mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@140875 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2925 lines
		
	
	
		
			122 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2925 lines
		
	
	
		
			122 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- InstCombineCompares.cpp --------------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the visitICmp and visitFCmp functions.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "InstCombine.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/MemoryBuiltins.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Support/ConstantRange.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/Support/PatternMatch.h"
 | |
| using namespace llvm;
 | |
| using namespace PatternMatch;
 | |
| 
 | |
| static ConstantInt *getOne(Constant *C) {
 | |
|   return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
 | |
| }
 | |
| 
 | |
| /// AddOne - Add one to a ConstantInt
 | |
| static Constant *AddOne(Constant *C) {
 | |
|   return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
 | |
| }
 | |
| /// SubOne - Subtract one from a ConstantInt
 | |
| static Constant *SubOne(Constant *C) {
 | |
|   return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
 | |
| }
 | |
| 
 | |
| static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
 | |
|   return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
 | |
| }
 | |
| 
 | |
| static bool HasAddOverflow(ConstantInt *Result,
 | |
|                            ConstantInt *In1, ConstantInt *In2,
 | |
|                            bool IsSigned) {
 | |
|   if (!IsSigned)
 | |
|     return Result->getValue().ult(In1->getValue());
 | |
| 
 | |
|   if (In2->isNegative())
 | |
|     return Result->getValue().sgt(In1->getValue());
 | |
|   return Result->getValue().slt(In1->getValue());
 | |
| }
 | |
| 
 | |
| /// AddWithOverflow - Compute Result = In1+In2, returning true if the result
 | |
| /// overflowed for this type.
 | |
| static bool AddWithOverflow(Constant *&Result, Constant *In1,
 | |
|                             Constant *In2, bool IsSigned = false) {
 | |
|   Result = ConstantExpr::getAdd(In1, In2);
 | |
| 
 | |
|   if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
 | |
|     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
 | |
|       Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
 | |
|       if (HasAddOverflow(ExtractElement(Result, Idx),
 | |
|                          ExtractElement(In1, Idx),
 | |
|                          ExtractElement(In2, Idx),
 | |
|                          IsSigned))
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return HasAddOverflow(cast<ConstantInt>(Result),
 | |
|                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
 | |
|                         IsSigned);
 | |
| }
 | |
| 
 | |
| static bool HasSubOverflow(ConstantInt *Result,
 | |
|                            ConstantInt *In1, ConstantInt *In2,
 | |
|                            bool IsSigned) {
 | |
|   if (!IsSigned)
 | |
|     return Result->getValue().ugt(In1->getValue());
 | |
| 
 | |
|   if (In2->isNegative())
 | |
|     return Result->getValue().slt(In1->getValue());
 | |
| 
 | |
|   return Result->getValue().sgt(In1->getValue());
 | |
| }
 | |
| 
 | |
| /// SubWithOverflow - Compute Result = In1-In2, returning true if the result
 | |
| /// overflowed for this type.
 | |
| static bool SubWithOverflow(Constant *&Result, Constant *In1,
 | |
|                             Constant *In2, bool IsSigned = false) {
 | |
|   Result = ConstantExpr::getSub(In1, In2);
 | |
| 
 | |
|   if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
 | |
|     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
 | |
|       Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
 | |
|       if (HasSubOverflow(ExtractElement(Result, Idx),
 | |
|                          ExtractElement(In1, Idx),
 | |
|                          ExtractElement(In2, Idx),
 | |
|                          IsSigned))
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return HasSubOverflow(cast<ConstantInt>(Result),
 | |
|                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
 | |
|                         IsSigned);
 | |
| }
 | |
| 
 | |
| /// isSignBitCheck - Given an exploded icmp instruction, return true if the
 | |
| /// comparison only checks the sign bit.  If it only checks the sign bit, set
 | |
| /// TrueIfSigned if the result of the comparison is true when the input value is
 | |
| /// signed.
 | |
| static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
 | |
|                            bool &TrueIfSigned) {
 | |
|   switch (pred) {
 | |
|   case ICmpInst::ICMP_SLT:   // True if LHS s< 0
 | |
|     TrueIfSigned = true;
 | |
|     return RHS->isZero();
 | |
|   case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
 | |
|     TrueIfSigned = true;
 | |
|     return RHS->isAllOnesValue();
 | |
|   case ICmpInst::ICMP_SGT:   // True if LHS s> -1
 | |
|     TrueIfSigned = false;
 | |
|     return RHS->isAllOnesValue();
 | |
|   case ICmpInst::ICMP_UGT:
 | |
|     // True if LHS u> RHS and RHS == high-bit-mask - 1
 | |
|     TrueIfSigned = true;
 | |
|     return RHS->isMaxValue(true);
 | |
|   case ICmpInst::ICMP_UGE:
 | |
|     // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
 | |
|     TrueIfSigned = true;
 | |
|     return RHS->getValue().isSignBit();
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // isHighOnes - Return true if the constant is of the form 1+0+.
 | |
| // This is the same as lowones(~X).
 | |
| static bool isHighOnes(const ConstantInt *CI) {
 | |
|   return (~CI->getValue() + 1).isPowerOf2();
 | |
| }
 | |
| 
 | |
| /// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
 | |
| /// set of known zero and one bits, compute the maximum and minimum values that
 | |
| /// could have the specified known zero and known one bits, returning them in
 | |
| /// min/max.
 | |
| static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
 | |
|                                                    const APInt& KnownOne,
 | |
|                                                    APInt& Min, APInt& Max) {
 | |
|   assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
 | |
|          KnownZero.getBitWidth() == Min.getBitWidth() &&
 | |
|          KnownZero.getBitWidth() == Max.getBitWidth() &&
 | |
|          "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
 | |
|   APInt UnknownBits = ~(KnownZero|KnownOne);
 | |
| 
 | |
|   // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
 | |
|   // bit if it is unknown.
 | |
|   Min = KnownOne;
 | |
|   Max = KnownOne|UnknownBits;
 | |
| 
 | |
|   if (UnknownBits.isNegative()) { // Sign bit is unknown
 | |
|     Min.setBit(Min.getBitWidth()-1);
 | |
|     Max.clearBit(Max.getBitWidth()-1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
 | |
| // a set of known zero and one bits, compute the maximum and minimum values that
 | |
| // could have the specified known zero and known one bits, returning them in
 | |
| // min/max.
 | |
| static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
 | |
|                                                      const APInt &KnownOne,
 | |
|                                                      APInt &Min, APInt &Max) {
 | |
|   assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
 | |
|          KnownZero.getBitWidth() == Min.getBitWidth() &&
 | |
|          KnownZero.getBitWidth() == Max.getBitWidth() &&
 | |
|          "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
 | |
|   APInt UnknownBits = ~(KnownZero|KnownOne);
 | |
| 
 | |
|   // The minimum value is when the unknown bits are all zeros.
 | |
|   Min = KnownOne;
 | |
|   // The maximum value is when the unknown bits are all ones.
 | |
|   Max = KnownOne|UnknownBits;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
 | |
| ///   cmp pred (load (gep GV, ...)), cmpcst
 | |
| /// where GV is a global variable with a constant initializer.  Try to simplify
 | |
| /// this into some simple computation that does not need the load.  For example
 | |
| /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
 | |
| ///
 | |
| /// If AndCst is non-null, then the loaded value is masked with that constant
 | |
| /// before doing the comparison.  This handles cases like "A[i]&4 == 0".
 | |
| Instruction *InstCombiner::
 | |
| FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
 | |
|                              CmpInst &ICI, ConstantInt *AndCst) {
 | |
|   // We need TD information to know the pointer size unless this is inbounds.
 | |
|   if (!GEP->isInBounds() && TD == 0) return 0;
 | |
| 
 | |
|   ConstantArray *Init = dyn_cast<ConstantArray>(GV->getInitializer());
 | |
|   if (Init == 0 || Init->getNumOperands() > 1024) return 0;
 | |
| 
 | |
|   // There are many forms of this optimization we can handle, for now, just do
 | |
|   // the simple index into a single-dimensional array.
 | |
|   //
 | |
|   // Require: GEP GV, 0, i {{, constant indices}}
 | |
|   if (GEP->getNumOperands() < 3 ||
 | |
|       !isa<ConstantInt>(GEP->getOperand(1)) ||
 | |
|       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
 | |
|       isa<Constant>(GEP->getOperand(2)))
 | |
|     return 0;
 | |
| 
 | |
|   // Check that indices after the variable are constants and in-range for the
 | |
|   // type they index.  Collect the indices.  This is typically for arrays of
 | |
|   // structs.
 | |
|   SmallVector<unsigned, 4> LaterIndices;
 | |
| 
 | |
|   Type *EltTy = cast<ArrayType>(Init->getType())->getElementType();
 | |
|   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
 | |
|     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
 | |
|     if (Idx == 0) return 0;  // Variable index.
 | |
| 
 | |
|     uint64_t IdxVal = Idx->getZExtValue();
 | |
|     if ((unsigned)IdxVal != IdxVal) return 0; // Too large array index.
 | |
| 
 | |
|     if (StructType *STy = dyn_cast<StructType>(EltTy))
 | |
|       EltTy = STy->getElementType(IdxVal);
 | |
|     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
 | |
|       if (IdxVal >= ATy->getNumElements()) return 0;
 | |
|       EltTy = ATy->getElementType();
 | |
|     } else {
 | |
|       return 0; // Unknown type.
 | |
|     }
 | |
| 
 | |
|     LaterIndices.push_back(IdxVal);
 | |
|   }
 | |
| 
 | |
|   enum { Overdefined = -3, Undefined = -2 };
 | |
| 
 | |
|   // Variables for our state machines.
 | |
| 
 | |
|   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
 | |
|   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
 | |
|   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
 | |
|   // undefined, otherwise set to the first true element.  SecondTrueElement is
 | |
|   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
 | |
|   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
 | |
| 
 | |
|   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
 | |
|   // form "i != 47 & i != 87".  Same state transitions as for true elements.
 | |
|   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
 | |
| 
 | |
|   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
 | |
|   /// define a state machine that triggers for ranges of values that the index
 | |
|   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
 | |
|   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
 | |
|   /// index in the range (inclusive).  We use -2 for undefined here because we
 | |
|   /// use relative comparisons and don't want 0-1 to match -1.
 | |
|   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
 | |
| 
 | |
|   // MagicBitvector - This is a magic bitvector where we set a bit if the
 | |
|   // comparison is true for element 'i'.  If there are 64 elements or less in
 | |
|   // the array, this will fully represent all the comparison results.
 | |
|   uint64_t MagicBitvector = 0;
 | |
| 
 | |
| 
 | |
|   // Scan the array and see if one of our patterns matches.
 | |
|   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
 | |
|   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
 | |
|     Constant *Elt = Init->getOperand(i);
 | |
| 
 | |
|     // If this is indexing an array of structures, get the structure element.
 | |
|     if (!LaterIndices.empty())
 | |
|       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
 | |
| 
 | |
|     // If the element is masked, handle it.
 | |
|     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
 | |
| 
 | |
|     // Find out if the comparison would be true or false for the i'th element.
 | |
|     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
 | |
|                                                   CompareRHS, TD);
 | |
|     // If the result is undef for this element, ignore it.
 | |
|     if (isa<UndefValue>(C)) {
 | |
|       // Extend range state machines to cover this element in case there is an
 | |
|       // undef in the middle of the range.
 | |
|       if (TrueRangeEnd == (int)i-1)
 | |
|         TrueRangeEnd = i;
 | |
|       if (FalseRangeEnd == (int)i-1)
 | |
|         FalseRangeEnd = i;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If we can't compute the result for any of the elements, we have to give
 | |
|     // up evaluating the entire conditional.
 | |
|     if (!isa<ConstantInt>(C)) return 0;
 | |
| 
 | |
|     // Otherwise, we know if the comparison is true or false for this element,
 | |
|     // update our state machines.
 | |
|     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
 | |
| 
 | |
|     // State machine for single/double/range index comparison.
 | |
|     if (IsTrueForElt) {
 | |
|       // Update the TrueElement state machine.
 | |
|       if (FirstTrueElement == Undefined)
 | |
|         FirstTrueElement = TrueRangeEnd = i;  // First true element.
 | |
|       else {
 | |
|         // Update double-compare state machine.
 | |
|         if (SecondTrueElement == Undefined)
 | |
|           SecondTrueElement = i;
 | |
|         else
 | |
|           SecondTrueElement = Overdefined;
 | |
| 
 | |
|         // Update range state machine.
 | |
|         if (TrueRangeEnd == (int)i-1)
 | |
|           TrueRangeEnd = i;
 | |
|         else
 | |
|           TrueRangeEnd = Overdefined;
 | |
|       }
 | |
|     } else {
 | |
|       // Update the FalseElement state machine.
 | |
|       if (FirstFalseElement == Undefined)
 | |
|         FirstFalseElement = FalseRangeEnd = i; // First false element.
 | |
|       else {
 | |
|         // Update double-compare state machine.
 | |
|         if (SecondFalseElement == Undefined)
 | |
|           SecondFalseElement = i;
 | |
|         else
 | |
|           SecondFalseElement = Overdefined;
 | |
| 
 | |
|         // Update range state machine.
 | |
|         if (FalseRangeEnd == (int)i-1)
 | |
|           FalseRangeEnd = i;
 | |
|         else
 | |
|           FalseRangeEnd = Overdefined;
 | |
|       }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     // If this element is in range, update our magic bitvector.
 | |
|     if (i < 64 && IsTrueForElt)
 | |
|       MagicBitvector |= 1ULL << i;
 | |
| 
 | |
|     // If all of our states become overdefined, bail out early.  Since the
 | |
|     // predicate is expensive, only check it every 8 elements.  This is only
 | |
|     // really useful for really huge arrays.
 | |
|     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
 | |
|         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
 | |
|         FalseRangeEnd == Overdefined)
 | |
|       return 0;
 | |
|   }
 | |
| 
 | |
|   // Now that we've scanned the entire array, emit our new comparison(s).  We
 | |
|   // order the state machines in complexity of the generated code.
 | |
|   Value *Idx = GEP->getOperand(2);
 | |
| 
 | |
|   // If the index is larger than the pointer size of the target, truncate the
 | |
|   // index down like the GEP would do implicitly.  We don't have to do this for
 | |
|   // an inbounds GEP because the index can't be out of range.
 | |
|   if (!GEP->isInBounds() &&
 | |
|       Idx->getType()->getPrimitiveSizeInBits() > TD->getPointerSizeInBits())
 | |
|     Idx = Builder->CreateTrunc(Idx, TD->getIntPtrType(Idx->getContext()));
 | |
| 
 | |
|   // If the comparison is only true for one or two elements, emit direct
 | |
|   // comparisons.
 | |
|   if (SecondTrueElement != Overdefined) {
 | |
|     // None true -> false.
 | |
|     if (FirstTrueElement == Undefined)
 | |
|       return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(GEP->getContext()));
 | |
| 
 | |
|     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
 | |
| 
 | |
|     // True for one element -> 'i == 47'.
