mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 00:16:48 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55574 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			5296 lines
		
	
	
		
			190 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			5296 lines
		
	
	
		
			190 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements the SelectionDAG class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/GlobalAlias.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Assembly/Writer.h"
 | |
| #include "llvm/CallingConv.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | |
| #include "llvm/CodeGen/PseudoSourceValue.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include <algorithm>
 | |
| #include <cmath>
 | |
| using namespace llvm;
 | |
| 
 | |
| /// makeVTList - Return an instance of the SDVTList struct initialized with the
 | |
| /// specified members.
 | |
| static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
 | |
|   SDVTList Res = {VTs, NumVTs};
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
 | |
|   switch (VT.getSimpleVT()) {
 | |
|   default: assert(0 && "Unknown FP format");
 | |
|   case MVT::f32:     return &APFloat::IEEEsingle;
 | |
|   case MVT::f64:     return &APFloat::IEEEdouble;
 | |
|   case MVT::f80:     return &APFloat::x87DoubleExtended;
 | |
|   case MVT::f128:    return &APFloat::IEEEquad;
 | |
|   case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
 | |
|   }
 | |
| }
 | |
| 
 | |
| SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                              ConstantFPSDNode Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// isExactlyValue - We don't rely on operator== working on double values, as
 | |
| /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
 | |
| /// As such, this method can be used to do an exact bit-for-bit comparison of
 | |
| /// two floating point values.
 | |
| bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
 | |
|   return Value.bitwiseIsEqual(V);
 | |
| }
 | |
| 
 | |
| bool ConstantFPSDNode::isValueValidForType(MVT VT,
 | |
|                                            const APFloat& Val) {
 | |
|   assert(VT.isFloatingPoint() && "Can only convert between FP types");
 | |
|   
 | |
|   // PPC long double cannot be converted to any other type.
 | |
|   if (VT == MVT::ppcf128 ||
 | |
|       &Val.getSemantics() == &APFloat::PPCDoubleDouble)
 | |
|     return false;
 | |
|   
 | |
|   // convert modifies in place, so make a copy.
 | |
|   APFloat Val2 = APFloat(Val);
 | |
|   return Val2.convert(*MVTToAPFloatSemantics(VT),
 | |
|                       APFloat::rmNearestTiesToEven) == APFloat::opOK;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                              ISD Namespace
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// isBuildVectorAllOnes - Return true if the specified node is a
 | |
| /// BUILD_VECTOR where all of the elements are ~0 or undef.
 | |
| bool ISD::isBuildVectorAllOnes(const SDNode *N) {
 | |
|   // Look through a bit convert.
 | |
|   if (N->getOpcode() == ISD::BIT_CONVERT)
 | |
|     N = N->getOperand(0).getNode();
 | |
|   
 | |
|   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
 | |
|   
 | |
|   unsigned i = 0, e = N->getNumOperands();
 | |
|   
 | |
|   // Skip over all of the undef values.
 | |
|   while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
 | |
|     ++i;
 | |
|   
 | |
|   // Do not accept an all-undef vector.
 | |
|   if (i == e) return false;
 | |
|   
 | |
|   // Do not accept build_vectors that aren't all constants or which have non-~0
 | |
|   // elements.
 | |
|   SDValue NotZero = N->getOperand(i);
 | |
|   if (isa<ConstantSDNode>(NotZero)) {
 | |
|     if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
 | |
|       return false;
 | |
|   } else if (isa<ConstantFPSDNode>(NotZero)) {
 | |
|     if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
 | |
|                 convertToAPInt().isAllOnesValue())
 | |
|       return false;
 | |
|   } else
 | |
|     return false;
 | |
|   
 | |
|   // Okay, we have at least one ~0 value, check to see if the rest match or are
 | |
|   // undefs.
 | |
|   for (++i; i != e; ++i)
 | |
|     if (N->getOperand(i) != NotZero &&
 | |
|         N->getOperand(i).getOpcode() != ISD::UNDEF)
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isBuildVectorAllZeros - Return true if the specified node is a
 | |
| /// BUILD_VECTOR where all of the elements are 0 or undef.
 | |
| bool ISD::isBuildVectorAllZeros(const SDNode *N) {
 | |
|   // Look through a bit convert.
 | |
|   if (N->getOpcode() == ISD::BIT_CONVERT)
 | |
|     N = N->getOperand(0).getNode();
 | |
|   
 | |
|   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
 | |
|   
 | |
|   unsigned i = 0, e = N->getNumOperands();
 | |
|   
 | |
|   // Skip over all of the undef values.
 | |
|   while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
 | |
|     ++i;
 | |
|   
 | |
|   // Do not accept an all-undef vector.
 | |
|   if (i == e) return false;
 | |
|   
 | |
|   // Do not accept build_vectors that aren't all constants or which have non-~0
 | |
|   // elements.
 | |
|   SDValue Zero = N->getOperand(i);
 | |
|   if (isa<ConstantSDNode>(Zero)) {
 | |
|     if (!cast<ConstantSDNode>(Zero)->isNullValue())
 | |
|       return false;
 | |
|   } else if (isa<ConstantFPSDNode>(Zero)) {
 | |
|     if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
 | |
|       return false;
 | |
|   } else
 | |
|     return false;
 | |
|   
 | |
|   // Okay, we have at least one ~0 value, check to see if the rest match or are
 | |
|   // undefs.
 | |
|   for (++i; i != e; ++i)
 | |
|     if (N->getOperand(i) != Zero &&
 | |
|         N->getOperand(i).getOpcode() != ISD::UNDEF)
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isScalarToVector - Return true if the specified node is a
 | |
| /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
 | |
| /// element is not an undef.
 | |
| bool ISD::isScalarToVector(const SDNode *N) {
 | |
|   if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
 | |
|     return true;
 | |
| 
 | |
|   if (N->getOpcode() != ISD::BUILD_VECTOR)
 | |
|     return false;
 | |
|   if (N->getOperand(0).getOpcode() == ISD::UNDEF)
 | |
|     return false;
 | |
|   unsigned NumElems = N->getNumOperands();
 | |
|   for (unsigned i = 1; i < NumElems; ++i) {
 | |
|     SDValue V = N->getOperand(i);
 | |
|     if (V.getOpcode() != ISD::UNDEF)
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isDebugLabel - Return true if the specified node represents a debug
 | |
| /// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
 | |
| bool ISD::isDebugLabel(const SDNode *N) {
 | |
|   SDValue Zero;
 | |
|   if (N->getOpcode() == ISD::DBG_LABEL)
 | |
|     return true;
 | |
|   if (N->isMachineOpcode() &&
 | |
|       N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
 | |
| /// when given the operation for (X op Y).
 | |
| ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
 | |
|   // To perform this operation, we just need to swap the L and G bits of the
 | |
|   // operation.
 | |
|   unsigned OldL = (Operation >> 2) & 1;
 | |
|   unsigned OldG = (Operation >> 1) & 1;
 | |
|   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
 | |
|                        (OldL << 1) |       // New G bit
 | |
|                        (OldG << 2));        // New L bit.
 | |
| }
 | |
| 
 | |
| /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
 | |
| /// 'op' is a valid SetCC operation.
 | |
| ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
 | |
|   unsigned Operation = Op;
 | |
|   if (isInteger)
 | |
|     Operation ^= 7;   // Flip L, G, E bits, but not U.
 | |
|   else
 | |
|     Operation ^= 15;  // Flip all of the condition bits.
 | |
|   if (Operation > ISD::SETTRUE2)
 | |
|     Operation &= ~8;     // Don't let N and U bits get set.
 | |
|   return ISD::CondCode(Operation);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isSignedOp - For an integer comparison, return 1 if the comparison is a
 | |
| /// signed operation and 2 if the result is an unsigned comparison.  Return zero
 | |
| /// if the operation does not depend on the sign of the input (setne and seteq).
 | |
| static int isSignedOp(ISD::CondCode Opcode) {
 | |
|   switch (Opcode) {
 | |
|   default: assert(0 && "Illegal integer setcc operation!");
 | |
|   case ISD::SETEQ:
 | |
|   case ISD::SETNE: return 0;
 | |
|   case ISD::SETLT:
 | |
|   case ISD::SETLE:
 | |
|   case ISD::SETGT:
 | |
|   case ISD::SETGE: return 1;
 | |
|   case ISD::SETULT:
 | |
|   case ISD::SETULE:
 | |
|   case ISD::SETUGT:
 | |
|   case ISD::SETUGE: return 2;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getSetCCOrOperation - Return the result of a logical OR between different
 | |
| /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
 | |
| /// returns SETCC_INVALID if it is not possible to represent the resultant
 | |
| /// comparison.
 | |
| ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
 | |
|                                        bool isInteger) {
 | |
|   if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
 | |
|     // Cannot fold a signed integer setcc with an unsigned integer setcc.
 | |
|     return ISD::SETCC_INVALID;
 | |
| 
 | |
|   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
 | |
| 
 | |
|   // If the N and U bits get set then the resultant comparison DOES suddenly
 | |
|   // care about orderedness, and is true when ordered.
 | |
|   if (Op > ISD::SETTRUE2)
 | |
|     Op &= ~16;     // Clear the U bit if the N bit is set.
 | |
|   
 | |
|   // Canonicalize illegal integer setcc's.
 | |
|   if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
 | |
|     Op = ISD::SETNE;
 | |
|   
 | |
|   return ISD::CondCode(Op);
 | |
| }
 | |
| 
 | |
| /// getSetCCAndOperation - Return the result of a logical AND between different
 | |
| /// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
 | |
| /// function returns zero if it is not possible to represent the resultant
 | |
| /// comparison.
 | |
| ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
 | |
|                                         bool isInteger) {
 | |
|   if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
 | |
|     // Cannot fold a signed setcc with an unsigned setcc.
 | |
|     return ISD::SETCC_INVALID;
 | |
| 
 | |
|   // Combine all of the condition bits.
 | |
|   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
 | |
|   
 | |
|   // Canonicalize illegal integer setcc's.
 | |
|   if (isInteger) {
 | |
|     switch (Result) {
 | |
|     default: break;
 | |
|     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
 | |
|     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
 | |
|     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
 | |
|     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
 | |
|     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| const TargetMachine &SelectionDAG::getTarget() const {
 | |
|   return TLI.getTargetMachine();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           SDNode Profile Support
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
 | |
| ///
 | |
| static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
 | |
|   ID.AddInteger(OpC);
 | |
| }
 | |
| 
 | |
| /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
 | |
| /// solely with their pointer.
 | |
| static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
 | |
|   ID.AddPointer(VTList.VTs);  
 | |
| }
 | |
| 
 | |
| /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
 | |
| ///
 | |
| static void AddNodeIDOperands(FoldingSetNodeID &ID,
 | |
|                               const SDValue *Ops, unsigned NumOps) {
 | |
|   for (; NumOps; --NumOps, ++Ops) {
 | |
|     ID.AddPointer(Ops->getNode());
 | |
|     ID.AddInteger(Ops->getResNo());
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
 | |
| ///
 | |
| static void AddNodeIDOperands(FoldingSetNodeID &ID,
 | |
|                               const SDUse *Ops, unsigned NumOps) {
 | |
|   for (; NumOps; --NumOps, ++Ops) {
 | |
|     ID.AddPointer(Ops->getVal());
 | |
|     ID.AddInteger(Ops->getSDValue().getResNo());
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void AddNodeIDNode(FoldingSetNodeID &ID,
 | |
|                           unsigned short OpC, SDVTList VTList, 
 | |
|                           const SDValue *OpList, unsigned N) {
 | |
|   AddNodeIDOpcode(ID, OpC);
 | |
|   AddNodeIDValueTypes(ID, VTList);
 | |
|   AddNodeIDOperands(ID, OpList, N);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
 | |
| /// data.
 | |
| static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
 | |
|   AddNodeIDOpcode(ID, N->getOpcode());
 | |
|   // Add the return value info.
 | |
|   AddNodeIDValueTypes(ID, N->getVTList());
 | |
|   // Add the operand info.
 | |
|   AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
 | |
| 
 | |
|   // Handle SDNode leafs with special info.
 | |
|   switch (N->getOpcode()) {
 | |
|   default: break;  // Normal nodes don't need extra info.
 | |
|   case ISD::ARG_FLAGS:
 | |
|     ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
 | |
|     break;
 | |
|   case ISD::TargetConstant:
 | |
|   case ISD::Constant:
 | |
|     ID.Add(cast<ConstantSDNode>(N)->getAPIntValue());
 | |
|     break;
 | |
|   case ISD::TargetConstantFP:
 | |
|   case ISD::ConstantFP: {
 | |
|     ID.Add(cast<ConstantFPSDNode>(N)->getValueAPF());
 | |
|     break;
 | |
|   }
 | |
|   case ISD::TargetGlobalAddress:
 | |
|   case ISD::GlobalAddress:
 | |
|   case ISD::TargetGlobalTLSAddress:
 | |
|   case ISD::GlobalTLSAddress: {
 | |
|     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
 | |
|     ID.AddPointer(GA->getGlobal());
 | |
|     ID.AddInteger(GA->getOffset());
 | |
|     break;
 | |
|   }
 | |
|   case ISD::BasicBlock:
 | |
|     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
 | |
|     break;
 | |
|   case ISD::Register:
 | |
|     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
 | |
|     break;
 | |
|   case ISD::DBG_STOPPOINT: {
 | |
|     const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
 | |
|     ID.AddInteger(DSP->getLine());
 | |
|     ID.AddInteger(DSP->getColumn());
 | |
|     ID.AddPointer(DSP->getCompileUnit());
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SRCVALUE:
 | |
|     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
 | |
|     break;
 | |
|   case ISD::MEMOPERAND: {
 | |
|     const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
 | |
|     MO.Profile(ID);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::FrameIndex:
 | |
|   case ISD::TargetFrameIndex:
 | |
|     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
 | |
|     break;
 | |
|   case ISD::JumpTable:
 | |
|   case ISD::TargetJumpTable:
 | |
|     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
 | |
|     break;
 | |
|   case ISD::ConstantPool:
 | |
|   case ISD::TargetConstantPool: {
 | |
|     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
 | |
|     ID.AddInteger(CP->getAlignment());
 | |
|     ID.AddInteger(CP->getOffset());
 | |
|     if (CP->isMachineConstantPoolEntry())
 | |
|       CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
 | |
|     else
 | |
|       ID.AddPointer(CP->getConstVal());
 | |
|     break;
 | |
|   }
 | |
|   case ISD::LOAD: {
 | |
|     const LoadSDNode *LD = cast<LoadSDNode>(N);
 | |
|     ID.AddInteger(LD->getAddressingMode());
 | |
|     ID.AddInteger(LD->getExtensionType());
 | |
|     ID.AddInteger(LD->getMemoryVT().getRawBits());
 | |
|     ID.AddInteger(LD->getRawFlags());
 | |
|     break;
 | |
|   }
 | |
|   case ISD::STORE: {
 | |
|     const StoreSDNode *ST = cast<StoreSDNode>(N);
 | |
|     ID.AddInteger(ST->getAddressingMode());
 | |
|     ID.AddInteger(ST->isTruncatingStore());
 | |
|     ID.AddInteger(ST->getMemoryVT().getRawBits());
 | |
|     ID.AddInteger(ST->getRawFlags());
 | |
|     break;
 | |
|   }
 | |
|   case ISD::ATOMIC_CMP_SWAP_8:
 | |
|   case ISD::ATOMIC_SWAP_8:
 | |
|   case ISD::ATOMIC_LOAD_ADD_8:
 | |
|   case ISD::ATOMIC_LOAD_SUB_8:
 | |
|   case ISD::ATOMIC_LOAD_AND_8:
 | |
|   case ISD::ATOMIC_LOAD_OR_8:
 | |
|   case ISD::ATOMIC_LOAD_XOR_8:
 | |
|   case ISD::ATOMIC_LOAD_NAND_8:
 | |
|   case ISD::ATOMIC_LOAD_MIN_8:
 | |
|   case ISD::ATOMIC_LOAD_MAX_8:
 | |
|   case ISD::ATOMIC_LOAD_UMIN_8:
 | |
|   case ISD::ATOMIC_LOAD_UMAX_8: 
 | |
|   case ISD::ATOMIC_CMP_SWAP_16:
 | |
|   case ISD::ATOMIC_SWAP_16:
 | |
|   case ISD::ATOMIC_LOAD_ADD_16:
 | |
|   case ISD::ATOMIC_LOAD_SUB_16:
 | |
|   case ISD::ATOMIC_LOAD_AND_16:
 | |
|   case ISD::ATOMIC_LOAD_OR_16:
 | |
|   case ISD::ATOMIC_LOAD_XOR_16:
 | |
|   case ISD::ATOMIC_LOAD_NAND_16:
 | |
|   case ISD::ATOMIC_LOAD_MIN_16:
 | |
|   case ISD::ATOMIC_LOAD_MAX_16:
 | |
|   case ISD::ATOMIC_LOAD_UMIN_16:
 | |
|   case ISD::ATOMIC_LOAD_UMAX_16: 
 | |
|   case ISD::ATOMIC_CMP_SWAP_32:
 | |
|   case ISD::ATOMIC_SWAP_32:
 | |
|   case ISD::ATOMIC_LOAD_ADD_32:
 | |
|   case ISD::ATOMIC_LOAD_SUB_32:
 | |
|   case ISD::ATOMIC_LOAD_AND_32:
 | |
|   case ISD::ATOMIC_LOAD_OR_32:
 | |
|   case ISD::ATOMIC_LOAD_XOR_32:
 | |
|   case ISD::ATOMIC_LOAD_NAND_32:
 | |
|   case ISD::ATOMIC_LOAD_MIN_32:
 | |
|   case ISD::ATOMIC_LOAD_MAX_32:
 | |
|   case ISD::ATOMIC_LOAD_UMIN_32:
 | |
|   case ISD::ATOMIC_LOAD_UMAX_32: 
 | |
|   case ISD::ATOMIC_CMP_SWAP_64:
 | |
|   case ISD::ATOMIC_SWAP_64:
 | |
|   case ISD::ATOMIC_LOAD_ADD_64:
 | |
|   case ISD::ATOMIC_LOAD_SUB_64:
 | |
|   case ISD::ATOMIC_LOAD_AND_64:
 | |
|   case ISD::ATOMIC_LOAD_OR_64:
 | |
|   case ISD::ATOMIC_LOAD_XOR_64:
 | |
|   case ISD::ATOMIC_LOAD_NAND_64:
 | |
|   case ISD::ATOMIC_LOAD_MIN_64:
 | |
|   case ISD::ATOMIC_LOAD_MAX_64:
 | |
|   case ISD::ATOMIC_LOAD_UMIN_64:
 | |
|   case ISD::ATOMIC_LOAD_UMAX_64: {
 | |
|     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
 | |
|     ID.AddInteger(AT->getRawFlags());
 | |
|     break;
 | |
|   }
 | |
|   } // end switch (N->getOpcode())
 | |
| }
 | |
| 
 | |
| /// encodeMemSDNodeFlags - Generic routine for computing a value for use in
 | |
| /// the CSE map that carries both alignment and volatility information.
 | |
| ///
 | |
| static unsigned encodeMemSDNodeFlags(bool isVolatile, unsigned Alignment) {
 | |
|   return isVolatile | ((Log2_32(Alignment) + 1) << 1);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                              SelectionDAG Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// RemoveDeadNodes - This method deletes all unreachable nodes in the
 | |
| /// SelectionDAG.
