin(), NE = CurrentSet->end(); N != NE; ++N)
 | |
|       if((*N)->isPredicate()) {
 | |
|         FinalNodeOrder.push_back(*N);
 | |
|         CurrentSet->erase(*N);
 | |
|       }
 | |
|       }*/
 | |
| 
 | |
| 
 | |
| 
 | |
|   //Loop over all the sets and place them in the final node order
 | |
|   for(std::vector<std::set<MSchedGraphSBNode*> >::iterator CurrentSet = partialOrder.begin(), E= partialOrder.end(); CurrentSet != E; ++CurrentSet) {
 | |
| 
 | |
|     DEBUG(std::cerr << "Processing set in S\n");
 | |
|     DEBUG(dumpIntersection(*CurrentSet));
 | |
| 
 | |
|     //Result of intersection
 | |
|     std::set<MSchedGraphSBNode*> IntersectCurrent;
 | |
| 
 | |
|     predIntersect(*CurrentSet, IntersectCurrent);
 | |
| 
 | |
|     //If the intersection of predecessor and current set is not empty
 | |
|     //sort nodes bottom up
 | |
|     if(IntersectCurrent.size() != 0) {
 | |
|       DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is NOT empty\n");
 | |
|       order = BOTTOM_UP;
 | |
|     }
 | |
|     //If empty, use successors
 | |
|     else {
 | |
|       DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is empty\n");
 | |
| 
 | |
|       succIntersect(*CurrentSet, IntersectCurrent);
 | |
| 
 | |
|       //sort top-down
 | |
|       if(IntersectCurrent.size() != 0) {
 | |
|          DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is NOT empty\n");
 | |
|         order = TOP_DOWN;
 | |
|       }
 | |
|       else {
 | |
|         DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is empty\n");
 | |
|         //Find node with max ASAP in current Set
 | |
|         MSchedGraphSBNode *node;
 | |
|         int maxASAP = 0;
 | |
|         DEBUG(std::cerr << "Using current set of size " << CurrentSet->size() << "to find max ASAP\n");
 | |
|         for(std::set<MSchedGraphSBNode*>::iterator J = CurrentSet->begin(), JE = CurrentSet->end(); J != JE; ++J) {
 | |
|           //Get node attributes
 | |
|           MSNodeSBAttributes nodeAttr= nodeToAttributesMap.find(*J)->second;
 | |
|           //assert(nodeAttr != nodeToAttributesMap.end() && "Node not in attributes map!");
 | |
| 
 | |
|           if(maxASAP <= nodeAttr.ASAP) {
 | |
|             maxASAP = nodeAttr.ASAP;
 | |
|             node = *J;
 | |
|           }
 | |
|         }
 | |
|         assert(node != 0 && "In node ordering node should not be null");
 | |
|         IntersectCurrent.insert(node);
 | |
|         order = BOTTOM_UP;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     //Repeat until all nodes are put into the final order from current set
 | |
|     while(IntersectCurrent.size() > 0) {
 | |
| 
 | |
|       if(order == TOP_DOWN) {
 | |
|         DEBUG(std::cerr << "Order is TOP DOWN\n");
 | |
| 
 | |
|         while(IntersectCurrent.size() > 0) {
 | |
|           DEBUG(std::cerr << "Intersection is not empty, so find heighest height\n");
 | |
| 
 | |
|           int MOB = 0;
 | |
|           int height = 0;
 | |
|           MSchedGraphSBNode *highestHeightNode = *(IntersectCurrent.begin());
 | |
| 
 | |
|           //Find node in intersection with highest heigh and lowest MOB
 | |
|           for(std::set<MSchedGraphSBNode*>::iterator I = IntersectCurrent.begin(),
 | |
|                 E = IntersectCurrent.end(); I != E; ++I) {
 | |
| 
 | |
|             //Get current nodes properties
 | |
|             MSNodeSBAttributes nodeAttr= nodeToAttributesMap.find(*I)->second;
 | |
| 
 | |
|             if(height < nodeAttr.height) {
 | |
|               highestHeightNode = *I;
 | |
|               height = nodeAttr.height;
 | |
|               MOB = nodeAttr.MOB;
 | |
|             }
 | |
|             else if(height ==  nodeAttr.height) {
 | |
|               if(MOB > nodeAttr.height) {
 | |
|                 highestHeightNode = *I;
 | |
|                 height =  nodeAttr.height;
 | |
|                 MOB = nodeAttr.MOB;
 | |
|               }
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           //Append our node with greatest height to the NodeOrder
 | |
|           if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestHeightNode) == FinalNodeOrder.end()) {
 | |
|             DEBUG(std::cerr << "Adding node to Final Order: " << *highestHeightNode << "\n");
 | |
|             FinalNodeOrder.push_back(highestHeightNode);
 | |
|           }
 | |
| 
 | |
|           //Remove V from IntersectOrder
 | |
|           IntersectCurrent.erase(std::find(IntersectCurrent.begin(),
 | |
|                                       IntersectCurrent.end(), highestHeightNode));
 | |
| 
 | |
| 
 | |
|           //Intersect V's successors with CurrentSet
 | |
|           for(MSchedGraphSBNode::succ_iterator P = highestHeightNode->succ_begin(),
 | |
|                 E = highestHeightNode->succ_end(); P != E; ++P) {
 | |
|             //if(lower_bound(CurrentSet->begin(),
 | |
|             //     CurrentSet->end(), *P) != CurrentSet->end()) {
 | |
|             if(std::find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) {
 | |
|               if(ignoreEdge(highestHeightNode, *P))
 | |
|                 continue;
 | |
|               //If not already in Intersect, add
 | |
|               if(!IntersectCurrent.count(*P))
 | |
|                 IntersectCurrent.insert(*P);
 | |
|             }
 | |
|           }
 | |
|         } //End while loop over Intersect Size
 | |
| 
 | |
|         //Change direction
 | |
|         order = BOTTOM_UP;
 | |
| 
 | |
|         //Reset Intersect to reflect changes in OrderNodes
 | |
|         IntersectCurrent.clear();
 | |
|         predIntersect(*CurrentSet, IntersectCurrent);
 | |
| 
 | |
|       } //End If TOP_DOWN
 | |
| 
 | |
|         //Begin if BOTTOM_UP
 | |
|       else {
 | |
|         DEBUG(std::cerr << "Order is BOTTOM UP\n");
 | |
|         while(IntersectCurrent.size() > 0) {
 | |
|           DEBUG(std::cerr << "Intersection of size " << IntersectCurrent.size() << ", finding highest depth\n");
 | |
| 
 | |
|           //dump intersection
 | |
|           DEBUG(dumpIntersection(IntersectCurrent));
 | |
|           //Get node with highest depth, if a tie, use one with lowest
 | |
|           //MOB
 | |
|           int MOB = 0;
 | |
|           int depth = 0;
 | |
|           MSchedGraphSBNode *highestDepthNode = *(IntersectCurrent.begin());
 | |
| 
 | |
|           for(std::set<MSchedGraphSBNode*>::iterator I = IntersectCurrent.begin(),
 | |
|                 E = IntersectCurrent.end(); I != E; ++I) {
 | |
|             //Find node attribute in graph
 | |
|             MSNodeSBAttributes nodeAttr= nodeToAttributesMap.find(*I)->second;
 | |
| 
 | |
|             if(depth < nodeAttr.depth) {
 | |
|               highestDepthNode = *I;
 | |
|               depth = nodeAttr.depth;
 | |
|               MOB = nodeAttr.MOB;
 | |
|             }
 | |
|             else if(depth == nodeAttr.depth) {
 | |
|               if(MOB > nodeAttr.MOB) {
 | |
|                 highestDepthNode = *I;
 | |
|                 depth = nodeAttr.depth;
 | |
|                 MOB = nodeAttr.MOB;
 | |
|               }
 | |
|             }
 | |
|           }
 | |
| 
 | |
| 
 | |
| 
 | |
|           //Append highest depth node to the NodeOrder
 | |
|            if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestDepthNode) == FinalNodeOrder.end()) {
 | |
|              DEBUG(std::cerr << "Adding node to Final Order: " << *highestDepthNode << "\n");
 | |
|              FinalNodeOrder.push_back(highestDepthNode);
 | |
|            }
 | |
|           //Remove heightestDepthNode from IntersectOrder
 | |
|            IntersectCurrent.erase(highestDepthNode);
 | |
| 
 | |
| 
 | |
|           //Intersect heightDepthNode's pred with CurrentSet
 | |
|           for(MSchedGraphSBNode::pred_iterator P = highestDepthNode->pred_begin(),
 | |
|                 E = highestDepthNode->pred_end(); P != E; ++P) {
 | |
|             if(CurrentSet->count(*P)) {
 | |
|               if(ignoreEdge(*P, highestDepthNode))
 | |
|                 continue;
 | |
| 
 | |
|             //If not already in Intersect, add
 | |
|             if(!IntersectCurrent.count(*P))
 | |
|               IntersectCurrent.insert(*P);
 | |
|             }
 | |
|           }
 | |
| 
 | |
|         } //End while loop over Intersect Size
 | |
| 
 | |
|           //Change order
 | |
|         order = TOP_DOWN;
 | |
| 
 | |
|         //Reset IntersectCurrent to reflect changes in OrderNodes
 | |
|         IntersectCurrent.clear();
 | |
|         succIntersect(*CurrentSet, IntersectCurrent);
 | |
|         } //End if BOTTOM_DOWN
 | |
| 
 | |
|       DEBUG(std::cerr << "Current Intersection Size: " << IntersectCurrent.size() << "\n");
 | |
|     }
 | |
|     //End Wrapping while loop
 | |
|     DEBUG(std::cerr << "Ending Size of Current Set: " << CurrentSet->size() << "\n");
 | |
|   }//End for over all sets of nodes
 | |
| 
 | |
|   //FIXME: As the algorithm stands it will NEVER add an instruction such as ba (with no
 | |
|   //data dependencies) to the final order. We add this manually. It will always be
 | |
|   //in the last set of S since its not part of a recurrence
 | |
|     //Loop over all the sets and place them in the final node order
 | |
|   std::vector<std::set<MSchedGraphSBNode*> > ::reverse_iterator LastSet = partialOrder.rbegin();
 | |
|   for(std::set<MSchedGraphSBNode*>::iterator CurrentNode = LastSet->begin(), LastNode = LastSet->end();
 | |
|       CurrentNode != LastNode; ++CurrentNode) {
 | |
|     if((*CurrentNode)->getInst()->getOpcode() == V9::BA)
 | |
|       FinalNodeOrder.push_back(*CurrentNode);
 | |
|   }
 | |
|   //Return final Order
 | |
|   //return FinalNodeOrder;
 | |
| }