 | |
|     if (SecondTrueElement == Undefined)
 | |
|       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
 | |
| 
 | |
|     // True for two elements -> 'i == 47 | i == 72'.
 | |
|     Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
 | |
|     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
 | |
|     Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
 | |
|     return BinaryOperator::CreateOr(C1, C2);
 | |
|   }
 | |
| 
 | |
|   // If the comparison is only false for one or two elements, emit direct
 | |
|   // comparisons.
 | |
|   if (SecondFalseElement != Overdefined) {
 | |
|     // None false -> true.
 | |
|     if (FirstFalseElement == Undefined)
 | |
|       return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(GEP->getContext()));
 | |
| 
 | |
|     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
 | |
| 
 | |
|     // False for one element -> 'i != 47'.
 | |
|     if (SecondFalseElement == Undefined)
 | |
|       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
 | |
| 
 | |
|     // False for two elements -> 'i != 47 & i != 72'.
 | |
|     Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
 | |
|     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
 | |
|     Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
 | |
|     return BinaryOperator::CreateAnd(C1, C2);
 | |
|   }
 | |
| 
 | |
|   // If the comparison can be replaced with a range comparison for the elements
 | |
|   // where it is true, emit the range check.
 | |
|   if (TrueRangeEnd != Overdefined) {
 | |
|     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
 | |
| 
 | |
|     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
 | |
|     if (FirstTrueElement) {
 | |
|       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
 | |
|       Idx = Builder->CreateAdd(Idx, Offs);
 | |
|     }
 | |
| 
 | |
|     Value *End = ConstantInt::get(Idx->getType(),
 | |
|                                   TrueRangeEnd-FirstTrueElement+1);
 | |
|     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
 | |
|   }
 | |
| 
 | |
|   // False range check.
 | |
|   if (FalseRangeEnd != Overdefined) {
 | |
|     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
 | |
|     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
 | |
|     if (FirstFalseElement) {
 | |
|       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
 | |
|       Idx = Builder->CreateAdd(Idx, Offs);
 | |
|     }
 | |
| 
 | |
|     Value *End = ConstantInt::get(Idx->getType(),
 | |
|                                   FalseRangeEnd-FirstFalseElement);
 | |
|     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // If a 32-bit or 64-bit magic bitvector captures the entire comparison state
 | |
|   // of this load, replace it with computation that does:
 | |
|   //   ((magic_cst >> i) & 1) != 0
 | |
|   if (Init->getNumOperands() <= 32 ||
 | |
|       (TD && Init->getNumOperands() <= 64 && TD->isLegalInteger(64))) {
 | |
|     Type *Ty;
 | |
|     if (Init->getNumOperands() <= 32)
 | |
|       Ty = Type::getInt32Ty(Init->getContext());
 | |
|     else
 | |
|       Ty = Type::getInt64Ty(Init->getContext());
 | |
|     Value *V = Builder->CreateIntCast(Idx, Ty, false);
 | |
|     V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
 | |
|     V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
 | |
|     return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// EvaluateGEPOffsetExpression - Return a value that can be used to compare
 | |
| /// the *offset* implied by a GEP to zero.  For example, if we have &A[i], we
 | |
| /// want to return 'i' for "icmp ne i, 0".  Note that, in general, indices can
 | |
| /// be complex, and scales are involved.  The above expression would also be
 | |
| /// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
 | |
| /// This later form is less amenable to optimization though, and we are allowed
 | |
| /// to generate the first by knowing that pointer arithmetic doesn't overflow.
 | |
| ///
 | |
| /// If we can't emit an optimized form for this expression, this returns null.
 | |
| ///
 | |
| static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) {
 | |
|   TargetData &TD = *IC.getTargetData();
 | |
|   gep_type_iterator GTI = gep_type_begin(GEP);
 | |
| 
 | |
|   // Check to see if this gep only has a single variable index.  If so, and if
 | |
|   // any constant indices are a multiple of its scale, then we can compute this
 | |
|   // in terms of the scale of the variable index.  For example, if the GEP
 | |
|   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
 | |
|   // because the expression will cross zero at the same point.
 | |
|   unsigned i, e = GEP->getNumOperands();
 | |
|   int64_t Offset = 0;
 | |
|   for (i = 1; i != e; ++i, ++GTI) {
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
 | |
|       // Compute the aggregate offset of constant indices.
 | |
|       if (CI->isZero()) continue;
 | |
| 
 | |
|       // Handle a struct index, which adds its field offset to the pointer.
 | |
|       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
 | |
|         Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
 | |
|       } else {
 | |
|         uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
 | |
|         Offset += Size*CI->getSExtValue();
 | |
|       }
 | |
|     } else {
 | |
|       // Found our variable index.
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If there are no variable indices, we must have a constant offset, just
 | |
|   // evaluate it the general way.
 | |
|   if (i == e) return 0;
 | |
| 
 | |
|   Value *VariableIdx = GEP->getOperand(i);
 | |
|   // Determine the scale factor of the variable element.  For example, this is
 | |
|   // 4 if the variable index is into an array of i32.
 | |
|   uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType());
 | |
| 
 | |
|   // Verify that there are no other variable indices.  If so, emit the hard way.
 | |
|   for (++i, ++GTI; i != e; ++i, ++GTI) {
 | |
|     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
 | |
|     if (!CI) return 0;
 | |
| 
 | |
|     // Compute the aggregate offset of constant indices.
 | |
|     if (CI->isZero()) continue;
 | |
| 
 | |
|     // Handle a struct index, which adds its field offset to the pointer.
 | |
|     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
 | |
|       Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
 | |
|     } else {
 | |
|       uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
 | |
|       Offset += Size*CI->getSExtValue();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Okay, we know we have a single variable index, which must be a
 | |
|   // pointer/array/vector index.  If there is no offset, life is simple, return
 | |
|   // the index.
 | |
|   unsigned IntPtrWidth = TD.getPointerSizeInBits();
 | |
|   if (Offset == 0) {
 | |
|     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
 | |
|     // we don't need to bother extending: the extension won't affect where the
 | |
|     // computation crosses zero.
 | |
|     if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
 | |
|       Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
 | |
|       VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
 | |
|     }
 | |
|     return VariableIdx;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, there is an index.  The computation we will do will be modulo
 | |
|   // the pointer size, so get it.
 | |
|   uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
 | |
| 
 | |
|   Offset &= PtrSizeMask;
 | |
|   VariableScale &= PtrSizeMask;
 | |
| 
 | |
|   // To do this transformation, any constant index must be a multiple of the
 | |
|   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
 | |
|   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
 | |
|   // multiple of the variable scale.
 | |
|   int64_t NewOffs = Offset / (int64_t)VariableScale;
 | |
|   if (Offset != NewOffs*(int64_t)VariableScale)
 | |
|     return 0;
 | |
| 
 | |
|   // Okay, we can do this evaluation.  Start by converting the index to intptr.
 | |
|   Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
 | |
|   if (VariableIdx->getType() != IntPtrTy)
 | |
|     VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
 | |
|                                             true /*Signed*/);
 | |
|   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
 | |
|   return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
 | |
| }
 | |
| 
 | |
| /// FoldGEPICmp - Fold comparisons between a GEP instruction and something
 | |
| /// else.  At this point we know that the GEP is on the LHS of the comparison.
 | |
| Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
 | |
|                                        ICmpInst::Predicate Cond,
 | |
|                                        Instruction &I) {
 | |
|   // Look through bitcasts.
 | |
|   if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
 | |
|     RHS = BCI->getOperand(0);
 | |
| 
 | |
|   Value *PtrBase = GEPLHS->getOperand(0);
 | |
|   if (TD && PtrBase == RHS && GEPLHS->isInBounds()) {
 | |
|     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
 | |
|     // This transformation (ignoring the base and scales) is valid because we
 | |
|     // know pointers can't overflow since the gep is inbounds.  See if we can
 | |
|     // output an optimized form.
 | |
|     Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this);
 | |
| 
 | |
|     // If not, synthesize the offset the hard way.
 | |
|     if (Offset == 0)
 | |
|       Offset = EmitGEPOffset(GEPLHS);
 | |
|     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
 | |
|                         Constant::getNullValue(Offset->getType()));
 | |
|   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
 | |
|     // If the base pointers are different, but the indices are the same, just
 | |
|     // compare the base pointer.
 | |
|     if (PtrBase != GEPRHS->getOperand(0)) {
 | |
|       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
 | |
|       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
 | |
|                         GEPRHS->getOperand(0)->getType();
 | |
|       if (IndicesTheSame)
 | |
|         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
 | |
|           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
 | |
|             IndicesTheSame = false;
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|       // If all indices are the same, just compare the base pointers.
 | |
|       if (IndicesTheSame)
 | |
|         return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
 | |
|                             GEPLHS->getOperand(0), GEPRHS->getOperand(0));
 | |
| 
 | |
|       // Otherwise, the base pointers are different and the indices are
 | |
|       // different, bail out.
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     // If one of the GEPs has all zero indices, recurse.
 | |
|     bool AllZeros = true;
 | |
|     for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
 | |
|       if (!isa<Constant>(GEPLHS->getOperand(i)) ||
 | |
|           !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
 | |
|         AllZeros = false;
 | |
|         break;
 | |
|       }
 | |
|     if (AllZeros)
 | |
|       return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
 | |
|                           ICmpInst::getSwappedPredicate(Cond), I);
 | |
| 
 | |
|     // If the other GEP has all zero indices, recurse.
 | |
|     AllZeros = true;
 | |
|     for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
 | |
|       if (!isa<Constant>(GEPRHS->getOperand(i)) ||
 | |
|           !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
 | |
|         AllZeros = false;
 | |
|         break;
 | |
|       }
 | |
|     if (AllZeros)
 | |
|       return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
 | |
| 
 | |
|     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
 | |
|     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
 | |
|       // If the GEPs only differ by one index, compare it.
 | |
|       unsigned NumDifferences = 0;  // Keep track of # differences.
 | |
|       unsigned DiffOperand = 0;     // The operand that differs.
 | |
|       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
 | |
|         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
 | |
|           if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
 | |
|                    GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
 | |
|             // Irreconcilable differences.
 | |
|             NumDifferences = 2;
 | |
|             break;
 | |
|           } else {
 | |
|             if (NumDifferences++) break;
 | |
|             DiffOperand = i;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|       if (NumDifferences == 0)   // SAME GEP?
 | |
|         return ReplaceInstUsesWith(I, // No comparison is needed here.
 | |
|                                ConstantInt::get(Type::getInt1Ty(I.getContext()),
 | |
|                                              ICmpInst::isTrueWhenEqual(Cond)));
 | |
| 
 | |
|       else if (NumDifferences == 1 && GEPsInBounds) {
 | |
|         Value *LHSV = GEPLHS->getOperand(DiffOperand);
 | |
|         Value *RHSV = GEPRHS->getOperand(DiffOperand);
 | |
|         // Make sure we do a signed comparison here.
 | |
|         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Only lower this if the icmp is the only user of the GEP or if we expect
 | |
|     // the result to fold to a constant!
 | |
|     if (TD &&
 | |
|         GEPsInBounds &&
 | |
|         (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
 | |
|         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
 | |
|       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
 | |
|       Value *L = EmitGEPOffset(GEPLHS);
 | |
|       Value *R = EmitGEPOffset(GEPRHS);
 | |
|       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
 | |
| Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,
 | |
|                                             Value *X, ConstantInt *CI,
 | |
|                                             ICmpInst::Predicate Pred,
 | |
|                                             Value *TheAdd) {
 | |
|   // If we have X+0, exit early (simplifying logic below) and let it get folded
 | |
|   // elsewhere.   icmp X+0, X  -> icmp X, X
 | |
|   if (CI->isZero()) {
 | |
|     bool isTrue = ICmpInst::isTrueWhenEqual(Pred);
 | |
|     return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
 | |
|   }
 | |
| 
 | |
|   // (X+4) == X -> false.
 | |
|   if (Pred == ICmpInst::ICMP_EQ)
 | |
|     return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext()));
 | |
| 
 | |
|   // (X+4) != X -> true.
 | |
|   if (Pred == ICmpInst::ICMP_NE)
 | |
|     return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
 | |
| 
 | |
|   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
 | |
|   // so the values can never be equal.  Similarly for all other "or equals"
 | |
|   // operators.
 | |
| 
 | |
|   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
 | |
|   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
 | |
|   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
 | |
|   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
 | |
|     Value *R =
 | |
|       ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
 | |
|     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
 | |
|   }
 | |
| 
 | |
|   // (X+1) >u X        --> X <u (0-1)        --> X != 255
 | |
|   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
 | |
|   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
 | |
|   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
 | |
|     return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
 | |
| 
 | |
|   unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
 | |
|   ConstantInt *SMax = ConstantInt::get(X->getContext(),
 | |
|                                        APInt::getSignedMaxValue(BitWidth));
 | |
| 
 | |
|   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
 | |
|   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
 | |
|   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
 | |
|   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
 | |
|   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
 | |
|   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
 | |
|   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
 | |
|     return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
 | |
| 
 | |
|   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
 | |
|   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
 | |
|   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
 | |
|   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
 | |
|   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
 | |
|   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
 | |
| 
 | |
|   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
 | |
|   Constant *C = ConstantInt::get(X->getContext(), CI->getValue()-1);
 | |
|   return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
 | |
| }
 | |
| 
 | |
| /// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
 | |
| /// and CmpRHS are both known to be integer constants.
 | |
| Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
 | |
|                                           ConstantInt *DivRHS) {
 | |
|   ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
 | |
|   const APInt &CmpRHSV = CmpRHS->getValue();
 | |
| 
 | |
|   // FIXME: If the operand types don't match the type of the divide
 | |
|   // then don't attempt this transform. The code below doesn't have the
 | |
|   // logic to deal with a signed divide and an unsigned compare (and
 | |
|   // vice versa). This is because (x /s C1) <s C2  produces different
 | |
|   // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
 | |
|   // (x /u C1) <u C2.  Simply casting the operands and result won't
 | |
|   // work. :(  The if statement below tests that condition and bails
 | |
|   // if it finds it.
 | |
|   bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
 | |
|   if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
 | |
|     return 0;
 | |
|   if (DivRHS->isZero())
 | |
|     return 0; // The ProdOV computation fails on divide by zero.
 | |
|   if (DivIsSigned && DivRHS->isAllOnesValue())
 | |
|     return 0; // The overflow computation also screws up here
 | |
|   if (DivRHS->isOne()) {
 | |
|     // This eliminates some funny cases with INT_MIN.
 | |
|     ICI.setOperand(0, DivI->getOperand(0));   // X/1 == X.
 | |
|     return &ICI;
 | |
|   }
 | |
| 
 | |
|   // Compute Prod = CI * DivRHS. We are essentially solving an equation
 | |
|   // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
 | |
|   // C2 (CI). By solving for X we can turn this into a range check
 | |
|   // instead of computing a divide.