 | |
| void SelectionDAG::RemoveDeadNodes() {
 | |
|   // Create a dummy node (which is not added to allnodes), that adds a reference
 | |
|   // to the root node, preventing it from being deleted.
 | |
|   HandleSDNode Dummy(getRoot());
 | |
| 
 | |
|   SmallVector<SDNode*, 128> DeadNodes;
 | |
|   
 | |
|   // Add all obviously-dead nodes to the DeadNodes worklist.
 | |
|   for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
 | |
|     if (I->use_empty())
 | |
|       DeadNodes.push_back(I);
 | |
| 
 | |
|   RemoveDeadNodes(DeadNodes);
 | |
|   
 | |
|   // If the root changed (e.g. it was a dead load, update the root).
 | |
|   setRoot(Dummy.getValue());
 | |
| }
 | |
| 
 | |
| /// RemoveDeadNodes - This method deletes the unreachable nodes in the
 | |
| /// given list, and any nodes that become unreachable as a result.
 | |
| void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
 | |
|                                    DAGUpdateListener *UpdateListener) {
 | |
| 
 | |
|   // Process the worklist, deleting the nodes and adding their uses to the
 | |
|   // worklist.
 | |
|   while (!DeadNodes.empty()) {
 | |
|     SDNode *N = DeadNodes.back();
 | |
|     DeadNodes.pop_back();
 | |
|     
 | |
|     if (UpdateListener)
 | |
|       UpdateListener->NodeDeleted(N, 0);
 | |
|     
 | |
|     // Take the node out of the appropriate CSE map.
 | |
|     RemoveNodeFromCSEMaps(N);
 | |
| 
 | |
|     // Next, brutally remove the operand list.  This is safe to do, as there are
 | |
|     // no cycles in the graph.
 | |
|     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
 | |
|       SDNode *Operand = I->getVal();
 | |
|       Operand->removeUser(std::distance(N->op_begin(), I), N);
 | |
|       
 | |
|       // Now that we removed this operand, see if there are no uses of it left.
 | |
|       if (Operand->use_empty())
 | |
|         DeadNodes.push_back(Operand);
 | |
|     }
 | |
|     if (N->OperandsNeedDelete) {
 | |
|       delete[] N->OperandList;
 | |
|     }
 | |
|     N->OperandList = 0;
 | |
|     N->NumOperands = 0;
 | |
|     
 | |
|     // Finally, remove N itself.
 | |
|     NodeAllocator.Deallocate(AllNodes.remove(N));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
 | |
|   SmallVector<SDNode*, 16> DeadNodes(1, N);
 | |
|   RemoveDeadNodes(DeadNodes, UpdateListener);
 | |
| }
 | |
| 
 | |
| void SelectionDAG::DeleteNode(SDNode *N) {
 | |
|   assert(N->use_empty() && "Cannot delete a node that is not dead!");
 | |
| 
 | |
|   // First take this out of the appropriate CSE map.
 | |
|   RemoveNodeFromCSEMaps(N);
 | |
| 
 | |
|   // Finally, remove uses due to operands of this node, remove from the 
 | |
|   // AllNodes list, and delete the node.
 | |
|   DeleteNodeNotInCSEMaps(N);
 | |
| }
 | |
| 
 | |
| void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
 | |
| 
 | |
|   // Drop all of the operands and decrement used nodes use counts.
 | |
|   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
 | |
|     I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
 | |
|   if (N->OperandsNeedDelete)
 | |
|     delete[] N->OperandList;
 | |
|   
 | |
|   assert(N != AllNodes.begin());
 | |
|   NodeAllocator.Deallocate(AllNodes.remove(N));
 | |
| }
 | |
| 
 | |
| /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
 | |
| /// correspond to it.  This is useful when we're about to delete or repurpose
 | |
| /// the node.  We don't want future request for structurally identical nodes
 | |
| /// to return N anymore.
 | |
| void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
 | |
|   bool Erased = false;
 | |
|   switch (N->getOpcode()) {
 | |
|   case ISD::EntryToken:
 | |
|     assert(0 && "EntryToken should not be in CSEMaps!");
 | |
|     return;
 | |
|   case ISD::HANDLENODE: return;  // noop.
 | |
|   case ISD::CONDCODE:
 | |
|     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
 | |
|            "Cond code doesn't exist!");
 | |
|     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
 | |
|     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
 | |
|     break;
 | |
|   case ISD::ExternalSymbol:
 | |
|     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
 | |
|     break;
 | |
|   case ISD::TargetExternalSymbol:
 | |
|     Erased =
 | |
|       TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
 | |
|     break;
 | |
|   case ISD::VALUETYPE: {
 | |
|     MVT VT = cast<VTSDNode>(N)->getVT();
 | |
|     if (VT.isExtended()) {
 | |
|       Erased = ExtendedValueTypeNodes.erase(VT);
 | |
|     } else {
 | |
|       Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
 | |
|       ValueTypeNodes[VT.getSimpleVT()] = 0;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   default:
 | |
|     // Remove it from the CSE Map.
 | |
|     Erased = CSEMap.RemoveNode(N);
 | |
|     break;
 | |
|   }
 | |
| #ifndef NDEBUG
 | |
|   // Verify that the node was actually in one of the CSE maps, unless it has a 
 | |
|   // flag result (which cannot be CSE'd) or is one of the special cases that are
 | |
|   // not subject to CSE.
 | |
|   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
 | |
|       !N->isTargetOpcode() &&
 | |
|       N->getOpcode() != ISD::DBG_LABEL &&
 | |
|       N->getOpcode() != ISD::DBG_STOPPOINT &&
 | |
|       N->getOpcode() != ISD::EH_LABEL &&
 | |
|       N->getOpcode() != ISD::DECLARE) {
 | |
|     N->dump(this);
 | |
|     cerr << "\n";
 | |
|     assert(0 && "Node is not in map!");
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
 | |
| /// has been taken out and modified in some way.  If the specified node already
 | |
| /// exists in the CSE maps, do not modify the maps, but return the existing node
 | |
| /// instead.  If it doesn't exist, add it and return null.
 | |
| ///
 | |
| SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
 | |
|   assert(N->getNumOperands() && "This is a leaf node!");
 | |
| 
 | |
|   if (N->getValueType(0) == MVT::Flag)
 | |
|     return 0;   // Never CSE anything that produces a flag.
 | |
| 
 | |
|   switch (N->getOpcode()) {
 | |
|   default: break;
 | |
|   case ISD::HANDLENODE:
 | |
|   case ISD::DBG_LABEL:
 | |
|   case ISD::DBG_STOPPOINT:
 | |
|   case ISD::EH_LABEL:
 | |
|   case ISD::DECLARE:
 | |
|     return 0;    // Never add these nodes.
 | |
|   }
 | |
|   
 | |
|   // Check that remaining values produced are not flags.
 | |
|   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
 | |
|     if (N->getValueType(i) == MVT::Flag)
 | |
|       return 0;   // Never CSE anything that produces a flag.
 | |
|   
 | |
|   SDNode *New = CSEMap.GetOrInsertNode(N);
 | |
|   if (New != N) return New;  // Node already existed.
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
 | |
| /// were replaced with those specified.  If this node is never memoized, 
 | |
| /// return null, otherwise return a pointer to the slot it would take.  If a
 | |
| /// node already exists with these operands, the slot will be non-null.
 | |
| SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
 | |
|                                            void *&InsertPos) {
 | |
|   if (N->getValueType(0) == MVT::Flag)
 | |
|     return 0;   // Never CSE anything that produces a flag.
 | |
| 
 | |
|   switch (N->getOpcode()) {
 | |
|   default: break;
 | |
|   case ISD::HANDLENODE:
 | |
|   case ISD::DBG_LABEL:
 | |
|   case ISD::DBG_STOPPOINT:
 | |
|   case ISD::EH_LABEL:
 | |
|     return 0;    // Never add these nodes.
 | |
|   }
 | |
|   
 | |
|   // Check that remaining values produced are not flags.
 | |
|   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
 | |
|     if (N->getValueType(i) == MVT::Flag)
 | |
|       return 0;   // Never CSE anything that produces a flag.
 | |
|   
 | |
|   SDValue Ops[] = { Op };
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
 | |
|   return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
 | |
| }
 | |
| 
 | |
| /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
 | |
| /// were replaced with those specified.  If this node is never memoized, 
 | |
| /// return null, otherwise return a pointer to the slot it would take.  If a
 | |
| /// node already exists with these operands, the slot will be non-null.
 | |
| SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 
 | |
|                                            SDValue Op1, SDValue Op2,
 | |
|                                            void *&InsertPos) {
 | |
|   if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
 | |
|   
 | |
|   // Check that remaining values produced are not flags.
 | |
|   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
 | |
|     if (N->getValueType(i) == MVT::Flag)
 | |
|       return 0;   // Never CSE anything that produces a flag.
 | |
|                                               
 | |
|   SDValue Ops[] = { Op1, Op2 };
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
 | |
|   return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
 | |
| /// were replaced with those specified.  If this node is never memoized, 
 | |
| /// return null, otherwise return a pointer to the slot it would take.  If a
 | |
| /// node already exists with these operands, the slot will be non-null.
 | |
| SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 
 | |
|                                            const SDValue *Ops,unsigned NumOps,
 | |
|                                            void *&InsertPos) {
 | |
|   if (N->getValueType(0) == MVT::Flag)
 | |
|     return 0;   // Never CSE anything that produces a flag.
 | |
| 
 | |
|   switch (N->getOpcode()) {
 | |
|   default: break;
 | |
|   case ISD::HANDLENODE:
 | |
|   case ISD::DBG_LABEL:
 | |
|   case ISD::DBG_STOPPOINT:
 | |
|   case ISD::EH_LABEL:
 | |
|   case ISD::DECLARE:
 | |
|     return 0;    // Never add these nodes.
 | |
|   }
 | |
|   
 | |
|   // Check that remaining values produced are not flags.
 | |
|   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
 | |
|     if (N->getValueType(i) == MVT::Flag)
 | |
|       return 0;   // Never CSE anything that produces a flag.
 | |
|   
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
 | |
|   
 | |
|   if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
 | |
|     ID.AddInteger(LD->getAddressingMode());
 | |
|     ID.AddInteger(LD->getExtensionType());
 | |
|     ID.AddInteger(LD->getMemoryVT().getRawBits());
 | |
|     ID.AddInteger(LD->getRawFlags());
 | |
|   } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
 | |
|     ID.AddInteger(ST->getAddressingMode());
 | |
|     ID.AddInteger(ST->isTruncatingStore());
 | |
|     ID.AddInteger(ST->getMemoryVT().getRawBits());
 | |
|     ID.AddInteger(ST->getRawFlags());
 | |
|   }
 | |
|   
 | |
|   return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
 | |
| }
 | |
| 
 | |
| /// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
 | |
| void SelectionDAG::VerifyNode(SDNode *N) {
 | |
|   switch (N->getOpcode()) {
 | |
|   default:
 | |
|     break;
 | |
|   case ISD::BUILD_VECTOR: {
 | |
|     assert(N->getNumValues() == 1 && "Too many results for BUILD_VECTOR!");
 | |
|     assert(N->getValueType(0).isVector() && "Wrong BUILD_VECTOR return type!");
 | |
|     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
 | |
|            "Wrong number of BUILD_VECTOR operands!");
 | |
|     MVT EltVT = N->getValueType(0).getVectorElementType();
 | |
|     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
 | |
|       assert(I->getSDValue().getValueType() == EltVT &&
 | |
|              "Wrong BUILD_VECTOR operand type!");
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getMVTAlignment - Compute the default alignment value for the
 | |
| /// given type.
 | |
| ///
 | |
| unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
 | |
|   const Type *Ty = VT == MVT::iPTR ?
 | |
|                    PointerType::get(Type::Int8Ty, 0) :
 | |
|                    VT.getTypeForMVT();
 | |
| 
 | |
|   return TLI.getTargetData()->getABITypeAlignment(Ty);
 | |
| }
 | |
| 
 | |
| SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
 | |
|   : TLI(tli), FLI(fli),
 | |
|     EntryNode(ISD::EntryToken, getVTList(MVT::Other)),
 | |
|     Root(getEntryNode()) {
 | |
|   AllNodes.push_back(&EntryNode);
 | |
| }
 | |
| 
 | |
| void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi) {
 | |
|   MF = &mf;
 | |
|   MMI = mmi;
 | |
| }
 | |
| 
 | |
| SelectionDAG::~SelectionDAG() {
 | |
|   allnodes_clear();
 | |
| }
 | |
| 
 | |
| void SelectionDAG::allnodes_clear() {
 | |
|   assert(&*AllNodes.begin() == &EntryNode);
 | |
|   AllNodes.remove(AllNodes.begin());
 | |
|   while (!AllNodes.empty()) {
 | |
|     SDNode *N = AllNodes.remove(AllNodes.begin());
 | |
|     N->SetNextInBucket(0);
 | |
|     if (N->OperandsNeedDelete)
 | |
|       delete [] N->OperandList;
 | |
|     NodeAllocator.Deallocate(N);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SelectionDAG::clear() {
 | |
|   allnodes_clear();
 | |
|   OperandAllocator.Reset();
 | |
|   CSEMap.clear();
 | |
| 
 | |
|   ExtendedValueTypeNodes.clear();
 | |
|   ExternalSymbols.clear();
 | |
|   TargetExternalSymbols.clear();
 | |
|   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
 | |
|             static_cast<CondCodeSDNode*>(0));
 | |
|   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
 | |
|             static_cast<SDNode*>(0));
 | |
| 
 | |
|   EntryNode.Uses = 0;
 | |
|   AllNodes.push_back(&EntryNode);
 | |
|   Root = getEntryNode();
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, MVT VT) {
 | |
|   if (Op.getValueType() == VT) return Op;
 | |
|   APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
 | |
|                                    VT.getSizeInBits());
 | |
|   return getNode(ISD::AND, Op.getValueType(), Op,
 | |
|                  getConstant(Imm, Op.getValueType()));
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
 | |
|   MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
 | |
|   return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
 | |
|   assert(VT.isInteger() && "Cannot create FP integer constant!");
 | |
| 
 | |
|   MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
 | |
|   assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
 | |
|          "APInt size does not match type size!");
 | |
| 
 | |
|   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
 | |
|   ID.Add(Val);
 | |
|   void *IP = 0;
 | |
|   SDNode *N = NULL;
 | |
|   if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
 | |
|     if (!VT.isVector())
 | |
|       return SDValue(N, 0);
 | |
|   if (!N) {
 | |
|     N = NodeAllocator.Allocate<ConstantSDNode>();
 | |
|     new (N) ConstantSDNode(isT, Val, EltVT);
 | |
|     CSEMap.InsertNode(N, IP);
 | |
|     AllNodes.push_back(N);
 | |
|   }
 | |
| 
 | |
|   SDValue Result(N, 0);
 | |
|   if (VT.isVector()) {
 | |
|     SmallVector<SDValue, 8> Ops;
 | |
|     Ops.assign(VT.getVectorNumElements(), Result);
 | |
|     Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
 | |
|   return getConstant(Val, TLI.getPointerTy(), isTarget);
 | |
| }
 | |
| 
 | |
| 
 | |
| SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
 | |
|   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
 | |
|                                 
 | |
|   MVT EltVT =
 | |
|     VT.isVector() ? VT.getVectorElementType() : VT;
 | |
| 
 | |
|   // Do the map lookup using the actual bit pattern for the floating point
 | |
|   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
 | |
|   // we don't have issues with SNANs.
 | |
|   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
 | |
|   ID.Add(V);
 | |
|   void *IP = 0;
 | |
|   SDNode *N = NULL;
 | |
|   if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
 | |
|     if (!VT.isVector())
 | |
|       return SDValue(N, 0);
 | |
|   if (!N) {
 | |
|     N = NodeAllocator.Allocate<ConstantFPSDNode>();
 | |
|     new (N) ConstantFPSDNode(isTarget, V, EltVT);
 | |
|     CSEMap.InsertNode(N, IP);
 | |
|     AllNodes.push_back(N);
 | |
|   }
 | |
| 
 | |
|   SDValue Result(N, 0);
 | |
|   if (VT.isVector()) {
 | |
|     SmallVector<SDValue, 8> Ops;
 | |
|     Ops.assign(VT.getVectorNumElements(), Result);
 | |
|     Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
 | |
|   MVT EltVT =
 | |
|     VT.isVector() ? VT.getVectorElementType() : VT;
 | |
|   if (EltVT==MVT::f32)
 | |
|     return getConstantFP(APFloat((float)Val), VT, isTarget);
 | |
|   else
 | |
|     return getConstantFP(APFloat(Val), VT, isTarget);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
 | |
|                                        MVT VT, int Offset,
 | |
|                                        bool isTargetGA) {
 | |
|   unsigned Opc;
 | |
| 
 | |
|   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
 | |
|   if (!GVar) {
 | |
|     // If GV is an alias then use the aliasee for determining thread-localness.
 | |
|     if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
 | |
|       GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal());
 | |
|   }
 | |
| 
 | |
|   if (GVar && GVar->isThreadLocal())
 | |
|     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
 | |
|   else
 | |
|     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
 | |
| 
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
 | |
|   ID.AddPointer(GV);
 | |
|   ID.AddInteger(Offset);
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|    return SDValue(E, 0);
 | |
|   SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
 | |
|   new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
 | |
|   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
 | |
|   ID.AddInteger(FI);
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
|   SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
 | |
|   new (N) FrameIndexSDNode(FI, VT, isTarget);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
 | |
|   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
 | |
|   ID.AddInteger(JTI);
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
|   SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
 | |
|   new (N) JumpTableSDNode(JTI, VT, isTarget);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
 | |
|                                       unsigned Alignment, int Offset,
 | |
|                                       bool isTarget) {
 | |
|   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
 | |
|   ID.AddInteger(Alignment);
 | |
|   ID.AddInteger(Offset);
 | |
|   ID.AddPointer(C);
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
|   SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
 | |
|   new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
 | |
|                                       unsigned Alignment, int Offset,
 | |
|                                       bool isTarget) {
 | |
|   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
 | |
|   ID.AddInteger(Alignment);
 | |
|   ID.AddInteger(Offset);
 | |
|   C->AddSelectionDAGCSEId(ID);
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
|   SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
 | |
|   new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
 | |
|   ID.AddPointer(MBB);
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
|   SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
 | |
|   new (N) BasicBlockSDNode(MBB);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
 | |
|   ID.AddInteger(Flags.getRawBits());
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
|   SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
 | |
|   new (N) ARG_FLAGSSDNode(Flags);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getValueType(MVT VT) {
 | |
|   if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
 | |
|     ValueTypeNodes.resize(VT.getSimpleVT()+1);
 | |
| 
 | |
|   SDNode *&N = VT.isExtended() ?