 | |
| 
 | |
| 
 | |
| void ModuloSchedulingSBPass::predIntersect(std::set<MSchedGraphSBNode*> &CurrentSet, std::set<MSchedGraphSBNode*> &IntersectResult) {
 | |
| 
 | |
|   for(unsigned j=0; j < FinalNodeOrder.size(); ++j) {
 | |
|     for(MSchedGraphSBNode::pred_iterator P = FinalNodeOrder[j]->pred_begin(),
 | |
|           E = FinalNodeOrder[j]->pred_end(); P != E; ++P) {
 | |
| 
 | |
|       //Check if we are supposed to ignore this edge or not
 | |
|       if(ignoreEdge(*P,FinalNodeOrder[j]))
 | |
|         continue;
 | |
| 
 | |
|       if(CurrentSet.count(*P))
 | |
|         if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end())
 | |
|           IntersectResult.insert(*P);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ModuloSchedulingSBPass::succIntersect(std::set<MSchedGraphSBNode*> &CurrentSet, std::set<MSchedGraphSBNode*> &IntersectResult) {
 | |
| 
 | |
|   for(unsigned j=0; j < FinalNodeOrder.size(); ++j) {
 | |
|     for(MSchedGraphSBNode::succ_iterator P = FinalNodeOrder[j]->succ_begin(),
 | |
|           E = FinalNodeOrder[j]->succ_end(); P != E; ++P) {
 | |
| 
 | |
|       //Check if we are supposed to ignore this edge or not
 | |
|       if(ignoreEdge(FinalNodeOrder[j],*P))
 | |
|         continue;
 | |
| 
 | |
|       if(CurrentSet.count(*P))
 | |
|         if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end())
 | |
|           IntersectResult.insert(*P);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| bool ModuloSchedulingSBPass::computeSchedule(std::vector<const MachineBasicBlock*> &SB, MSchedGraphSB *MSG) {
 | |
| 
 | |
|   TIME_REGION(X, "computeSchedule");
 | |
| 
 | |
|   bool success = false;
 | |
| 
 | |
|   //FIXME: Should be set to max II of the original loop
 | |
|   //Cap II in order to prevent infinite loop
 | |
|   int capII = MSG->totalDelay();
 | |
| 
 | |
|   while(!success) {
 | |
| 
 | |
|     //Keep track of branches, but do not insert into the schedule
 | |
|     std::vector<MSchedGraphSBNode*> branches;
 | |
| 
 | |
|     //Loop over the final node order and process each node
 | |
|     for(std::vector<MSchedGraphSBNode*>::iterator I = FinalNodeOrder.begin(),
 | |
|           E = FinalNodeOrder.end(); I != E; ++I) {
 | |
| 
 | |
|       //CalculateEarly and Late start
 | |
|       bool initialLSVal = false;
 | |
|       bool initialESVal = false;
 | |
|       int EarlyStart = 0;
 | |
|       int LateStart = 0;
 | |
|       bool hasSucc = false;
 | |
|       bool hasPred = false;
 | |
|       bool sched;
 | |
| 
 | |
|       if((*I)->isBranch())
 | |
|         if((*I)->hasPredecessors())
 | |
|           sched = true;
 | |
|         else
 | |
|           sched = false;
 | |
|       else
 | |
|         sched = true;
 | |
| 
 | |
|       if(sched) {
 | |
|         //Loop over nodes in the schedule and determine if they are predecessors
 | |
|         //or successors of the node we are trying to schedule
 | |
|         for(MSScheduleSB::schedule_iterator nodesByCycle = schedule.begin(), nodesByCycleEnd = schedule.end();
 | |
|             nodesByCycle != nodesByCycleEnd; ++nodesByCycle) {
 | |
| 
 | |
|           //For this cycle, get the vector of nodes schedule and loop over it
 | |
|           for(std::vector<MSchedGraphSBNode*>::iterator schedNode = nodesByCycle->second.begin(), SNE = nodesByCycle->second.end(); schedNode != SNE; ++schedNode) {
 | |
| 
 | |
|             if((*I)->isPredecessor(*schedNode)) {
 | |
|               int diff = (*I)->getInEdge(*schedNode).getIteDiff();
 | |
|               int ES_Temp = nodesByCycle->first + (*schedNode)->getLatency() - diff * II;
 | |
|               DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n");
 | |
|               DEBUG(std::cerr << "Temp EarlyStart: " << ES_Temp << " Prev EarlyStart: " << EarlyStart << "\n");
 | |
|               if(initialESVal)
 | |
|                 EarlyStart = std::max(EarlyStart, ES_Temp);
 | |
|               else {
 | |
|                 EarlyStart = ES_Temp;
 | |
|                 initialESVal = true;
 | |
|               }
 | |
|               hasPred = true;
 | |
|             }
 | |
|             if((*I)->isSuccessor(*schedNode)) {
 | |
|               int diff = (*schedNode)->getInEdge(*I).getIteDiff();
 | |
|               int LS_Temp = nodesByCycle->first - (*I)->getLatency() + diff * II;
 | |
|               DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n");
 | |
|               DEBUG(std::cerr << "Temp LateStart: " << LS_Temp << " Prev LateStart: " << LateStart << "\n");
 | |
|               if(initialLSVal)
 | |
|                 LateStart = std::min(LateStart, LS_Temp);
 | |
|               else {
 | |
|                 LateStart = LS_Temp;
 | |
|                 initialLSVal = true;
 | |
|               }
 | |
|               hasSucc = true;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       else {
 | |
|         branches.push_back(*I);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       //Check if the node has no pred or successors and set Early Start to its ASAP
 | |
|       if(!hasSucc && !hasPred)
 | |
|         EarlyStart = nodeToAttributesMap.find(*I)->second.ASAP;
 | |
| 
 | |
|       DEBUG(std::cerr << "Has Successors: " << hasSucc << ", Has Pred: " << hasPred << "\n");
 | |
|       DEBUG(std::cerr << "EarlyStart: " << EarlyStart << ", LateStart: " << LateStart << "\n");
 | |
| 
 | |
|       //Now, try to schedule this node depending upon its pred and successor in the schedule
 | |
|       //already
 | |
|       if(!hasSucc && hasPred)
 | |
|         success = scheduleNode(*I, EarlyStart, (EarlyStart + II -1));
 | |
|       else if(!hasPred && hasSucc)
 | |
|         success = scheduleNode(*I, LateStart, (LateStart - II +1));
 | |
|       else if(hasPred && hasSucc) {
 | |
|         if(EarlyStart > LateStart) {
 | |
|         success = false;
 | |
|           //LateStart = EarlyStart;
 | |
|           DEBUG(std::cerr << "Early Start can not be later then the late start cycle, schedule fails\n");
 | |
|         }
 | |
|         else
 | |
|           success = scheduleNode(*I, EarlyStart, std::min(LateStart, (EarlyStart + II -1)));
 | |
|       }
 | |
|       else
 | |
|         success = scheduleNode(*I, EarlyStart, EarlyStart + II - 1);
 | |
| 
 | |
|       if(!success) {
 | |
|         ++II;
 | |
|         schedule.clear();
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|     }
 | |
| 
 | |
|     if(success) {
 | |
|       DEBUG(std::cerr << "Constructing Schedule Kernel\n");
 | |
|       success = schedule.constructKernel(II, branches, indVarInstrs[SB]);
 | |
|       DEBUG(std::cerr << "Done Constructing Schedule Kernel\n");
 | |
|       if(!success) {
 | |
|         ++II;
 | |
|         schedule.clear();
 | |
|       }
 | |
|       DEBUG(std::cerr << "Final II: " << II << "\n");
 | |
| 
 | |
|     }
 | |
| 
 | |
|     if(II >= capII) {
 | |
|       DEBUG(std::cerr << "Maximum II reached, giving up\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     assert(II < capII && "The II should not exceed the original loop number of cycles");
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool ModuloSchedulingSBPass::scheduleNode(MSchedGraphSBNode *node,
 | |
|                                       int start, int end) {
 | |
|   bool success = false;
 | |
| 
 | |
|   DEBUG(std::cerr << *node << " (Start Cycle: " << start << ", End Cycle: " << end << ")\n");
 | |
| 
 | |
|   //Make sure start and end are not negative
 | |
|   //if(start < 0) {
 | |
|   //start = 0;
 | |
| 
 | |
|   //}
 | |
|   //if(end < 0)
 | |
|   //end = 0;
 | |
| 
 | |
|   bool forward = true;
 | |
|   if(start > end)
 | |
|     forward = false;
 | |
| 
 | |
|   bool increaseSC = true;
 | |
|   int cycle = start ;
 | |
| 
 | |
| 
 | |
|   while(increaseSC) {
 | |
| 
 | |
|     increaseSC = false;
 | |
| 
 | |
|     increaseSC = schedule.insert(node, cycle, II);
 | |
| 
 | |
|     if(!increaseSC)
 | |
|       return true;
 | |
| 
 | |
|     //Increment cycle to try again
 | |
|     if(forward) {
 | |
|       ++cycle;
 | |
|       DEBUG(std::cerr << "Increase cycle: " << cycle << "\n");
 | |
|       if(cycle > end)
 | |
|         return false;
 | |
|     }
 | |
|     else {
 | |
|       --cycle;
 | |
|       DEBUG(std::cerr << "Decrease cycle: " << cycle << "\n");
 | |
|       if(cycle < end)
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return success;
 | |
| }
 | |
| 
 | |
| void ModuloSchedulingSBPass::reconstructLoop(std::vector<const MachineBasicBlock*> &SB) {
 | |
| 
 | |
|   TIME_REGION(X, "reconstructLoop");
 | |
| 
 | |
| 
 | |
|   DEBUG(std::cerr << "Reconstructing Loop\n");
 | |
| 
 | |
|   //First find the value *'s that we need to "save"
 | |
|   std::map<const Value*, std::pair<const MachineInstr*, int> > valuesToSave;
 | |
| 
 | |
|   //Keep track of instructions we have already seen and their stage because
 | |
|   //we don't want to "save" values if they are used in the kernel immediately
 | |
|   std::map<const MachineInstr*, int> lastInstrs;
 | |
| 
 | |
| 
 | |
|   std::set<MachineBasicBlock*> seenBranchesBB;
 | |
|   const TargetInstrInfo *MTI = target.getInstrInfo();
 | |
|   std::map<MachineBasicBlock*, std::vector<std::pair<MachineInstr*, int> > > instrsMovedDown;
 | |
|   std::map<MachineBasicBlock*, int> branchStage;
 | |
| 
 | |
|   //Loop over kernel and only look at instructions from a stage > 0
 | |
|   //Look at its operands and save values *'s that are read
 | |
|   for(MSScheduleSB::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
 | |
| 
 | |
|     if(I->second !=0) {
 | |
|       //For this instruction, get the Value*'s that it reads and put them into the set.