 | |
|   Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
 | |
| 
 | |
|   // Determine if the product overflows by seeing if the product is
 | |
|   // not equal to the divide. Make sure we do the same kind of divide
 | |
|   // as in the LHS instruction that we're folding.
 | |
|   bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
 | |
|                  ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
 | |
| 
 | |
|   // Get the ICmp opcode
 | |
|   ICmpInst::Predicate Pred = ICI.getPredicate();
 | |
| 
 | |
|   /// If the division is known to be exact, then there is no remainder from the
 | |
|   /// divide, so the covered range size is unit, otherwise it is the divisor.
 | |
|   ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
 | |
| 
 | |
|   // Figure out the interval that is being checked.  For example, a comparison
 | |
|   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
 | |
|   // Compute this interval based on the constants involved and the signedness of
 | |
|   // the compare/divide.  This computes a half-open interval, keeping track of
 | |
|   // whether either value in the interval overflows.  After analysis each
 | |
|   // overflow variable is set to 0 if it's corresponding bound variable is valid
 | |
|   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
 | |
|   int LoOverflow = 0, HiOverflow = 0;
 | |
|   Constant *LoBound = 0, *HiBound = 0;
 | |
| 
 | |
|   if (!DivIsSigned) {  // udiv
 | |
|     // e.g. X/5 op 3  --> [15, 20)
 | |
|     LoBound = Prod;
 | |
|     HiOverflow = LoOverflow = ProdOV;
 | |
|     if (!HiOverflow) {
 | |
|       // If this is not an exact divide, then many values in the range collapse
 | |
|       // to the same result value.
 | |
|       HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
 | |
|     }
 | |
| 
 | |
|   } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
 | |
|     if (CmpRHSV == 0) {       // (X / pos) op 0
 | |
|       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
 | |
|       LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
 | |
|       HiBound = RangeSize;
 | |
|     } else if (CmpRHSV.isStrictlyPositive()) {   // (X / pos) op pos
 | |
|       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
 | |
|       HiOverflow = LoOverflow = ProdOV;
 | |
|       if (!HiOverflow)
 | |
|         HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
 | |
|     } else {                       // (X / pos) op neg
 | |
|       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
 | |
|       HiBound = AddOne(Prod);
 | |
|       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
 | |
|       if (!LoOverflow) {
 | |
|         ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
 | |
|         LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
 | |
|       }
 | |
|     }
 | |
|   } else if (DivRHS->isNegative()) { // Divisor is < 0.
 | |
|     if (DivI->isExact())
 | |
|       RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
 | |
|     if (CmpRHSV == 0) {       // (X / neg) op 0
 | |
|       // e.g. X/-5 op 0  --> [-4, 5)
 | |
|       LoBound = AddOne(RangeSize);
 | |
|       HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
 | |
|       if (HiBound == DivRHS) {     // -INTMIN = INTMIN
 | |
|         HiOverflow = 1;            // [INTMIN+1, overflow)
 | |
|         HiBound = 0;               // e.g. X/INTMIN = 0 --> X > INTMIN
 | |
|       }
 | |
|     } else if (CmpRHSV.isStrictlyPositive()) {   // (X / neg) op pos
 | |
|       // e.g. X/-5 op 3  --> [-19, -14)
 | |
|       HiBound = AddOne(Prod);
 | |
|       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
 | |
|       if (!LoOverflow)
 | |
|         LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
 | |
|     } else {                       // (X / neg) op neg
 | |
|       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
 | |
|       LoOverflow = HiOverflow = ProdOV;
 | |
|       if (!HiOverflow)
 | |
|         HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
 | |
|     }
 | |
| 
 | |
|     // Dividing by a negative swaps the condition.  LT <-> GT
 | |
|     Pred = ICmpInst::getSwappedPredicate(Pred);
 | |
|   }
 | |
| 
 | |
|   Value *X = DivI->getOperand(0);
 | |
|   switch (Pred) {
 | |
|   default: llvm_unreachable("Unhandled icmp opcode!");
 | |
|   case ICmpInst::ICMP_EQ:
 | |
|     if (LoOverflow && HiOverflow)
 | |
|       return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
 | |
|     if (HiOverflow)
 | |
|       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
 | |
|                           ICmpInst::ICMP_UGE, X, LoBound);
 | |
|     if (LoOverflow)
 | |
|       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
 | |
|                           ICmpInst::ICMP_ULT, X, HiBound);
 | |
|     return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
 | |
|                                                     DivIsSigned, true));
 | |
|   case ICmpInst::ICMP_NE:
 | |
|     if (LoOverflow && HiOverflow)
 | |
|       return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
 | |
|     if (HiOverflow)
 | |
|       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
 | |
|                           ICmpInst::ICMP_ULT, X, LoBound);
 | |
|     if (LoOverflow)
 | |
|       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
 | |
|                           ICmpInst::ICMP_UGE, X, HiBound);
 | |
|     return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
 | |
|                                                     DivIsSigned, false));
 | |
|   case ICmpInst::ICMP_ULT:
 | |
|   case ICmpInst::ICMP_SLT:
 | |
|     if (LoOverflow == +1)   // Low bound is greater than input range.
 | |
|       return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
 | |
|     if (LoOverflow == -1)   // Low bound is less than input range.
 | |
|       return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
 | |
|     return new ICmpInst(Pred, X, LoBound);
 | |
|   case ICmpInst::ICMP_UGT:
 | |
|   case ICmpInst::ICMP_SGT:
 | |
|     if (HiOverflow == +1)       // High bound greater than input range.
 | |
|       return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
 | |
|     if (HiOverflow == -1)       // High bound less than input range.
 | |
|       return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
 | |
|     if (Pred == ICmpInst::ICMP_UGT)
 | |
|       return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
 | |
|     return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
 | |
| Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
 | |
|                                           ConstantInt *ShAmt) {
 | |
|   const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
 | |
| 
 | |
|   // Check that the shift amount is in range.  If not, don't perform
 | |
|   // undefined shifts.  When the shift is visited it will be
 | |
|   // simplified.
 | |
|   uint32_t TypeBits = CmpRHSV.getBitWidth();
 | |
|   uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
 | |
|   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
 | |
|     return 0;
 | |
| 
 | |
|   if (!ICI.isEquality()) {
 | |
|     // If we have an unsigned comparison and an ashr, we can't simplify this.
 | |
|     // Similarly for signed comparisons with lshr.
 | |
|     if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
 | |
|       return 0;
 | |
| 
 | |
|     // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
 | |
|     // by a power of 2.  Since we already have logic to simplify these,
 | |
|     // transform to div and then simplify the resultant comparison.
 | |
|     if (Shr->getOpcode() == Instruction::AShr &&
 | |
|         (!Shr->isExact() || ShAmtVal == TypeBits - 1))
 | |
|       return 0;
 | |
| 
 | |
|     // Revisit the shift (to delete it).
 | |
|     Worklist.Add(Shr);
 | |
| 
 | |
|     Constant *DivCst =
 | |
|       ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
 | |
| 
 | |
|     Value *Tmp =
 | |
|       Shr->getOpcode() == Instruction::AShr ?
 | |
|       Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
 | |
|       Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
 | |
| 
 | |
|     ICI.setOperand(0, Tmp);
 | |
| 
 | |
|     // If the builder folded the binop, just return it.
 | |
|     BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
 | |
|     if (TheDiv == 0)
 | |
|       return &ICI;
 | |
| 
 | |
|     // Otherwise, fold this div/compare.
 | |
|     assert(TheDiv->getOpcode() == Instruction::SDiv ||
 | |
|            TheDiv->getOpcode() == Instruction::UDiv);
 | |
| 
 | |
|     Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
 | |
|     assert(Res && "This div/cst should have folded!");
 | |
|     return Res;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // If we are comparing against bits always shifted out, the
 | |
|   // comparison cannot succeed.
 | |
|   APInt Comp = CmpRHSV << ShAmtVal;
 | |
|   ConstantInt *ShiftedCmpRHS = ConstantInt::get(ICI.getContext(), Comp);
 | |
|   if (Shr->getOpcode() == Instruction::LShr)
 | |
|     Comp = Comp.lshr(ShAmtVal);
 | |
|   else
 | |
|     Comp = Comp.ashr(ShAmtVal);
 | |
| 
 | |
|   if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
 | |
|     bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
 | |
|     Constant *Cst = ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
 | |
|                                      IsICMP_NE);
 | |
|     return ReplaceInstUsesWith(ICI, Cst);
 | |
|   }
 | |
| 
 | |
|   // Otherwise, check to see if the bits shifted out are known to be zero.
 | |
|   // If so, we can compare against the unshifted value:
 | |
|   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
 | |
|   if (Shr->hasOneUse() && Shr->isExact())
 | |
|     return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
 | |
| 
 | |
|   if (Shr->hasOneUse()) {
 | |
|     // Otherwise strength reduce the shift into an and.
 | |
|     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
 | |
|     Constant *Mask = ConstantInt::get(ICI.getContext(), Val);
 | |
| 
 | |
|     Value *And = Builder->CreateAnd(Shr->getOperand(0),
 | |
|                                     Mask, Shr->getName()+".mask");
 | |
|     return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
 | |
| ///
 | |
| Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
 | |
|                                                           Instruction *LHSI,
 | |
|                                                           ConstantInt *RHS) {
 | |
|   const APInt &RHSV = RHS->getValue();
 | |
| 
 | |
|   switch (LHSI->getOpcode()) {
 | |
|   case Instruction::Trunc:
 | |
|     if (ICI.isEquality() && LHSI->hasOneUse()) {
 | |
|       // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
 | |
|       // of the high bits truncated out of x are known.
 | |
|       unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
 | |
|              SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
 | |
|       APInt Mask(APInt::getHighBitsSet(SrcBits, SrcBits-DstBits));
 | |
|       APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
 | |
|       ComputeMaskedBits(LHSI->getOperand(0), Mask, KnownZero, KnownOne);
 | |
| 
 | |
|       // If all the high bits are known, we can do this xform.
 | |
|       if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
 | |
|         // Pull in the high bits from known-ones set.
 | |
|         APInt NewRHS = RHS->getValue().zext(SrcBits);
 | |
|         NewRHS |= KnownOne;
 | |
|         return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
 | |
|                             ConstantInt::get(ICI.getContext(), NewRHS));
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Xor:         // (icmp pred (xor X, XorCST), CI)
 | |
|     if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
 | |
|       // If this is a comparison that tests the signbit (X < 0) or (x > -1),
 | |
|       // fold the xor.
 | |
|       if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
 | |
|           (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
 | |
|         Value *CompareVal = LHSI->getOperand(0);
 | |
| 
 | |
|         // If the sign bit of the XorCST is not set, there is no change to
 | |
|         // the operation, just stop using the Xor.
 | |
|         if (!XorCST->isNegative()) {
 | |
|           ICI.setOperand(0, CompareVal);
 | |
|           Worklist.Add(LHSI);
 | |
|           return &ICI;
 | |
|         }
 | |
| 
 | |
|         // Was the old condition true if the operand is positive?
 | |
|         bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
 | |
| 
 | |
|         // If so, the new one isn't.
 | |
|         isTrueIfPositive ^= true;
 | |
| 
 | |
|         if (isTrueIfPositive)
 | |
|           return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
 | |
|                               SubOne(RHS));
 | |
|         else
 | |
|           return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
 | |
|                               AddOne(RHS));
 | |
|       }
 | |
| 
 | |
|       if (LHSI->hasOneUse()) {
 | |
|         // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
 | |
|         if (!ICI.isEquality() && XorCST->getValue().isSignBit()) {
 | |
|           const APInt &SignBit = XorCST->getValue();
 | |
|           ICmpInst::Predicate Pred = ICI.isSigned()
 | |
|                                          ? ICI.getUnsignedPredicate()
 | |
|                                          : ICI.getSignedPredicate();
 | |
|           return new ICmpInst(Pred, LHSI->getOperand(0),
 | |
|                               ConstantInt::get(ICI.getContext(),
 | |
|                                                RHSV ^ SignBit));
 | |
|         }
 | |
| 
 | |
|         // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
 | |
|         if (!ICI.isEquality() && XorCST->isMaxValue(true)) {
 | |
|           const APInt &NotSignBit = XorCST->getValue();
 | |
|           ICmpInst::Predicate Pred = ICI.isSigned()
 | |
|                                          ? ICI.getUnsignedPredicate()
 | |
|                                          : ICI.getSignedPredicate();
 | |
|           Pred = ICI.getSwappedPredicate(Pred);
 | |
|           return new ICmpInst(Pred, LHSI->getOperand(0),
 | |
|                               ConstantInt::get(ICI.getContext(),
 | |
|                                                RHSV ^ NotSignBit));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::And:         // (icmp pred (and X, AndCST), RHS)
 | |
|     if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
 | |
|         LHSI->getOperand(0)->hasOneUse()) {
 | |
|       ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
 | |
| 
 | |
|       // If the LHS is an AND of a truncating cast, we can widen the
 | |
|       // and/compare to be the input width without changing the value
 | |
|       // produced, eliminating a cast.
 | |
|       if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
 | |
|         // We can do this transformation if either the AND constant does not
 | |
|         // have its sign bit set or if it is an equality comparison.
 | |
|         // Extending a relational comparison when we're checking the sign
 | |
|         // bit would not work.
 | |
|         if (ICI.isEquality() ||
 | |
|             (!AndCST->isNegative() && RHSV.isNonNegative())) {
 | |
|           Value *NewAnd =
 | |
|             Builder->CreateAnd(Cast->getOperand(0),
 | |
|                                ConstantExpr::getZExt(AndCST, Cast->getSrcTy()));
 | |
|           NewAnd->takeName(LHSI);
 | |
|           return new ICmpInst(ICI.getPredicate(), NewAnd,
 | |
|                               ConstantExpr::getZExt(RHS, Cast->getSrcTy()));
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If the LHS is an AND of a zext, and we have an equality compare, we can
 | |
|       // shrink the and/compare to the smaller type, eliminating the cast.
 | |
|       if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) {
 | |
|         IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy());
 | |
|         // Make sure we don't compare the upper bits, SimplifyDemandedBits
 | |
|         // should fold the icmp to true/false in that case.
 | |
|         if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) {
 | |
|           Value *NewAnd =
 | |
|             Builder->CreateAnd(Cast->getOperand(0),
 | |
|                                ConstantExpr::getTrunc(AndCST, Ty));
 | |
|           NewAnd->takeName(LHSI);
 | |
|           return new ICmpInst(ICI.getPredicate(), NewAnd,
 | |
|                               ConstantExpr::getTrunc(RHS, Ty));
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
 | |
|       // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This
 | |
|       // happens a LOT in code produced by the C front-end, for bitfield
 | |
|       // access.
 | |
|       BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
 | |
|       if (Shift && !Shift->isShift())
 | |
|         Shift = 0;
 | |
| 
 | |
|       ConstantInt *ShAmt;
 | |
|       ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
 | |
|       Type *Ty = Shift ? Shift->getType() : 0;  // Type of the shift.