 | |
|     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
 | |
| 
 | |
|   if (N) return SDValue(N, 0);
 | |
|   N = NodeAllocator.Allocate<VTSDNode>();
 | |
|   new (N) VTSDNode(VT);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
 | |
|   SDNode *&N = ExternalSymbols[Sym];
 | |
|   if (N) return SDValue(N, 0);
 | |
|   N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
 | |
|   new (N) ExternalSymbolSDNode(false, Sym, VT);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
 | |
|   SDNode *&N = TargetExternalSymbols[Sym];
 | |
|   if (N) return SDValue(N, 0);
 | |
|   N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
 | |
|   new (N) ExternalSymbolSDNode(true, Sym, VT);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
 | |
|   if ((unsigned)Cond >= CondCodeNodes.size())
 | |
|     CondCodeNodes.resize(Cond+1);
 | |
| 
 | |
|   if (CondCodeNodes[Cond] == 0) {
 | |
|     CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
 | |
|     new (N) CondCodeSDNode(Cond);
 | |
|     CondCodeNodes[Cond] = N;
 | |
|     AllNodes.push_back(N);
 | |
|   }
 | |
|   return SDValue(CondCodeNodes[Cond], 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
 | |
|   ID.AddInteger(RegNo);
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
|   SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
 | |
|   new (N) RegisterSDNode(RegNo, VT);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
 | |
|                                         unsigned Line, unsigned Col,
 | |
|                                         const CompileUnitDesc *CU) {
 | |
|   SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
 | |
|   new (N) DbgStopPointSDNode(Root, Line, Col, CU);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getLabel(unsigned Opcode,
 | |
|                                SDValue Root,
 | |
|                                unsigned LabelID) {
 | |
|   FoldingSetNodeID ID;
 | |
|   SDValue Ops[] = { Root };
 | |
|   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
 | |
|   ID.AddInteger(LabelID);
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
|   SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
 | |
|   new (N) LabelSDNode(Opcode, Root, LabelID);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getSrcValue(const Value *V) {
 | |
|   assert((!V || isa<PointerType>(V->getType())) &&
 | |
|          "SrcValue is not a pointer?");
 | |
| 
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
 | |
|   ID.AddPointer(V);
 | |
| 
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
| 
 | |
|   SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
 | |
|   new (N) SrcValueSDNode(V);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
 | |
|   const Value *v = MO.getValue();
 | |
|   assert((!v || isa<PointerType>(v->getType())) &&
 | |
|          "SrcValue is not a pointer?");
 | |
| 
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
 | |
|   MO.Profile(ID);
 | |
| 
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
| 
 | |
|   SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
 | |
|   new (N) MemOperandSDNode(MO);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| /// CreateStackTemporary - Create a stack temporary, suitable for holding the
 | |
| /// specified value type.
 | |
| SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
 | |
|   MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
 | |
|   unsigned ByteSize = VT.getSizeInBits()/8;
 | |
|   const Type *Ty = VT.getTypeForMVT();
 | |
|   unsigned StackAlign =
 | |
|   std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
 | |
|   
 | |
|   int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
 | |
|   return getFrameIndex(FrameIdx, TLI.getPointerTy());
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
 | |
|                                 SDValue N2, ISD::CondCode Cond) {
 | |
|   // These setcc operations always fold.
 | |
|   switch (Cond) {
 | |
|   default: break;
 | |
|   case ISD::SETFALSE:
 | |
|   case ISD::SETFALSE2: return getConstant(0, VT);
 | |
|   case ISD::SETTRUE:
 | |
|   case ISD::SETTRUE2:  return getConstant(1, VT);
 | |
|     
 | |
|   case ISD::SETOEQ:
 | |
|   case ISD::SETOGT:
 | |
|   case ISD::SETOGE:
 | |
|   case ISD::SETOLT:
 | |
|   case ISD::SETOLE:
 | |
|   case ISD::SETONE:
 | |
|   case ISD::SETO:
 | |
|   case ISD::SETUO:
 | |
|   case ISD::SETUEQ:
 | |
|   case ISD::SETUNE:
 | |
|     assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
 | |
|     const APInt &C2 = N2C->getAPIntValue();
 | |
|     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
 | |
|       const APInt &C1 = N1C->getAPIntValue();
 | |
|       
 | |
|       switch (Cond) {
 | |
|       default: assert(0 && "Unknown integer setcc!");
 | |
|       case ISD::SETEQ:  return getConstant(C1 == C2, VT);
 | |
|       case ISD::SETNE:  return getConstant(C1 != C2, VT);
 | |
|       case ISD::SETULT: return getConstant(C1.ult(C2), VT);
 | |
|       case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
 | |
|       case ISD::SETULE: return getConstant(C1.ule(C2), VT);
 | |
|       case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
 | |
|       case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
 | |
|       case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
 | |
|       case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
 | |
|       case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
 | |
|     if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
 | |
|       // No compile time operations on this type yet.
 | |
|       if (N1C->getValueType(0) == MVT::ppcf128)
 | |
|         return SDValue();
 | |
| 
 | |
|       APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
 | |
|       switch (Cond) {
 | |
|       default: break;
 | |
|       case ISD::SETEQ:  if (R==APFloat::cmpUnordered) 
 | |
|                           return getNode(ISD::UNDEF, VT);
 | |
|                         // fall through
 | |
|       case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
 | |
|       case ISD::SETNE:  if (R==APFloat::cmpUnordered) 
 | |
|                           return getNode(ISD::UNDEF, VT);
 | |
|                         // fall through
 | |
|       case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
 | |
|                                            R==APFloat::cmpLessThan, VT);
 | |
|       case ISD::SETLT:  if (R==APFloat::cmpUnordered) 
 | |
|                           return getNode(ISD::UNDEF, VT);
 | |
|                         // fall through
 | |
|       case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
 | |
|       case ISD::SETGT:  if (R==APFloat::cmpUnordered) 
 | |
|                           return getNode(ISD::UNDEF, VT);
 | |
|                         // fall through
 | |
|       case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
 | |
|       case ISD::SETLE:  if (R==APFloat::cmpUnordered) 
 | |
|                           return getNode(ISD::UNDEF, VT);
 | |
|                         // fall through
 | |
|       case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
 | |
|                                            R==APFloat::cmpEqual, VT);
 | |
|       case ISD::SETGE:  if (R==APFloat::cmpUnordered) 
 | |
|                           return getNode(ISD::UNDEF, VT);
 | |
|                         // fall through
 | |
|       case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
 | |
|                                            R==APFloat::cmpEqual, VT);
 | |
|       case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
 | |
|       case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
 | |
|       case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
 | |
|                                            R==APFloat::cmpEqual, VT);
 | |
|       case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
 | |
|       case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
 | |
|                                            R==APFloat::cmpLessThan, VT);
 | |
|       case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
 | |
|                                            R==APFloat::cmpUnordered, VT);
 | |
|       case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
 | |
|       case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
 | |
|       }
 | |
|     } else {
 | |
|       // Ensure that the constant occurs on the RHS.
 | |
|       return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Could not fold it.
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
 | |
| /// use this predicate to simplify operations downstream.
 | |
| bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
 | |
|   unsigned BitWidth = Op.getValueSizeInBits();
 | |
|   return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
 | |
| }
 | |
| 
 | |
| /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
 | |
| /// this predicate to simplify operations downstream.  Mask is known to be zero
 | |
| /// for bits that V cannot have.
 | |
| bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask, 
 | |
|                                      unsigned Depth) const {
 | |
|   APInt KnownZero, KnownOne;
 | |
|   ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
 | |
|   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|   return (KnownZero & Mask) == Mask;
 | |
| }
 | |
| 
 | |
| /// ComputeMaskedBits - Determine which of the bits specified in Mask are
 | |
| /// known to be either zero or one and return them in the KnownZero/KnownOne
 | |
| /// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
 | |
| /// processing.
 | |
| void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask, 
 | |
|                                      APInt &KnownZero, APInt &KnownOne,
 | |
|                                      unsigned Depth) const {
 | |
|   unsigned BitWidth = Mask.getBitWidth();
 | |
|   assert(BitWidth == Op.getValueType().getSizeInBits() &&
 | |
|          "Mask size mismatches value type size!");
 | |
| 
 | |
|   KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
 | |
|   if (Depth == 6 || Mask == 0)
 | |
|     return;  // Limit search depth.
 | |
|   
 | |
|   APInt KnownZero2, KnownOne2;
 | |
| 
 | |
|   switch (Op.getOpcode()) {
 | |
|   case ISD::Constant:
 | |
|     // We know all of the bits for a constant!
 | |
|     KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
 | |
|     KnownZero = ~KnownOne & Mask;
 | |
|     return;
 | |
|   case ISD::AND:
 | |
|     // If either the LHS or the RHS are Zero, the result is zero.
 | |
|     ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
 | |
|     ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
 | |
|                       KnownZero2, KnownOne2, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
| 
 | |
|     // Output known-1 bits are only known if set in both the LHS & RHS.
 | |
|     KnownOne &= KnownOne2;
 | |
|     // Output known-0 are known to be clear if zero in either the LHS | RHS.
 | |
|     KnownZero |= KnownZero2;
 | |
|     return;
 | |
|   case ISD::OR:
 | |
|     ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
 | |
|     ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
 | |
|                       KnownZero2, KnownOne2, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // Output known-0 bits are only known if clear in both the LHS & RHS.
 | |
|     KnownZero &= KnownZero2;
 | |
|     // Output known-1 are known to be set if set in either the LHS | RHS.
 | |
|     KnownOne |= KnownOne2;
 | |
|     return;
 | |
|   case ISD::XOR: {
 | |
|     ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
 | |
|     ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // Output known-0 bits are known if clear or set in both the LHS & RHS.
 | |
|     APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
 | |
|     // Output known-1 are known to be set if set in only one of the LHS, RHS.
 | |
|     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
 | |
|     KnownZero = KnownZeroOut;
 | |
|     return;
 | |
|   }
 | |
|   case ISD::MUL: {
 | |
|     APInt Mask2 = APInt::getAllOnesValue(BitWidth);
 | |
|     ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
 | |
|     ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
 | |
| 
 | |
|     // If low bits are zero in either operand, output low known-0 bits.
 | |
|     // Also compute a conserative estimate for high known-0 bits.
 | |
|     // More trickiness is possible, but this is sufficient for the
 | |
|     // interesting case of alignment computation.
 | |
|     KnownOne.clear();
 | |
|     unsigned TrailZ = KnownZero.countTrailingOnes() +
 | |
|                       KnownZero2.countTrailingOnes();
 | |
|     unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
 | |
|                                KnownZero2.countLeadingOnes(),
 | |
|                                BitWidth) - BitWidth;
 | |
| 
 | |
|     TrailZ = std::min(TrailZ, BitWidth);
 | |
|     LeadZ = std::min(LeadZ, BitWidth);
 | |
|     KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
 | |
|                 APInt::getHighBitsSet(BitWidth, LeadZ);
 | |
|     KnownZero &= Mask;
 | |
|     return;
 | |
|   }
 | |
|   case ISD::UDIV: {
 | |
|     // For the purposes of computing leading zeros we can conservatively
 | |
|     // treat a udiv as a logical right shift by the power of 2 known to
 | |
|     // be less than the denominator.
 | |
|     APInt AllOnes = APInt::getAllOnesValue(BitWidth);
 | |
|     ComputeMaskedBits(Op.getOperand(0),
 | |
|                       AllOnes, KnownZero2, KnownOne2, Depth+1);
 | |
|     unsigned LeadZ = KnownZero2.countLeadingOnes();
 | |
| 
 | |
|     KnownOne2.clear();
 | |
|     KnownZero2.clear();
 | |
|     ComputeMaskedBits(Op.getOperand(1),
 | |
|                       AllOnes, KnownZero2, KnownOne2, Depth+1);
 | |
|     unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
 | |
|     if (RHSUnknownLeadingOnes != BitWidth)
 | |
|       LeadZ = std::min(BitWidth,
 | |
|                        LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
 | |
| 
 | |
|     KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
 | |
|     return;
 | |
|   }
 | |
|   case ISD::SELECT:
 | |
|     ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
 | |
|     ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // Only known if known in both the LHS and RHS.
 | |
|     KnownOne &= KnownOne2;
 | |
|     KnownZero &= KnownZero2;
 | |
|     return;
 | |
|   case ISD::SELECT_CC:
 | |
|     ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
 | |
|     ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // Only known if known in both the LHS and RHS.
 | |
|     KnownOne &= KnownOne2;
 | |
|     KnownZero &= KnownZero2;
 | |
|     return;
 | |
|   case ISD::SETCC:
 | |
|     // If we know the result of a setcc has the top bits zero, use this info.
 | |
|     if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
 | |
|         BitWidth > 1)
 | |
|       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
 | |
|     return;
 | |
|   case ISD::SHL:
 | |
|     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
 | |
|     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       unsigned ShAmt = SA->getValue();
 | |
| 
 | |
|       // If the shift count is an invalid immediate, don't do anything.
 | |
|       if (ShAmt >= BitWidth)
 | |
|         return;
 | |
| 
 | |
|       ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
 | |
|                         KnownZero, KnownOne, Depth+1);
 | |
|       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|       KnownZero <<= ShAmt;
 | |
|       KnownOne  <<= ShAmt;
 | |
|       // low bits known zero.
 | |
|       KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
 | |
|     }
 | |
|     return;
 | |
|   case ISD::SRL:
 | |
|     // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
 | |
|     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       unsigned ShAmt = SA->getValue();
 | |
| 
 | |
|       // If the shift count is an invalid immediate, don't do anything.
 | |
|       if (ShAmt >= BitWidth)
 | |
|         return;
 | |
| 
 | |
|       ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
 | |
|                         KnownZero, KnownOne, Depth+1);
 | |
|       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|       KnownZero = KnownZero.lshr(ShAmt);
 | |
|       KnownOne  = KnownOne.lshr(ShAmt);
 | |
| 
 | |
|       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
 | |
|       KnownZero |= HighBits;  // High bits known zero.
 | |
|     }
 | |
|     return;
 | |
|   case ISD::SRA:
 | |
|     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       unsigned ShAmt = SA->getValue();
 | |
| 
 | |
|       // If the shift count is an invalid immediate, don't do anything.
 | |
|       if (ShAmt >= BitWidth)
 | |
|         return;
 | |
| 
 | |
|       APInt InDemandedMask = (Mask << ShAmt);
 | |
|       // If any of the demanded bits are produced by the sign extension, we also
 | |
|       // demand the input sign bit.
 | |
|       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
 | |
|       if (HighBits.getBoolValue())
 | |
|         InDemandedMask |= APInt::getSignBit(BitWidth);
 | |
|       
 | |
|       ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
 | |
|                         Depth+1);
 | |
|       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|       KnownZero = KnownZero.lshr(ShAmt);
 | |
|       KnownOne  = KnownOne.lshr(ShAmt);
 | |
|       
 | |
|       // Handle the sign bits.
 | |
|       APInt SignBit = APInt::getSignBit(BitWidth);
 | |
|       SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
 | |
|       
 | |
|       if (KnownZero.intersects(SignBit)) {
 | |
|         KnownZero |= HighBits;  // New bits are known zero.
 | |
|       } else if (KnownOne.intersects(SignBit)) {
 | |
|         KnownOne  |= HighBits;  // New bits are known one.
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   case ISD::SIGN_EXTEND_INREG: {
 | |
|     MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
 | |
|     unsigned EBits = EVT.getSizeInBits();
 | |
|     
 | |
|     // Sign extension.  Compute the demanded bits in the result that are not 
 | |
|     // present in the input.
 | |
|     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
 | |
| 
 | |
|     APInt InSignBit = APInt::getSignBit(EBits);
 | |
|     APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
 | |
|     
 | |
|     // If the sign extended bits are demanded, we know that the sign
 | |
|     // bit is demanded.
 | |
|     InSignBit.zext(BitWidth);
 | |
|     if (NewBits.getBoolValue())
 | |
|       InputDemandedBits |= InSignBit;
 | |
|     
 | |
|     ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
 | |
|                       KnownZero, KnownOne, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // If the sign bit of the input is known set or clear, then we know the
 | |
|     // top bits of the result.
 | |
|     if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
 | |
|       KnownZero |= NewBits;
 | |
|       KnownOne  &= ~NewBits;
 | |
|     } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
 | |
|       KnownOne  |= NewBits;
 | |
|       KnownZero &= ~NewBits;
 | |
|     } else {                              // Input sign bit unknown
 | |
|       KnownZero &= ~NewBits;
 | |
|       KnownOne  &= ~NewBits;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   case ISD::CTTZ:
 | |
|   case ISD::CTLZ:
 | |
|   case ISD::CTPOP: {
 | |
|     unsigned LowBits = Log2_32(BitWidth)+1;
 | |
|     KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
 | |
|     KnownOne.clear();
 | |
|     return;
 | |
|   }
 | |
|   case ISD::LOAD: {
 | |
|     if (ISD::isZEXTLoad(Op.getNode())) {
 | |
|       LoadSDNode *LD = cast<LoadSDNode>(Op);
 | |
|       MVT VT = LD->getMemoryVT();
 | |
|       unsigned MemBits = VT.getSizeInBits();
 | |
|       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   case ISD::ZERO_EXTEND: {
 | |
|     MVT InVT = Op.getOperand(0).getValueType();
 | |
|     unsigned InBits = InVT.getSizeInBits();
 | |
|     APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
 | |
|     APInt InMask    = Mask;
 | |
|     InMask.trunc(InBits);
 | |
|     KnownZero.trunc(InBits);
 | |
|     KnownOne.trunc(InBits);
 | |
|     ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
 | |
|     KnownZero.zext(BitWidth);
 | |
|     KnownOne.zext(BitWidth);
 | |
|     KnownZero |= NewBits;
 | |
|     return;
 | |
|   }
 | |
|   case ISD::SIGN_EXTEND: {
 | |
|     MVT InVT = Op.getOperand(0).getValueType();
 | |
|     unsigned InBits = InVT.getSizeInBits();
 | |
|     APInt InSignBit = APInt::getSignBit(InBits);
 | |
|     APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
 | |
|     APInt InMask = Mask;
 | |
|     InMask.trunc(InBits);
 | |
| 
 | |
|     // If any of the sign extended bits are demanded, we know that the sign
 | |
|     // bit is demanded. Temporarily set this bit in the mask for our callee.
 | |
|     if (NewBits.getBoolValue())
 | |
|       InMask |= InSignBit;
 | |
| 
 | |
|     KnownZero.trunc(InBits);
 | |
|     KnownOne.trunc(InBits);
 | |
|     ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
 | |
| 
 | |
|     // Note if the sign bit is known to be zero or one.
 | |
|     bool SignBitKnownZero = KnownZero.isNegative();
 | |
|     bool SignBitKnownOne  = KnownOne.isNegative();
 | |
|     assert(!(SignBitKnownZero && SignBitKnownOne) &&
 | |
|            "Sign bit can't be known to be both zero and one!");
 | |
| 
 | |
|     // If the sign bit wasn't actually demanded by our caller, we don't
 | |
|     // want it set in the KnownZero and KnownOne result values. Reset the
 | |
|     // mask and reapply it to the result values.
 | |
|     InMask = Mask;
 | |
|     InMask.trunc(InBits);
 | |
|     KnownZero &= InMask;
 | |
|     KnownOne  &= InMask;
 | |
| 
 | |
|     KnownZero.zext(BitWidth);
 | |
|     KnownOne.zext(BitWidth);
 | |
| 
 | |
|     // If the sign bit is known zero or one, the top bits match.