 | |
|       //Assert if there is an operand of another type that we need to save
 | |
|       const MachineInstr *inst = I->first;
 | |
|       lastInstrs[inst] = I->second;
 | |
| 
 | |
|       for(unsigned i=0; i < inst->getNumOperands(); ++i) {
 | |
|         //get machine operand
 | |
|         const MachineOperand &mOp = inst->getOperand(i);
 | |
| 
 | |
|         if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) {
 | |
|           //find the value in the map
 | |
|           if (const Value* srcI = mOp.getVRegValue()) {
 | |
| 
 | |
|             if(isa<Constant>(srcI) || isa<Argument>(srcI))
 | |
|               continue;
 | |
| 
 | |
|             //Before we declare this Value* one that we should save
 | |
|             //make sure its def is not of the same stage as this instruction
 | |
|             //because it will be consumed before its used
 | |
|             Instruction *defInst = (Instruction*) srcI;
 | |
| 
 | |
|             //Should we save this value?
 | |
|             bool save = true;
 | |
| 
 | |
|             //Continue if not in the def map, loop invariant code does not need to be saved
 | |
|             if(!defMap.count(srcI))
 | |
|               continue;
 | |
| 
 | |
|             MachineInstr *defInstr = defMap[srcI];
 | |
| 
 | |
| 
 | |
|             if(lastInstrs.count(defInstr)) {
 | |
|               if(lastInstrs[defInstr] == I->second) {
 | |
|                 save = false;
 | |
| 
 | |
|               }
 | |
|             }
 | |
| 
 | |
|             if(save)
 | |
|               valuesToSave[srcI] = std::make_pair(I->first, i);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if(mOp.getType() != MachineOperand::MO_VirtualRegister && mOp.isUse()) {
 | |
|           assert("Our assumption is wrong. We have another type of register that needs to be saved\n");
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     //Do a check to see if instruction was moved below its original branch
 | |
|     if(MTI->isBranch(I->first->getOpcode())) {
 | |
|       seenBranchesBB.insert(I->first->getParent());
 | |
|       branchStage[I->first->getParent()] = I->second;
 | |
|     }
 | |
|     else {
 | |
|       instrsMovedDown[I->first->getParent()].push_back(std::make_pair(I->first, I->second));
 | |
|       //assert(seenBranchesBB.count(I->first->getParent()) && "Instruction moved below branch\n");
 | |
|     }
 | |
| 
 | |
|   }
 | |
| 
 | |
|   //The new loop will consist of one or more prologues, the kernel, and one or more epilogues.
 | |
| 
 | |
|   //Map to keep track of old to new values
 | |
|   std::map<Value*, std::map<int, Value*> > newValues;
 | |
| 
 | |
|   //Map to keep track of old to new values in kernel
 | |
|   std::map<Value*, std::map<int, Value*> > kernelPHIs;
 | |
| 
 | |
|   //Another map to keep track of what machine basic blocks these new value*s are in since
 | |
|   //they have no llvm instruction equivalent
 | |
|   std::map<Value*, MachineBasicBlock*> newValLocation;
 | |
| 
 | |
|   std::vector<std::vector<MachineBasicBlock*> > prologues;
 | |
|   std::vector<std::vector<BasicBlock*> > llvm_prologues;
 | |
| 
 | |
|   //Map to keep track of where the inner branches go
 | |
|   std::map<const MachineBasicBlock*, Value*> sideExits;
 | |
| 
 | |
| 
 | |
|   //Write prologue
 | |
|   if(schedule.getMaxStage() != 0)
 | |
|     writePrologues(prologues, SB, llvm_prologues, valuesToSave, newValues, newValLocation);
 | |
| 
 | |
|   std::vector<BasicBlock*> llvmKernelBBs;
 | |
|   std::vector<MachineBasicBlock*> machineKernelBBs;
 | |
|   Function *parent = (Function*) SB[0]->getBasicBlock()->getParent();
 | |
| 
 | |
|   for(unsigned i = 0; i < SB.size(); ++i) {
 | |
|     llvmKernelBBs.push_back(new BasicBlock("Kernel", parent));
 | |
| 
 | |
|     machineKernelBBs.push_back(new MachineBasicBlock(llvmKernelBBs[i]));
 | |
|     (((MachineBasicBlock*)SB[0])->getParent())->getBasicBlockList().push_back(machineKernelBBs[i]);
 | |
|   }
 | |
| 
 | |
|   writeKernel(llvmKernelBBs, machineKernelBBs, valuesToSave, newValues, newValLocation, kernelPHIs);
 | |
| 
 | |
| 
 | |
|   std::vector<std::vector<MachineBasicBlock*> > epilogues;
 | |
|   std::vector<std::vector<BasicBlock*> > llvm_epilogues;
 | |
| 
 | |
|   //Write epilogues
 | |
|   if(schedule.getMaxStage() != 0)
 | |
|     writeEpilogues(epilogues, SB, llvm_epilogues, valuesToSave, newValues, newValLocation, kernelPHIs);
 | |
| 
 | |
| 
 | |
|   //Fix our branches
 | |
|   fixBranches(prologues, llvm_prologues, machineKernelBBs, llvmKernelBBs, epilogues, llvm_epilogues, SB, sideExits);
 | |
| 
 | |
|   //Print out epilogues and prologue
 | |
|   DEBUG(for(std::vector<std::vector<MachineBasicBlock*> >::iterator PI = prologues.begin(), PE = prologues.end();
 | |
|       PI != PE; ++PI) {
 | |
|           std::cerr << "PROLOGUE\n";
 | |
|           for(std::vector<MachineBasicBlock*>::iterator I = PI->begin(), E = PI->end(); I != E; ++I)
 | |
|             (*I)->print(std::cerr);
 | |
|         });
 | |
| 
 | |
|   DEBUG(std::cerr << "KERNEL\n");
 | |
|   DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = machineKernelBBs.begin(), E = machineKernelBBs.end(); I != E; ++I) { (*I)->print(std::cerr);});
 | |
| 
 | |
|   DEBUG(for(std::vector<std::vector<MachineBasicBlock*> >::iterator EI = epilogues.begin(), EE = epilogues.end();
 | |
|       EI != EE; ++EI) {
 | |
|     std::cerr << "EPILOGUE\n";
 | |
|     for(std::vector<MachineBasicBlock*>::iterator I = EI->begin(), E = EI->end(); I != E; ++I)
 | |
|       (*I)->print(std::cerr);
 | |
|   });
 | |
| 
 | |
| 
 | |
|   //Remove phis
 | |
|   removePHIs(SB, prologues, epilogues, machineKernelBBs, newValLocation);
 | |
| 
 | |
|   //Print out epilogues and prologue
 | |
|   DEBUG(for(std::vector<std::vector<MachineBasicBlock*> >::iterator PI = prologues.begin(), PE = prologues.end();
 | |
|       PI != PE; ++PI) {
 | |
|           std::cerr << "PROLOGUE\n";
 | |
|           for(std::vector<MachineBasicBlock*>::iterator I = PI->begin(), E = PI->end(); I != E; ++I)
 | |
|             (*I)->print(std::cerr);
 | |
|         });
 | |
| 
 | |
|   DEBUG(std::cerr << "KERNEL\n");
 | |
|   DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = machineKernelBBs.begin(), E = machineKernelBBs.end(); I != E; ++I) { (*I)->print(std::cerr);});
 | |
| 
 | |
|   DEBUG(for(std::vector<std::vector<MachineBasicBlock*> >::iterator EI = epilogues.begin(), EE = epilogues.end();
 | |
|       EI != EE; ++EI) {
 | |
|     std::cerr << "EPILOGUE\n";
 | |
|     for(std::vector<MachineBasicBlock*>::iterator I = EI->begin(), E = EI->end(); I != E; ++I)
 | |
|       (*I)->print(std::cerr);
 | |
|   });
 | |
| 
 | |
|   writeSideExits(prologues, llvm_prologues, epilogues, llvm_epilogues, sideExits, instrsMovedDown, SB, machineKernelBBs, branchStage);
 | |
| 
 | |
| 
 | |
|   DEBUG(std::cerr << "New Machine Function" << "\n");
 | |
| }
 | |
| 
 | |
| 
 | |
| void ModuloSchedulingSBPass::fixBranches(std::vector<std::vector<MachineBasicBlock*> > &prologues, std::vector<std::vector<BasicBlock*> > &llvm_prologues, std::vector<MachineBasicBlock*> &machineKernelBB, std::vector<BasicBlock*> &llvmKernelBB, std::vector<std::vector<MachineBasicBlock*> > &epilogues, std::vector<std::vector<BasicBlock*> > &llvm_epilogues, std::vector<const MachineBasicBlock*> &SB, std::map<const MachineBasicBlock*, Value*> &sideExits) {
 | |
| 
 | |
|   const TargetInstrInfo *TMI = target.getInstrInfo();
 | |
| 
 | |
|   //Get exit BB
 | |
|   BasicBlock *last = (BasicBlock*) SB[SB.size()-1]->getBasicBlock();
 | |
|   BasicBlock *kernel_exit = 0;
 | |
|   bool sawFirst = false;
 | |
| 
 | |
|   for(succ_iterator I = succ_begin(last),
 | |
|         E = succ_end(last); I != E; ++I) {
 | |
|     if (*I != SB[0]->getBasicBlock()) {
 | |
|       kernel_exit = *I;
 | |
|       break;
 | |
|     }
 | |
|     else
 | |
|       sawFirst = true;
 | |
|   }
 | |
|   if(!kernel_exit && sawFirst) {
 | |
|     kernel_exit = (BasicBlock*) SB[0]->getBasicBlock();
 | |
|   }
 | |
| 
 | |
|   assert(kernel_exit && "Kernel Exit can not be null");
 | |
| 
 | |
|   if(schedule.getMaxStage() != 0) {
 | |
|     //Fix prologue branches
 | |
|     for(unsigned i = 0; i <  prologues.size(); ++i) {
 | |
| 
 | |
|       for(unsigned j = 0; j < prologues[i].size(); ++j) {
 | |
| 
 | |
|         MachineBasicBlock *currentMBB = prologues[i][j];
 | |
| 
 | |
|         //Find terminator since getFirstTerminator does not work!