 | |
|       Type *AndTy = AndCST->getType();          // Type of the and.
 | |
| 
 | |
|       // We can fold this as long as we can't shift unknown bits
 | |
|       // into the mask.  This can only happen with signed shift
 | |
|       // rights, as they sign-extend.
 | |
|       if (ShAmt) {
 | |
|         bool CanFold = Shift->isLogicalShift();
 | |
|         if (!CanFold) {
 | |
|           // To test for the bad case of the signed shr, see if any
 | |
|           // of the bits shifted in could be tested after the mask.
 | |
|           uint32_t TyBits = Ty->getPrimitiveSizeInBits();
 | |
|           int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
 | |
| 
 | |
|           uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
 | |
|           if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
 | |
|                AndCST->getValue()) == 0)
 | |
|             CanFold = true;
 | |
|         }
 | |
| 
 | |
|         if (CanFold) {
 | |
|           Constant *NewCst;
 | |
|           if (Shift->getOpcode() == Instruction::Shl)
 | |
|             NewCst = ConstantExpr::getLShr(RHS, ShAmt);
 | |
|           else
 | |
|             NewCst = ConstantExpr::getShl(RHS, ShAmt);
 | |
| 
 | |
|           // Check to see if we are shifting out any of the bits being
 | |
|           // compared.
 | |
|           if (ConstantExpr::get(Shift->getOpcode(),
 | |
|                                        NewCst, ShAmt) != RHS) {
 | |
|             // If we shifted bits out, the fold is not going to work out.
 | |
|             // As a special case, check to see if this means that the
 | |
|             // result is always true or false now.
 | |
|             if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
 | |
|               return ReplaceInstUsesWith(ICI,
 | |
|                                        ConstantInt::getFalse(ICI.getContext()));
 | |
|             if (ICI.getPredicate() == ICmpInst::ICMP_NE)
 | |
|               return ReplaceInstUsesWith(ICI,
 | |
|                                        ConstantInt::getTrue(ICI.getContext()));
 | |
|           } else {
 | |
|             ICI.setOperand(1, NewCst);
 | |
|             Constant *NewAndCST;
 | |
|             if (Shift->getOpcode() == Instruction::Shl)
 | |
|               NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
 | |
|             else
 | |
|               NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
 | |
|             LHSI->setOperand(1, NewAndCST);
 | |
|             LHSI->setOperand(0, Shift->getOperand(0));
 | |
|             Worklist.Add(Shift); // Shift is dead.
 | |
|             return &ICI;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Turn ((X >> Y) & C) == 0  into  (X & (C << Y)) == 0.  The later is
 | |
|       // preferable because it allows the C<<Y expression to be hoisted out
 | |
|       // of a loop if Y is invariant and X is not.
 | |
|       if (Shift && Shift->hasOneUse() && RHSV == 0 &&
 | |
|           ICI.isEquality() && !Shift->isArithmeticShift() &&
 | |
|           !isa<Constant>(Shift->getOperand(0))) {
 | |
|         // Compute C << Y.
 | |
|         Value *NS;
 | |
|         if (Shift->getOpcode() == Instruction::LShr) {
 | |
|           NS = Builder->CreateShl(AndCST, Shift->getOperand(1));
 | |
|         } else {
 | |
|           // Insert a logical shift.
 | |
|           NS = Builder->CreateLShr(AndCST, Shift->getOperand(1));
 | |
|         }
 | |
| 
 | |
|         // Compute X & (C << Y).
 | |
|         Value *NewAnd =
 | |
|           Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
 | |
| 
 | |
|         ICI.setOperand(0, NewAnd);
 | |
|         return &ICI;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Try to optimize things like "A[i]&42 == 0" to index computations.
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
 | |
|       if (GetElementPtrInst *GEP =
 | |
|           dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
 | |
|         if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
 | |
|           if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
 | |
|               !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
 | |
|             ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
 | |
|             if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
 | |
|               return Res;
 | |
|           }
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Or: {
 | |
|     if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
 | |
|       break;
 | |
|     Value *P, *Q;
 | |
|     if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
 | |
|       // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
 | |
|       // -> and (icmp eq P, null), (icmp eq Q, null).
 | |
|       Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
 | |
|                                         Constant::getNullValue(P->getType()));
 | |
|       Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
 | |
|                                         Constant::getNullValue(Q->getType()));
 | |
|       Instruction *Op;
 | |
|       if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
 | |
|         Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
 | |
|       else
 | |
|         Op = BinaryOperator::CreateOr(ICIP, ICIQ);
 | |
|       return Op;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Instruction::Shl: {       // (icmp pred (shl X, ShAmt), CI)
 | |
|     ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
 | |
|     if (!ShAmt) break;
 | |
| 
 | |
|     uint32_t TypeBits = RHSV.getBitWidth();
 | |
| 
 | |
|     // Check that the shift amount is in range.  If not, don't perform
 | |
|     // undefined shifts.  When the shift is visited it will be
 | |
|     // simplified.
 | |
|     if (ShAmt->uge(TypeBits))
 | |
|       break;
 | |
| 
 | |
|     if (ICI.isEquality()) {
 | |
|       // If we are comparing against bits always shifted out, the
 | |
|       // comparison cannot succeed.
 | |
|       Constant *Comp =
 | |
|         ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
 | |
|                                                                  ShAmt);
 | |
|       if (Comp != RHS) {// Comparing against a bit that we know is zero.
 | |
|         bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
 | |
|         Constant *Cst =
 | |
|           ConstantInt::get(Type::getInt1Ty(ICI.getContext()), IsICMP_NE);
 | |
|         return ReplaceInstUsesWith(ICI, Cst);
 | |
|       }
 | |
| 
 | |
|       // If the shift is NUW, then it is just shifting out zeros, no need for an
 | |
|       // AND.
 | |
|       if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
 | |
|         return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
 | |
|                             ConstantExpr::getLShr(RHS, ShAmt));
 | |
| 
 | |
|       if (LHSI->hasOneUse()) {
 | |
|         // Otherwise strength reduce the shift into an and.
 | |
|         uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
 | |
|         Constant *Mask =
 | |
|           ConstantInt::get(ICI.getContext(), APInt::getLowBitsSet(TypeBits,
 | |
|                                                        TypeBits-ShAmtVal));
 | |
| 
 | |
|         Value *And =
 | |
|           Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
 | |
|         return new ICmpInst(ICI.getPredicate(), And,
 | |
|                             ConstantExpr::getLShr(RHS, ShAmt));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
 | |
|     bool TrueIfSigned = false;
 | |
|     if (LHSI->hasOneUse() &&
 | |
|         isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
 | |
|       // (X << 31) <s 0  --> (X&1) != 0
 | |
|       Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
 | |
|                                         APInt::getOneBitSet(TypeBits,
 | |
|                                             TypeBits-ShAmt->getZExtValue()-1));
 | |
|       Value *And =
 | |
|         Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
 | |
|       return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
 | |
|                           And, Constant::getNullValue(And->getType()));
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Instruction::LShr:         // (icmp pred (shr X, ShAmt), CI)
 | |
|   case Instruction::AShr: {
 | |
|     // Handle equality comparisons of shift-by-constant.
 | |
|     BinaryOperator *BO = cast<BinaryOperator>(LHSI);
 | |
|     if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
 | |
|       if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt))
 | |
|         return Res;
 | |
|     }
 | |
| 
 | |
|     // Handle exact shr's.
 | |
|     if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) {
 | |
|       if (RHSV.isMinValue())
 | |
|         return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Instruction::SDiv:
 | |
|   case Instruction::UDiv:
 | |
|     // Fold: icmp pred ([us]div X, C1), C2 -> range test
 | |
|     // Fold this div into the comparison, producing a range check.
 | |
|     // Determine, based on the divide type, what the range is being
 | |
|     // checked.  If there is an overflow on the low or high side, remember
 | |
|     // it, otherwise compute the range [low, hi) bounding the new value.
 | |
|     // See: InsertRangeTest above for the kinds of replacements possible.
 | |
|     if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
 | |
|       if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
 | |
|                                           DivRHS))
 | |
|         return R;
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Add:
 | |
|     // Fold: icmp pred (add X, C1), C2
 | |
|     if (!ICI.isEquality()) {
 | |
|       ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
 | |
|       if (!LHSC) break;
 | |
|       const APInt &LHSV = LHSC->getValue();
 | |
| 
 | |
|       ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
 | |
|                             .subtract(LHSV);
 | |
| 
 | |
|       if (ICI.isSigned()) {
 | |
|         if (CR.getLower().isSignBit()) {
 | |
|           return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
 | |
|                               ConstantInt::get(ICI.getContext(),CR.getUpper()));
 | |
|         } else if (CR.getUpper().isSignBit()) {
 | |
|           return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
 | |
|                               ConstantInt::get(ICI.getContext(),CR.getLower()));
 | |
|         }
 | |
|       } else {
 | |
|         if (CR.getLower().isMinValue()) {
 | |
|           return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
 | |
|                               ConstantInt::get(ICI.getContext(),CR.getUpper()));
 | |
|         } else if (CR.getUpper().isMinValue()) {
 | |
|           return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
 | |
|                               ConstantInt::get(ICI.getContext(),CR.getLower()));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
 | |
|   if (ICI.isEquality()) {
 | |
|     bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
 | |
| 
 | |
|     // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
 | |
|     // the second operand is a constant, simplify a bit.
 | |
|     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
 | |
|       switch (BO->getOpcode()) {
 | |
|       case Instruction::SRem:
 | |
|         // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
 | |
|         if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
 | |
|           const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
 | |
|           if (V.sgt(1) && V.isPowerOf2()) {
 | |
|             Value *NewRem =
 | |
|               Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
 | |
|                                   BO->getName());
 | |
|             return new ICmpInst(ICI.getPredicate(), NewRem,
 | |
|                                 Constant::getNullValue(BO->getType()));
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
|       case Instruction::Add:
 | |
|         // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
 | |
|         if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
 | |
|           if (BO->hasOneUse())
 | |
|             return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
 | |
|                                 ConstantExpr::getSub(RHS, BOp1C));
 | |
|         } else if (RHSV == 0) {
 | |
|           // Replace ((add A, B) != 0) with (A != -B) if A or B is
 | |
|           // efficiently invertible, or if the add has just this one use.
 | |
|           Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
 | |
| 
 | |
|           if (Value *NegVal = dyn_castNegVal(BOp1))
 | |
|             return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
 | |
|           if (Value *NegVal = dyn_castNegVal(BOp0))
 | |
|             return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
 | |
|           if (BO->hasOneUse()) {
 | |
|             Value *Neg = Builder->CreateNeg(BOp1);
 | |
|             Neg->takeName(BO);
 | |
|             return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
|       case Instruction::Xor:
 | |
|         // For the xor case, we can xor two constants together, eliminating
 | |
|         // the explicit xor.
 | |
|         if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
 | |
|           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
 | |
|                               ConstantExpr::getXor(RHS, BOC));
 | |
|         } else if (RHSV == 0) {
 | |
|           // Replace ((xor A, B) != 0) with (A != B)
 | |
|           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
 | |
|                               BO->getOperand(1));
 | |
|         }
 | |
|         break;
 | |
|       case Instruction::Sub:
 | |
|         // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
 | |
|         if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
 | |
|           if (BO->hasOneUse())
 | |
|             return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
 | |
|                                 ConstantExpr::getSub(BOp0C, RHS));
 | |
|         } else if (RHSV == 0) {
 | |
|           // Replace ((sub A, B) != 0) with (A != B)
 | |
|           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
 | |
|                               BO->getOperand(1));
 | |
|         }
 | |
|         break;
 | |
|       case Instruction::Or:
 | |
|         // If bits are being or'd in that are not present in the constant we
 | |
|         // are comparing against, then the comparison could never succeed!
 | |
|         if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
 | |
|           Constant *NotCI = ConstantExpr::getNot(RHS);
 | |
|           if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
 | |
|             return ReplaceInstUsesWith(ICI,
 | |
|                              ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
 | |
|                                        isICMP_NE));
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|       case Instruction::And:
 | |
|         if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
 | |
|           // If bits are being compared against that are and'd out, then the
 | |
|           // comparison can never succeed!
 | |
|           if ((RHSV & ~BOC->getValue()) != 0)
 | |
|             return ReplaceInstUsesWith(ICI,
 | |
|                              ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
 | |
|                                        isICMP_NE));
 | |
| 
 | |
|           // If we have ((X & C) == C), turn it into ((X & C) != 0).
 | |
|           if (RHS == BOC && RHSV.isPowerOf2())
 | |
|             return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
 | |
|                                 ICmpInst::ICMP_NE, LHSI,
 | |
|                                 Constant::getNullValue(RHS->getType()));
 | |
| 
 | |
|           // Don't perform the following transforms if the AND has multiple uses
 | |
|           if (!BO->hasOneUse())
 | |
|             break;
 | |
| 
 | |
|           // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
 | |
|           if (BOC->getValue().isSignBit()) {
 | |
|             Value *X = BO->getOperand(0);
 | |
|             Constant *Zero = Constant::getNullValue(X->getType());
 | |
|             ICmpInst::Predicate pred = isICMP_NE ?
 | |
|               ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
 | |
|             return new ICmpInst(pred, X, Zero);
 | |
|           }
 | |
| 
 | |
|           // ((X & ~7) == 0) --> X < 8
 | |
|           if (RHSV == 0 && isHighOnes(BOC)) {
 | |
|             Value *X = BO->getOperand(0);
 | |
|             Constant *NegX = ConstantExpr::getNeg(BOC);
 | |
|             ICmpInst::Predicate pred = isICMP_NE ?
 | |
|               ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
 | |
|             return new ICmpInst(pred, X, NegX);
 | |
|           }
 | |
|         }
 | |
|       default: break;
 | |
|       }
 | |
|     } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
 | |
|       // Handle icmp {eq|ne} <intrinsic>, intcst.
 | |
|       switch (II->getIntrinsicID()) {
 | |
|       case Intrinsic::bswap:
 | |
|         Worklist.Add(II);
 | |
|         ICI.setOperand(0, II->getArgOperand(0));
 | |
|         ICI.setOperand(1, ConstantInt::get(II->getContext(), RHSV.byteSwap()));
 | |
|         return &ICI;
 | |
|       case Intrinsic::ctlz:
 | |
|       case Intrinsic::cttz:
 | |
|         // ctz(A) == bitwidth(a)  ->  A == 0 and likewise for !=
 | |
|         if (RHSV == RHS->getType()->getBitWidth()) {
 | |
|           Worklist.Add(II);
 | |
|           ICI.setOperand(0, II->getArgOperand(0));
 | |
|           ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
 | |
|           return &ICI;
 | |
|         }
 | |
|         break;
 | |
|       case Intrinsic::ctpop:
 | |
|         // popcount(A) == 0  ->  A == 0 and likewise for !=
 | |
|         if (RHS->isZero()) {
 | |
|           Worklist.Add(II);
 | |
|           ICI.setOperand(0, II->getArgOperand(0));
 | |
|           ICI.setOperand(1, RHS);
 | |
|           return &ICI;
 | |
|         }
 | |
|         break;
 | |
|       default:
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
 | |
| /// We only handle extending casts so far.