 | |
|     if (SignBitKnownZero)
 | |
|       KnownZero |= NewBits;
 | |
|     else if (SignBitKnownOne)
 | |
|       KnownOne  |= NewBits;
 | |
|     return;
 | |
|   }
 | |
|   case ISD::ANY_EXTEND: {
 | |
|     MVT InVT = Op.getOperand(0).getValueType();
 | |
|     unsigned InBits = InVT.getSizeInBits();
 | |
|     APInt InMask = Mask;
 | |
|     InMask.trunc(InBits);
 | |
|     KnownZero.trunc(InBits);
 | |
|     KnownOne.trunc(InBits);
 | |
|     ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
 | |
|     KnownZero.zext(BitWidth);
 | |
|     KnownOne.zext(BitWidth);
 | |
|     return;
 | |
|   }
 | |
|   case ISD::TRUNCATE: {
 | |
|     MVT InVT = Op.getOperand(0).getValueType();
 | |
|     unsigned InBits = InVT.getSizeInBits();
 | |
|     APInt InMask = Mask;
 | |
|     InMask.zext(InBits);
 | |
|     KnownZero.zext(InBits);
 | |
|     KnownOne.zext(InBits);
 | |
|     ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     KnownZero.trunc(BitWidth);
 | |
|     KnownOne.trunc(BitWidth);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::AssertZext: {
 | |
|     MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
 | |
|     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
 | |
|     ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero, 
 | |
|                       KnownOne, Depth+1);
 | |
|     KnownZero |= (~InMask) & Mask;
 | |
|     return;
 | |
|   }
 | |
|   case ISD::FGETSIGN:
 | |
|     // All bits are zero except the low bit.
 | |
|     KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
 | |
|     return;
 | |
|   
 | |
|   case ISD::SUB: {
 | |
|     if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
 | |
|       // We know that the top bits of C-X are clear if X contains less bits
 | |
|       // than C (i.e. no wrap-around can happen).  For example, 20-X is
 | |
|       // positive if we can prove that X is >= 0 and < 16.
 | |
|       if (CLHS->getAPIntValue().isNonNegative()) {
 | |
|         unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
 | |
|         // NLZ can't be BitWidth with no sign bit
 | |
|         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
 | |
|         ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
 | |
|                           Depth+1);
 | |
| 
 | |
|         // If all of the MaskV bits are known to be zero, then we know the
 | |
|         // output top bits are zero, because we now know that the output is
 | |
|         // from [0-C].
 | |
|         if ((KnownZero2 & MaskV) == MaskV) {
 | |
|           unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
 | |
|           // Top bits known zero.
 | |
|           KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // fall through
 | |
|   case ISD::ADD: {
 | |
|     // Output known-0 bits are known if clear or set in both the low clear bits
 | |
|     // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
 | |
|     // low 3 bits clear.
 | |
|     APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
 | |
|     ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
 | |
| 
 | |
|     ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     KnownZeroOut = std::min(KnownZeroOut,
 | |
|                             KnownZero2.countTrailingOnes());
 | |
| 
 | |
|     KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
 | |
|     return;
 | |
|   }
 | |
|   case ISD::SREM:
 | |
|     if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       const APInt &RA = Rem->getAPIntValue();
 | |
|       if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
 | |
|         APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
 | |
|         APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
 | |
|         ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
 | |
| 
 | |
|         // If the sign bit of the first operand is zero, the sign bit of
 | |
|         // the result is zero. If the first operand has no one bits below
 | |
|         // the second operand's single 1 bit, its sign will be zero.
 | |
|         if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
 | |
|           KnownZero2 |= ~LowBits;
 | |
| 
 | |
|         KnownZero |= KnownZero2 & Mask;
 | |
| 
 | |
|         assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   case ISD::UREM: {
 | |
|     if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       const APInt &RA = Rem->getAPIntValue();
 | |
|       if (RA.isPowerOf2()) {
 | |
|         APInt LowBits = (RA - 1);
 | |
|         APInt Mask2 = LowBits & Mask;
 | |
|         KnownZero |= ~LowBits & Mask;
 | |
|         ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
 | |
|         assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Since the result is less than or equal to either operand, any leading
 | |
|     // zero bits in either operand must also exist in the result.
 | |
|     APInt AllOnes = APInt::getAllOnesValue(BitWidth);
 | |
|     ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
 | |
|                       Depth+1);
 | |
|     ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
 | |
|                       Depth+1);
 | |
| 
 | |
|     uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
 | |
|                                 KnownZero2.countLeadingOnes());
 | |
|     KnownOne.clear();
 | |
|     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
 | |
|     return;
 | |
|   }
 | |
|   default:
 | |
|     // Allow the target to implement this method for its nodes.
 | |
|     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
 | |
|   case ISD::INTRINSIC_WO_CHAIN:
 | |
|   case ISD::INTRINSIC_W_CHAIN:
 | |
|   case ISD::INTRINSIC_VOID:
 | |
|       TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ComputeNumSignBits - Return the number of times the sign bit of the
 | |
| /// register is replicated into the other bits.  We know that at least 1 bit
 | |
| /// is always equal to the sign bit (itself), but other cases can give us
 | |
| /// information.  For example, immediately after an "SRA X, 2", we know that
 | |
| /// the top 3 bits are all equal to each other, so we return 3.
 | |
| unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
 | |
|   MVT VT = Op.getValueType();
 | |
|   assert(VT.isInteger() && "Invalid VT!");
 | |
|   unsigned VTBits = VT.getSizeInBits();
 | |
|   unsigned Tmp, Tmp2;
 | |
|   unsigned FirstAnswer = 1;
 | |
|   
 | |
|   if (Depth == 6)
 | |
|     return 1;  // Limit search depth.
 | |
| 
 | |
|   switch (Op.getOpcode()) {
 | |
|   default: break;
 | |
|   case ISD::AssertSext:
 | |
|     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
 | |
|     return VTBits-Tmp+1;
 | |
|   case ISD::AssertZext:
 | |
|     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
 | |
|     return VTBits-Tmp;
 | |
|     
 | |
|   case ISD::Constant: {
 | |
|     const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
 | |
|     // If negative, return # leading ones.
 | |
|     if (Val.isNegative())
 | |
|       return Val.countLeadingOnes();
 | |
|     
 | |
|     // Return # leading zeros.
 | |
|     return Val.countLeadingZeros();
 | |
|   }
 | |
|     
 | |
|   case ISD::SIGN_EXTEND:
 | |
|     Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
 | |
|     return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
 | |
|     
 | |
|   case ISD::SIGN_EXTEND_INREG:
 | |
|     // Max of the input and what this extends.
 | |
|     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
 | |
|     Tmp = VTBits-Tmp+1;
 | |
|     
 | |
|     Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
 | |
|     return std::max(Tmp, Tmp2);
 | |
| 
 | |
|   case ISD::SRA:
 | |
|     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
 | |
|     // SRA X, C   -> adds C sign bits.
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       Tmp += C->getValue();
 | |
|       if (Tmp > VTBits) Tmp = VTBits;
 | |
|     }
 | |
|     return Tmp;
 | |
|   case ISD::SHL:
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       // shl destroys sign bits.
 | |
|       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
 | |
|       if (C->getValue() >= VTBits ||      // Bad shift.
 | |
|           C->getValue() >= Tmp) break;    // Shifted all sign bits out.
 | |
|       return Tmp - C->getValue();
 | |
|     }
 | |
|     break;
 | |
|   case ISD::AND:
 | |
|   case ISD::OR:
 | |
|   case ISD::XOR:    // NOT is handled here.
 | |
|     // Logical binary ops preserve the number of sign bits at the worst.
 | |
|     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
 | |
|     if (Tmp != 1) {
 | |
|       Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
 | |
|       FirstAnswer = std::min(Tmp, Tmp2);
 | |
|       // We computed what we know about the sign bits as our first
 | |
|       // answer. Now proceed to the generic code that uses
 | |
|       // ComputeMaskedBits, and pick whichever answer is better.
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case ISD::SELECT:
 | |
|     Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
 | |
|     if (Tmp == 1) return 1;  // Early out.
 | |
|     Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
 | |
|     return std::min(Tmp, Tmp2);
 | |
|     
 | |
|   case ISD::SETCC:
 | |
|     // If setcc returns 0/-1, all bits are sign bits.
 | |
|     if (TLI.getSetCCResultContents() ==
 | |
|         TargetLowering::ZeroOrNegativeOneSetCCResult)
 | |
|       return VTBits;
 | |
|     break;
 | |
|   case ISD::ROTL:
 | |
|   case ISD::ROTR:
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       unsigned RotAmt = C->getValue() & (VTBits-1);
 | |
|       
 | |
|       // Handle rotate right by N like a rotate left by 32-N.
 | |
|       if (Op.getOpcode() == ISD::ROTR)
 | |
|         RotAmt = (VTBits-RotAmt) & (VTBits-1);
 | |
| 
 | |
|       // If we aren't rotating out all of the known-in sign bits, return the
 | |
|       // number that are left.  This handles rotl(sext(x), 1) for example.
 | |
|       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
 | |
|       if (Tmp > RotAmt+1) return Tmp-RotAmt;
 | |
|     }
 | |
|     break;
 | |
|   case ISD::ADD:
 | |
|     // Add can have at most one carry bit.  Thus we know that the output
 | |
|     // is, at worst, one more bit than the inputs.
 | |
|     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
 | |
|     if (Tmp == 1) return 1;  // Early out.
 | |
|       
 | |
|     // Special case decrementing a value (ADD X, -1):
 | |
|     if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
 | |
|       if (CRHS->isAllOnesValue()) {
 | |
|         APInt KnownZero, KnownOne;
 | |
|         APInt Mask = APInt::getAllOnesValue(VTBits);
 | |
|         ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
 | |
|         
 | |
|         // If the input is known to be 0 or 1, the output is 0/-1, which is all
 | |
|         // sign bits set.
 | |
|         if ((KnownZero | APInt(VTBits, 1)) == Mask)
 | |
|           return VTBits;
 | |
|         
 | |
|         // If we are subtracting one from a positive number, there is no carry
 | |
|         // out of the result.
 | |
|         if (KnownZero.isNegative())
 | |
|           return Tmp;
 | |
|       }
 | |
|       
 | |
|     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
 | |
|     if (Tmp2 == 1) return 1;
 | |
|       return std::min(Tmp, Tmp2)-1;
 | |
|     break;
 | |
|     
 | |
|   case ISD::SUB:
 | |
|     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
 | |
|     if (Tmp2 == 1) return 1;
 | |
|       
 | |
|     // Handle NEG.
 | |
|     if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
 | |
|       if (CLHS->isNullValue()) {
 | |
|         APInt KnownZero, KnownOne;
 | |
|         APInt Mask = APInt::getAllOnesValue(VTBits);
 | |
|         ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
 | |
|         // If the input is known to be 0 or 1, the output is 0/-1, which is all
 | |
|         // sign bits set.
 | |
|         if ((KnownZero | APInt(VTBits, 1)) == Mask)
 | |
|           return VTBits;
 | |
|         
 | |
|         // If the input is known to be positive (the sign bit is known clear),
 | |
|         // the output of the NEG has the same number of sign bits as the input.
 | |
|         if (KnownZero.isNegative())
 | |
|           return Tmp2;
 | |
|         
 | |
|         // Otherwise, we treat this like a SUB.
 | |
|       }
 | |
|     
 | |
|     // Sub can have at most one carry bit.  Thus we know that the output
 | |
|     // is, at worst, one more bit than the inputs.
 | |
|     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
 | |
|     if (Tmp == 1) return 1;  // Early out.
 | |
|       return std::min(Tmp, Tmp2)-1;
 | |
|     break;
 | |
|   case ISD::TRUNCATE:
 | |
|     // FIXME: it's tricky to do anything useful for this, but it is an important
 | |
|     // case for targets like X86.
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   // Handle LOADX separately here. EXTLOAD case will fallthrough.
 | |
|   if (Op.getOpcode() == ISD::LOAD) {
 | |
|     LoadSDNode *LD = cast<LoadSDNode>(Op);
 | |
|     unsigned ExtType = LD->getExtensionType();
 | |
|     switch (ExtType) {
 | |
|     default: break;
 | |
|     case ISD::SEXTLOAD:    // '17' bits known
 | |
|       Tmp = LD->getMemoryVT().getSizeInBits();
 | |
|       return VTBits-Tmp+1;
 | |
|     case ISD::ZEXTLOAD:    // '16' bits known
 | |
|       Tmp = LD->getMemoryVT().getSizeInBits();
 | |
|       return VTBits-Tmp;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Allow the target to implement this method for its nodes.
 | |
|   if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
 | |
|       Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 
 | |
|       Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
 | |
|       Op.getOpcode() == ISD::INTRINSIC_VOID) {
 | |
|     unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
 | |
|     if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
 | |
|   }
 | |
|   
 | |
|   // Finally, if we can prove that the top bits of the result are 0's or 1's,
 | |
|   // use this information.
 | |
|   APInt KnownZero, KnownOne;
 | |
|   APInt Mask = APInt::getAllOnesValue(VTBits);
 | |
|   ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
 | |
|   
 | |
|   if (KnownZero.isNegative()) {        // sign bit is 0
 | |
|     Mask = KnownZero;
 | |
|   } else if (KnownOne.isNegative()) {  // sign bit is 1;
 | |
|     Mask = KnownOne;
 | |
|   } else {
 | |
|     // Nothing known.
 | |
|     return FirstAnswer;
 | |
|   }
 | |
|   
 | |
|   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
 | |
|   // the number of identical bits in the top of the input value.
 | |
|   Mask = ~Mask;
 | |
|   Mask <<= Mask.getBitWidth()-VTBits;
 | |
|   // Return # leading zeros.  We use 'min' here in case Val was zero before
 | |
|   // shifting.  We don't want to return '64' as for an i32 "0".
 | |
|   return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
 | |
| }
 | |
| 
 | |
| 
 | |
| bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
 | |
|   GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
 | |
|   if (!GA) return false;
 | |
|   GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
 | |
|   if (!GV) return false;
 | |
|   MachineModuleInfo *MMI = getMachineModuleInfo();
 | |
|   return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getShuffleScalarElt - Returns the scalar element that will make up the ith
 | |
| /// element of the result of the vector shuffle.
 | |
| SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
 | |
|   MVT VT = N->getValueType(0);
 | |
|   SDValue PermMask = N->getOperand(2);
 | |
|   SDValue Idx = PermMask.getOperand(i);
 | |
|   if (Idx.getOpcode() == ISD::UNDEF)
 | |
|     return getNode(ISD::UNDEF, VT.getVectorElementType());
 | |
|   unsigned Index = cast<ConstantSDNode>(Idx)->getValue();
 | |
|   unsigned NumElems = PermMask.getNumOperands();
 | |
|   SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
 | |
|   Index %= NumElems;
 | |
| 
 | |
|   if (V.getOpcode() == ISD::BIT_CONVERT) {
 | |
|     V = V.getOperand(0);
 | |
|     if (V.getValueType().getVectorNumElements() != NumElems)
 | |
|       return SDValue();
 | |
|   }
 | |
|   if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
 | |
|     return (Index == 0) ? V.getOperand(0)
 | |
|                       : getNode(ISD::UNDEF, VT.getVectorElementType());
 | |
|   if (V.getOpcode() == ISD::BUILD_VECTOR)
 | |
|     return V.getOperand(Index);
 | |
|   if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
 | |
|     return getShuffleScalarElt(V.getNode(), Index);
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getNode - Gets or creates the specified node.
 | |
| ///
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT) {
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
|   SDNode *N = NodeAllocator.Allocate<SDNode>();
 | |
|   new (N) SDNode(Opcode, SDNode::getSDVTList(VT));
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   
 | |
|   AllNodes.push_back(N);
 | |
| #ifndef NDEBUG
 | |
|   VerifyNode(N);
 | |
| #endif
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue Operand) {
 | |
|   // Constant fold unary operations with an integer constant operand.
 | |
|   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
 | |
|     const APInt &Val = C->getAPIntValue();
 | |
|     unsigned BitWidth = VT.getSizeInBits();
 | |
|     switch (Opcode) {
 | |
|     default: break;
 | |
|     case ISD::SIGN_EXTEND:
 | |
|       return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
 | |
|     case ISD::ANY_EXTEND:
 | |
|     case ISD::ZERO_EXTEND:
 | |
|     case ISD::TRUNCATE:
 | |
|       return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
 | |
|     case ISD::UINT_TO_FP:
 | |
|     case ISD::SINT_TO_FP: {
 | |
|       const uint64_t zero[] = {0, 0};
 | |
|       // No compile time operations on this type.
 | |
|       if (VT==MVT::ppcf128)
 | |
|         break;
 | |
|       APFloat apf = APFloat(APInt(BitWidth, 2, zero));
 | |
|       (void)apf.convertFromAPInt(Val, 
 | |
|                                  Opcode==ISD::SINT_TO_FP,
 | |
|                                  APFloat::rmNearestTiesToEven);
 | |
|       return getConstantFP(apf, VT);
 | |
|     }
 | |
|     case ISD::BIT_CONVERT:
 | |
|       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
 | |
|         return getConstantFP(Val.bitsToFloat(), VT);
 | |
|       else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
 | |
|         return getConstantFP(Val.bitsToDouble(), VT);
 | |
|       break;
 | |
|     case ISD::BSWAP:
 | |
|       return getConstant(Val.byteSwap(), VT);
 | |
|     case ISD::CTPOP:
 | |
|       return getConstant(Val.countPopulation(), VT);
 | |
|     case ISD::CTLZ:
 | |
|       return getConstant(Val.countLeadingZeros(), VT);
 | |
|     case ISD::CTTZ:
 | |
|       return getConstant(Val.countTrailingZeros(), VT);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Constant fold unary operations with a floating point constant operand.
 | |
|   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
 | |
|     APFloat V = C->getValueAPF();    // make copy
 | |
|     if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
 | |
|       switch (Opcode) {
 | |
|       case ISD::FNEG:
 | |
|         V.changeSign();
 | |
|         return getConstantFP(V, VT);
 | |
|       case ISD::FABS:
 | |
|         V.clearSign();
 | |
|         return getConstantFP(V, VT);
 | |
|       case ISD::FP_ROUND:
 | |
|       case ISD::FP_EXTEND:
 | |
|         // This can return overflow, underflow, or inexact; we don't care.
 | |
|         // FIXME need to be more flexible about rounding mode.
 | |
|         (void)V.convert(*MVTToAPFloatSemantics(VT),
 | |
|                         APFloat::rmNearestTiesToEven);
 | |
|         return getConstantFP(V, VT);
 | |
|       case ISD::FP_TO_SINT:
 | |
|       case ISD::FP_TO_UINT: {
 | |
|         integerPart x;
 | |
|         assert(integerPartWidth >= 64);
 | |
|         // FIXME need to be more flexible about rounding mode.
 | |
|         APFloat::opStatus s = V.convertToInteger(&x, 64U,
 | |
|                               Opcode==ISD::FP_TO_SINT,
 | |
|                               APFloat::rmTowardZero);
 | |
|         if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
 | |
|           break;
 | |
|         return getConstant(x, VT);
 | |
|       }
 | |
|       case ISD::BIT_CONVERT:
 | |
|         if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
 | |
|           return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
 | |
|         else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
 | |
|           return getConstant(V.convertToAPInt().getZExtValue(), VT);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned OpOpcode = Operand.getNode()->getOpcode();
 | |
|   switch (Opcode) {
 | |
|   case ISD::TokenFactor:
 | |
|   case ISD::CONCAT_VECTORS:
 | |
|     return Operand;         // Factor or concat of one node?  No need.