 | |
|         for(MachineBasicBlock::reverse_iterator mInst = currentMBB->rbegin(), mInstEnd = currentMBB->rend(); mInst != mInstEnd; ++mInst) {
 | |
|           MachineOpCode OC = mInst->getOpcode();
 | |
|           //If its a branch update its branchto
 | |
|           if(TMI->isBranch(OC)) {
 | |
|             for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) {
 | |
|               MachineOperand &mOp = mInst->getOperand(opNum);
 | |
|               if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
 | |
|                 //Check if we are branching to the kernel, if not branch to epilogue
 | |
|                 if(mOp.getVRegValue() == SB[0]->getBasicBlock()) {
 | |
|                   if(i >= prologues.size()-1)
 | |
|                     mOp.setValueReg(llvmKernelBB[0]);
 | |
|                   else
 | |
|                     mOp.setValueReg(llvm_prologues[i+1][0]);
 | |
|                 }
 | |
|                 else if( (mOp.getVRegValue() == kernel_exit) && (j == prologues[i].size()-1)) {
 | |
|                   mOp.setValueReg(llvm_epilogues[i][0]);
 | |
|                 }
 | |
|                 else if(mOp.getVRegValue() == SB[j+1]->getBasicBlock()) {
 | |
|                   mOp.setValueReg(llvm_prologues[i][j+1]);
 | |
|                 }
 | |
| 
 | |
|               }
 | |
|             }
 | |
| 
 | |
|             DEBUG(std::cerr << "New Prologue Branch: " << *mInst << "\n");
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         //Update llvm basic block with our new branch instr
 | |
|         DEBUG(std::cerr << SB[i]->getBasicBlock()->getTerminator() << "\n");
 | |
| 
 | |
|         const BranchInst *branchVal = dyn_cast<BranchInst>(SB[i]->getBasicBlock()->getTerminator());
 | |
| 
 | |
|         //Check for inner branch
 | |
|         if(j < prologues[i].size()-1) {
 | |
|           //Find our side exit LLVM basic block
 | |
|           BasicBlock *sideExit = 0;
 | |
|           for(unsigned s = 0; s < branchVal->getNumSuccessors(); ++s) {
 | |
|             if(branchVal->getSuccessor(s) != SB[i+1]->getBasicBlock())
 | |
|               sideExit = branchVal->getSuccessor(s);
 | |
|           }
 | |
|           assert(sideExit && "Must have side exit llvm basic block");
 | |
|           TerminatorInst *newBranch = new BranchInst(sideExit,
 | |
|                                         llvm_prologues[i][j+1],
 | |
|                                         branchVal->getCondition(),
 | |
|                                         llvm_prologues[i][j]);
 | |
|         }
 | |
|         else {
 | |
|           //If last prologue
 | |
|           if(i == prologues.size()-1) {
 | |
|             TerminatorInst *newBranch = new BranchInst(llvmKernelBB[0],
 | |
|                                                        llvm_epilogues[i][0],
 | |
|                                                        branchVal->getCondition(),
 | |
|                                                        llvm_prologues[i][j]);
 | |
|           }
 | |
|           else {
 | |
|             TerminatorInst *newBranch = new BranchInst(llvm_prologues[i+1][0],
 | |
|                                                        llvm_epilogues[i][0],
 | |
|                                                        branchVal->getCondition(),
 | |
|                                                        llvm_prologues[i][j]);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //Fix up kernel machine branches
 | |
|   for(unsigned i = 0; i < machineKernelBB.size(); ++i) {
 | |
|     MachineBasicBlock *currentMBB = machineKernelBB[i];
 | |
| 
 | |
|     for(MachineBasicBlock::reverse_iterator mInst = currentMBB->rbegin(), mInstEnd = currentMBB->rend(); mInst != mInstEnd; ++mInst) {
 | |
|       MachineOpCode OC = mInst->getOpcode();
 | |
|       if(TMI->isBranch(OC)) {
 | |
|         for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) {
 | |
|           MachineOperand &mOp = mInst->getOperand(opNum);
 | |
| 
 | |
|           if(mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
 | |
|             //Deal with inner kernel branches
 | |
|             if(i < machineKernelBB.size()-1) {
 | |
|               if(mOp.getVRegValue() == SB[i+1]->getBasicBlock())
 | |
|                 mOp.setValueReg(llvmKernelBB[i+1]);
 | |
|               //Side exit!
 | |
|               else {
 | |
|                 sideExits[SB[i]] = mOp.getVRegValue();
 | |
|               }
 | |
|             }
 | |
|             else {
 | |
|               if(mOp.getVRegValue() == SB[0]->getBasicBlock())
 | |
|                 mOp.setValueReg(llvmKernelBB[0]);
 | |
|               else {
 | |
|                 if(llvm_epilogues.size() > 0)
 | |
|                   mOp.setValueReg(llvm_epilogues[0][0]);
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     //Update kernelLLVM branches
 | |
|     const BranchInst *branchVal = dyn_cast<BranchInst>(SB[0]->getBasicBlock()->getTerminator());
 | |
| 
 | |
|     //deal with inner branch
 | |
|     if(i < machineKernelBB.size()-1) {
 | |
| 
 | |
|       //Find our side exit LLVM basic block
 | |
|       BasicBlock *sideExit = 0;
 | |
|       for(unsigned s = 0; s < branchVal->getNumSuccessors(); ++s) {
 | |
|         if(branchVal->getSuccessor(s) != SB[i+1]->getBasicBlock())
 | |
|           sideExit = branchVal->getSuccessor(s);
 | |
|       }
 | |
|       assert(sideExit && "Must have side exit llvm basic block");
 | |
|       TerminatorInst *newBranch = new BranchInst(sideExit,
 | |
|                                                  llvmKernelBB[i+1],
 | |
|                                                  branchVal->getCondition(),
 | |
|                                                  llvmKernelBB[i]);
 | |
|     }
 | |
|     else {
 | |
|       //Deal with outter branches
 | |
|       if(epilogues.size() > 0) {
 | |
|         TerminatorInst *newBranch = new BranchInst(llvmKernelBB[0],
 | |
|                                                    llvm_epilogues[0][0],
 | |
|                                                    branchVal->getCondition(),
 | |
|                                                    llvmKernelBB[i]);
 | |
|       }
 | |
|       else {
 | |
|         TerminatorInst *newBranch = new BranchInst(llvmKernelBB[0],
 | |
|                                                    kernel_exit,
 | |
|                                                    branchVal->getCondition(),
 | |
|                                                    llvmKernelBB[i]);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if(schedule.getMaxStage() != 0) {
 | |
| 
 | |
|     //Lastly add unconditional branches for the epilogues
 | |
|     for(unsigned i = 0; i <  epilogues.size(); ++i) {
 | |
| 
 | |
|       for(unsigned j=0; j < epilogues[i].size(); ++j) {
 | |
|         //Now since we don't have fall throughs, add a unconditional
 | |
|         //branch to the next prologue
 | |
| 
 | |
|         //Before adding these, we need to check if the epilogue already has
 | |
|         //a branch in it
 | |
|         bool hasBranch = false;
 | |
|         /*if(j < epilogues[i].size()-1) {
 | |
|           MachineBasicBlock *currentMBB = epilogues[i][j];
 | |
|           for(MachineBasicBlock::reverse_iterator mInst = currentMBB->rbegin(), mInstEnd = currentMBB->rend(); mInst != mInstEnd; ++mInst) {
 | |
| 
 | |
|             MachineOpCode OC = mInst->getOpcode();
 | |
| 
 | |
|             //If its a branch update its branchto
 | |
|             if(TMI->isBranch(OC)) {
 | |
|               hasBranch = true;
 | |
|               for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) {
 | |
|                 MachineOperand &mOp = mInst->getOperand(opNum);
 | |
|                 if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
 | |
| 
 | |
|                   if(mOp.getVRegValue() != sideExits[SB[j]]) {
 | |
|                     mOp.setValueReg(llvm_epilogues[i][j+1]);
 | |
|                   }
 | |
| 
 | |
|                 }
 | |
|               }
 | |
| 
 | |
| 
 | |
|               DEBUG(std::cerr << "New Epilogue Branch: " << *mInst << "\n");
 | |
|             }
 | |
|           }
 | |
|           if(hasBranch) {
 | |
|             const BranchInst *branchVal = dyn_cast<BranchInst>(SB[j]->getBasicBlock()->getTerminator());
 | |
|             TerminatorInst *newBranch = new BranchInst((BasicBlock*)sideExits[SB[j]],
 | |
|                                                        llvm_epilogues[i][j+1],
 | |
|                                                        branchVal->getCondition(),
 | |
|                                                        llvm_epilogues[i][j]);
 | |
|           }
 | |
|           }*/
 | |
| 
 | |
|         if(!hasBranch) {
 | |
| 
 | |
|           //Handle inner branches
 | |
|           if(j < epilogues[i].size()-1) {
 | |
|             BuildMI(epilogues[i][j], V9::BA, 1).addPCDisp(llvm_epilogues[i][j+1]);
 | |
|             TerminatorInst *newBranch = new BranchInst(llvm_epilogues[i][j+1],
 | |
|                                                        llvm_epilogues[i][j]);
 | |
|           }
 | |
|           else {
 | |
| 
 | |
|             //Check if this is the last epilogue
 | |
|             if(i != epilogues.size()-1) {
 | |
|               BuildMI(epilogues[i][j], V9::BA, 1).addPCDisp(llvm_epilogues[i+1][0]);
 | |
|               //Add unconditional branch to end of epilogue
 | |
|               TerminatorInst *newBranch = new BranchInst(llvm_epilogues[i+1][0],
 | |
|                                                          llvm_epilogues[i][j]);
 | |
| 
 | |
|             }
 | |
|             else {
 | |
|               BuildMI(epilogues[i][j], V9::BA, 1).addPCDisp(kernel_exit);
 | |
|               TerminatorInst *newBranch = new BranchInst(kernel_exit, llvm_epilogues[i][j]);
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           //Add one more nop!
 | |
|           BuildMI(epilogues[i][j], V9::NOP, 0);
 | |
| 
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //Find all llvm basic blocks that branch to the loop entry and
 | |
|   //change to our first prologue.