 | |
| ///
 | |
| Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
 | |
|   const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
 | |
|   Value *LHSCIOp        = LHSCI->getOperand(0);
 | |
|   Type *SrcTy     = LHSCIOp->getType();
 | |
|   Type *DestTy    = LHSCI->getType();
 | |
|   Value *RHSCIOp;
 | |
| 
 | |
|   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
 | |
|   // integer type is the same size as the pointer type.
 | |
|   if (TD && LHSCI->getOpcode() == Instruction::PtrToInt &&
 | |
|       TD->getPointerSizeInBits() ==
 | |
|          cast<IntegerType>(DestTy)->getBitWidth()) {
 | |
|     Value *RHSOp = 0;
 | |
|     if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
 | |
|       RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
 | |
|     } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
 | |
|       RHSOp = RHSC->getOperand(0);
 | |
|       // If the pointer types don't match, insert a bitcast.
 | |
|       if (LHSCIOp->getType() != RHSOp->getType())
 | |
|         RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
 | |
|     }
 | |
| 
 | |
|     if (RHSOp)
 | |
|       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
 | |
|   }
 | |
| 
 | |
|   // The code below only handles extension cast instructions, so far.
 | |
|   // Enforce this.
 | |
|   if (LHSCI->getOpcode() != Instruction::ZExt &&
 | |
|       LHSCI->getOpcode() != Instruction::SExt)
 | |
|     return 0;
 | |
| 
 | |
|   bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
 | |
|   bool isSignedCmp = ICI.isSigned();
 | |
| 
 | |
|   if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
 | |
|     // Not an extension from the same type?
 | |
|     RHSCIOp = CI->getOperand(0);
 | |
|     if (RHSCIOp->getType() != LHSCIOp->getType())
 | |
|       return 0;
 | |
| 
 | |
|     // If the signedness of the two casts doesn't agree (i.e. one is a sext
 | |
|     // and the other is a zext), then we can't handle this.
 | |
|     if (CI->getOpcode() != LHSCI->getOpcode())
 | |
|       return 0;
 | |
| 
 | |
|     // Deal with equality cases early.
 | |
|     if (ICI.isEquality())
 | |
|       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
 | |
| 
 | |
|     // A signed comparison of sign extended values simplifies into a
 | |
|     // signed comparison.
 | |
|     if (isSignedCmp && isSignedExt)
 | |
|       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
 | |
| 
 | |
|     // The other three cases all fold into an unsigned comparison.
 | |
|     return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
 | |
|   }
 | |
| 
 | |
|   // If we aren't dealing with a constant on the RHS, exit early
 | |
|   ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
 | |
|   if (!CI)
 | |
|     return 0;
 | |
| 
 | |
|   // Compute the constant that would happen if we truncated to SrcTy then
 | |
|   // reextended to DestTy.
 | |
|   Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
 | |
|   Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
 | |
|                                                 Res1, DestTy);
 | |
| 
 | |
|   // If the re-extended constant didn't change...
 | |
|   if (Res2 == CI) {
 | |
|     // Deal with equality cases early.
 | |
|     if (ICI.isEquality())
 | |
|       return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
 | |
| 
 | |
|     // A signed comparison of sign extended values simplifies into a
 | |
|     // signed comparison.
 | |
|     if (isSignedExt && isSignedCmp)
 | |
|       return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
 | |
| 
 | |
|     // The other three cases all fold into an unsigned comparison.
 | |
|     return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
 | |
|   }
 | |
| 
 | |
|   // The re-extended constant changed so the constant cannot be represented
 | |
|   // in the shorter type. Consequently, we cannot emit a simple comparison.
 | |
|   // All the cases that fold to true or false will have already been handled
 | |
|   // by SimplifyICmpInst, so only deal with the tricky case.
 | |
| 
 | |
|   if (isSignedCmp || !isSignedExt)
 | |
|     return 0;
 | |
| 
 | |
|   // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
 | |
|   // should have been folded away previously and not enter in here.
 | |
| 
 | |
|   // We're performing an unsigned comp with a sign extended value.
 | |
|   // This is true if the input is >= 0. [aka >s -1]
 | |
|   Constant *NegOne = Constant::getAllOnesValue(SrcTy);
 | |
|   Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
 | |
| 
 | |
|   // Finally, return the value computed.
 | |
|   if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
 | |
|     return ReplaceInstUsesWith(ICI, Result);
 | |
| 
 | |
|   assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
 | |
|   return BinaryOperator::CreateNot(Result);
 | |
| }
 | |
| 
 | |
| /// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
 | |
| ///   I = icmp ugt (add (add A, B), CI2), CI1
 | |
| /// If this is of the form:
 | |
| ///   sum = a + b
 | |
| ///   if (sum+128 >u 255)
 | |
| /// Then replace it with llvm.sadd.with.overflow.i8.
 | |
| ///
 | |
| static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
 | |
|                                           ConstantInt *CI2, ConstantInt *CI1,
 | |
|                                           InstCombiner &IC) {
 | |
|   // The transformation we're trying to do here is to transform this into an
 | |
|   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
 | |
|   // with a narrower add, and discard the add-with-constant that is part of the
 | |
|   // range check (if we can't eliminate it, this isn't profitable).
 | |
| 
 | |
|   // In order to eliminate the add-with-constant, the compare can be its only
 | |
|   // use.
 | |
|   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
 | |
|   if (!AddWithCst->hasOneUse()) return 0;
 | |
| 
 | |
|   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
 | |
|   if (!CI2->getValue().isPowerOf2()) return 0;
 | |
|   unsigned NewWidth = CI2->getValue().countTrailingZeros();
 | |
|   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return 0;
 | |
| 
 | |
|   // The width of the new add formed is 1 more than the bias.
 | |
|   ++NewWidth;
 | |
| 
 | |
|   // Check to see that CI1 is an all-ones value with NewWidth bits.
 | |
|   if (CI1->getBitWidth() == NewWidth ||
 | |
|       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
 | |
|     return 0;
 | |
| 
 | |
|   // In order to replace the original add with a narrower
 | |
|   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
 | |
|   // and truncates that discard the high bits of the add.  Verify that this is
 | |
|   // the case.
 | |
|   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
 | |
|   for (Value::use_iterator UI = OrigAdd->use_begin(), E = OrigAdd->use_end();
 | |
|        UI != E; ++UI) {
 | |
|     if (*UI == AddWithCst) continue;
 | |
| 
 | |
|     // Only accept truncates for now.  We would really like a nice recursive
 | |
|     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
 | |
|     // chain to see which bits of a value are actually demanded.  If the
 | |
|     // original add had another add which was then immediately truncated, we
 | |
|     // could still do the transformation.
 | |
|     TruncInst *TI = dyn_cast<TruncInst>(*UI);
 | |
|     if (TI == 0 ||
 | |
|         TI->getType()->getPrimitiveSizeInBits() > NewWidth) return 0;
 | |
|   }
 | |
| 
 | |
|   // If the pattern matches, truncate the inputs to the narrower type and
 | |
|   // use the sadd_with_overflow intrinsic to efficiently compute both the
 | |
|   // result and the overflow bit.
 | |
|   Module *M = I.getParent()->getParent()->getParent();
 | |
| 
 | |
|   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
 | |
|   Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
 | |
|                                        NewType);
 | |
| 
 | |
|   InstCombiner::BuilderTy *Builder = IC.Builder;
 | |
| 
 | |
|   // Put the new code above the original add, in case there are any uses of the
 | |
|   // add between the add and the compare.
 | |
|   Builder->SetInsertPoint(OrigAdd);
 | |
| 
 | |
|   Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
 | |
|   Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
 | |
|   CallInst *Call = Builder->CreateCall2(F, TruncA, TruncB, "sadd");
 | |
|   Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
 | |
|   Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
 | |
| 
 | |
|   // The inner add was the result of the narrow add, zero extended to the
 | |
|   // wider type.  Replace it with the result computed by the intrinsic.
 | |
|   IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
 | |
| 
 | |
|   // The original icmp gets replaced with the overflow value.
 | |
|   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
 | |
| }
 | |
| 
 | |
| static Instruction *ProcessUAddIdiom(Instruction &I, Value *OrigAddV,
 | |
|                                      InstCombiner &IC) {
 | |
|   // Don't bother doing this transformation for pointers, don't do it for
 | |
|   // vectors.
 | |
|   if (!isa<IntegerType>(OrigAddV->getType())) return 0;
 | |
| 
 | |
|   // If the add is a constant expr, then we don't bother transforming it.
 | |
|   Instruction *OrigAdd = dyn_cast<Instruction>(OrigAddV);
 | |
|   if (OrigAdd == 0) return 0;
 | |
| 
 | |
|   Value *LHS = OrigAdd->getOperand(0), *RHS = OrigAdd->getOperand(1);
 | |
| 
 | |
|   // Put the new code above the original add, in case there are any uses of the
 | |
|   // add between the add and the compare.
 | |
|   InstCombiner::BuilderTy *Builder = IC.Builder;
 | |
|   Builder->SetInsertPoint(OrigAdd);
 | |
| 
 | |
|   Module *M = I.getParent()->getParent()->getParent();
 | |
|   Type *Ty = LHS->getType();
 | |
|   Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
 | |
|   CallInst *Call = Builder->CreateCall2(F, LHS, RHS, "uadd");
 | |
|   Value *Add = Builder->CreateExtractValue(Call, 0);
 | |
| 
 | |
|   IC.ReplaceInstUsesWith(*OrigAdd, Add);
 | |
| 
 | |
|   // The original icmp gets replaced with the overflow value.
 | |
|   return ExtractValueInst::Create(Call, 1, "uadd.overflow");
 | |
| }
 | |
| 
 | |
| // DemandedBitsLHSMask - When performing a comparison against a constant,
 | |
| // it is possible that not all the bits in the LHS are demanded.  This helper
 | |
| // method computes the mask that IS demanded.
 | |
| static APInt DemandedBitsLHSMask(ICmpInst &I,
 | |
|                                  unsigned BitWidth, bool isSignCheck) {
 | |
|   if (isSignCheck)
 | |
|     return APInt::getSignBit(BitWidth);
 | |
| 
 | |
|   ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
 | |
|   if (!CI) return APInt::getAllOnesValue(BitWidth);
 | |
|   const APInt &RHS = CI->getValue();
 | |
| 
 | |
|   switch (I.getPredicate()) {
 | |
|   // For a UGT comparison, we don't care about any bits that
 | |
|   // correspond to the trailing ones of the comparand.  The value of these
 | |
|   // bits doesn't impact the outcome of the comparison, because any value
 | |
|   // greater than the RHS must differ in a bit higher than these due to carry.
 | |
|   case ICmpInst::ICMP_UGT: {
 | |
|     unsigned trailingOnes = RHS.countTrailingOnes();
 | |
|     APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
 | |
|     return ~lowBitsSet;
 | |
|   }
 | |
| 
 | |
|   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
 | |
|   // Any value less than the RHS must differ in a higher bit because of carries.
 | |
|   case ICmpInst::ICMP_ULT: {
 | |
|     unsigned trailingZeros = RHS.countTrailingZeros();
 | |
|     APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
 | |
|     return ~lowBitsSet;
 | |
|   }
 | |
| 
 | |
|   default:
 | |
|     return APInt::getAllOnesValue(BitWidth);
 | |
|   }
 | |
| 
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
 | |
|   bool Changed = false;
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   /// Orders the operands of the compare so that they are listed from most
 | |
|   /// complex to least complex.  This puts constants before unary operators,
 | |
|   /// before binary operators.
 | |
|   if (getComplexity(Op0) < getComplexity(Op1)) {
 | |
|     I.swapOperands();
 | |
|     std::swap(Op0, Op1);
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   Type *Ty = Op0->getType();
 | |
| 
 | |
|   // icmp's with boolean values can always be turned into bitwise operations
 | |
|   if (Ty->isIntegerTy(1)) {
 | |
|     switch (I.getPredicate()) {
 | |
|     default: llvm_unreachable("Invalid icmp instruction!");
 | |
|     case ICmpInst::ICMP_EQ: {               // icmp eq i1 A, B -> ~(A^B)
 | |
|       Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
 | |
|       return BinaryOperator::CreateNot(Xor);
 | |
|     }
 | |
|     case ICmpInst::ICMP_NE:                  // icmp eq i1 A, B -> A^B
 | |
|       return BinaryOperator::CreateXor(Op0, Op1);
 | |
| 
 | |
|     case ICmpInst::ICMP_UGT:
 | |
|       std::swap(Op0, Op1);                   // Change icmp ugt -> icmp ult
 | |
|       // FALL THROUGH
 | |
|     case ICmpInst::ICMP_ULT:{               // icmp ult i1 A, B -> ~A & B
 | |
|       Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
 | |
|       return BinaryOperator::CreateAnd(Not, Op1);
 | |
|     }
 | |
|     case ICmpInst::ICMP_SGT:
 | |
|       std::swap(Op0, Op1);                   // Change icmp sgt -> icmp slt
 | |
|       // FALL THROUGH
 | |
|     case ICmpInst::ICMP_SLT: {               // icmp slt i1 A, B -> A & ~B
 | |
|       Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
 | |
|       return BinaryOperator::CreateAnd(Not, Op0);
 | |
|     }
 | |
|     case ICmpInst::ICMP_UGE:
 | |
|       std::swap(Op0, Op1);                   // Change icmp uge -> icmp ule
 | |
|       // FALL THROUGH
 | |
|     case ICmpInst::ICMP_ULE: {               //  icmp ule i1 A, B -> ~A | B
 | |
|       Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
 | |
|       return BinaryOperator::CreateOr(Not, Op1);
 | |
|     }
 | |
|     case ICmpInst::ICMP_SGE:
 | |
|       std::swap(Op0, Op1);                   // Change icmp sge -> icmp sle
 | |
|       // FALL THROUGH
 | |
|     case ICmpInst::ICMP_SLE: {               //  icmp sle i1 A, B -> A | ~B
 | |
|       Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
 | |
|       return BinaryOperator::CreateOr(Not, Op0);
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned BitWidth = 0;
 | |
|   if (Ty->isIntOrIntVectorTy())
 | |
|     BitWidth = Ty->getScalarSizeInBits();
 | |
|   else if (TD)  // Pointers require TD info to get their size.
 | |
|     BitWidth = TD->getTypeSizeInBits(Ty->getScalarType());
 | |
| 
 | |
|   bool isSignBit = false;
 | |
| 
 | |
|   // See if we are doing a comparison with a constant.