 | |
|   case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
 | |
|   case ISD::FP_EXTEND:
 | |
|     assert(VT.isFloatingPoint() &&
 | |
|            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
 | |
|     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
 | |
|     if (Operand.getOpcode() == ISD::UNDEF)
 | |
|       return getNode(ISD::UNDEF, VT);
 | |
|     break;
 | |
|   case ISD::SIGN_EXTEND:
 | |
|     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
 | |
|            "Invalid SIGN_EXTEND!");
 | |
|     if (Operand.getValueType() == VT) return Operand;   // noop extension
 | |
|     assert(Operand.getValueType().bitsLT(VT)
 | |
|            && "Invalid sext node, dst < src!");
 | |
|     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
 | |
|       return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
 | |
|     break;
 | |
|   case ISD::ZERO_EXTEND:
 | |
|     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
 | |
|            "Invalid ZERO_EXTEND!");
 | |
|     if (Operand.getValueType() == VT) return Operand;   // noop extension
 | |
|     assert(Operand.getValueType().bitsLT(VT)
 | |
|            && "Invalid zext node, dst < src!");
 | |
|     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
 | |
|       return getNode(ISD::ZERO_EXTEND, VT, Operand.getNode()->getOperand(0));
 | |
|     break;
 | |
|   case ISD::ANY_EXTEND:
 | |
|     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
 | |
|            "Invalid ANY_EXTEND!");
 | |
|     if (Operand.getValueType() == VT) return Operand;   // noop extension
 | |
|     assert(Operand.getValueType().bitsLT(VT)
 | |
|            && "Invalid anyext node, dst < src!");
 | |
|     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
 | |
|       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
 | |
|       return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
 | |
|     break;
 | |
|   case ISD::TRUNCATE:
 | |
|     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
 | |
|            "Invalid TRUNCATE!");
 | |
|     if (Operand.getValueType() == VT) return Operand;   // noop truncate
 | |
|     assert(Operand.getValueType().bitsGT(VT)
 | |
|            && "Invalid truncate node, src < dst!");
 | |
|     if (OpOpcode == ISD::TRUNCATE)
 | |
|       return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
 | |
|     else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
 | |
|              OpOpcode == ISD::ANY_EXTEND) {
 | |
|       // If the source is smaller than the dest, we still need an extend.
 | |
|       if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
 | |
|         return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
 | |
|       else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
 | |
|         return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
 | |
|       else
 | |
|         return Operand.getNode()->getOperand(0);
 | |
|     }
 | |
|     break;
 | |
|   case ISD::BIT_CONVERT:
 | |
|     // Basic sanity checking.
 | |
|     assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
 | |
|            && "Cannot BIT_CONVERT between types of different sizes!");
 | |
|     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
 | |
|     if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
 | |
|       return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
 | |
|     if (OpOpcode == ISD::UNDEF)
 | |
|       return getNode(ISD::UNDEF, VT);
 | |
|     break;
 | |
|   case ISD::SCALAR_TO_VECTOR:
 | |
|     assert(VT.isVector() && !Operand.getValueType().isVector() &&
 | |
|            VT.getVectorElementType() == Operand.getValueType() &&
 | |
|            "Illegal SCALAR_TO_VECTOR node!");
 | |
|     if (OpOpcode == ISD::UNDEF)
 | |
|       return getNode(ISD::UNDEF, VT);
 | |
|     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
 | |
|     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
 | |
|         isa<ConstantSDNode>(Operand.getOperand(1)) &&
 | |
|         Operand.getConstantOperandVal(1) == 0 &&
 | |
|         Operand.getOperand(0).getValueType() == VT)
 | |
|       return Operand.getOperand(0);
 | |
|     break;
 | |
|   case ISD::FNEG:
 | |
|     if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
 | |
|       return getNode(ISD::FSUB, VT, Operand.getNode()->getOperand(1),
 | |
|                      Operand.getNode()->getOperand(0));
 | |
|     if (OpOpcode == ISD::FNEG)  // --X -> X
 | |
|       return Operand.getNode()->getOperand(0);
 | |
|     break;
 | |
|   case ISD::FABS:
 | |
|     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
 | |
|       return getNode(ISD::FABS, VT, Operand.getNode()->getOperand(0));
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   SDNode *N;
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   if (VT != MVT::Flag) { // Don't CSE flag producing nodes
 | |
|     FoldingSetNodeID ID;
 | |
|     SDValue Ops[1] = { Operand };
 | |
|     AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
 | |
|     void *IP = 0;
 | |
|     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|       return SDValue(E, 0);
 | |
|     N = NodeAllocator.Allocate<UnarySDNode>();
 | |
|     new (N) UnarySDNode(Opcode, VTs, Operand);
 | |
|     CSEMap.InsertNode(N, IP);
 | |
|   } else {
 | |
|     N = NodeAllocator.Allocate<UnarySDNode>();
 | |
|     new (N) UnarySDNode(Opcode, VTs, Operand);
 | |
|   }
 | |
| 
 | |
|   AllNodes.push_back(N);
 | |
| #ifndef NDEBUG
 | |
|   VerifyNode(N);
 | |
| #endif
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
 | |
|                               SDValue N1, SDValue N2) {
 | |
|   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
 | |
|   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
 | |
|   switch (Opcode) {
 | |
|   default: break;
 | |
|   case ISD::TokenFactor:
 | |
|     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
 | |
|            N2.getValueType() == MVT::Other && "Invalid token factor!");
 | |
|     // Fold trivial token factors.
 | |
|     if (N1.getOpcode() == ISD::EntryToken) return N2;
 | |
|     if (N2.getOpcode() == ISD::EntryToken) return N1;
 | |
|     break;
 | |
|   case ISD::CONCAT_VECTORS:
 | |
|     // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
 | |
|     // one big BUILD_VECTOR.
 | |
|     if (N1.getOpcode() == ISD::BUILD_VECTOR &&
 | |
|         N2.getOpcode() == ISD::BUILD_VECTOR) {
 | |
|       SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
 | |
|       Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
 | |
|       return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
 | |
|     }
 | |
|     break;
 | |
|   case ISD::AND:
 | |
|     assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
 | |
|            N1.getValueType() == VT && "Binary operator types must match!");
 | |
|     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
 | |
|     // worth handling here.
 | |
|     if (N2C && N2C->isNullValue())
 | |
|       return N2;
 | |
|     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
 | |
|       return N1;
 | |
|     break;
 | |
|   case ISD::OR:
 | |
|   case ISD::XOR:
 | |
|   case ISD::ADD:
 | |
|   case ISD::SUB:
 | |
|     assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
 | |
|            N1.getValueType() == VT && "Binary operator types must match!");
 | |
|     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
 | |
|     // it's worth handling here.
 | |
|     if (N2C && N2C->isNullValue())
 | |
|       return N1;
 | |
|     break;
 | |
|   case ISD::UDIV:
 | |
|   case ISD::UREM:
 | |
|   case ISD::MULHU:
 | |
|   case ISD::MULHS:
 | |
|     assert(VT.isInteger() && "This operator does not apply to FP types!");
 | |
|     // fall through
 | |
|   case ISD::MUL:
 | |
|   case ISD::SDIV:
 | |
|   case ISD::SREM:
 | |
|   case ISD::FADD:
 | |
|   case ISD::FSUB:
 | |
|   case ISD::FMUL:
 | |
|   case ISD::FDIV:
 | |
|   case ISD::FREM:
 | |
|     assert(N1.getValueType() == N2.getValueType() &&
 | |
|            N1.getValueType() == VT && "Binary operator types must match!");
 | |
|     break;
 | |
|   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
 | |
|     assert(N1.getValueType() == VT &&
 | |
|            N1.getValueType().isFloatingPoint() &&
 | |
|            N2.getValueType().isFloatingPoint() &&
 | |
|            "Invalid FCOPYSIGN!");
 | |
|     break;
 | |
|   case ISD::SHL:
 | |
|   case ISD::SRA:
 | |
|   case ISD::SRL:
 | |
|   case ISD::ROTL:
 | |
|   case ISD::ROTR:
 | |
|     assert(VT == N1.getValueType() &&
 | |
|            "Shift operators return type must be the same as their first arg");
 | |
|     assert(VT.isInteger() && N2.getValueType().isInteger() &&
 | |
|            "Shifts only work on integers");
 | |
| 
 | |
|     // Always fold shifts of i1 values so the code generator doesn't need to
 | |
|     // handle them.  Since we know the size of the shift has to be less than the
 | |
|     // size of the value, the shift/rotate count is guaranteed to be zero.
 | |
|     if (VT == MVT::i1)
 | |
|       return N1;
 | |
|     break;
 | |
|   case ISD::FP_ROUND_INREG: {
 | |
|     MVT EVT = cast<VTSDNode>(N2)->getVT();
 | |
|     assert(VT == N1.getValueType() && "Not an inreg round!");
 | |
|     assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
 | |
|            "Cannot FP_ROUND_INREG integer types");
 | |
|     assert(EVT.bitsLE(VT) && "Not rounding down!");
 | |
|     if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
 | |
|     break;
 | |
|   }
 | |
|   case ISD::FP_ROUND:
 | |
|     assert(VT.isFloatingPoint() &&
 | |
|            N1.getValueType().isFloatingPoint() &&
 | |
|            VT.bitsLE(N1.getValueType()) &&
 | |
|            isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
 | |
|     if (N1.getValueType() == VT) return N1;  // noop conversion.
 | |
|     break;
 | |
|   case ISD::AssertSext:
 | |
|   case ISD::AssertZext: {
 | |
|     MVT EVT = cast<VTSDNode>(N2)->getVT();
 | |
|     assert(VT == N1.getValueType() && "Not an inreg extend!");
 | |
|     assert(VT.isInteger() && EVT.isInteger() &&
 | |
|            "Cannot *_EXTEND_INREG FP types");
 | |
|     assert(EVT.bitsLE(VT) && "Not extending!");
 | |
|     if (VT == EVT) return N1; // noop assertion.
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SIGN_EXTEND_INREG: {
 | |
|     MVT EVT = cast<VTSDNode>(N2)->getVT();
 | |
|     assert(VT == N1.getValueType() && "Not an inreg extend!");
 | |
|     assert(VT.isInteger() && EVT.isInteger() &&
 | |
|            "Cannot *_EXTEND_INREG FP types");
 | |
|     assert(EVT.bitsLE(VT) && "Not extending!");
 | |
|     if (EVT == VT) return N1;  // Not actually extending
 | |
| 
 | |
|     if (N1C) {
 | |
|       APInt Val = N1C->getAPIntValue();
 | |
|       unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
 | |
|       Val <<= Val.getBitWidth()-FromBits;
 | |
|       Val = Val.ashr(Val.getBitWidth()-FromBits);
 | |
|       return getConstant(Val, VT);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ISD::EXTRACT_VECTOR_ELT:
 | |
|     // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
 | |
|     if (N1.getOpcode() == ISD::UNDEF)
 | |
|       return getNode(ISD::UNDEF, VT);
 | |
|       
 | |
|     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
 | |
|     // expanding copies of large vectors from registers.
 | |
|     if (N2C &&
 | |
|         N1.getOpcode() == ISD::CONCAT_VECTORS &&
 | |
|         N1.getNumOperands() > 0) {
 | |
|       unsigned Factor =
 | |
|         N1.getOperand(0).getValueType().getVectorNumElements();
 | |
|       return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
 | |
|                      N1.getOperand(N2C->getValue() / Factor),
 | |
|                      getConstant(N2C->getValue() % Factor, N2.getValueType()));
 | |
|     }
 | |
| 
 | |
|     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
 | |
|     // expanding large vector constants.
 | |
|     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
 | |
|       return N1.getOperand(N2C->getValue());
 | |
|       
 | |
|     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
 | |
|     // operations are lowered to scalars.
 | |
|     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
 | |
|       if (N1.getOperand(2) == N2)
 | |
|         return N1.getOperand(1);
 | |
|       else
 | |
|         return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
 | |
|     }
 | |
|     break;
 | |
|   case ISD::EXTRACT_ELEMENT:
 | |
|     assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
 | |
|     assert(!N1.getValueType().isVector() && !VT.isVector() &&
 | |
|            (N1.getValueType().isInteger() == VT.isInteger()) &&
 | |
|            "Wrong types for EXTRACT_ELEMENT!");
 | |
| 
 | |
|     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
 | |
|     // 64-bit integers into 32-bit parts.  Instead of building the extract of
 | |
|     // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 
 | |
|     if (N1.getOpcode() == ISD::BUILD_PAIR)
 | |
|       return N1.getOperand(N2C->getValue());
 | |
| 
 | |
|     // EXTRACT_ELEMENT of a constant int is also very common.
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
 | |
|       unsigned ElementSize = VT.getSizeInBits();
 | |
|       unsigned Shift = ElementSize * N2C->getValue();
 | |
|       APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
 | |
|       return getConstant(ShiftedVal.trunc(ElementSize), VT);
 | |
|     }
 | |
|     break;
 | |
|   case ISD::EXTRACT_SUBVECTOR:
 | |
|     if (N1.getValueType() == VT) // Trivial extraction.
 | |
|       return N1;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (N1C) {
 | |
|     if (N2C) {
 | |
|       const APInt &C1 = N1C->getAPIntValue(), &C2 = N2C->getAPIntValue();
 | |
|       switch (Opcode) {
 | |
|       case ISD::ADD: return getConstant(C1 + C2, VT);
 | |
|       case ISD::SUB: return getConstant(C1 - C2, VT);
 | |
|       case ISD::MUL: return getConstant(C1 * C2, VT);
 | |
|       case ISD::UDIV:
 | |
|         if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
 | |
|         break;
 | |
|       case ISD::UREM :
 | |
|         if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
 | |
|         break;
 | |
|       case ISD::SDIV :
 | |
|         if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
 | |
|         break;
 | |
|       case ISD::SREM :
 | |
|         if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
 | |
|         break;
 | |
|       case ISD::AND  : return getConstant(C1 & C2, VT);
 | |
|       case ISD::OR   : return getConstant(C1 | C2, VT);
 | |
|       case ISD::XOR  : return getConstant(C1 ^ C2, VT);
 | |
|       case ISD::SHL  : return getConstant(C1 << C2, VT);
 | |
|       case ISD::SRL  : return getConstant(C1.lshr(C2), VT);
 | |
|       case ISD::SRA  : return getConstant(C1.ashr(C2), VT);
 | |
|       case ISD::ROTL : return getConstant(C1.rotl(C2), VT);
 | |
|       case ISD::ROTR : return getConstant(C1.rotr(C2), VT);
 | |
|       default: break;
 | |
|       }
 | |
|     } else {      // Cannonicalize constant to RHS if commutative
 | |
|       if (isCommutativeBinOp(Opcode)) {
 | |
|         std::swap(N1C, N2C);
 | |
|         std::swap(N1, N2);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Constant fold FP operations.
 | |
|   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
 | |
|   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
 | |
|   if (N1CFP) {
 | |
|     if (!N2CFP && isCommutativeBinOp(Opcode)) {
 | |
|       // Cannonicalize constant to RHS if commutative
 | |
|       std::swap(N1CFP, N2CFP);
 | |
|       std::swap(N1, N2);
 | |
|     } else if (N2CFP && VT != MVT::ppcf128) {
 | |
|       APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
 | |
|       APFloat::opStatus s;
 | |
|       switch (Opcode) {
 | |
|       case ISD::FADD: 
 | |
|         s = V1.add(V2, APFloat::rmNearestTiesToEven);
 | |
|         if (s != APFloat::opInvalidOp)
 | |
|           return getConstantFP(V1, VT);
 | |
|         break;
 | |
|       case ISD::FSUB: 
 | |
|         s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
 | |
|         if (s!=APFloat::opInvalidOp)
 | |
|           return getConstantFP(V1, VT);
 | |
|         break;
 | |
|       case ISD::FMUL:
 | |
|         s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
 | |
|         if (s!=APFloat::opInvalidOp)
 | |
|           return getConstantFP(V1, VT);
 | |
|         break;
 | |
|       case ISD::FDIV:
 | |
|         s = V1.divide(V2, APFloat::rmNearestTiesToEven);
 | |
|         if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
 | |
|           return getConstantFP(V1, VT);
 | |
|         break;
 | |
|       case ISD::FREM :
 | |
|         s = V1.mod(V2, APFloat::rmNearestTiesToEven);
 | |
|         if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
 | |
|           return getConstantFP(V1, VT);
 | |
|         break;
 | |
|       case ISD::FCOPYSIGN:
 | |
|         V1.copySign(V2);
 | |
|         return getConstantFP(V1, VT);
 | |
|       default: break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Canonicalize an UNDEF to the RHS, even over a constant.
 | |
|   if (N1.getOpcode() == ISD::UNDEF) {
 | |
|     if (isCommutativeBinOp(Opcode)) {
 | |
|       std::swap(N1, N2);
 | |
|     } else {
 | |
|       switch (Opcode) {
 | |
|       case ISD::FP_ROUND_INREG:
 | |
|       case ISD::SIGN_EXTEND_INREG:
 | |
|       case ISD::SUB:
 | |
|       case ISD::FSUB:
 | |
|       case ISD::FDIV:
 | |
|       case ISD::FREM:
 | |
|       case ISD::SRA:
 | |
|         return N1;     // fold op(undef, arg2) -> undef
 | |
|       case ISD::UDIV:
 | |
|       case ISD::SDIV:
 | |
|       case ISD::UREM:
 | |
|       case ISD::SREM:
 | |
|       case ISD::SRL:
 | |
|       case ISD::SHL:
 | |
|         if (!VT.isVector())
 | |
|           return getConstant(0, VT);    // fold op(undef, arg2) -> 0
 | |
|         // For vectors, we can't easily build an all zero vector, just return
 | |
|         // the LHS.
 | |
|         return N2;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Fold a bunch of operators when the RHS is undef. 
 | |
|   if (N2.getOpcode() == ISD::UNDEF) {
 | |
|     switch (Opcode) {
 | |
|     case ISD::XOR:
 | |
|       if (N1.getOpcode() == ISD::UNDEF)
 | |
|         // Handle undef ^ undef -> 0 special case. This is a common
 | |
|         // idiom (misuse).
 | |
|         return getConstant(0, VT);
 | |
|       // fallthrough
 | |
|     case ISD::ADD:
 | |
|     case ISD::ADDC:
 | |
|     case ISD::ADDE:
 | |
|     case ISD::SUB:
 | |
|     case ISD::FADD:
 | |
|     case ISD::FSUB:
 | |
|     case ISD::FMUL:
 | |
|     case ISD::FDIV:
 | |
|     case ISD::FREM:
 | |
|     case ISD::UDIV:
 | |
|     case ISD::SDIV:
 | |
|     case ISD::UREM:
 | |
|     case ISD::SREM:
 | |
|       return N2;       // fold op(arg1, undef) -> undef
 | |
|     case ISD::MUL: 
 | |
|     case ISD::AND:
 | |
|     case ISD::SRL:
 | |
|     case ISD::SHL:
 | |
|       if (!VT.isVector())
 | |
|         return getConstant(0, VT);  // fold op(arg1, undef) -> 0
 | |
|       // For vectors, we can't easily build an all zero vector, just return
 | |
|       // the LHS.