 | |
|   const BasicBlock *llvmBB = SB[0]->getBasicBlock();
 | |
| 
 | |
|   std::vector<const BasicBlock*>Preds (pred_begin(llvmBB), pred_end(llvmBB));
 | |
| 
 | |
|   for(std::vector<const BasicBlock*>::iterator P = Preds.begin(),
 | |
|         PE = Preds.end(); P != PE; ++P) {
 | |
|     if(*P == SB[SB.size()-1]->getBasicBlock())
 | |
|        continue;
 | |
|      else {
 | |
|        DEBUG(std::cerr << "Found our entry BB\n");
 | |
|        DEBUG((*P)->print(std::cerr));
 | |
|        //Get the Terminator instruction for this basic block and print it out
 | |
|        //DEBUG(std::cerr << *((*P)->getTerminator()) << "\n");
 | |
| 
 | |
|        //Update the terminator
 | |
|        TerminatorInst *term = ((BasicBlock*)*P)->getTerminator();
 | |
|        for(unsigned i=0; i < term->getNumSuccessors(); ++i) {
 | |
|          if(term->getSuccessor(i) == llvmBB) {
 | |
|            DEBUG(std::cerr << "Replacing successor bb\n");
 | |
|            if(llvm_prologues.size() > 0) {
 | |
|              term->setSuccessor(i, llvm_prologues[0][0]);
 | |
| 
 | |
|              DEBUG(std::cerr << "New Term" << *((*P)->getTerminator()) << "\n");
 | |
| 
 | |
|              //Also update its corresponding machine instruction
 | |
|              MachineCodeForInstruction & tempMvec =
 | |
|                MachineCodeForInstruction::get(term);
 | |
|              for (unsigned j = 0; j < tempMvec.size(); j++) {
 | |
|                MachineInstr *temp = tempMvec[j];
 | |
|                MachineOpCode opc = temp->getOpcode();
 | |
|                if(TMI->isBranch(opc)) {
 | |
|                  DEBUG(std::cerr << *temp << "\n");
 | |
|                  //Update branch
 | |
|                  for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) {
 | |
|                    MachineOperand &mOp = temp->getOperand(opNum);
 | |
|                    if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
 | |
|                      if(mOp.getVRegValue() == llvmBB)
 | |
|                        mOp.setValueReg(llvm_prologues[0][0]);
 | |
|                    }
 | |
|                  }
 | |
|                }
 | |
|              }
 | |
|            }
 | |
|            else {
 | |
|              term->setSuccessor(i, llvmKernelBB[0]);
 | |
| 
 | |
|              //Also update its corresponding machine instruction
 | |
|              MachineCodeForInstruction & tempMvec =
 | |
|                MachineCodeForInstruction::get(term);
 | |
|              for(unsigned j = 0; j < tempMvec.size(); j++) {
 | |
|                MachineInstr *temp = tempMvec[j];
 | |
|                MachineOpCode opc = temp->getOpcode();
 | |
|                if(TMI->isBranch(opc)) {
 | |
|                  DEBUG(std::cerr << *temp << "\n");
 | |
|                  //Update branch
 | |
|                  for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) {
 | |
|                    MachineOperand &mOp = temp->getOperand(opNum);
 | |
|                    if(mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
 | |
|                      if(mOp.getVRegValue() == llvmBB)
 | |
|                        mOp.setValueReg(llvmKernelBB[0]);
 | |
|                    }
 | |
|                  }
 | |
|                }
 | |
|              }
 | |
|            }
 | |
|          }
 | |
|        }
 | |
|        break;
 | |
|      }
 | |
|   }
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| void ModuloSchedulingSBPass::writePrologues(std::vector<std::vector<MachineBasicBlock *> > &prologues, std::vector<const MachineBasicBlock*> &origSB, std::vector<std::vector<BasicBlock*> > &llvm_prologues, std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation) {
 | |
| 
 | |
|   //Keep a map to easily know whats in the kernel
 | |
|   std::map<int, std::set<const MachineInstr*> > inKernel;
 | |
|   int maxStageCount = 0;
 | |
| 
 | |
|   //Keep a map of new values we consumed in case they need to be added back
 | |
|   std::map<Value*, std::map<int, Value*> > consumedValues;
 | |
| 
 | |
|   DEBUG(schedule.print(std::cerr));
 | |
| 
 | |
|   for(MSScheduleSB::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
 | |
|     maxStageCount = std::max(maxStageCount, I->second);
 | |
| 
 | |
|     //Put int the map so we know what instructions in each stage are in the kernel
 | |
|     DEBUG(std::cerr << "Inserting instruction " << *(I->first) << " into map at stage " << I->second << "\n");
 | |
|     inKernel[I->second].insert(I->first);
 | |
|   }
 | |
| 
 | |
|   //Get target information to look at machine operands
 | |
|   const TargetInstrInfo *mii = target.getInstrInfo();
 | |
| 
 | |
|  //Now write the prologues
 | |
|   for(int i = 0; i < maxStageCount; ++i) {
 | |
|     std::vector<MachineBasicBlock*> current_prologue;
 | |
|     std::vector<BasicBlock*> current_llvm_prologue;
 | |
| 
 | |
|     for(std::vector<const MachineBasicBlock*>::iterator MB = origSB.begin(),
 | |
|           MBE = origSB.end(); MB != MBE; ++MB) {
 | |
|       const MachineBasicBlock *MBB = *MB;
 | |
|       //Create new llvm and machine bb
 | |
|       BasicBlock *llvmBB = new BasicBlock("PROLOGUE", (Function*) (MBB->getBasicBlock()->getParent()));
 | |
|       MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB);
 | |
| 
 | |
|       DEBUG(std::cerr << "i=" << i << "\n");
 | |
| 
 | |
|       for(int j = i; j >= 0; --j) {
 | |
|         //iterate over instructions in original bb
 | |
|         for(MachineBasicBlock::const_iterator MI = MBB->begin(),
 | |
|               ME = MBB->end(); ME != MI; ++MI) {
 | |
|           if(inKernel[j].count(&*MI)) {
 | |
|             MachineInstr *instClone = MI->clone();
 | |
|             machineBB->push_back(instClone);
 | |
| 
 | |
|             //If its a branch, insert a nop
 | |
|             if(mii->isBranch(instClone->getOpcode()))
 | |
|               BuildMI(machineBB, V9::NOP, 0);
 | |
| 
 | |
| 
 | |
|             DEBUG(std::cerr << "Cloning: " << *MI << "\n");
 | |
| 
 | |
|             //After cloning, we may need to save the value that this instruction defines
 | |
|             for(unsigned opNum=0; opNum < MI->getNumOperands(); ++opNum) {
 | |
|               Instruction *tmp;
 | |
| 
 | |
|               //get machine operand
 | |
|               MachineOperand &mOp = instClone->getOperand(opNum);
 | |
|               if(mOp.getType() == MachineOperand::MO_VirtualRegister
 | |
|                  && mOp.isDef()) {
 | |
| 
 | |
|                 //Check if this is a value we should save
 | |
|                 if(valuesToSave.count(mOp.getVRegValue())) {
 | |
|                   //Save copy in tmpInstruction
 | |
|                   tmp = new TmpInstruction(mOp.getVRegValue());
 | |
| 
 | |
|                   //Add TmpInstruction to safe LLVM Instruction MCFI
 | |
|                   MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst);
 | |
|                   tempMvec.addTemp((Value*) tmp);
 | |
| 
 | |
|                   DEBUG(std::cerr << "Value: " << *(mOp.getVRegValue())
 | |
|                         << " New Value: " << *tmp << " Stage: " << i << "\n");
 | |
| 
 | |
|                 newValues[mOp.getVRegValue()][i]= tmp;
 | |
|                 newValLocation[tmp] = machineBB;
 | |
| 
 | |
|                 DEBUG(std::cerr << "Machine Instr Operands: "
 | |
|                       << *(mOp.getVRegValue()) << ", 0, " << *tmp << "\n");
 | |
| 
 | |
|                 //Create machine instruction and put int machineBB
 | |
|                 MachineInstr *saveValue;
 | |
|                 if(mOp.getVRegValue()->getType() == Type::FloatTy)
 | |
|                   saveValue = BuildMI(machineBB, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
 | |
|                 else if(mOp.getVRegValue()->getType() == Type::DoubleTy)
 | |
|                   saveValue = BuildMI(machineBB, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
 | |
|                 else
 | |
|                   saveValue = BuildMI(machineBB, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
 | |
| 
 | |
| 
 | |
|                 DEBUG(std::cerr << "Created new machine instr: " << *saveValue << "\n");
 | |
|                 }
 | |
|               }
 | |
| 
 | |
|               //We may also need to update the value that we use if
 | |
|               //its from an earlier prologue
 | |
|               if(j != 0) {
 | |
|                 if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) {
 | |
|                   if(newValues.count(mOp.getVRegValue())) {
 | |
|                     if(newValues[mOp.getVRegValue()].count(i-1)) {
 | |
|                       Value *oldV =  mOp.getVRegValue();
 | |
|                       DEBUG(std::cerr << "Replaced this value: " << mOp.getVRegValue() << " With:" << (newValues[mOp.getVRegValue()][i-1]) << "\n");
 | |
|                       //Update the operand with the right value
 | |
|                       mOp.setValueReg(newValues[mOp.getVRegValue()][i-1]);
 | |
| 
 | |
|                       //Remove this value since we have consumed it
 | |
|                       //NOTE: Should this only be done if j != maxStage?