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | |
|     Value *A = 0, *B = 0;
 | |
| 
 | |
|     // Match the following pattern, which is a common idiom when writing
 | |
|     // overflow-safe integer arithmetic function.  The source performs an
 | |
|     // addition in wider type, and explicitly checks for overflow using
 | |
|     // comparisons against INT_MIN and INT_MAX.  Simplify this by using the
 | |
|     // sadd_with_overflow intrinsic.
 | |
|     //
 | |
|     // TODO: This could probably be generalized to handle other overflow-safe
 | |
|     // operations if we worked out the formulas to compute the appropriate
 | |
|     // magic constants.
 | |
|     //
 | |
|     // sum = a + b
 | |
|     // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
 | |
|     {
 | |
|     ConstantInt *CI2;    // I = icmp ugt (add (add A, B), CI2), CI
 | |
|     if (I.getPredicate() == ICmpInst::ICMP_UGT &&
 | |
|         match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
 | |
|       if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
 | |
|         return Res;
 | |
|     }
 | |
| 
 | |
|     // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
 | |
|     if (I.isEquality() && CI->isZero() &&
 | |
|         match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
 | |
|       // (icmp cond A B) if cond is equality
 | |
|       return new ICmpInst(I.getPredicate(), A, B);
 | |
|     }
 | |
| 
 | |
|     // If we have an icmp le or icmp ge instruction, turn it into the
 | |
|     // appropriate icmp lt or icmp gt instruction.  This allows us to rely on
 | |
|     // them being folded in the code below.  The SimplifyICmpInst code has
 | |
|     // already handled the edge cases for us, so we just assert on them.
 | |
|     switch (I.getPredicate()) {
 | |
|     default: break;
 | |
|     case ICmpInst::ICMP_ULE:
 | |
|       assert(!CI->isMaxValue(false));                 // A <=u MAX -> TRUE
 | |
|       return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
 | |
|                           ConstantInt::get(CI->getContext(), CI->getValue()+1));
 | |
|     case ICmpInst::ICMP_SLE:
 | |
|       assert(!CI->isMaxValue(true));                  // A <=s MAX -> TRUE
 | |
|       return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
 | |
|                           ConstantInt::get(CI->getContext(), CI->getValue()+1));
 | |
|     case ICmpInst::ICMP_UGE:
 | |
|       assert(!CI->isMinValue(false));                 // A >=u MIN -> TRUE
 | |
|       return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
 | |
|                           ConstantInt::get(CI->getContext(), CI->getValue()-1));
 | |
|     case ICmpInst::ICMP_SGE:
 | |
|       assert(!CI->isMinValue(true));                  // A >=s MIN -> TRUE
 | |
|       return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
 | |
|                           ConstantInt::get(CI->getContext(), CI->getValue()-1));
 | |
|     }
 | |
| 
 | |
|     // If this comparison is a normal comparison, it demands all
 | |
|     // bits, if it is a sign bit comparison, it only demands the sign bit.
 | |
|     bool UnusedBit;
 | |
|     isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
 | |
|   }
 | |
| 
 | |
|   // See if we can fold the comparison based on range information we can get
 | |
|   // by checking whether bits are known to be zero or one in the input.
 | |
|   if (BitWidth != 0) {
 | |
|     APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
 | |
|     APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
 | |
| 
 | |
|     if (SimplifyDemandedBits(I.getOperandUse(0),
 | |
|                              DemandedBitsLHSMask(I, BitWidth, isSignBit),
 | |
|                              Op0KnownZero, Op0KnownOne, 0))
 | |
|       return &I;
 | |
|     if (SimplifyDemandedBits(I.getOperandUse(1),
 | |
|                              APInt::getAllOnesValue(BitWidth),
 | |
|                              Op1KnownZero, Op1KnownOne, 0))
 | |
|       return &I;
 | |
| 
 | |
|     // Given the known and unknown bits, compute a range that the LHS could be
 | |
|     // in.  Compute the Min, Max and RHS values based on the known bits. For the
 | |
|     // EQ and NE we use unsigned values.
 | |
|     APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
 | |
|     APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
 | |
|     if (I.isSigned()) {
 | |
|       ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
 | |
|                                              Op0Min, Op0Max);
 | |
|       ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
 | |
|                                              Op1Min, Op1Max);
 | |
|     } else {
 | |
|       ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
 | |
|                                                Op0Min, Op0Max);
 | |
|       ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
 | |
|                                                Op1Min, Op1Max);
 | |
|     }
 | |
| 
 | |
|     // If Min and Max are known to be the same, then SimplifyDemandedBits
 | |
|     // figured out that the LHS is a constant.  Just constant fold this now so
 | |
|     // that code below can assume that Min != Max.
 | |
|     if (!isa<Constant>(Op0) && Op0Min == Op0Max)
 | |
|       return new ICmpInst(I.getPredicate(),
 | |
|                           ConstantInt::get(Op0->getType(), Op0Min), Op1);
 | |
|     if (!isa<Constant>(Op1) && Op1Min == Op1Max)
 | |
|       return new ICmpInst(I.getPredicate(), Op0,
 | |
|                           ConstantInt::get(Op1->getType(), Op1Min));
 | |
| 
 | |
|     // Based on the range information we know about the LHS, see if we can
 | |
|     // simplify this comparison.  For example, (x&4) < 8 is always true.
 | |
|     switch (I.getPredicate()) {
 | |
|     default: llvm_unreachable("Unknown icmp opcode!");
 | |
|     case ICmpInst::ICMP_EQ: {
 | |
|       if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
 | |
| 
 | |
|       // If all bits are known zero except for one, then we know at most one
 | |
|       // bit is set.   If the comparison is against zero, then this is a check
 | |
|       // to see if *that* bit is set.
 | |
|       APInt Op0KnownZeroInverted = ~Op0KnownZero;
 | |
|       if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
 | |
|         // If the LHS is an AND with the same constant, look through it.
 | |
|         Value *LHS = 0;
 | |
|         ConstantInt *LHSC = 0;
 | |
|         if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
 | |
|             LHSC->getValue() != Op0KnownZeroInverted)
 | |
|           LHS = Op0;
 | |
| 
 | |
|         // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
 | |
|         // then turn "((1 << x)&8) == 0" into "x != 3".
 | |
|         Value *X = 0;
 | |
|         if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
 | |
|           unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
 | |
|           return new ICmpInst(ICmpInst::ICMP_NE, X,
 | |
|                               ConstantInt::get(X->getType(), CmpVal));
 | |
|         }
 | |
| 
 | |
|         // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
 | |
|         // then turn "((8 >>u x)&1) == 0" into "x != 3".
 | |
|         const APInt *CI;
 | |
|         if (Op0KnownZeroInverted == 1 &&
 | |
|             match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
 | |
|           return new ICmpInst(ICmpInst::ICMP_NE, X,
 | |
|                               ConstantInt::get(X->getType(),
 | |
|                                                CI->countTrailingZeros()));
 | |
|       }
 | |
| 
 | |
|       break;
 | |
|     }
 | |
|     case ICmpInst::ICMP_NE: {
 | |
|       if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
 | |
| 
 | |
|       // If all bits are known zero except for one, then we know at most one
 | |
|       // bit is set.   If the comparison is against zero, then this is a check
 | |
|       // to see if *that* bit is set.
 | |
|       APInt Op0KnownZeroInverted = ~Op0KnownZero;
 | |
|       if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
 | |
|         // If the LHS is an AND with the same constant, look through it.
 | |
|         Value *LHS = 0;
 | |
|         ConstantInt *LHSC = 0;
 | |
|         if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
 | |
|             LHSC->getValue() != Op0KnownZeroInverted)
 | |
|           LHS = Op0;
 | |
| 
 | |
|         // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
 | |
|         // then turn "((1 << x)&8) != 0" into "x == 3".
 | |
|         Value *X = 0;
 | |
|         if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
 | |
|           unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
 | |
|           return new ICmpInst(ICmpInst::ICMP_EQ, X,
 | |
|                               ConstantInt::get(X->getType(), CmpVal));
 | |
|         }
 | |
| 
 | |
|         // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
 | |
|         // then turn "((8 >>u x)&1) != 0" into "x == 3".
 | |
|         const APInt *CI;
 | |
|         if (Op0KnownZeroInverted == 1 &&
 | |
|             match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
 | |
|           return new ICmpInst(ICmpInst::ICMP_EQ, X,
 | |
|                               ConstantInt::get(X->getType(),
 | |
|                                                CI->countTrailingZeros()));
 | |
|       }
 | |
| 
 | |
|       break;
 | |
|     }
 | |
|     case ICmpInst::ICMP_ULT:
 | |
|       if (Op0Max.ult(Op1Min))          // A <u B -> true if max(A) < min(B)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
 | |
|       if (Op0Min.uge(Op1Max))          // A <u B -> false if min(A) >= max(B)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
 | |
|       if (Op1Min == Op0Max)            // A <u B -> A != B if max(A) == min(B)
 | |
|         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
 | |
|       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | |
|         if (Op1Max == Op0Min+1)        // A <u C -> A == C-1 if min(A)+1 == C
 | |
|           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
 | |
|                           ConstantInt::get(CI->getContext(), CI->getValue()-1));
 | |
| 
 | |
|         // (x <u 2147483648) -> (x >s -1)  -> true if sign bit clear
 | |
|         if (CI->isMinValue(true))
 | |
|           return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
 | |
|                            Constant::getAllOnesValue(Op0->getType()));
 | |
|       }
 | |
|       break;
 | |
|     case ICmpInst::ICMP_UGT:
 | |
|       if (Op0Min.ugt(Op1Max))          // A >u B -> true if min(A) > max(B)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
 | |
|       if (Op0Max.ule(Op1Min))          // A >u B -> false if max(A) <= max(B)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
 | |
| 
 | |
|       if (Op1Max == Op0Min)            // A >u B -> A != B if min(A) == max(B)
 | |
|         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
 | |
|       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | |
|         if (Op1Min == Op0Max-1)        // A >u C -> A == C+1 if max(a)-1 == C
 | |
|           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
 | |
|                           ConstantInt::get(CI->getContext(), CI->getValue()+1));
 | |
| 
 | |
|         // (x >u 2147483647) -> (x <s 0)  -> true if sign bit set
 | |
|         if (CI->isMaxValue(true))
 | |
|           return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
 | |
|                               Constant::getNullValue(Op0->getType()));
 | |
|       }
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SLT:
 | |
|       if (Op0Max.slt(Op1Min))          // A <s B -> true if max(A) < min(C)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
 | |
|       if (Op0Min.sge(Op1Max))          // A <s B -> false if min(A) >= max(C)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
 | |
|       if (Op1Min == Op0Max)            // A <s B -> A != B if max(A) == min(B)
 | |
|         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
 | |
|       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | |
|         if (Op1Max == Op0Min+1)        // A <s C -> A == C-1 if min(A)+1 == C
 | |
|           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
 | |
|                           ConstantInt::get(CI->getContext(), CI->getValue()-1));
 | |
|       }
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SGT:
 | |
|       if (Op0Min.sgt(Op1Max))          // A >s B -> true if min(A) > max(B)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
 | |
|       if (Op0Max.sle(Op1Min))          // A >s B -> false if max(A) <= min(B)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
 | |
| 
 | |
|       if (Op1Max == Op0Min)            // A >s B -> A != B if min(A) == max(B)
 | |
|         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
 | |
|       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | |
|         if (Op1Min == Op0Max-1)        // A >s C -> A == C+1 if max(A)-1 == C
 | |
|           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
 | |
|                           ConstantInt::get(CI->getContext(), CI->getValue()+1));
 | |
|       }
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SGE:
 | |
|       assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
 | |
|       if (Op0Min.sge(Op1Max))          // A >=s B -> true if min(A) >= max(B)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
 | |
|       if (Op0Max.slt(Op1Min))          // A >=s B -> false if max(A) < min(B)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SLE:
 | |
|       assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
 | |
|       if (Op0Max.sle(Op1Min))          // A <=s B -> true if max(A) <= min(B)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
 | |
|       if (Op0Min.sgt(Op1Max))          // A <=s B -> false if min(A) > max(B)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
 | |
|       break;
 | |
|     case ICmpInst::ICMP_UGE:
 | |
|       assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
 | |
|       if (Op0Min.uge(Op1Max))          // A >=u B -> true if min(A) >= max(B)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
 | |
|       if (Op0Max.ult(Op1Min))          // A >=u B -> false if max(A) < min(B)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
 | |
|       break;
 | |
|     case ICmpInst::ICMP_ULE:
 | |
|       assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
 | |
|       if (Op0Max.ule(Op1Min))          // A <=u B -> true if max(A) <= min(B)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
 | |
|       if (Op0Min.ugt(Op1Max))          // A <=u B -> false if min(A) > max(B)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Turn a signed comparison into an unsigned one if both operands
 | |
|     // are known to have the same sign.
 | |
|     if (I.isSigned() &&
 | |
|         ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
 | |
|          (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
 | |
|       return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
 | |
|   }
 | |
| 
 | |
|   // Test if the ICmpInst instruction is used exclusively by a select as
 | |
|   // part of a minimum or maximum operation. If so, refrain from doing
 | |
|   // any other folding. This helps out other analyses which understand
 | |
|   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
 | |
|   // and CodeGen. And in this case, at least one of the comparison
 | |
|   // operands has at least one user besides the compare (the select),
 | |
|   // which would often largely negate the benefit of folding anyway.
 | |
|   if (I.hasOneUse())
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
 | |
|       if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
 | |
|           (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
 | |
|         return 0;
 | |
| 
 | |
|   // See if we are doing a comparison between a constant and an instruction that
 | |
|   // can be folded into the comparison.