 | |
|       return N1;
 | |
|     case ISD::OR:
 | |
|       if (!VT.isVector())
 | |
|         return getConstant(VT.getIntegerVTBitMask(), VT);
 | |
|       // For vectors, we can't easily build an all one vector, just return
 | |
|       // the LHS.
 | |
|       return N1;
 | |
|     case ISD::SRA:
 | |
|       return N1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Memoize this node if possible.
 | |
|   SDNode *N;
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   if (VT != MVT::Flag) {
 | |
|     SDValue Ops[] = { N1, N2 };
 | |
|     FoldingSetNodeID ID;
 | |
|     AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
 | |
|     void *IP = 0;
 | |
|     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|       return SDValue(E, 0);
 | |
|     N = NodeAllocator.Allocate<BinarySDNode>();
 | |
|     new (N) BinarySDNode(Opcode, VTs, N1, N2);
 | |
|     CSEMap.InsertNode(N, IP);
 | |
|   } else {
 | |
|     N = NodeAllocator.Allocate<BinarySDNode>();
 | |
|     new (N) BinarySDNode(Opcode, VTs, N1, N2);
 | |
|   }
 | |
| 
 | |
|   AllNodes.push_back(N);
 | |
| #ifndef NDEBUG
 | |
|   VerifyNode(N);
 | |
| #endif
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
 | |
|                               SDValue N1, SDValue N2, SDValue N3) {
 | |
|   // Perform various simplifications.
 | |
|   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
 | |
|   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
 | |
|   switch (Opcode) {
 | |
|   case ISD::CONCAT_VECTORS:
 | |
|     // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
 | |
|     // one big BUILD_VECTOR.
 | |
|     if (N1.getOpcode() == ISD::BUILD_VECTOR &&
 | |
|         N2.getOpcode() == ISD::BUILD_VECTOR &&
 | |
|         N3.getOpcode() == ISD::BUILD_VECTOR) {
 | |
|       SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
 | |
|       Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
 | |
|       Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
 | |
|       return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
 | |
|     }
 | |
|     break;
 | |
|   case ISD::SETCC: {
 | |
|     // Use FoldSetCC to simplify SETCC's.
 | |
|     SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
 | |
|     if (Simp.getNode()) return Simp;
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SELECT:
 | |
|     if (N1C) {
 | |
|      if (N1C->getValue())
 | |
|         return N2;             // select true, X, Y -> X
 | |
|       else
 | |
|         return N3;             // select false, X, Y -> Y
 | |
|     }
 | |
| 
 | |
|     if (N2 == N3) return N2;   // select C, X, X -> X
 | |
|     break;
 | |
|   case ISD::BRCOND:
 | |
|     if (N2C) {
 | |
|       if (N2C->getValue()) // Unconditional branch
 | |
|         return getNode(ISD::BR, MVT::Other, N1, N3);
 | |
|       else
 | |
|         return N1;         // Never-taken branch
 | |
|     }
 | |
|     break;
 | |
|   case ISD::VECTOR_SHUFFLE:
 | |
|     assert(VT == N1.getValueType() && VT == N2.getValueType() &&
 | |
|            VT.isVector() && N3.getValueType().isVector() &&
 | |
|            N3.getOpcode() == ISD::BUILD_VECTOR &&
 | |
|            VT.getVectorNumElements() == N3.getNumOperands() &&
 | |
|            "Illegal VECTOR_SHUFFLE node!");
 | |
|     break;
 | |
|   case ISD::BIT_CONVERT:
 | |
|     // Fold bit_convert nodes from a type to themselves.
 | |
|     if (N1.getValueType() == VT)
 | |
|       return N1;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Memoize node if it doesn't produce a flag.
 | |
|   SDNode *N;
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   if (VT != MVT::Flag) {
 | |
|     SDValue Ops[] = { N1, N2, N3 };
 | |
|     FoldingSetNodeID ID;
 | |
|     AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
 | |
|     void *IP = 0;
 | |
|     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|       return SDValue(E, 0);
 | |
|     N = NodeAllocator.Allocate<TernarySDNode>();
 | |
|     new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
 | |
|     CSEMap.InsertNode(N, IP);
 | |
|   } else {
 | |
|     N = NodeAllocator.Allocate<TernarySDNode>();
 | |
|     new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
 | |
|   }
 | |
|   AllNodes.push_back(N);
 | |
| #ifndef NDEBUG
 | |
|   VerifyNode(N);
 | |
| #endif
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
 | |
|                               SDValue N1, SDValue N2, SDValue N3,
 | |
|                               SDValue N4) {
 | |
|   SDValue Ops[] = { N1, N2, N3, N4 };
 | |
|   return getNode(Opcode, VT, Ops, 4);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
 | |
|                               SDValue N1, SDValue N2, SDValue N3,
 | |
|                               SDValue N4, SDValue N5) {
 | |
|   SDValue Ops[] = { N1, N2, N3, N4, N5 };
 | |
|   return getNode(Opcode, VT, Ops, 5);
 | |
| }
 | |
| 
 | |
| /// getMemsetValue - Vectorized representation of the memset value
 | |
| /// operand.
 | |
| static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG) {
 | |
|   unsigned NumBits = VT.isVector() ?
 | |
|     VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
 | |
|   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
 | |
|     APInt Val = APInt(NumBits, C->getValue() & 255);
 | |
|     unsigned Shift = 8;
 | |
|     for (unsigned i = NumBits; i > 8; i >>= 1) {
 | |
|       Val = (Val << Shift) | Val;
 | |
|       Shift <<= 1;
 | |
|     }
 | |
|     if (VT.isInteger())
 | |
|       return DAG.getConstant(Val, VT);
 | |
|     return DAG.getConstantFP(APFloat(Val), VT);
 | |
|   }
 | |
| 
 | |
|   Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
 | |
|   unsigned Shift = 8;
 | |
|   for (unsigned i = NumBits; i > 8; i >>= 1) {
 | |
|     Value = DAG.getNode(ISD::OR, VT,
 | |
|                         DAG.getNode(ISD::SHL, VT, Value,
 | |
|                                     DAG.getConstant(Shift, MVT::i8)), Value);
 | |
|     Shift <<= 1;
 | |
|   }
 | |
| 
 | |
|   return Value;
 | |
| }
 | |
| 
 | |
| /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
 | |
| /// used when a memcpy is turned into a memset when the source is a constant
 | |
| /// string ptr.
 | |
| static SDValue getMemsetStringVal(MVT VT, SelectionDAG &DAG,
 | |
|                                     const TargetLowering &TLI,
 | |
|                                     std::string &Str, unsigned Offset) {
 | |
|   // Handle vector with all elements zero.
 | |
|   if (Str.empty()) {
 | |
|     if (VT.isInteger())
 | |
|       return DAG.getConstant(0, VT);
 | |
|     unsigned NumElts = VT.getVectorNumElements();
 | |
|     MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
 | |
|     return DAG.getNode(ISD::BIT_CONVERT, VT,
 | |
|                        DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
 | |
|   }
 | |
| 
 | |
|   assert(!VT.isVector() && "Can't handle vector type here!");
 | |
|   unsigned NumBits = VT.getSizeInBits();
 | |
|   unsigned MSB = NumBits / 8;
 | |
|   uint64_t Val = 0;
 | |
|   if (TLI.isLittleEndian())
 | |
|     Offset = Offset + MSB - 1;
 | |
|   for (unsigned i = 0; i != MSB; ++i) {
 | |
|     Val = (Val << 8) | (unsigned char)Str[Offset];
 | |
|     Offset += TLI.isLittleEndian() ? -1 : 1;
 | |
|   }
 | |
|   return DAG.getConstant(Val, VT);
 | |
| }
 | |
| 
 | |
| /// getMemBasePlusOffset - Returns base and offset node for the 
 | |
| ///
 | |
| static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
 | |
|                                       SelectionDAG &DAG) {
 | |
|   MVT VT = Base.getValueType();
 | |
|   return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
 | |
| }
 | |
| 
 | |
| /// isMemSrcFromString - Returns true if memcpy source is a string constant.
 | |
| ///
 | |
| static bool isMemSrcFromString(SDValue Src, std::string &Str) {
 | |
|   unsigned SrcDelta = 0;
 | |
|   GlobalAddressSDNode *G = NULL;
 | |
|   if (Src.getOpcode() == ISD::GlobalAddress)
 | |
|     G = cast<GlobalAddressSDNode>(Src);
 | |
|   else if (Src.getOpcode() == ISD::ADD &&
 | |
|            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
 | |
|            Src.getOperand(1).getOpcode() == ISD::Constant) {
 | |
|     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
 | |
|     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getValue();
 | |
|   }
 | |
|   if (!G)
 | |
|     return false;
 | |
| 
 | |
|   GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
 | |
|   if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// MeetsMaxMemopRequirement - Determines if the number of memory ops required
 | |
| /// to replace the memset / memcpy is below the threshold. It also returns the
 | |
| /// types of the sequence of memory ops to perform memset / memcpy.
 | |
| static
 | |
| bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
 | |
|                               SDValue Dst, SDValue Src,
 | |
|                               unsigned Limit, uint64_t Size, unsigned &Align,
 | |
|                               std::string &Str, bool &isSrcStr,
 | |
|                               SelectionDAG &DAG,
 | |
|                               const TargetLowering &TLI) {
 | |
|   isSrcStr = isMemSrcFromString(Src, Str);
 | |
|   bool isSrcConst = isa<ConstantSDNode>(Src);
 | |
|   bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
 | |
|   MVT VT= TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
 | |
|   if (VT != MVT::iAny) {
 | |
|     unsigned NewAlign = (unsigned)
 | |
|       TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
 | |
|     // If source is a string constant, this will require an unaligned load.
 | |
|     if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
 | |
|       if (Dst.getOpcode() != ISD::FrameIndex) {
 | |
|         // Can't change destination alignment. It requires a unaligned store.
 | |
|         if (AllowUnalign)
 | |
|           VT = MVT::iAny;
 | |
|       } else {
 | |
|         int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
 | |
|         MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
 | |
|         if (MFI->isFixedObjectIndex(FI)) {
 | |
|           // Can't change destination alignment. It requires a unaligned store.
 | |
|           if (AllowUnalign)
 | |
|             VT = MVT::iAny;
 | |
|         } else {
 | |
|           // Give the stack frame object a larger alignment if needed.
 | |
|           if (MFI->getObjectAlignment(FI) < NewAlign)
 | |
|             MFI->setObjectAlignment(FI, NewAlign);
 | |
|           Align = NewAlign;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (VT == MVT::iAny) {
 | |
|     if (AllowUnalign) {
 | |
|       VT = MVT::i64;
 | |
|     } else {
 | |
|       switch (Align & 7) {
 | |
|       case 0:  VT = MVT::i64; break;
 | |
|       case 4:  VT = MVT::i32; break;
 | |
|       case 2:  VT = MVT::i16; break;
 | |
|       default: VT = MVT::i8;  break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     MVT LVT = MVT::i64;
 | |
|     while (!TLI.isTypeLegal(LVT))
 | |
|       LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
 | |
|     assert(LVT.isInteger());
 | |
| 
 | |
|     if (VT.bitsGT(LVT))
 | |
|       VT = LVT;
 | |
|   }
 | |
| 
 | |
|   unsigned NumMemOps = 0;
 | |
|   while (Size != 0) {
 | |
|     unsigned VTSize = VT.getSizeInBits() / 8;
 | |
|     while (VTSize > Size) {
 | |
|       // For now, only use non-vector load / store's for the left-over pieces.
 | |
|       if (VT.isVector()) {
 | |
|         VT = MVT::i64;
 | |
|         while (!TLI.isTypeLegal(VT))
 | |
|           VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
 | |
|         VTSize = VT.getSizeInBits() / 8;
 | |
|       } else {
 | |
|         VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
 | |
|         VTSize >>= 1;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (++NumMemOps > Limit)
 | |
|       return false;
 | |
|     MemOps.push_back(VT);
 | |
|     Size -= VTSize;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG,
 | |
|                                          SDValue Chain, SDValue Dst,
 | |
|                                          SDValue Src, uint64_t Size,
 | |
|                                          unsigned Align, bool AlwaysInline,
 | |
|                                          const Value *DstSV, uint64_t DstSVOff,
 | |
|                                          const Value *SrcSV, uint64_t SrcSVOff){
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
| 
 | |
|   // Expand memcpy to a series of load and store ops if the size operand falls
 | |
|   // below a certain threshold.
 | |
|   std::vector<MVT> MemOps;
 | |
|   uint64_t Limit = -1;
 | |
|   if (!AlwaysInline)
 | |
|     Limit = TLI.getMaxStoresPerMemcpy();
 | |
|   unsigned DstAlign = Align;  // Destination alignment can change.
 | |
|   std::string Str;
 | |
|   bool CopyFromStr;
 | |
|   if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
 | |
|                                 Str, CopyFromStr, DAG, TLI))
 | |
|     return SDValue();
 | |
| 
 | |
| 
 | |
|   bool isZeroStr = CopyFromStr && Str.empty();
 | |
|   SmallVector<SDValue, 8> OutChains;
 | |
|   unsigned NumMemOps = MemOps.size();
 | |
|   uint64_t SrcOff = 0, DstOff = 0;
 | |
|   for (unsigned i = 0; i < NumMemOps; i++) {
 | |
|     MVT VT = MemOps[i];
 | |
|     unsigned VTSize = VT.getSizeInBits() / 8;
 | |
|     SDValue Value, Store;
 | |
| 
 | |
|     if (CopyFromStr && (isZeroStr || !VT.isVector())) {
 | |
|       // It's unlikely a store of a vector immediate can be done in a single
 | |
|       // instruction. It would require a load from a constantpool first.
 | |
|       // We also handle store a vector with all zero's.
 | |
|       // FIXME: Handle other cases where store of vector immediate is done in
 | |
|       // a single instruction.
 | |
|       Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
 | |
|       Store = DAG.getStore(Chain, Value,
 | |
|                            getMemBasePlusOffset(Dst, DstOff, DAG),
 | |
|                            DstSV, DstSVOff + DstOff, false, DstAlign);
 | |
|     } else {
 | |
|       Value = DAG.getLoad(VT, Chain,
 | |
|                           getMemBasePlusOffset(Src, SrcOff, DAG),
 | |
|                           SrcSV, SrcSVOff + SrcOff, false, Align);
 | |
|       Store = DAG.getStore(Chain, Value,
 | |
|                            getMemBasePlusOffset(Dst, DstOff, DAG),
 | |
|                            DstSV, DstSVOff + DstOff, false, DstAlign);
 | |
|     }
 | |
|     OutChains.push_back(Store);
 | |
|     SrcOff += VTSize;
 | |
|     DstOff += VTSize;
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(ISD::TokenFactor, MVT::Other,
 | |
|                      &OutChains[0], OutChains.size());
 | |
| }
 | |
| 
 | |
| static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG,
 | |
|                                           SDValue Chain, SDValue Dst,
 | |
|                                           SDValue Src, uint64_t Size,
 | |
|                                           unsigned Align, bool AlwaysInline,
 | |
|                                           const Value *DstSV, uint64_t DstSVOff,
 | |
|                                           const Value *SrcSV, uint64_t SrcSVOff){
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
| 
 | |
|   // Expand memmove to a series of load and store ops if the size operand falls
 | |
|   // below a certain threshold.
 | |
|   std::vector<MVT> MemOps;
 | |
|   uint64_t Limit = -1;
 | |
|   if (!AlwaysInline)
 | |
|     Limit = TLI.getMaxStoresPerMemmove();
 | |
|   unsigned DstAlign = Align;  // Destination alignment can change.
 | |
|   std::string Str;
 | |
|   bool CopyFromStr;
 | |
|   if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
 | |
|                                 Str, CopyFromStr, DAG, TLI))
 | |
|     return SDValue();
 | |
| 
 | |
|   uint64_t SrcOff = 0, DstOff = 0;
 | |
| 
 | |
|   SmallVector<SDValue, 8> LoadValues;
 | |
|   SmallVector<SDValue, 8> LoadChains;
 | |
|   SmallVector<SDValue, 8> OutChains;
 | |
|   unsigned NumMemOps = MemOps.size();
 | |
|   for (unsigned i = 0; i < NumMemOps; i++) {
 | |
|     MVT VT = MemOps[i];
 | |
|     unsigned VTSize = VT.getSizeInBits() / 8;
 | |
|     SDValue Value, Store;
 | |
| 
 | |
|     Value = DAG.getLoad(VT, Chain,
 | |
|                         getMemBasePlusOffset(Src, SrcOff, DAG),
 | |
|                         SrcSV, SrcSVOff + SrcOff, false, Align);
 | |
|     LoadValues.push_back(Value);
 | |
|     LoadChains.push_back(Value.getValue(1));
 | |
|     SrcOff += VTSize;
 | |
|   }
 | |
|   Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
 | |
|                       &LoadChains[0], LoadChains.size());
 | |
|   OutChains.clear();
 | |
|   for (unsigned i = 0; i < NumMemOps; i++) {
 | |
|     MVT VT = MemOps[i];
 | |
|     unsigned VTSize = VT.getSizeInBits() / 8;
 | |
|     SDValue Value, Store;
 | |
| 
 | |
|     Store = DAG.getStore(Chain, LoadValues[i],
 | |
|                          getMemBasePlusOffset(Dst, DstOff, DAG),
 | |
|                          DstSV, DstSVOff + DstOff, false, DstAlign);
 | |
|     OutChains.push_back(Store);
 | |
|     DstOff += VTSize;
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(ISD::TokenFactor, MVT::Other,
 | |
|                      &OutChains[0], OutChains.size());
 | |
| }
 | |
| 
 | |
| static SDValue getMemsetStores(SelectionDAG &DAG,
 | |
|                                  SDValue Chain, SDValue Dst,
 | |
|                                  SDValue Src, uint64_t Size,
 | |
|                                  unsigned Align,
 | |
|                                  const Value *DstSV, uint64_t DstSVOff) {
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
| 
 | |
|   // Expand memset to a series of load/store ops if the size operand
 | |
|   // falls below a certain threshold.
 | |
|   std::vector<MVT> MemOps;
 | |
|   std::string Str;
 | |
|   bool CopyFromStr;
 | |
|   if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
 | |
|                                 Size, Align, Str, CopyFromStr, DAG, TLI))
 | |
|     return SDValue();
 | |
| 
 | |
|   SmallVector<SDValue, 8> OutChains;
 | |
|   uint64_t DstOff = 0;
 | |
| 
 | |
|   unsigned NumMemOps = MemOps.size();
 | |
|   for (unsigned i = 0; i < NumMemOps; i++) {
 | |
|     MVT VT = MemOps[i];
 | |
|     unsigned VTSize = VT.getSizeInBits() / 8;
 | |
|     SDValue Value = getMemsetValue(Src, VT, DAG);
 | |
|     SDValue Store = DAG.getStore(Chain, Value,
 | |
|                                    getMemBasePlusOffset(Dst, DstOff, DAG),
 | |
|                                    DstSV, DstSVOff + DstOff);
 | |
|     OutChains.push_back(Store);
 | |
|     DstOff += VTSize;
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(ISD::TokenFactor, MVT::Other,
 | |
|                      &OutChains[0], OutChains.size());
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getMemcpy(SDValue Chain, SDValue Dst,
 | |
|                                 SDValue Src, SDValue Size,
 | |
|                                 unsigned Align, bool AlwaysInline,
 | |
|                                 const Value *DstSV, uint64_t DstSVOff,
 | |
|                                 const Value *SrcSV, uint64_t SrcSVOff) {
 | |
| 
 | |
|   // Check to see if we should lower the memcpy to loads and stores first.