 | |
|                       consumedValues[oldV][i-1] = (newValues[oldV][i-1]);
 | |
|                       DEBUG(std::cerr << "Deleted value: " << consumedValues[oldV][i-1] << "\n");
 | |
|                       newValues[oldV].erase(i-1);
 | |
|                     }
 | |
|                   }
 | |
|                   else
 | |
|                     if(consumedValues.count(mOp.getVRegValue()))
 | |
|                       assert(!consumedValues[mOp.getVRegValue()].count(i-1) && "Found a case where we need the value");
 | |
|                 }
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|         (((MachineBasicBlock*)MBB)->getParent())->getBasicBlockList().push_back(machineBB);
 | |
|         current_prologue.push_back(machineBB);
 | |
|         current_llvm_prologue.push_back(llvmBB);
 | |
|     }
 | |
|     prologues.push_back(current_prologue);
 | |
|     llvm_prologues.push_back(current_llvm_prologue);
 | |
| 
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void ModuloSchedulingSBPass::writeEpilogues(std::vector<std::vector<MachineBasicBlock*> > &epilogues, std::vector<const MachineBasicBlock*> &origSB, std::vector<std::vector<BasicBlock*> > &llvm_epilogues, std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues,std::map<Value*, MachineBasicBlock*> &newValLocation, std::map<Value*, std::map<int, Value*> > &kernelPHIs ) {
 | |
| 
 | |
|   std::map<int, std::set<const MachineInstr*> > inKernel;
 | |
|    const TargetInstrInfo *MTI = target.getInstrInfo();
 | |
| 
 | |
|   for(MSScheduleSB::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
 | |
| 
 | |
|     //Put int the map so we know what instructions in each stage are in the kernel
 | |
|     inKernel[I->second].insert(I->first);
 | |
|   }
 | |
| 
 | |
|   std::map<Value*, Value*> valPHIs;
 | |
| 
 | |
|   //some debug stuff, will remove later
 | |
|   DEBUG(for(std::map<Value*, std::map<int, Value*> >::iterator V = newValues.begin(), E = newValues.end(); V !=E; ++V) {
 | |
|     std::cerr << "Old Value: " << *(V->first) << "\n";
 | |
|     for(std::map<int, Value*>::iterator I = V->second.begin(), IE = V->second.end(); I != IE; ++I)
 | |
|       std::cerr << "Stage: " << I->first << " Value: " << *(I->second) << "\n";
 | |
|   });
 | |
| 
 | |
| 
 | |
|   //Now write the epilogues
 | |
|   for(int i = schedule.getMaxStage()-1; i >= 0; --i) {
 | |
|     std::vector<MachineBasicBlock*> current_epilogue;
 | |
|     std::vector<BasicBlock*> current_llvm_epilogue;
 | |
| 
 | |
|     for(std::vector<const MachineBasicBlock*>::iterator MB = origSB.begin(), MBE = origSB.end(); MB != MBE; ++MB) {
 | |
|       const MachineBasicBlock *MBB = *MB;
 | |
| 
 | |
|       BasicBlock *llvmBB = new BasicBlock("EPILOGUE", (Function*) (MBB->getBasicBlock()->getParent()));
 | |
|       MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB);
 | |
| 
 | |
|       DEBUG(std::cerr << " Epilogue #: " << i << "\n");
 | |
| 
 | |
|       std::map<Value*, int> inEpilogue;
 | |
| 
 | |
|       for(MachineBasicBlock::const_iterator MI = MBB->begin(), ME = MBB->end(); ME != MI; ++MI) {
 | |
|         for(int j=schedule.getMaxStage(); j > i; --j) {
 | |
|           if(inKernel[j].count(&*MI)) {
 | |
|             DEBUG(std::cerr << "Cloning instruction " << *MI << "\n");
 | |
|             MachineInstr *clone = MI->clone();
 | |
| 
 | |
|             //Update operands that need to use the result from the phi
 | |
|             for(unsigned opNum=0; opNum < clone->getNumOperands(); ++opNum) {
 | |
|               //get machine operand
 | |
|               const MachineOperand &mOp = clone->getOperand(opNum);
 | |
| 
 | |
|               if((mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse())) {
 | |
| 
 | |
|                 DEBUG(std::cerr << "Writing PHI for " << (mOp.getVRegValue()) << "\n");
 | |
| 
 | |
|                 //If this is the last instructions for the max iterations ago, don't update operands
 | |
|                 if(inEpilogue.count(mOp.getVRegValue()))
 | |
|                   if(inEpilogue[mOp.getVRegValue()] == i)
 | |
|                     continue;
 | |
| 
 | |
|                 //Quickly write appropriate phis for this operand
 | |
|                 if(newValues.count(mOp.getVRegValue())) {
 | |
|                   if(newValues[mOp.getVRegValue()].count(i)) {
 | |
|                     Instruction *tmp = new TmpInstruction(newValues[mOp.getVRegValue()][i]);
 | |
| 
 | |
|                     //Get machine code for this instruction
 | |
|                     MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst);
 | |
|                     tempMvec.addTemp((Value*) tmp);
 | |
| 
 | |
|                     //assert of no kernelPHI for this value
 | |
|                     assert(kernelPHIs[mOp.getVRegValue()][i] !=0 && "Must have final kernel phi to construct epilogue phi");
 | |
| 
 | |
|                     MachineInstr *saveValue = BuildMI(machineBB, V9::PHI, 3).addReg(newValues[mOp.getVRegValue()][i]).addReg(kernelPHIs[mOp.getVRegValue()][i]).addRegDef(tmp);
 | |
|                     DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n");
 | |
|                     valPHIs[mOp.getVRegValue()] = tmp;
 | |
|                   }
 | |
|                 }
 | |
| 
 | |
|                 if(valPHIs.count(mOp.getVRegValue())) {
 | |
|                   //Update the operand in the cloned instruction
 | |
|                   clone->getOperand(opNum).setValueReg(valPHIs[mOp.getVRegValue()]);
 | |
|                 }
 | |
|               }
 | |
|               else if((mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef())) {
 | |
|                 inEpilogue[mOp.getVRegValue()] = i;
 | |
|               }
 | |
| 
 | |
|             }
 | |
|             machineBB->push_back(clone);
 | |
|             //if(MTI->isBranch(clone->getOpcode()))
 | |
|             //BuildMI(machineBB, V9::NOP, 0);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       (((MachineBasicBlock*)MBB)->getParent())->getBasicBlockList().push_back(machineBB);
 | |
|       current_epilogue.push_back(machineBB);
 | |
|       current_llvm_epilogue.push_back(llvmBB);
 | |
|     }
 | |
| 
 | |
|     DEBUG(std::cerr << "EPILOGUE #" << i << "\n");
 | |
|     DEBUG(for(std::vector<MachineBasicBlock*>::iterator B = current_epilogue.begin(), BE = current_epilogue.end(); B != BE; ++B) {
 | |
|             (*B)->print(std::cerr);});
 | |
| 
 | |
|     epilogues.push_back(current_epilogue);
 | |
|     llvm_epilogues.push_back(current_llvm_epilogue);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ModuloSchedulingSBPass::writeKernel(std::vector<BasicBlock*> &llvmBB, std::vector<MachineBasicBlock*> &machineBB, std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation, std::map<Value*, std::map<int, Value*> > &kernelPHIs) {
 | |
| 
 | |
|   //Keep track of operands that are read and saved from a previous iteration. The new clone
 | |
|   //instruction will use the result of the phi instead.
 | |
|   std::map<Value*, Value*> finalPHIValue;
 | |
|   std::map<Value*, Value*> kernelValue;
 | |
| 
 | |
|   //Branches are a special case
 | |
|   std::vector<MachineInstr*> branches;
 | |
| 
 | |
|   //Get target information to look at machine operands
 | |
|   const TargetInstrInfo *mii = target.getInstrInfo();
 | |
|   unsigned index = 0;
 | |
|   int numBr = 0;
 | |
|   bool seenBranch = false;
 | |
| 
 | |
|   //Create TmpInstructions for the final phis
 | |
|   for(MSScheduleSB::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
 | |
| 
 | |
|    DEBUG(std::cerr << "Stage: " << I->second << " Inst: " << *(I->first) << "\n";);
 | |
| 
 | |
|    //Clone instruction
 | |
|    const MachineInstr *inst = I->first;
 | |
|    MachineInstr *instClone = inst->clone();
 | |
| 
 | |
|    if(seenBranch && !mii->isBranch(instClone->getOpcode())) {
 | |
|      index++;
 | |
|      seenBranch = false;
 | |
|      numBr = 0;
 | |
|    }
 | |
|    else if(seenBranch && (numBr == 2)) {
 | |
|      index++;
 | |
|      numBr = 0;
 | |
|    }
 | |
| 
 | |
|    //Insert into machine basic block
 | |
|    assert(index < machineBB.size() && "Must have a valid index into kernel MBBs");
 | |
|    machineBB[index]->push_back(instClone);
 | |
| 
 | |
|    if(mii->isBranch(instClone->getOpcode())) {
 | |
|      BuildMI(machineBB[index], V9::NOP, 0);
 | |
| 
 | |
|      seenBranch = true;
 | |
|      numBr++;
 | |
|    }
 | |
| 
 | |
|    DEBUG(std::cerr <<  "Cloned Inst: " << *instClone << "\n");
 | |
| 
 | |
|    //Loop over Machine Operands
 | |
|    for(unsigned i=0; i < inst->getNumOperands(); ++i) {
 | |
|      //get machine operand
 | |
|      const MachineOperand &mOp = inst->getOperand(i);
 | |
| 
 | |
|      if(I->second != 0) {
 | |
|        if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) {
 | |
| 
 | |
|          //Check to see where this operand is defined if this instruction is from max stage
 | |
|          if(I->second == schedule.getMaxStage()) {
 | |
|            DEBUG(std::cerr << "VREG: " << *(mOp.getVRegValue()) << "\n");
 | |
|          }
 | |
| 
 | |
|          //If its in the value saved, we need to create a temp instruction and use that instead
 | |
|          if(valuesToSave.count(mOp.getVRegValue())) {
 | |
| 
 | |
|            //Check if we already have a final PHI value for this
 | |
|            if(!finalPHIValue.count(mOp.getVRegValue())) {
 | |
|              //Only create phi if the operand def is from a stage before this one
 | |
|              if(schedule.defPreviousStage(mOp.getVRegValue(), I->second)) {
 | |
|              TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue());
 | |
| 
 | |
|              //Get machine code for this instruction
 | |
|              MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst);
 | |
|              tempMvec.addTemp((Value*) tmp);
 | |
| 
 | |
|              //Update the operand in the cloned instruction
 | |
|              instClone->getOperand(i).setValueReg(tmp);
 | |
| 
 | |
|              //save this as our final phi
 | |
|              finalPHIValue[mOp.getVRegValue()] = tmp;
 | |
|              newValLocation[tmp] = machineBB[index];
 | |
|              }
 | |
|            }
 | |
|            else {
 | |
|              //Use the previous final phi value
 | |
|              instClone->getOperand(i).setValueReg(finalPHIValue[mOp.getVRegValue()]);
 | |
|            }
 | |
|          }
 | |
|        }
 | |
|      }
 | |
|      if(I->second != schedule.getMaxStage()) {
 | |
|        if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) {
 | |
|          if(valuesToSave.count(mOp.getVRegValue())) {
 | |
| 
 | |
|            TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue());
 | |
| 
 | |
|            //Get machine code for this instruction
 | |
|            MachineCodeForInstruction & tempVec = MachineCodeForInstruction::get(defaultInst);
 | |
|            tempVec.addTemp((Value*) tmp);
 | |
| 
 | |
|            //Create new machine instr and put in MBB
 | |
|            MachineInstr *saveValue;
 | |
|            if(mOp.getVRegValue()->getType() == Type::FloatTy)
 | |
|              saveValue = BuildMI(machineBB[index], V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
 | |
|            else if(mOp.getVRegValue()->getType() == Type::DoubleTy)
 | |
|              saveValue = BuildMI(machineBB[index], V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
 | |
|            else
 | |
|              saveValue = BuildMI(machineBB[index], V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
 | |
| 
 | |
| 
 | |
|            //Save for future cleanup
 | |
|            kernelValue[mOp.getVRegValue()] = tmp;
 | |
|            newValLocation[tmp] = machineBB[index];
 | |
|            kernelPHIs[mOp.getVRegValue()][schedule.getMaxStage()-1] = tmp;
 | |
|          }
 | |
|        }
 | |
|      }
 | |
|    }
 | |
| 
 | |
|  }
 | |
| 
 | |
|   //Loop over each value we need to generate phis for
 | |
|  for(std::map<Value*, std::map<int, Value*> >::iterator V = newValues.begin(),
 | |
|        E = newValues.end(); V != E; ++V) {
 | |
| 
 | |
| 
 | |
|    DEBUG(std::cerr << "Writing phi for" << *(V->first));
 | |
|    DEBUG(std::cerr << "\nMap of Value* for this phi\n");
 | |
|    DEBUG(for(std::map<int, Value*>::iterator I = V->second.begin(),
 | |
|                IE = V->second.end(); I != IE; ++I) {
 | |
|      std::cerr << "Stage: " << I->first;
 | |
|      std::cerr << " Value: " << *(I->second) << "\n";
 | |
|    });
 | |
| 
 | |
|    //If we only have one current iteration live, its safe to set
 | |
|    //lastPhi = to kernel value
 | |
|    if(V->second.size() == 1) {
 | |
|      assert(kernelValue[V->first] != 0 && "Kernel value* must exist to create phi");
 | |
|      MachineInstr *saveValue = BuildMI(*machineBB[0], machineBB[0]->begin(),V9::PHI, 3).addReg(V->second.begin()->second).addReg(kernelValue[V->first]).addRegDef(finalPHIValue[V->first]);
 | |
|      DEBUG(std::cerr << "Resulting PHI (one live): " << *saveValue << "\n");
 | |
|      kernelPHIs[V->first][V->second.begin()->first] = kernelValue[V->first];
 | |
|      DEBUG(std::cerr << "Put kernel phi in at stage: " << schedule.getMaxStage()-1 << " (map stage = " << V->second.begin()->first << ")\n");
 | |
|    }
 | |
|    else {
 | |
| 
 | |
|      //Keep track of last phi created.