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | |
|     // Since the RHS is a ConstantInt (CI), if the left hand side is an
 | |
|     // instruction, see if that instruction also has constants so that the
 | |
|     // instruction can be folded into the icmp
 | |
|     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
 | |
|       if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
 | |
|         return Res;
 | |
|   }
 | |
| 
 | |
|   // Handle icmp with constant (but not simple integer constant) RHS
 | |
|   if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
 | |
|     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
 | |
|       switch (LHSI->getOpcode()) {
 | |
|       case Instruction::GetElementPtr:
 | |
|           // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
 | |
|         if (RHSC->isNullValue() &&
 | |
|             cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
 | |
|           return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
 | |
|                   Constant::getNullValue(LHSI->getOperand(0)->getType()));
 | |
|         break;
 | |
|       case Instruction::PHI:
 | |
|         // Only fold icmp into the PHI if the phi and icmp are in the same
 | |
|         // block.  If in the same block, we're encouraging jump threading.  If
 | |
|         // not, we are just pessimizing the code by making an i1 phi.
 | |
|         if (LHSI->getParent() == I.getParent())
 | |
|           if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|             return NV;
 | |
|         break;
 | |
|       case Instruction::Select: {
 | |
|         // If either operand of the select is a constant, we can fold the
 | |
|         // comparison into the select arms, which will cause one to be
 | |
|         // constant folded and the select turned into a bitwise or.
 | |
|         Value *Op1 = 0, *Op2 = 0;
 | |
|         if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1)))
 | |
|           Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
 | |
|         if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2)))
 | |
|           Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
 | |
| 
 | |
|         // We only want to perform this transformation if it will not lead to
 | |
|         // additional code. This is true if either both sides of the select
 | |
|         // fold to a constant (in which case the icmp is replaced with a select
 | |
|         // which will usually simplify) or this is the only user of the
 | |
|         // select (in which case we are trading a select+icmp for a simpler
 | |
|         // select+icmp).
 | |
|         if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) {
 | |
|           if (!Op1)
 | |
|             Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
 | |
|                                       RHSC, I.getName());
 | |
|           if (!Op2)
 | |
|             Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
 | |
|                                       RHSC, I.getName());
 | |
|           return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       case Instruction::IntToPtr:
 | |
|         // icmp pred inttoptr(X), null -> icmp pred X, 0
 | |
|         if (RHSC->isNullValue() && TD &&
 | |
|             TD->getIntPtrType(RHSC->getContext()) ==
 | |
|                LHSI->getOperand(0)->getType())
 | |
|           return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
 | |
|                         Constant::getNullValue(LHSI->getOperand(0)->getType()));
 | |
|         break;
 | |
| 
 | |
|       case Instruction::Load:
 | |
|         // Try to optimize things like "A[i] > 4" to index computations.
 | |
|         if (GetElementPtrInst *GEP =
 | |
|               dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
 | |
|           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
 | |
|             if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
 | |
|                 !cast<LoadInst>(LHSI)->isVolatile())
 | |
|               if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
 | |
|                 return Res;
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
 | |
|   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
 | |
|     if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
 | |
|       return NI;
 | |
|   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
 | |
|     if (Instruction *NI = FoldGEPICmp(GEP, Op0,
 | |
|                            ICmpInst::getSwappedPredicate(I.getPredicate()), I))
 | |
|       return NI;
 | |
| 
 | |
|   // Test to see if the operands of the icmp are casted versions of other
 | |
|   // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
 | |
|   // now.
 | |
|   if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
 | |
|     if (Op0->getType()->isPointerTy() &&
 | |
|         (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
 | |
|       // We keep moving the cast from the left operand over to the right
 | |
|       // operand, where it can often be eliminated completely.
 | |
|       Op0 = CI->getOperand(0);
 | |
| 
 | |
|       // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
 | |
|       // so eliminate it as well.
 | |
|       if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
 | |
|         Op1 = CI2->getOperand(0);
 | |
| 
 | |
|       // If Op1 is a constant, we can fold the cast into the constant.
 | |
|       if (Op0->getType() != Op1->getType()) {
 | |
|         if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
 | |
|           Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
 | |
|         } else {
 | |
|           // Otherwise, cast the RHS right before the icmp
 | |
|           Op1 = Builder->CreateBitCast(Op1, Op0->getType());
 | |
|         }
 | |
|       }
 | |
|       return new ICmpInst(I.getPredicate(), Op0, Op1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (isa<CastInst>(Op0)) {
 | |
|     // Handle the special case of: icmp (cast bool to X), <cst>
 | |
|     // This comes up when you have code like
 | |
|     //   int X = A < B;
 | |
|     //   if (X) ...
 | |
|     // For generality, we handle any zero-extension of any operand comparison
 | |
|     // with a constant or another cast from the same type.
 | |
|     if (isa<Constant>(Op1) || isa<CastInst>(Op1))
 | |
|       if (Instruction *R = visitICmpInstWithCastAndCast(I))
 | |
|         return R;
 | |
|   }
 | |
| 
 | |
|   // Special logic for binary operators.
 | |
|   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
 | |
|   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
 | |
|   if (BO0 || BO1) {
 | |
|     CmpInst::Predicate Pred = I.getPredicate();
 | |
|     bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
 | |
|     if (BO0 && isa<OverflowingBinaryOperator>(BO0))
 | |
|       NoOp0WrapProblem = ICmpInst::isEquality(Pred) ||
 | |
|         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
 | |
|         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
 | |
|     if (BO1 && isa<OverflowingBinaryOperator>(BO1))
 | |
|       NoOp1WrapProblem = ICmpInst::isEquality(Pred) ||
 | |
|         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
 | |
|         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
 | |
| 
 | |
|     // Analyze the case when either Op0 or Op1 is an add instruction.
 | |
|     // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
 | |
|     Value *A = 0, *B = 0, *C = 0, *D = 0;
 | |
|     if (BO0 && BO0->getOpcode() == Instruction::Add)
 | |
|       A = BO0->getOperand(0), B = BO0->getOperand(1);
 | |
|     if (BO1 && BO1->getOpcode() == Instruction::Add)
 | |
|       C = BO1->getOperand(0), D = BO1->getOperand(1);
 | |
| 
 | |
|     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
 | |
|     if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
 | |
|       return new ICmpInst(Pred, A == Op1 ? B : A,
 | |
|                           Constant::getNullValue(Op1->getType()));
 | |
| 
 | |
|     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
 | |
|     if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
 | |
|       return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
 | |
|                           C == Op0 ? D : C);
 | |
| 
 | |
|     // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
 | |
|     if (A && C && (A == C || A == D || B == C || B == D) &&
 | |
|         NoOp0WrapProblem && NoOp1WrapProblem &&
 | |
|         // Try not to increase register pressure.
 | |
|         BO0->hasOneUse() && BO1->hasOneUse()) {
 | |
|       // Determine Y and Z in the form icmp (X+Y), (X+Z).
 | |
|       Value *Y = (A == C || A == D) ? B : A;
 | |
|       Value *Z = (C == A || C == B) ? D : C;
 | |
|       return new ICmpInst(Pred, Y, Z);
 | |
|     }
 | |
| 
 | |
|     // Analyze the case when either Op0 or Op1 is a sub instruction.
 | |
|     // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
 | |
|     A = 0; B = 0; C = 0; D = 0;
 | |
|     if (BO0 && BO0->getOpcode() == Instruction::Sub)
 | |
|       A = BO0->getOperand(0), B = BO0->getOperand(1);
 | |
|     if (BO1 && BO1->getOpcode() == Instruction::Sub)
 | |
|       C = BO1->getOperand(0), D = BO1->getOperand(1);
 | |
| 
 | |
|     // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
 | |
|     if (A == Op1 && NoOp0WrapProblem)
 | |
|       return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
 | |
| 
 | |
|     // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
 | |
|     if (C == Op0 && NoOp1WrapProblem)
 | |
|       return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
 | |
| 
 | |
|     // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
 | |
|     if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
 | |
|         // Try not to increase register pressure.
 | |
|         BO0->hasOneUse() && BO1->hasOneUse())
 | |
|       return new ICmpInst(Pred, A, C);
 | |
| 
 | |
|     // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
 | |
|     if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
 | |
|         // Try not to increase register pressure.
 | |
|         BO0->hasOneUse() && BO1->hasOneUse())
 | |
|       return new ICmpInst(Pred, D, B);
 | |
| 
 | |
|     BinaryOperator *SRem = NULL;
 | |
|     // icmp (srem X, Y), Y
 | |
|     if (BO0 && BO0->getOpcode() == Instruction::SRem &&
 | |
|         Op1 == BO0->getOperand(1))
 | |
|       SRem = BO0;
 | |
|     // icmp Y, (srem X, Y)
 | |
|     else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
 | |
|              Op0 == BO1->getOperand(1))
 | |
|       SRem = BO1;
 | |
|     if (SRem) {
 | |
|       // We don't check hasOneUse to avoid increasing register pressure because
 | |
|       // the value we use is the same value this instruction was already using.
 | |
|       switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
 | |
|         default: break;
 | |
|         case ICmpInst::ICMP_EQ:
 | |
|           return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
 | |
|         case ICmpInst::ICMP_NE:
 | |
|           return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
 | |
|         case ICmpInst::ICMP_SGT:
 | |
|         case ICmpInst::ICMP_SGE:
 | |
|           return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
 | |
|                               Constant::getAllOnesValue(SRem->getType()));
 | |
|         case ICmpInst::ICMP_SLT:
 | |
|         case ICmpInst::ICMP_SLE:
 | |
|           return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
 | |
|                               Constant::getNullValue(SRem->getType()));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
 | |
|         BO0->hasOneUse() && BO1->hasOneUse() &&
 | |
|         BO0->getOperand(1) == BO1->getOperand(1)) {
 | |
|       switch (BO0->getOpcode()) {
 | |
|       default: break;
 | |
|       case Instruction::Add:
 | |
|       case Instruction::Sub:
 | |
|       case Instruction::Xor:
 | |
|         if (I.isEquality())    // a+x icmp eq/ne b+x --> a icmp b
 | |
|           return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
 | |
|                               BO1->getOperand(0));
 | |
|         // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
 | |
|         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
 | |
|           if (CI->getValue().isSignBit()) {
 | |
|             ICmpInst::Predicate Pred = I.isSigned()
 | |
|                                            ? I.getUnsignedPredicate()
 | |
|                                            : I.getSignedPredicate();
 | |
|             return new ICmpInst(Pred, BO0->getOperand(0),
 | |
|                                 BO1->getOperand(0));
 | |
|           }
 | |
| 
 | |
|           if (CI->isMaxValue(true)) {
 | |
|             ICmpInst::Predicate Pred = I.isSigned()
 | |
|                                            ? I.getUnsignedPredicate()
 | |
|                                            : I.getSignedPredicate();
 | |
|             Pred = I.getSwappedPredicate(Pred);
 | |
|             return new ICmpInst(Pred, BO0->getOperand(0),
 | |
|                                 BO1->getOperand(0));
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
|       case Instruction::Mul:
 | |
|         if (!I.isEquality())
 | |
|           break;
 | |
| 
 | |
|         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
 | |
|           // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
 | |
|           // Mask = -1 >> count-trailing-zeros(Cst).
 | |
|           if (!CI->isZero() && !CI->isOne()) {
 | |
|             const APInt &AP = CI->getValue();
 | |
|             ConstantInt *Mask = ConstantInt::get(I.getContext(),
 | |
|                                     APInt::getLowBitsSet(AP.getBitWidth(),
 | |
|                                                          AP.getBitWidth() -
 | |
|                                                     AP.countTrailingZeros()));
 | |
|             Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
 | |
|             Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
 | |
|             return new ICmpInst(I.getPredicate(), And1, And2);
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
|       case Instruction::UDiv:
 | |
|       case Instruction::LShr:
 | |
|         if (I.isSigned())
 | |
|           break;
 | |
|         // fall-through
 | |
|       case Instruction::SDiv:
 | |
|       case Instruction::AShr:
 | |
|         if (!BO0->isExact() || !BO1->isExact())
 | |
|           break;
 | |
|         return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
 | |
|                             BO1->getOperand(0));
 | |
|       case Instruction::Shl: {
 | |
|         bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
 | |
|         bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
 | |
|         if (!NUW && !NSW)
 | |
|           break;
 | |
|         if (!NSW && I.isSigned())
 | |
|           break;
 | |
|         return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
 | |
|                             BO1->getOperand(0));
 | |
|       }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   { Value *A, *B;
 | |
|     // ~x < ~y --> y < x
 | |
|     // ~x < cst --> ~cst < x
 | |
|     if (match(Op0, m_Not(m_Value(A)))) {
 | |
|       if (match(Op1, m_Not(m_Value(B))))
 | |
|         return new ICmpInst(I.getPredicate(), B, A);
 | |
|       if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
 | |
|         return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
 | |
|     }
 | |
| 
 | |
|     // (a+b) <u a  --> llvm.uadd.with.overflow.
 | |
|     // (a+b) <u b  --> llvm.uadd.with.overflow.
 | |
|     if (I.getPredicate() == ICmpInst::ICMP_ULT &&
 | |
|         match(Op0, m_Add(m_Value(A), m_Value(B))) &&
 | |
|         (Op1 == A || Op1 == B))
 | |
|       if (Instruction *R = ProcessUAddIdiom(I, Op0, *this))
 | |
|         return R;
 | |
| 
 | |
|     // a >u (a+b)  --> llvm.uadd.with.overflow.
 | |
|     // b >u (a+b)  --> llvm.uadd.with.overflow.
 | |
|     if (I.getPredicate() == ICmpInst::ICMP_UGT &&
 | |
|         match(Op1, m_Add(m_Value(A), m_Value(B))) &&
 | |
|         (Op0 == A || Op0 == B))
 | |
|       if (Instruction *R = ProcessUAddIdiom(I, Op1, *this))
 | |
|         return R;
 | |
|   }
 | |
| 
 | |
|   if (I.isEquality()) {
 | |
|     Value *A, *B, *C, *D;
 | |
| 
 | |
|     if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
 | |
|       if (A == Op1 || B == Op1) {    // (A^B) == A  ->  B == 0
 | |
|         Value *OtherVal = A == Op1 ? B : A;
 | |
|         return new ICmpInst(I.getPredicate(), OtherVal,
 | |
|                             Constant::getNullValue(A->getType()));
 | |
|       }
 | |
| 
 | |
|       if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
 | |
|         // A^c1 == C^c2 --> A == C^(c1^c2)
 | |
|         ConstantInt *C1, *C2;
 | |
|         if (match(B, m_ConstantInt(C1)) &&
 | |
|             match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
 | |
|           Constant *NC = ConstantInt::get(I.getContext(),
 | |
|                                           C1->getValue() ^ C2->getValue());
 | |
|           Value *Xor = Builder->CreateXor(C, NC);
 | |
|           return new ICmpInst(I.getPredicate(), A, Xor);
 | |
|         }
 | |
| 
 | |
|         // A^B == A^D -> B == D
 | |
|         if (A == C) return new ICmpInst(I.getPredicate(), B, D);
 | |
|         if (A == D) return new ICmpInst(I.getPredicate(), B, C);
 | |
|         if (B == C) return new ICmpInst(I.getPredicate(), A, D);
 | |
|         if (B == D) return new ICmpInst(I.getPredicate(), A, C);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
 | |
|         (A == Op0 || B == Op0)) {
 | |
|       // A == (A^B)  ->  B == 0
 | |
|       Value *OtherVal = A == Op0 ? B : A;
 | |
|       return new ICmpInst(I.getPredicate(), OtherVal,
 | |
|                           Constant::getNullValue(A->getType()));
 | |
|     }
 | |
| 
 | |
|     // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
 | |
|     if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
 | |
|         match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
 | |
|       Value *X = 0, *Y = 0, *Z = 0;
 | |
| 
 | |
|       if (A == C) {
 | |
|         X = B; Y = D; Z = A;
 | |
|       } else if (A == D) {
 | |
|         X = B; Y = C; Z = A;
 | |
|       } else if (B == C) {
 | |
|         X = A; Y = D; Z = B;
 | |
|       } else if (B == D) {
 | |
|         X = A; Y = C; Z = B;
 | |
|       }
 | |
| 
 | |
|       if (X) {   // Build (X^Y) & Z
 | |
|         Op1 = Builder->CreateXor(X, Y);
 | |
|         Op1 = Builder->CreateAnd(Op1, Z);
 | |
|         I.setOperand(0, Op1);
 | |
|         I.setOperand(1, Constant::getNullValue(Op1->getType()));
 | |
|         return &I;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
 | |
|     // "icmp (and X, mask), cst"
 | |
|     uint64_t ShAmt = 0;
 | |
|     ConstantInt *Cst1;
 | |
|     if (Op0->hasOneUse() &&
 | |
|         match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A),
 | |
|                                            m_ConstantInt(ShAmt))))) &&
 | |
|         match(Op1, m_ConstantInt(Cst1)) &&
 | |
|         // Only do this when A has multiple uses.  This is most important to do
 | |
|         // when it exposes other optimizations.