 | |
|   // For cases within the target-specified limits, this is the best choice.
 | |
|   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
 | |
|   if (ConstantSize) {
 | |
|     // Memcpy with size zero? Just return the original chain.
 | |
|     if (ConstantSize->isNullValue())
 | |
|       return Chain;
 | |
| 
 | |
|     SDValue Result =
 | |
|       getMemcpyLoadsAndStores(*this, Chain, Dst, Src, ConstantSize->getValue(),
 | |
|                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
 | |
|     if (Result.getNode())
 | |
|       return Result;
 | |
|   }
 | |
| 
 | |
|   // Then check to see if we should lower the memcpy with target-specific
 | |
|   // code. If the target chooses to do this, this is the next best.
 | |
|   SDValue Result =
 | |
|     TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
 | |
|                                 AlwaysInline,
 | |
|                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
 | |
|   if (Result.getNode())
 | |
|     return Result;
 | |
| 
 | |
|   // If we really need inline code and the target declined to provide it,
 | |
|   // use a (potentially long) sequence of loads and stores.
 | |
|   if (AlwaysInline) {
 | |
|     assert(ConstantSize && "AlwaysInline requires a constant size!");
 | |
|     return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
 | |
|                                    ConstantSize->getValue(), Align, true,
 | |
|                                    DstSV, DstSVOff, SrcSV, SrcSVOff);
 | |
|   }
 | |
| 
 | |
|   // Emit a library call.
 | |
|   TargetLowering::ArgListTy Args;
 | |
|   TargetLowering::ArgListEntry Entry;
 | |
|   Entry.Ty = TLI.getTargetData()->getIntPtrType();
 | |
|   Entry.Node = Dst; Args.push_back(Entry);
 | |
|   Entry.Node = Src; Args.push_back(Entry);
 | |
|   Entry.Node = Size; Args.push_back(Entry);
 | |
|   std::pair<SDValue,SDValue> CallResult =
 | |
|     TLI.LowerCallTo(Chain, Type::VoidTy,
 | |
|                     false, false, false, CallingConv::C, false,
 | |
|                     getExternalSymbol("memcpy", TLI.getPointerTy()),
 | |
|                     Args, *this);
 | |
|   return CallResult.second;
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getMemmove(SDValue Chain, SDValue Dst,
 | |
|                                  SDValue Src, SDValue Size,
 | |
|                                  unsigned Align,
 | |
|                                  const Value *DstSV, uint64_t DstSVOff,
 | |
|                                  const Value *SrcSV, uint64_t SrcSVOff) {
 | |
| 
 | |
|   // Check to see if we should lower the memmove to loads and stores first.
 | |
|   // For cases within the target-specified limits, this is the best choice.
 | |
|   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
 | |
|   if (ConstantSize) {
 | |
|     // Memmove with size zero? Just return the original chain.
 | |
|     if (ConstantSize->isNullValue())
 | |
|       return Chain;
 | |
| 
 | |
|     SDValue Result =
 | |
|       getMemmoveLoadsAndStores(*this, Chain, Dst, Src, ConstantSize->getValue(),
 | |
|                                Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
 | |
|     if (Result.getNode())
 | |
|       return Result;
 | |
|   }
 | |
| 
 | |
|   // Then check to see if we should lower the memmove with target-specific
 | |
|   // code. If the target chooses to do this, this is the next best.
 | |
|   SDValue Result =
 | |
|     TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
 | |
|                                  DstSV, DstSVOff, SrcSV, SrcSVOff);
 | |
|   if (Result.getNode())
 | |
|     return Result;
 | |
| 
 | |
|   // Emit a library call.
 | |
|   TargetLowering::ArgListTy Args;
 | |
|   TargetLowering::ArgListEntry Entry;
 | |
|   Entry.Ty = TLI.getTargetData()->getIntPtrType();
 | |
|   Entry.Node = Dst; Args.push_back(Entry);
 | |
|   Entry.Node = Src; Args.push_back(Entry);
 | |
|   Entry.Node = Size; Args.push_back(Entry);
 | |
|   std::pair<SDValue,SDValue> CallResult =
 | |
|     TLI.LowerCallTo(Chain, Type::VoidTy,
 | |
|                     false, false, false, CallingConv::C, false,
 | |
|                     getExternalSymbol("memmove", TLI.getPointerTy()),
 | |
|                     Args, *this);
 | |
|   return CallResult.second;
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getMemset(SDValue Chain, SDValue Dst,
 | |
|                                 SDValue Src, SDValue Size,
 | |
|                                 unsigned Align,
 | |
|                                 const Value *DstSV, uint64_t DstSVOff) {
 | |
| 
 | |
|   // Check to see if we should lower the memset to stores first.
 | |
|   // For cases within the target-specified limits, this is the best choice.
 | |
|   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
 | |
|   if (ConstantSize) {
 | |
|     // Memset with size zero? Just return the original chain.
 | |
|     if (ConstantSize->isNullValue())
 | |
|       return Chain;
 | |
| 
 | |
|     SDValue Result =
 | |
|       getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getValue(), Align,
 | |
|                       DstSV, DstSVOff);
 | |
|     if (Result.getNode())
 | |
|       return Result;
 | |
|   }
 | |
| 
 | |
|   // Then check to see if we should lower the memset with target-specific
 | |
|   // code. If the target chooses to do this, this is the next best.
 | |
|   SDValue Result =
 | |
|     TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
 | |
|                                 DstSV, DstSVOff);
 | |
|   if (Result.getNode())
 | |
|     return Result;
 | |
| 
 | |
|   // Emit a library call.
 | |
|   const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
 | |
|   TargetLowering::ArgListTy Args;
 | |
|   TargetLowering::ArgListEntry Entry;
 | |
|   Entry.Node = Dst; Entry.Ty = IntPtrTy;
 | |
|   Args.push_back(Entry);
 | |
|   // Extend or truncate the argument to be an i32 value for the call.
 | |
|   if (Src.getValueType().bitsGT(MVT::i32))
 | |
|     Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
 | |
|   else
 | |
|     Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
 | |
|   Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
 | |
|   Args.push_back(Entry);
 | |
|   Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
 | |
|   Args.push_back(Entry);
 | |
|   std::pair<SDValue,SDValue> CallResult =
 | |
|     TLI.LowerCallTo(Chain, Type::VoidTy,
 | |
|                     false, false, false, CallingConv::C, false,
 | |
|                     getExternalSymbol("memset", TLI.getPointerTy()),
 | |
|                     Args, *this);
 | |
|   return CallResult.second;
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain, 
 | |
|                                 SDValue Ptr, SDValue Cmp, 
 | |
|                                 SDValue Swp, const Value* PtrVal,
 | |
|                                 unsigned Alignment) {
 | |
|   assert((Opcode == ISD::ATOMIC_CMP_SWAP_8  ||
 | |
|           Opcode == ISD::ATOMIC_CMP_SWAP_16 ||
 | |
|           Opcode == ISD::ATOMIC_CMP_SWAP_32 ||
 | |
|           Opcode == ISD::ATOMIC_CMP_SWAP_64) && "Invalid Atomic Op");
 | |
|   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
 | |
| 
 | |
|   MVT VT = Cmp.getValueType();
 | |
| 
 | |
|   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
 | |
|     Alignment = getMVTAlignment(VT);
 | |
| 
 | |
|   SDVTList VTs = getVTList(VT, MVT::Other);
 | |
|   FoldingSetNodeID ID;
 | |
|   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
 | |
|   AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
 | |
|   void* IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
|   SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
 | |
|   new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain, 
 | |
|                                 SDValue Ptr, SDValue Val, 
 | |
|                                 const Value* PtrVal,
 | |
|                                 unsigned Alignment) {
 | |
|   assert((Opcode == ISD::ATOMIC_LOAD_ADD_8 ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_SUB_8 ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_AND_8 ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_OR_8 ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_XOR_8 ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_NAND_8 ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_MIN_8 || 
 | |
|           Opcode == ISD::ATOMIC_LOAD_MAX_8 ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_UMIN_8 || 
 | |
|           Opcode == ISD::ATOMIC_LOAD_UMAX_8 ||
 | |
|           Opcode == ISD::ATOMIC_SWAP_8 || 
 | |
|           Opcode == ISD::ATOMIC_LOAD_ADD_16 ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_SUB_16 ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_AND_16 ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_OR_16 ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_XOR_16 ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_NAND_16 ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_MIN_16 || 
 | |
|           Opcode == ISD::ATOMIC_LOAD_MAX_16 ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_UMIN_16 || 
 | |
|           Opcode == ISD::ATOMIC_LOAD_UMAX_16 ||
 | |
|           Opcode == ISD::ATOMIC_SWAP_16 || 
 | |
|           Opcode == ISD::ATOMIC_LOAD_ADD_32 ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_SUB_32 ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_AND_32 ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_OR_32 ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_XOR_32 ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_NAND_32 ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_MIN_32 || 
 | |
|           Opcode == ISD::ATOMIC_LOAD_MAX_32 ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_UMIN_32 || 
 | |
|           Opcode == ISD::ATOMIC_LOAD_UMAX_32 ||
 | |
|           Opcode == ISD::ATOMIC_SWAP_32 || 
 | |
|           Opcode == ISD::ATOMIC_LOAD_ADD_64 ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_SUB_64 ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_AND_64 ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_OR_64 ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_XOR_64 ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_NAND_64 ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_MIN_64 || 
 | |
|           Opcode == ISD::ATOMIC_LOAD_MAX_64 ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_UMIN_64 || 
 | |
|           Opcode == ISD::ATOMIC_LOAD_UMAX_64 ||
 | |
|           Opcode == ISD::ATOMIC_SWAP_64)        && "Invalid Atomic Op");
 | |
| 
 | |
|   MVT VT = Val.getValueType();
 | |
| 
 | |
|   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
 | |
|     Alignment = getMVTAlignment(VT);
 | |
| 
 | |
|   SDVTList VTs = getVTList(VT, MVT::Other);
 | |
|   FoldingSetNodeID ID;
 | |
|   SDValue Ops[] = {Chain, Ptr, Val};
 | |
|   AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
 | |
|   void* IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
|   SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
 | |
|   new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, PtrVal, Alignment);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| /// getMergeValues - Create a MERGE_VALUES node from the given operands.
 | |
| /// Allowed to return something different (and simpler) if Simplify is true.
 | |
| SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
 | |
|                                      bool Simplify) {
 | |
|   if (Simplify && NumOps == 1)
 | |
|     return Ops[0];
 | |
| 
 | |
|   SmallVector<MVT, 4> VTs;
 | |
|   VTs.reserve(NumOps);
 | |
|   for (unsigned i = 0; i < NumOps; ++i)
 | |
|     VTs.push_back(Ops[i].getValueType());
 | |
|   return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
 | |
|                       MVT VT, SDValue Chain,
 | |
|                       SDValue Ptr, SDValue Offset,
 | |
|                       const Value *SV, int SVOffset, MVT EVT,
 | |
|                       bool isVolatile, unsigned Alignment) {
 | |
|   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
 | |
|     Alignment = getMVTAlignment(VT);
 | |
| 
 | |
|   if (VT == EVT) {
 | |
|     ExtType = ISD::NON_EXTLOAD;
 | |
|   } else if (ExtType == ISD::NON_EXTLOAD) {
 | |
|     assert(VT == EVT && "Non-extending load from different memory type!");
 | |
|   } else {
 | |
|     // Extending load.
 | |
|     if (VT.isVector())
 | |
|       assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
 | |
|              "Invalid vector extload!");
 | |
|     else
 | |
|       assert(EVT.bitsLT(VT) &&
 | |
|              "Should only be an extending load, not truncating!");
 | |
|     assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
 | |
|            "Cannot sign/zero extend a FP/Vector load!");
 | |
|     assert(VT.isInteger() == EVT.isInteger() &&
 | |
|            "Cannot convert from FP to Int or Int -> FP!");
 | |
|   }
 | |
| 
 | |
|   bool Indexed = AM != ISD::UNINDEXED;
 | |
|   assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
 | |
|          "Unindexed load with an offset!");
 | |
| 
 | |
|   SDVTList VTs = Indexed ?
 | |
|     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
 | |
|   SDValue Ops[] = { Chain, Ptr, Offset };
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
 | |
|   ID.AddInteger(AM);
 | |
|   ID.AddInteger(ExtType);
 | |
|   ID.AddInteger(EVT.getRawBits());
 | |
|   ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
|   SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
 | |
|   new (N) LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
 | |
|                      Alignment, isVolatile);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getLoad(MVT VT,
 | |
|                               SDValue Chain, SDValue Ptr,
 | |
|                               const Value *SV, int SVOffset,
 | |
|                               bool isVolatile, unsigned Alignment) {
 | |
|   SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
 | |
|   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
 | |
|                  SV, SVOffset, VT, isVolatile, Alignment);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
 | |
|                                  SDValue Chain, SDValue Ptr,
 | |
|                                  const Value *SV,
 | |
|                                  int SVOffset, MVT EVT,
 | |
|                                  bool isVolatile, unsigned Alignment) {
 | |
|   SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
 | |
|   return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
 | |
|                  SV, SVOffset, EVT, isVolatile, Alignment);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDValue Base,
 | |
|                              SDValue Offset, ISD::MemIndexedMode AM) {
 | |
|   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
 | |
|   assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
 | |
|          "Load is already a indexed load!");
 | |
|   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
 | |
|                  LD->getChain(), Base, Offset, LD->getSrcValue(),
 | |
|                  LD->getSrcValueOffset(), LD->getMemoryVT(),
 | |
|                  LD->isVolatile(), LD->getAlignment());
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getStore(SDValue Chain, SDValue Val,
 | |
|                                SDValue Ptr, const Value *SV, int SVOffset,
 | |
|                                bool isVolatile, unsigned Alignment) {
 | |
|   MVT VT = Val.getValueType();
 | |
| 
 | |
|   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
 | |
|     Alignment = getMVTAlignment(VT);
 | |
| 
 | |
|   SDVTList VTs = getVTList(MVT::Other);
 | |
|   SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
 | |
|   SDValue Ops[] = { Chain, Val, Ptr, Undef };
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
 | |
|   ID.AddInteger(ISD::UNINDEXED);
 | |
|   ID.AddInteger(false);
 | |
|   ID.AddInteger(VT.getRawBits());
 | |
|   ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
|   SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
 | |
|   new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
 | |
|                       VT, SV, SVOffset, Alignment, isVolatile);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getTruncStore(SDValue Chain, SDValue Val,
 | |
|                                     SDValue Ptr, const Value *SV,
 | |
|                                     int SVOffset, MVT SVT,
 | |
|                                     bool isVolatile, unsigned Alignment) {
 | |
|   MVT VT = Val.getValueType();
 | |
| 
 | |
|   if (VT == SVT)
 | |
|     return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
 | |
| 
 | |
|   assert(VT.bitsGT(SVT) && "Not a truncation?");
 | |
|   assert(VT.isInteger() == SVT.isInteger() &&
 | |
|          "Can't do FP-INT conversion!");
 | |
| 
 | |
|   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
 | |
|     Alignment = getMVTAlignment(VT);
 | |
| 
 | |
|   SDVTList VTs = getVTList(MVT::Other);
 | |
|   SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
 | |
|   SDValue Ops[] = { Chain, Val, Ptr, Undef };
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
 | |
|   ID.AddInteger(ISD::UNINDEXED);
 | |
|   ID.AddInteger(1);
 | |
|   ID.AddInteger(SVT.getRawBits());
 | |
|   ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
|   SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
 | |
|   new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
 | |
|                       SVT, SV, SVOffset, Alignment, isVolatile);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| SelectionDAG::getIndexedStore(SDValue OrigStore, SDValue Base,
 | |
|                               SDValue Offset, ISD::MemIndexedMode AM) {
 | |
|   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
 | |
|   assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
 | |
|          "Store is already a indexed store!");
 | |
|   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
 | |
|   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
 | |
|   ID.AddInteger(AM);
 | |
|   ID.AddInteger(ST->isTruncatingStore());
 | |
|   ID.AddInteger(ST->getMemoryVT().getRawBits());
 | |
|   ID.AddInteger(ST->getRawFlags());
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
|   SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
 | |
|   new (N) StoreSDNode(Ops, VTs, AM,
 | |
|                       ST->isTruncatingStore(), ST->getMemoryVT(),
 | |
|                       ST->getSrcValue(), ST->getSrcValueOffset(),
 | |
|                       ST->getAlignment(), ST->isVolatile());
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getVAArg(MVT VT,
 | |
|                                SDValue Chain, SDValue Ptr,
 | |
|                                SDValue SV) {
 | |
|   SDValue Ops[] = { Chain, Ptr, SV };
 | |
|   return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
 | |
|                               const SDUse *Ops, unsigned NumOps) {
 | |
|   switch (NumOps) {
 | |
|   case 0: return getNode(Opcode, VT);
 | |
|   case 1: return getNode(Opcode, VT, Ops[0]);
 | |
|   case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
 | |
|   case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
 | |
|   default: break;
 | |
|   }
 | |
| 
 | |
|   // Copy from an SDUse array into an SDValue array for use with
 | |
|   // the regular getNode logic.
 | |
|   SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
 | |
|   return getNode(Opcode, VT, &NewOps[0], NumOps);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
 | |
|                               const SDValue *Ops, unsigned NumOps) {
 | |
|   switch (NumOps) {
 | |
|   case 0: return getNode(Opcode, VT);
 | |
|   case 1: return getNode(Opcode, VT, Ops[0]);
 | |
|   case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
 | |
|   case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
 | |
|   default: break;
 | |
|   }
 | |
|   
 | |
|   switch (Opcode) {
 | |
|   default: break;
 | |
|   case ISD::SELECT_CC: {
 | |
|     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
 | |
|     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
 | |
|            "LHS and RHS of condition must have same type!");
 | |
|     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
 | |
|            "True and False arms of SelectCC must have same type!");
 | |
|     assert(Ops[2].getValueType() == VT &&
 | |
|            "select_cc node must be of same type as true and false value!");
 | |
|     break;
 | |
|   }
 | |
|   case ISD::BR_CC: {
 | |
|     assert(NumOps == 5 && "BR_CC takes 5 operands!");
 | |
|     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
 | |
|            "LHS/RHS of comparison should match types!");
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   // Memoize nodes.