 | |
|      Instruction *lastPhi = 0;
 | |
| 
 | |
|      unsigned count = 1;
 | |
|      //Loop over the the map backwards to generate phis
 | |
|      for(std::map<int, Value*>::reverse_iterator I = V->second.rbegin(), IE = V->second.rend();
 | |
|          I != IE; ++I) {
 | |
| 
 | |
|        if(count < (V->second).size()) {
 | |
|          if(lastPhi == 0) {
 | |
|            lastPhi = new TmpInstruction(I->second);
 | |
| 
 | |
|            //Get machine code for this instruction
 | |
|            MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst);
 | |
|            tempMvec.addTemp((Value*) lastPhi);
 | |
| 
 | |
|            MachineInstr *saveValue = BuildMI(*machineBB[0], machineBB[0]->begin(), V9::PHI, 3).addReg(kernelValue[V->first]).addReg(I->second).addRegDef(lastPhi);
 | |
|            DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n");
 | |
|            newValLocation[lastPhi] = machineBB[0];
 | |
|          }
 | |
|          else {
 | |
|            Instruction *tmp = new TmpInstruction(I->second);
 | |
| 
 | |
|            //Get machine code for this instruction
 | |
|            MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst);
 | |
|            tempMvec.addTemp((Value*) tmp);
 | |
| 
 | |
| 
 | |
|            MachineInstr *saveValue = BuildMI(*machineBB[0], machineBB[0]->begin(), V9::PHI, 3).addReg(lastPhi).addReg(I->second).addRegDef(tmp);
 | |
|            DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n");
 | |
|            lastPhi = tmp;
 | |
|            kernelPHIs[V->first][I->first] = lastPhi;
 | |
|            newValLocation[lastPhi] = machineBB[0];
 | |
|          }
 | |
|        }
 | |
|        //Final phi value
 | |
|        else {
 | |
|          //The resulting value must be the Value* we created earlier
 | |
|          assert(lastPhi != 0 && "Last phi is NULL!\n");
 | |
|          MachineInstr *saveValue = BuildMI(*machineBB[0], machineBB[0]->begin(), V9::PHI, 3).addReg(lastPhi).addReg(I->second).addRegDef(finalPHIValue[V->first]);
 | |
|          DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n");
 | |
|          kernelPHIs[V->first][I->first] = finalPHIValue[V->first];
 | |
|        }
 | |
| 
 | |
|        ++count;
 | |
|      }
 | |
| 
 | |
|    }
 | |
|  }
 | |
| }
 | |
| 
 | |
| 
 | |
| void ModuloSchedulingSBPass::removePHIs(std::vector<const MachineBasicBlock*> &SB, std::vector<std::vector<MachineBasicBlock*> > &prologues, std::vector<std::vector<MachineBasicBlock*> > &epilogues, std::vector<MachineBasicBlock*> &kernelBB, std::map<Value*, MachineBasicBlock*> &newValLocation) {
 | |
| 
 | |
|   //Worklist to delete things
 | |
|   std::vector<std::pair<MachineBasicBlock*, MachineBasicBlock::iterator> > worklist;
 | |
| 
 | |
|   //Worklist of TmpInstructions that need to be added to a MCFI
 | |
|   std::vector<Instruction*> addToMCFI;
 | |
| 
 | |
|   //Worklist to add OR instructions to end of kernel so not to invalidate the iterator
 | |
|   //std::vector<std::pair<Instruction*, Value*> > newORs;
 | |
| 
 | |
|   const TargetInstrInfo *TMI = target.getInstrInfo();
 | |
| 
 | |
|   //Start with the kernel and for each phi insert a copy for the phi
 | |
|   //def and for each arg
 | |
|   //phis are only in the first BB in the kernel
 | |
|   for(MachineBasicBlock::iterator I = kernelBB[0]->begin(), E = kernelBB[0]->end();
 | |
|       I != E; ++I) {
 | |
| 
 | |
|     DEBUG(std::cerr << "Looking at Instr: " << *I << "\n");
 | |
| 
 | |
|     //Get op code and check if its a phi
 | |
|     if(I->getOpcode() == V9::PHI) {
 | |
| 
 | |
|       DEBUG(std::cerr << "Replacing PHI: " << *I << "\n");
 | |
|       Instruction *tmp = 0;
 | |
| 
 | |
|       for(unsigned i = 0; i < I->getNumOperands(); ++i) {
 | |
| 
 | |
|         //Get Operand
 | |
|         const MachineOperand &mOp = I->getOperand(i);
 | |
|         assert(mOp.getType() == MachineOperand::MO_VirtualRegister
 | |
|                && "Should be a Value*\n");
 | |
| 
 | |
|         if(!tmp) {
 | |
|           tmp = new TmpInstruction(mOp.getVRegValue());
 | |
|           addToMCFI.push_back(tmp);
 | |
|         }
 | |
| 
 | |
|         //Now for all our arguments we read, OR to the new
 | |
|         //TmpInstruction that we created
 | |
|         if(mOp.isUse()) {
 | |
|           DEBUG(std::cerr << "Use: " << mOp << "\n");
 | |
|           //Place a copy at the end of its BB but before the branches
 | |
|           assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n");
 | |
|           //Reverse iterate to find the branches, we can safely assume no instructions have been
 | |
|           //put in the nop positions
 | |
|           for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) {
 | |
|             MachineOpCode opc = inst->getOpcode();
 | |
|             if(TMI->isBranch(opc) || TMI->isNop(opc))
 | |
|               continue;
 | |
|             else {
 | |
|               if(mOp.getVRegValue()->getType() == Type::FloatTy)
 | |
|                 BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
 | |
|               else if(mOp.getVRegValue()->getType() == Type::DoubleTy)
 | |
|                 BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
 | |
|               else
 | |
|                 BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
 | |
| 
 | |
|               break;
 | |
|             }
 | |
| 
 | |
|           }
 | |
| 
 | |
|         }
 | |
|         else {
 | |
|           //Remove the phi and replace it with an OR
 | |
|           DEBUG(std::cerr << "Def: " << mOp << "\n");
 | |
|           //newORs.push_back(std::make_pair(tmp, mOp.getVRegValue()));
 | |
|           if(tmp->getType() == Type::FloatTy)
 | |
|             BuildMI(*kernelBB[0], I, V9::FMOVS, 3).addReg(tmp).addRegDef(mOp.getVRegValue());
 | |
|           else if(tmp->getType() == Type::DoubleTy)
 | |
|             BuildMI(*kernelBB[0], I, V9::FMOVD, 3).addReg(tmp).addRegDef(mOp.getVRegValue());
 | |
|           else
 | |
|             BuildMI(*kernelBB[0], I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue());
 | |
| 
 | |
| 
 | |
|           worklist.push_back(std::make_pair(kernelBB[0], I));
 | |
|         }
 | |
| 
 | |
|       }
 | |
| 
 | |
|     }
 | |
| 
 | |
| 
 | |
|   }
 | |
| 
 | |
|   //Add TmpInstructions to some MCFI
 | |
|   if(addToMCFI.size() > 0) {
 | |
|     MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst);
 | |
|     for(unsigned x = 0; x < addToMCFI.size(); ++x) {
 | |
|       tempMvec.addTemp(addToMCFI[x]);
 | |
|     }
 | |
|     addToMCFI.clear();
 | |
|   }
 | |
| 
 | |
| 
 | |
|   //Remove phis from epilogue
 | |
|   for(std::vector<std::vector<MachineBasicBlock*> >::iterator MB = epilogues.begin(),
 | |
|         ME = epilogues.end(); MB != ME; ++MB) {
 | |
| 
 | |
|     for(std::vector<MachineBasicBlock*>::iterator currentMBB = MB->begin(), currentME = MB->end(); currentMBB != currentME; ++currentMBB) {
 | |
| 
 | |
|       for(MachineBasicBlock::iterator I = (*currentMBB)->begin(),
 | |
|             E = (*currentMBB)->end(); I != E; ++I) {
 | |
| 
 | |
|         DEBUG(std::cerr << "Looking at Instr: " << *I << "\n");
 | |
|         //Get op code and check if its a phi
 | |
|         if(I->getOpcode() == V9::PHI) {
 | |
|           Instruction *tmp = 0;
 | |
| 
 | |
|           for(unsigned i = 0; i < I->getNumOperands(); ++i) {
 | |
|             //Get Operand
 | |
|             const MachineOperand &mOp = I->getOperand(i);
 | |
|             assert(mOp.getType() == MachineOperand::MO_VirtualRegister && "Should be a Value*\n");
 | |
| 
 | |
|             if(!tmp) {
 | |
|               tmp = new TmpInstruction(mOp.getVRegValue());
 | |
|               addToMCFI.push_back(tmp);
 | |
|             }
 | |
| 
 | |
|             //Now for all our arguments we read, OR to the new TmpInstruction that we created
 | |
|             if(mOp.isUse()) {
 | |
|               DEBUG(std::cerr << "Use: " << mOp << "\n");
 | |
|               //Place a copy at the end of its BB but before the branches
 | |
|               assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n");
 | |
|               //Reverse iterate to find the branches, we can safely assume no instructions have been
 | |
|               //put in the nop positions
 | |
|               for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) {
 | |
|                 MachineOpCode opc = inst->getOpcode();
 | |
|                 if(TMI->isBranch(opc) || TMI->isNop(opc))
 | |
|                   continue;
 | |
|                 else {
 | |
|                   if(mOp.getVRegValue()->getType() == Type::FloatTy)
 | |
|                     BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
 | |
|                   else if(mOp.getVRegValue()->getType() == Type::DoubleTy)
 | |
|                     BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
 | |
|                   else
 | |
|                     BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
 | |
| 
 | |
| 
 | |
|                   break;
 | |
|                 }
 | |
| 
 | |
|               }
 | |
| 
 | |
|             }
 | |
|             else {
 | |
|               //Remove the phi and replace it with an OR
 | |
|               DEBUG(std::cerr << "Def: " << mOp << "\n");
 | |
|               if(tmp->getType() == Type::FloatTy)
 | |
|                 BuildMI(**currentMBB, I, V9::FMOVS, 3).addReg(tmp).addRegDef(mOp.getVRegValue());
 | |
|               else if(tmp->getType() == Type::DoubleTy)
 | |
|                 BuildMI(**currentMBB, I, V9::FMOVD, 3).addReg(tmp).addRegDef(mOp.getVRegValue());
 | |
|               else
 | |
|                 BuildMI(**currentMBB, I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue());
 | |
| 
 | |
|               worklist.push_back(std::make_pair(*currentMBB,I));
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