 | |
|         !A->hasOneUse()) {
 | |
|       unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
 | |
| 
 | |
|       if (ShAmt < ASize) {
 | |
|         APInt MaskV =
 | |
|           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
 | |
|         MaskV <<= ShAmt;
 | |
| 
 | |
|         APInt CmpV = Cst1->getValue().zext(ASize);
 | |
|         CmpV <<= ShAmt;
 | |
| 
 | |
|         Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
 | |
|         return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     Value *X; ConstantInt *Cst;
 | |
|     // icmp X+Cst, X
 | |
|     if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
 | |
|       return FoldICmpAddOpCst(I, X, Cst, I.getPredicate(), Op0);
 | |
| 
 | |
|     // icmp X, X+Cst
 | |
|     if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
 | |
|       return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate(), Op1);
 | |
|   }
 | |
|   return Changed ? &I : 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
 | |
| ///
 | |
| Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
 | |
|                                                 Instruction *LHSI,
 | |
|                                                 Constant *RHSC) {
 | |
|   if (!isa<ConstantFP>(RHSC)) return 0;
 | |
|   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
 | |
| 
 | |
|   // Get the width of the mantissa.  We don't want to hack on conversions that
 | |
|   // might lose information from the integer, e.g. "i64 -> float"
 | |
|   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
 | |
|   if (MantissaWidth == -1) return 0;  // Unknown.
 | |
| 
 | |
|   // Check to see that the input is converted from an integer type that is small
 | |
|   // enough that preserves all bits.  TODO: check here for "known" sign bits.
 | |
|   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
 | |
|   unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits();
 | |
| 
 | |
|   // If this is a uitofp instruction, we need an extra bit to hold the sign.
 | |
|   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
 | |
|   if (LHSUnsigned)
 | |
|     ++InputSize;
 | |
| 
 | |
|   // If the conversion would lose info, don't hack on this.
 | |
|   if ((int)InputSize > MantissaWidth)
 | |
|     return 0;
 | |
| 
 | |
|   // Otherwise, we can potentially simplify the comparison.  We know that it
 | |
|   // will always come through as an integer value and we know the constant is
 | |
|   // not a NAN (it would have been previously simplified).
 | |
|   assert(!RHS.isNaN() && "NaN comparison not already folded!");
 | |
| 
 | |
|   ICmpInst::Predicate Pred;
 | |
|   switch (I.getPredicate()) {
 | |
|   default: llvm_unreachable("Unexpected predicate!");
 | |
|   case FCmpInst::FCMP_UEQ:
 | |
|   case FCmpInst::FCMP_OEQ:
 | |
|     Pred = ICmpInst::ICMP_EQ;
 | |
|     break;
 | |
|   case FCmpInst::FCMP_UGT:
 | |
|   case FCmpInst::FCMP_OGT:
 | |
|     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
 | |
|     break;
 | |
|   case FCmpInst::FCMP_UGE:
 | |
|   case FCmpInst::FCMP_OGE:
 | |
|     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
 | |
|     break;
 | |
|   case FCmpInst::FCMP_ULT:
 | |
|   case FCmpInst::FCMP_OLT:
 | |
|     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
 | |
|     break;
 | |
|   case FCmpInst::FCMP_ULE:
 | |
|   case FCmpInst::FCMP_OLE:
 | |
|     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
 | |
|     break;
 | |
|   case FCmpInst::FCMP_UNE:
 | |
|   case FCmpInst::FCMP_ONE:
 | |
|     Pred = ICmpInst::ICMP_NE;
 | |
|     break;
 | |
|   case FCmpInst::FCMP_ORD:
 | |
|     return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
 | |
|   case FCmpInst::FCMP_UNO:
 | |
|     return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
 | |
|   }
 | |
| 
 | |
|   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
 | |
| 
 | |
|   // Now we know that the APFloat is a normal number, zero or inf.
 | |
| 
 | |
|   // See if the FP constant is too large for the integer.  For example,
 | |
|   // comparing an i8 to 300.0.
 | |
|   unsigned IntWidth = IntTy->getScalarSizeInBits();
 | |
| 
 | |
|   if (!LHSUnsigned) {
 | |
|     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
 | |
|     // and large values.
 | |
|     APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
 | |
|     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
 | |
|                           APFloat::rmNearestTiesToEven);
 | |
|     if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
 | |
|       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
 | |
|           Pred == ICmpInst::ICMP_SLE)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
 | |
|       return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
 | |
|     }
 | |
|   } else {
 | |
|     // If the RHS value is > UnsignedMax, fold the comparison. This handles
 | |
|     // +INF and large values.
 | |
|     APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
 | |
|     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
 | |
|                           APFloat::rmNearestTiesToEven);
 | |
|     if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
 | |
|       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
 | |
|           Pred == ICmpInst::ICMP_ULE)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
 | |
|       return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!LHSUnsigned) {
 | |
|     // See if the RHS value is < SignedMin.
 | |
|     APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
 | |
|     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
 | |
|                           APFloat::rmNearestTiesToEven);
 | |
|     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
 | |
|       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
 | |
|           Pred == ICmpInst::ICMP_SGE)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
 | |
|       return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
 | |
|   // [0, UMAX], but it may still be fractional.  See if it is fractional by
 | |
|   // casting the FP value to the integer value and back, checking for equality.
 | |
|   // Don't do this for zero, because -0.0 is not fractional.
 | |
|   Constant *RHSInt = LHSUnsigned
 | |
|     ? ConstantExpr::getFPToUI(RHSC, IntTy)
 | |
|     : ConstantExpr::getFPToSI(RHSC, IntTy);
 | |
|   if (!RHS.isZero()) {
 | |
|     bool Equal = LHSUnsigned
 | |
|       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
 | |
|       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
 | |
|     if (!Equal) {
 | |
|       // If we had a comparison against a fractional value, we have to adjust
 | |
|       // the compare predicate and sometimes the value.  RHSC is rounded towards
 | |
|       // zero at this point.
 | |
|       switch (Pred) {
 | |
|       default: llvm_unreachable("Unexpected integer comparison!");
 | |
|       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
 | |
|       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
 | |
|       case ICmpInst::ICMP_ULE:
 | |
|         // (float)int <= 4.4   --> int <= 4
 | |
|         // (float)int <= -4.4  --> false
 | |
|         if (RHS.isNegative())
 | |
|           return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
 | |
|         break;
 | |
|       case ICmpInst::ICMP_SLE:
 | |
|         // (float)int <= 4.4   --> int <= 4
 | |
|         // (float)int <= -4.4  --> int < -4
 | |
|         if (RHS.isNegative())
 | |
|           Pred = ICmpInst::ICMP_SLT;
 | |
|         break;
 | |
|       case ICmpInst::ICMP_ULT:
 | |
|         // (float)int < -4.4   --> false
 | |
|         // (float)int < 4.4    --> int <= 4
 | |
|         if (RHS.isNegative())
 | |
|           return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
 | |
|         Pred = ICmpInst::ICMP_ULE;
 | |
|         break;
 | |
|       case ICmpInst::ICMP_SLT:
 | |
|         // (float)int < -4.4   --> int < -4
 | |
|         // (float)int < 4.4    --> int <= 4
 | |
|         if (!RHS.isNegative())
 | |
|           Pred = ICmpInst::ICMP_SLE;
 | |
|         break;
 | |
|       case ICmpInst::ICMP_UGT:
 | |
|         // (float)int > 4.4    --> int > 4
 | |
|         // (float)int > -4.4   --> true
 | |
|         if (RHS.isNegative())
 | |
|           return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
 | |
|         break;
 | |
|       case ICmpInst::ICMP_SGT:
 | |
|         // (float)int > 4.4    --> int > 4
 | |
|         // (float)int > -4.4   --> int >= -4
 | |
|         if (RHS.isNegative())
 | |
|           Pred = ICmpInst::ICMP_SGE;
 | |
|         break;
 | |
|       case ICmpInst::ICMP_UGE:
 | |
|         // (float)int >= -4.4   --> true
 | |
|         // (float)int >= 4.4    --> int > 4
 | |
|         if (!RHS.isNegative())
 | |
|           return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
 | |
|         Pred = ICmpInst::ICMP_UGT;
 | |
|         break;
 | |
|       case ICmpInst::ICMP_SGE:
 | |
|         // (float)int >= -4.4   --> int >= -4
 | |
|         // (float)int >= 4.4    --> int > 4
 | |
|         if (!RHS.isNegative())
 | |
|           Pred = ICmpInst::ICMP_SGT;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Lower this FP comparison into an appropriate integer version of the
 | |
|   // comparison.
 | |
|   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   /// Orders the operands of the compare so that they are listed from most
 | |
|   /// complex to least complex.  This puts constants before unary operators,
 | |
|   /// before binary operators.
 | |
|   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
 | |
|     I.swapOperands();
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, TD))
 | |
|     return ReplaceInstUsesWith(I, V);
 | |
| 
 | |
|   // Simplify 'fcmp pred X, X'
 | |
|   if (Op0 == Op1) {
 | |
|     switch (I.getPredicate()) {
 | |
|     default: llvm_unreachable("Unknown predicate!");
 | |
|     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
 | |
|     case FCmpInst::FCMP_ULT:    // True if unordered or less than
 | |
|     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
 | |
|     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
 | |
|       // Canonicalize these to be 'fcmp uno %X, 0.0'.
 | |
|       I.setPredicate(FCmpInst::FCMP_UNO);
 | |
|       I.setOperand(1, Constant::getNullValue(Op0->getType()));
 | |
|       return &I;
 | |
| 
 | |
|     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
 | |
|     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
 | |
|     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
 | |
|     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
 | |
|       // Canonicalize these to be 'fcmp ord %X, 0.0'.
 | |
|       I.setPredicate(FCmpInst::FCMP_ORD);
 | |
|       I.setOperand(1, Constant::getNullValue(Op0->getType()));
 | |
|       return &I;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Handle fcmp with constant RHS
 | |
|   if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
 | |
|     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
 | |
|       switch (LHSI->getOpcode()) {
 | |
|       case Instruction::FPExt: {
 | |
|         // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
 | |
|         FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
 | |
|         ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
 | |
|         if (!RHSF)
 | |
|           break;
 | |
| 
 | |
|         // We can't convert a PPC double double.
 | |
|         if (RHSF->getType()->isPPC_FP128Ty())
 | |
|           break;
 | |
| 
 | |
|         const fltSemantics *Sem;
 | |
|         // FIXME: This shouldn't be here.
 | |
|         if (LHSExt->getSrcTy()->isFloatTy())
 | |
|           Sem = &APFloat::IEEEsingle;
 | |
|         else if (LHSExt->getSrcTy()->isDoubleTy())
 | |
|           Sem = &APFloat::IEEEdouble;
 | |
|         else if (LHSExt->getSrcTy()->isFP128Ty())
 | |
|           Sem = &APFloat::IEEEquad;
 | |
|         else if (LHSExt->getSrcTy()->isX86_FP80Ty())
 | |
|           Sem = &APFloat::x87DoubleExtended;
 | |
|         else
 | |
|           break;
 | |
| 
 | |
|         bool Lossy;
 | |
|         APFloat F = RHSF->getValueAPF();
 | |
|         F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
 | |
| 
 | |
|         // Avoid lossy conversions and denormals. Zero is a special case
 | |
|         // that's OK to convert.
 | |
|         APFloat Fabs = F;
 | |
|         Fabs.clearSign();
 | |
|         if (!Lossy &&
 | |
|             ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
 | |
|                  APFloat::cmpLessThan) || Fabs.isZero()))
 | |
| 
 | |
|           return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
 | |
|                               ConstantFP::get(RHSC->getContext(), F));
 | |
|         break;
 | |
|       }
 | |
|       case Instruction::PHI:
 | |
|         // Only fold fcmp into the PHI if the phi and fcmp are in the same
 | |
|         // block.  If in the same block, we're encouraging jump threading.  If
 | |
|         // not, we are just pessimizing the code by making an i1 phi.
 | |
|         if (LHSI->getParent() == I.getParent())
 | |
|           if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|             return NV;
 | |
|         break;
 | |
|       case Instruction::SIToFP:
 | |
|       case Instruction::UIToFP:
 | |
|         if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
 | |
|           return NV;
 | |
|         break;
 | |
|       case Instruction::Select: {
 | |
|         // If either operand of the select is a constant, we can fold the
 | |
|         // comparison into the select arms, which will cause one to be
 | |
|         // constant folded and the select turned into a bitwise or.
 | |
|         Value *Op1 = 0, *Op2 = 0;
 | |
|         if (LHSI->hasOneUse()) {
 | |
|           if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
 | |
|             // Fold the known value into the constant operand.
 | |
|             Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
 | |
|             // Insert a new FCmp of the other select operand.
 | |
|             Op2 = Builder->CreateFCmp(I.getPredicate(),
 | |
|                                       LHSI->getOperand(2), RHSC, I.getName());
 | |
|           } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
 | |
|             // Fold the known value into the constant operand.
 | |
|             Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
 | |
|             // Insert a new FCmp of the other select operand.
 | |
|             Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1),
 | |
|                                       RHSC, I.getName());
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (Op1)
 | |
|           return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
 | |
|         break;
 | |
|       }
 | |
|       case Instruction::FSub: {
 | |
|         // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
 | |
|         Value *Op;
 | |
|         if (match(LHSI, m_FNeg(m_Value(Op))))
 | |
|           return new FCmpInst(I.getSwappedPredicate(), Op,
 | |
|                               ConstantExpr::getFNeg(RHSC));
 | |
|         break;
 | |
|       }
 | |
|       case Instruction::Load:
 | |
|         if (GetElementPtrInst *GEP =
 | |
|             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
 | |
|           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
 | |
|             if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
 | |
|                 !cast<LoadInst>(LHSI)->isVolatile())
 | |
|               if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
 | |
|                 return Res;
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
 | |
|   Value *X, *Y;
 | |
|   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
 | |
|     return new FCmpInst(I.getSwappedPredicate(), X, Y);
 | |
| 
 | |
|   // fcmp (fpext x), (fpext y) -> fcmp x, y
 | |
|   if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
 | |
|     if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
 | |
|       if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
 | |
|         return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
 | |
|                             RHSExt->getOperand(0));
 | |
| 
 | |
|   return Changed ? &I : 0;
 | |
| }
 |