| 
 | |
|   if(addToMCFI.size() > 0) {
 | |
|     MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst);
 | |
|     for(unsigned x = 0; x < addToMCFI.size(); ++x) {
 | |
|       tempMvec.addTemp(addToMCFI[x]);
 | |
|     }
 | |
|     addToMCFI.clear();
 | |
|   }
 | |
| 
 | |
|     //Delete the phis
 | |
|   for(std::vector<std::pair<MachineBasicBlock*, MachineBasicBlock::iterator> >::iterator I =  worklist.begin(), E = worklist.end(); I != E; ++I) {
 | |
|     DEBUG(std::cerr << "Deleting PHI " << *I->second << "\n");
 | |
|     I->first->erase(I->second);
 | |
| 
 | |
|   }
 | |
| 
 | |
| 
 | |
|   assert((addToMCFI.size() == 0) && "We should have added all TmpInstructions to some MachineCodeForInstruction");
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| void ModuloSchedulingSBPass::writeSideExits(std::vector<std::vector<MachineBasicBlock *> > &prologues, std::vector<std::vector<BasicBlock*> > &llvm_prologues, std::vector<std::vector<MachineBasicBlock *> > &epilogues, std::vector<std::vector<BasicBlock*> > &llvm_epilogues, std::map<const MachineBasicBlock*, Value*> &sideExits, std::map<MachineBasicBlock*, std::vector<std::pair<MachineInstr*, int> > > &instrsMovedDown, std::vector<const MachineBasicBlock*> &SB, std::vector<MachineBasicBlock*> &kernelMBBs, std::map<MachineBasicBlock*, int> branchStage) {
 | |
| 
 | |
|   const TargetInstrInfo *TMI = target.getInstrInfo();
 | |
| 
 | |
|   //Repeat for each side exit
 | |
|   for(unsigned sideExitNum = 0; sideExitNum < SB.size()-1; ++sideExitNum) {
 | |
| 
 | |
|     std::vector<std::vector<BasicBlock*> > side_llvm_epilogues;
 | |
|     std::vector<std::vector<MachineBasicBlock*> > side_epilogues;
 | |
|     MachineBasicBlock* sideMBB;
 | |
|     BasicBlock* sideBB;
 | |
| 
 | |
|     //Create side exit blocks
 | |
|     //Get the LLVM basic block
 | |
|     BasicBlock *bb = (BasicBlock*) SB[sideExitNum]->getBasicBlock();
 | |
|     MachineBasicBlock *mbb = (MachineBasicBlock*) SB[sideExitNum];
 | |
| 
 | |
|     int stage = branchStage[mbb];
 | |
| 
 | |
|     //Create new basic blocks for our side exit instructios that were moved below the branch
 | |
|     sideBB = new BasicBlock("SideExit", (Function*) bb->getParent());
 | |
|     sideMBB = new MachineBasicBlock(sideBB);
 | |
|     (((MachineBasicBlock*)SB[0])->getParent())->getBasicBlockList().push_back(sideMBB);
 | |
| 
 | |
| 
 | |
|     if(instrsMovedDown.count(mbb)) {
 | |
|       for(std::vector<std::pair<MachineInstr*, int> >::iterator I = instrsMovedDown[mbb].begin(), E = instrsMovedDown[mbb].end(); I != E; ++I) {
 | |
|         if(branchStage[mbb] == I->second)
 | |
|           sideMBB->push_back((I->first)->clone());
 | |
|       }
 | |
| 
 | |
|       //Add unconditional branches to original exits
 | |
|       BuildMI(sideMBB, V9::BA, 1).addPCDisp(sideExits[mbb]);
 | |
|       BuildMI(sideMBB, V9::NOP, 0);
 | |
| 
 | |
|       //Add unconditioal branch to llvm BB
 | |
|       BasicBlock *extBB = dyn_cast<BasicBlock>(sideExits[mbb]);
 | |
|       assert(extBB && "Side exit basicblock can not be null");
 | |
|       TerminatorInst *newBranch = new BranchInst(extBB, sideBB);
 | |
|     }
 | |
| 
 | |
|      //Clone epilogues and update their branches, one cloned epilogue set per side exit
 | |
|     //only clone epilogues that are from a greater stage!
 | |
|     for(unsigned i = 0; i < epilogues.size()-stage; ++i) {
 | |
|       std::vector<MachineBasicBlock*> MB = epilogues[i];
 | |
| 
 | |
|       std::vector<MachineBasicBlock*> newEp;
 | |
|       std::vector<BasicBlock*> newLLVMEp;
 | |
| 
 | |
|       for(std::vector<MachineBasicBlock*>::iterator currentMBB = MB.begin(),
 | |
|             lastMBB = MB.end(); currentMBB != lastMBB; ++currentMBB) {
 | |
|         BasicBlock *tmpBB = new BasicBlock("SideEpilogue", (Function*) (*currentMBB)->getBasicBlock()->getParent());
 | |
|         MachineBasicBlock *tmp = new MachineBasicBlock(tmpBB);
 | |
| 
 | |
|         //Clone instructions and insert into new MBB
 | |
|         for(MachineBasicBlock::iterator I = (*currentMBB)->begin(),
 | |
|               E = (*currentMBB)->end(); I != E; ++I) {
 | |
| 
 | |
|           MachineInstr *clone = I->clone();
 | |
|           if(clone->getOpcode() == V9::BA && (currentMBB+1 == lastMBB)) {
 | |
|             //update branch to side exit
 | |
|             for(unsigned i = 0; i < clone->getNumOperands(); ++i) {
 | |
|               MachineOperand &mOp = clone->getOperand(i);
 | |
|               if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
 | |
|                 mOp.setValueReg(sideBB);
 | |
|               }
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           tmp->push_back(clone);
 | |
| 
 | |
|         }
 | |
| 
 | |
|         //Add llvm branch
 | |
|         TerminatorInst *newBranch = new BranchInst(sideBB, tmpBB);
 | |
| 
 | |
|         newEp.push_back(tmp);
 | |
|         (((MachineBasicBlock*)SB[0])->getParent())->getBasicBlockList().push_back(tmp);
 | |
| 
 | |
|         newLLVMEp.push_back(tmpBB);
 | |
| 
 | |
|       }
 | |
|       side_llvm_epilogues.push_back(newLLVMEp);
 | |
|       side_epilogues.push_back(newEp);
 | |
|     }
 | |
| 
 | |
|   //Now stich up all the branches
 | |
| 
 | |
|   //Loop over prologues, and if its an inner branch and branches to our original side exit
 | |
|   //then have it branch to the appropriate epilogue first (if it exists)
 | |
|     for(unsigned P = 0; P < prologues.size(); ++P) {
 | |
| 
 | |
|       //Get BB side exit we are dealing with
 | |
|       MachineBasicBlock *currentMBB = prologues[P][sideExitNum];
 | |
|       if(P >= (unsigned) stage) {
 | |
|         //Iterate backwards of machine instructions to find the branch we need to update
 | |
|         for(MachineBasicBlock::reverse_iterator mInst = currentMBB->rbegin(), mInstEnd = currentMBB->rend(); mInst != mInstEnd; ++mInst) {
 | |
|           MachineOpCode OC = mInst->getOpcode();
 | |
| 
 | |
|           //If its a branch update its branchto
 | |
|           if(TMI->isBranch(OC)) {
 | |
|             for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) {
 | |
|               MachineOperand &mOp = mInst->getOperand(opNum);
 | |
|               if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
 | |
|                 //Check if we branch to side exit
 | |
|                 if(mOp.getVRegValue() == sideExits[mbb]) {
 | |
|                   mOp.setValueReg(side_llvm_epilogues[P][0]);
 | |
|                 }
 | |
|               }
 | |
|             }
 | |
|             DEBUG(std::cerr << "New Prologue Branch: " << *mInst << "\n");
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         //Update llvm branch
 | |
|         TerminatorInst *branchVal = ((BasicBlock*) currentMBB->getBasicBlock())->getTerminator();
 | |
|         DEBUG(std::cerr << *branchVal << "\n");
 | |
| 
 | |
|         for(unsigned i=0; i < branchVal->getNumSuccessors(); ++i) {
 | |
|           if(branchVal->getSuccessor(i) == sideExits[mbb]) {
 | |
|             DEBUG(std::cerr << "Replacing successor bb\n");
 | |
|             branchVal->setSuccessor(i, side_llvm_epilogues[P][0]);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       else {
 | |
|         //must add BA branch because another prologue or kernel has the actual side exit branch
 | |
|          //Add unconditional branches to original exits
 | |
|         assert( (sideExitNum+1) < prologues[P].size() && "must have valid prologue to branch to");
 | |
|         BuildMI(prologues[P][sideExitNum], V9::BA, 1).addPCDisp((BasicBlock*)(prologues[P][sideExitNum+1])->getBasicBlock());
 | |
|         BuildMI(prologues[P][sideExitNum], V9::NOP, 0);
 | |
| 
 | |
|         TerminatorInst *newBranch = new BranchInst((BasicBlock*) (prologues[P][sideExitNum+1])->getBasicBlock(), (BasicBlock*) (prologues[P][sideExitNum])->getBasicBlock());
 | |
| 
 | |
|       }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     //Update side exits in kernel
 | |
|     MachineBasicBlock *currentMBB = kernelMBBs[sideExitNum];
 | |
|     //Iterate backwards of machine instructions to find the branch we need to update
 | |
|     for(MachineBasicBlock::reverse_iterator mInst = currentMBB->rbegin(), mInstEnd = currentMBB->rend(); mInst != mInstEnd; ++mInst) {
 | |
|       MachineOpCode OC = mInst->getOpcode();
 | |
| 
 | |
|       //If its a branch update its branchto
 | |
|       if(TMI->isBranch(OC)) {
 | |
|         for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) {
 | |
|           MachineOperand &mOp = mInst->getOperand(opNum);
 | |
|           if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
 | |
|             //Check if we branch to side exit
 | |
|             if(mOp.getVRegValue() == sideExits[mbb]) {
 | |
|               if(side_llvm_epilogues.size() > 0)
 | |
|                 mOp.setValueReg(side_llvm_epilogues[0][0]);
 | |
|               else
 | |
|                 mOp.setValueReg(sideBB);
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         DEBUG(std::cerr << "New Prologue Branch: " << *mInst << "\n");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     //Update llvm branch
 | |
|     //Update llvm branch
 | |
|     TerminatorInst *branchVal = ((BasicBlock*)currentMBB->getBasicBlock())->getTerminator();
 | |
|     DEBUG(std::cerr << *branchVal << "\n");
 | |
| 
 | |
|     for(unsigned i=0; i < branchVal->getNumSuccessors(); ++i) {
 | |
|       if(branchVal->getSuccessor(i) == sideExits[mbb]) {
 | |
|         DEBUG(std::cerr << "Replacing successor bb\n");
 | |
|         if(side_llvm_epilogues.size() > 0)
 | |
|           branchVal->setSuccessor(i, side_llvm_epilogues[0][0]);
 | |
|         else
 | |
|           branchVal->setSuccessor(i, sideBB);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 |