 | |
|   SDNode *N;
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   if (VT != MVT::Flag) {
 | |
|     FoldingSetNodeID ID;
 | |
|     AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
 | |
|     void *IP = 0;
 | |
|     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|       return SDValue(E, 0);
 | |
|     N = NodeAllocator.Allocate<SDNode>();
 | |
|     new (N) SDNode(Opcode, VTs, Ops, NumOps);
 | |
|     CSEMap.InsertNode(N, IP);
 | |
|   } else {
 | |
|     N = NodeAllocator.Allocate<SDNode>();
 | |
|     new (N) SDNode(Opcode, VTs, Ops, NumOps);
 | |
|   }
 | |
|   AllNodes.push_back(N);
 | |
| #ifndef NDEBUG
 | |
|   VerifyNode(N);
 | |
| #endif
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode,
 | |
|                               const std::vector<MVT> &ResultTys,
 | |
|                               const SDValue *Ops, unsigned NumOps) {
 | |
|   return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
 | |
|                  Ops, NumOps);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode,
 | |
|                               const MVT *VTs, unsigned NumVTs,
 | |
|                               const SDValue *Ops, unsigned NumOps) {
 | |
|   if (NumVTs == 1)
 | |
|     return getNode(Opcode, VTs[0], Ops, NumOps);
 | |
|   return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
 | |
| }  
 | |
|   
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
 | |
|                               const SDValue *Ops, unsigned NumOps) {
 | |
|   if (VTList.NumVTs == 1)
 | |
|     return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
 | |
| 
 | |
|   switch (Opcode) {
 | |
|   // FIXME: figure out how to safely handle things like
 | |
|   // int foo(int x) { return 1 << (x & 255); }
 | |
|   // int bar() { return foo(256); }
 | |
| #if 0
 | |
|   case ISD::SRA_PARTS:
 | |
|   case ISD::SRL_PARTS:
 | |
|   case ISD::SHL_PARTS:
 | |
|     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
 | |
|         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
 | |
|       return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
 | |
|     else if (N3.getOpcode() == ISD::AND)
 | |
|       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
 | |
|         // If the and is only masking out bits that cannot effect the shift,
 | |
|         // eliminate the and.
 | |
|         unsigned NumBits = VT.getSizeInBits()*2;
 | |
|         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
 | |
|           return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
 | |
|       }
 | |
|     break;
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   // Memoize the node unless it returns a flag.
 | |
|   SDNode *N;
 | |
|   if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
 | |
|     FoldingSetNodeID ID;
 | |
|     AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
 | |
|     void *IP = 0;
 | |
|     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|       return SDValue(E, 0);
 | |
|     if (NumOps == 1) {
 | |
|       N = NodeAllocator.Allocate<UnarySDNode>();
 | |
|       new (N) UnarySDNode(Opcode, VTList, Ops[0]);
 | |
|     } else if (NumOps == 2) {
 | |
|       N = NodeAllocator.Allocate<BinarySDNode>();
 | |
|       new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
 | |
|     } else if (NumOps == 3) {
 | |
|       N = NodeAllocator.Allocate<TernarySDNode>();
 | |
|       new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
 | |
|     } else {
 | |
|       N = NodeAllocator.Allocate<SDNode>();
 | |
|       new (N) SDNode(Opcode, VTList, Ops, NumOps);
 | |
|     }
 | |
|     CSEMap.InsertNode(N, IP);
 | |
|   } else {
 | |
|     if (NumOps == 1) {
 | |
|       N = NodeAllocator.Allocate<UnarySDNode>();
 | |
|       new (N) UnarySDNode(Opcode, VTList, Ops[0]);
 | |
|     } else if (NumOps == 2) {
 | |
|       N = NodeAllocator.Allocate<BinarySDNode>();
 | |
|       new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
 | |
|     } else if (NumOps == 3) {
 | |
|       N = NodeAllocator.Allocate<TernarySDNode>();
 | |
|       new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
 | |
|     } else {
 | |
|       N = NodeAllocator.Allocate<SDNode>();
 | |
|       new (N) SDNode(Opcode, VTList, Ops, NumOps);
 | |
|     }
 | |
|   }
 | |
|   AllNodes.push_back(N);
 | |
| #ifndef NDEBUG
 | |
|   VerifyNode(N);
 | |
| #endif
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
 | |
|   return getNode(Opcode, VTList, 0, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
 | |
|                                 SDValue N1) {
 | |
|   SDValue Ops[] = { N1 };
 | |
|   return getNode(Opcode, VTList, Ops, 1);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
 | |
|                               SDValue N1, SDValue N2) {
 | |
|   SDValue Ops[] = { N1, N2 };
 | |
|   return getNode(Opcode, VTList, Ops, 2);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
 | |
|                               SDValue N1, SDValue N2, SDValue N3) {
 | |
|   SDValue Ops[] = { N1, N2, N3 };
 | |
|   return getNode(Opcode, VTList, Ops, 3);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
 | |
|                               SDValue N1, SDValue N2, SDValue N3,
 | |
|                               SDValue N4) {
 | |
|   SDValue Ops[] = { N1, N2, N3, N4 };
 | |
|   return getNode(Opcode, VTList, Ops, 4);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
 | |
|                               SDValue N1, SDValue N2, SDValue N3,
 | |
|                               SDValue N4, SDValue N5) {
 | |
|   SDValue Ops[] = { N1, N2, N3, N4, N5 };
 | |
|   return getNode(Opcode, VTList, Ops, 5);
 | |
| }
 | |
| 
 | |
| SDVTList SelectionDAG::getVTList(MVT VT) {
 | |
|   return makeVTList(SDNode::getValueTypeList(VT), 1);
 | |
| }
 | |
| 
 | |
| SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
 | |
|   for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
 | |
|        E = VTList.rend(); I != E; ++I)
 | |
|     if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
 | |
|       return *I;
 | |
| 
 | |
|   MVT *Array = Allocator.Allocate<MVT>(2);
 | |
|   Array[0] = VT1;
 | |
|   Array[1] = VT2;
 | |
|   SDVTList Result = makeVTList(Array, 2);
 | |
|   VTList.push_back(Result);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
 | |
|   for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
 | |
|        E = VTList.rend(); I != E; ++I)
 | |
|     if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
 | |
|                           I->VTs[2] == VT3)
 | |
|       return *I;
 | |
| 
 | |
|   MVT *Array = Allocator.Allocate<MVT>(3);
 | |
|   Array[0] = VT1;
 | |
|   Array[1] = VT2;
 | |
|   Array[2] = VT3;
 | |
|   SDVTList Result = makeVTList(Array, 3);
 | |
|   VTList.push_back(Result);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
 | |
|   switch (NumVTs) {
 | |
|     case 0: assert(0 && "Cannot have nodes without results!");
 | |
|     case 1: return getVTList(VTs[0]);
 | |
|     case 2: return getVTList(VTs[0], VTs[1]);
 | |
|     case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
 | |
|     default: break;
 | |
|   }
 | |
| 
 | |
|   for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
 | |
|        E = VTList.rend(); I != E; ++I) {
 | |
|     if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
 | |
|       continue;
 | |
|    
 | |
|     bool NoMatch = false;
 | |
|     for (unsigned i = 2; i != NumVTs; ++i)
 | |
|       if (VTs[i] != I->VTs[i]) {
 | |
|         NoMatch = true;
 | |
|         break;
 | |
|       }
 | |
|     if (!NoMatch)
 | |
|       return *I;
 | |
|   }
 | |
|   
 | |
|   MVT *Array = Allocator.Allocate<MVT>(NumVTs);
 | |
|   std::copy(VTs, VTs+NumVTs, Array);
 | |
|   SDVTList Result = makeVTList(Array, NumVTs);
 | |
|   VTList.push_back(Result);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
 | |
| /// specified operands.  If the resultant node already exists in the DAG,
 | |
| /// this does not modify the specified node, instead it returns the node that
 | |
| /// already exists.  If the resultant node does not exist in the DAG, the
 | |
| /// input node is returned.  As a degenerate case, if you specify the same
 | |
| /// input operands as the node already has, the input node is returned.
 | |
| SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
 | |
|   SDNode *N = InN.getNode();
 | |
|   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
 | |
|   
 | |
|   // Check to see if there is no change.
 | |
|   if (Op == N->getOperand(0)) return InN;
 | |
|   
 | |
|   // See if the modified node already exists.
 | |
|   void *InsertPos = 0;
 | |
|   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
 | |
|     return SDValue(Existing, InN.getResNo());
 | |
|   
 | |
|   // Nope it doesn't.  Remove the node from its current place in the maps.
 | |
|   if (InsertPos)
 | |
|     RemoveNodeFromCSEMaps(N);
 | |
|   
 | |
|   // Now we update the operands.
 | |
|   N->OperandList[0].getVal()->removeUser(0, N);
 | |
|   N->OperandList[0] = Op;
 | |
|   N->OperandList[0].setUser(N);
 | |
|   Op.getNode()->addUser(0, N);
 | |
|   
 | |
|   // If this gets put into a CSE map, add it.
 | |
|   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
 | |
|   return InN;
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::
 | |
| UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
 | |
|   SDNode *N = InN.getNode();
 | |
|   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
 | |
|   
 | |
|   // Check to see if there is no change.
 | |
|   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
 | |
|     return InN;   // No operands changed, just return the input node.
 | |
|   
 | |
|   // See if the modified node already exists.
 | |
|   void *InsertPos = 0;
 | |
|   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
 | |
|     return SDValue(Existing, InN.getResNo());
 | |
|   
 | |
|   // Nope it doesn't.  Remove the node from its current place in the maps.
 | |
|   if (InsertPos)
 | |
|     RemoveNodeFromCSEMaps(N);
 | |
|   
 | |
|   // Now we update the operands.
 | |
|   if (N->OperandList[0] != Op1) {
 | |
|     N->OperandList[0].getVal()->removeUser(0, N);
 | |
|     N->OperandList[0] = Op1;
 | |
|     N->OperandList[0].setUser(N);
 | |
|     Op1.getNode()->addUser(0, N);
 | |
|   }
 | |
|   if (N->OperandList[1] != Op2) {
 | |
|     N->OperandList[1].getVal()->removeUser(1, N);
 | |
|     N->OperandList[1] = Op2;
 | |
|     N->OperandList[1].setUser(N);
 | |
|     Op2.getNode()->addUser(1, N);
 | |
|   }
 | |
|   
 | |
|   // If this gets put into a CSE map, add it.
 | |
|   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
 | |
|   return InN;
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::
 | |
| UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
 | |
|   SDValue Ops[] = { Op1, Op2, Op3 };
 | |
|   return UpdateNodeOperands(N, Ops, 3);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::
 | |
| UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, 
 | |
|                    SDValue Op3, SDValue Op4) {
 | |
|   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
 | |
|   return UpdateNodeOperands(N, Ops, 4);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::
 | |
| UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
 | |
|                    SDValue Op3, SDValue Op4, SDValue Op5) {
 | |
|   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
 | |
|   return UpdateNodeOperands(N, Ops, 5);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::
 | |
| UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
 | |
|   SDNode *N = InN.getNode();
 | |
|   assert(N->getNumOperands() == NumOps &&
 | |
|          "Update with wrong number of operands");
 | |
|   
 | |
|   // Check to see if there is no change.
 | |
|   bool AnyChange = false;
 | |
|   for (unsigned i = 0; i != NumOps; ++i) {
 | |
|     if (Ops[i] != N->getOperand(i)) {
 | |
|       AnyChange = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // No operands changed, just return the input node.
 | |
|   if (!AnyChange) return InN;
 | |
|   
 | |
|   // See if the modified node already exists.
 | |
|   void *InsertPos = 0;
 | |
|   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
 | |
|     return SDValue(Existing, InN.getResNo());
 | |
|   
 | |
|   // Nope it doesn't.  Remove the node from its current place in the maps.
 | |
|   if (InsertPos)
 | |
|     RemoveNodeFromCSEMaps(N);
 | |
|   
 | |
|   // Now we update the operands.
 | |
|   for (unsigned i = 0; i != NumOps; ++i) {
 | |
|     if (N->OperandList[i] != Ops[i]) {
 | |
|       N->OperandList[i].getVal()->removeUser(i, N);
 | |
|       N->OperandList[i] = Ops[i];
 | |
|       N->OperandList[i].setUser(N);
 | |
|       Ops[i].getNode()->addUser(i, N);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this gets put into a CSE map, add it.
 | |
|   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
 | |
|   return InN;
 | |
| }
 | |
| 
 | |
| /// DropOperands - Release the operands and set this node to have
 | |
| /// zero operands.
 | |
| void SDNode::DropOperands() {
 | |
|   // Unlike the code in MorphNodeTo that does this, we don't need to
 | |
|   // watch for dead nodes here.
 | |
|   for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
 | |
|     I->getVal()->removeUser(std::distance(op_begin(), I), this);
 | |
| 
 | |
|   NumOperands = 0;
 | |
| }
 | |
| 
 | |
| /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
 | |
| /// machine opcode.
 | |
| ///
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
 | |
|                                    MVT VT) {
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
 | |
|                                    MVT VT, SDValue Op1) {
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   SDValue Ops[] = { Op1 };
 | |
|   return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
 | |
|                                    MVT VT, SDValue Op1,
 | |
|                                    SDValue Op2) {
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   SDValue Ops[] = { Op1, Op2 };
 | |
|   return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
 | |
|                                    MVT VT, SDValue Op1,
 | |
|                                    SDValue Op2, SDValue Op3) {
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   SDValue Ops[] = { Op1, Op2, Op3 };
 | |
|   return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
 | |
|                                    MVT VT, const SDValue *Ops,
 | |
|                                    unsigned NumOps) {
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
 | |
|                                    MVT VT1, MVT VT2, const SDValue *Ops,
 | |
|                                    unsigned NumOps) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2);
 | |
|   return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
 | |
|                                    MVT VT1, MVT VT2) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2);
 | |
|   return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
 | |
|                                    MVT VT1, MVT VT2, MVT VT3,
 | |
|                                    const SDValue *Ops, unsigned NumOps) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2, VT3);
 | |
|   return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 
 | |
|                                    MVT VT1, MVT VT2,
 | |
|                                    SDValue Op1) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2);
 | |
|   SDValue Ops[] = { Op1 };
 | |
|   return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 
 | |
|                                    MVT VT1, MVT VT2,
 | |
|                                    SDValue Op1, SDValue Op2) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2);
 | |
|   SDValue Ops[] = { Op1, Op2 };
 | |
|   return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
 | |
|                                    MVT VT1, MVT VT2,
 | |
|                                    SDValue Op1, SDValue Op2, 
 | |
|                                    SDValue Op3) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2);
 | |
|   SDValue Ops[] = { Op1, Op2, Op3 };
 | |
|   return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
 | |
|                                    SDVTList VTs, const SDValue *Ops,
 | |
|                                    unsigned NumOps) {
 | |
|   return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
 | |
|                                   MVT VT) {
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   return MorphNodeTo(N, Opc, VTs, 0, 0);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
 | |
|                                   MVT VT, SDValue Op1) {
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   SDValue Ops[] = { Op1 };
 | |
|   return MorphNodeTo(N, Opc, VTs, Ops, 1);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
 | |
|                                   MVT VT, SDValue Op1,
 | |
|                                   SDValue Op2) {
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   SDValue Ops[] = { Op1, Op2 };
 | |
|   return MorphNodeTo(N, Opc, VTs, Ops, 2);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
 | |
|                                   MVT VT, SDValue Op1,
 | |
|                                   SDValue Op2, SDValue Op3) {
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   SDValue Ops[] = { Op1, Op2, Op3 };
 | |
|   return MorphNodeTo(N, Opc, VTs, Ops, 3);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
 | |
|                                   MVT VT, const SDValue *Ops,
 | |
|                                   unsigned NumOps) {
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
 | |
|                                   MVT VT1, MVT VT2, const SDValue *Ops,
 | |
|                                   unsigned NumOps) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2);
 | |
|   return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
 | |
|                                   MVT VT1, MVT VT2) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2);
 | |
|   return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
 | |
|                                   MVT VT1, MVT VT2, MVT VT3,
 | |
|                                   const SDValue *Ops, unsigned NumOps) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2, VT3);
 | |
|   return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 
 | |
|                                   MVT VT1, MVT VT2,
 | |
|                                   SDValue Op1) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2);
 | |
|   SDValue Ops[] = { Op1 };
 | |
|   return MorphNodeTo(N, Opc, VTs, Ops, 1);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 
 | |
|                                   MVT VT1, MVT VT2,
 | |
|                                   SDValue Op1, SDValue Op2) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2);
 | |
|   SDValue Ops[] = { Op1, Op2 };
 | |
|   return MorphNodeTo(N, Opc, VTs, Ops, 2);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
 | |
|                                   MVT VT1, MVT VT2,
 | |
|                                   SDValue Op1, SDValue Op2, 
 | |
|                                   SDValue Op3) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2);
 | |
|   SDValue Ops[] = { Op1, Op2, Op3 };
 | |
|   return MorphNodeTo(N, Opc, VTs, Ops, 3);
 | |
| }
 | |
| 
 | |
| /// MorphNodeTo - These *mutate* the specified node to have the specified
 | |
| /// return type, opcode, and operands.
 | |
| ///
 | |
| /// Note that MorphNodeTo returns the resultant node.  If there is already a
 | |
| /// node of the specified opcode and operands, it returns that node instead of
 | |
| /// the current one.
 | |
| ///
 | |
| /// Using MorphNodeTo is faster than creating a new node and swapping it in
 | |
| /// with ReplaceAllUsesWith both because it often avoids allocating a new
 | |
| /// node, and because it doesn't require CSE recalculation for any of
 | |
| /// the node's users.
 | |
| ///
 | |
| SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
 | |
|                                   SDVTList VTs, const SDValue *Ops,
 | |
|                                   unsigned NumOps) {
 | |
|   // If an identical node already exists, use it.
 | |
|   void *IP = 0;
 | |
|   if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
 | |
|     FoldingSetNodeID ID;
 | |
|     AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
 | |
|     if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|       return ON;
 | |
|   }
 | |
| 
 | |
|   RemoveNodeFromCSEMaps(N);
 | |
| 
 | |
|   // Start the morphing.
 | |
|   N->NodeType = Opc;
 | |
|   N->ValueList = VTs.VTs;
 | |
|   N->NumValues = VTs.NumVTs;
 | |
|   
 | |
|   // Clear the operands list, updating used nodes to remove this from their
 | |
|   // use list.  Keep track of any operands that become dead as a result.
 | |
|   SmallPtrSet<SDNode*, 16> DeadNodeSet;
 | |
|   for (SDNode::op_iterator B = N->op_begin(), I = B, E = N->op_end();
 | |
|        I != E; ++I) {
 | |
|     SDNode *Used = I->getVal();
 | |
|     Used->removeUser(std::distance(B, I), N);
 | |
|     if (Used->use_empty())
 | |
|       DeadNodeSet.insert(Used);
 | |
|   }
 | |
| 
 | |
|   // If NumOps is larger than the # of operands we currently have, reallocate
 | |
|   // the operand list.
 | |
|   if (NumOps > N->NumOperands) {
 | |
|     if (N->OperandsNeedDelete)
 | |
|       delete[] N->OperandList;
 | |
|     if (N->isMachineOpcode()) {
 | |
|       // We're creating a final node that will live unmorphed for the
 | |
|       // remainder of the current SelectionDAG iteration, so we can allocate
 | |
|       // the operands directly out of a pool with no recycling metadata.
 | |
|       N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
 | |
|       N->OperandsNeedDelete = false;
 | |
|     } else {
 | |
|       N->OperandList = new SDUse[NumOps];
 | |
|       N->OperandsNeedDelete = true;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Assign the new operands.
 | |
|   N->NumOperands = NumOps;
 | |
|   for (unsigned i = 0, e = NumOps; i != e; ++i) {
 | |
|     N->OperandList[i] = Ops[i];
 | |
|     N->OperandList[i].setUser(N);
 | |
|     SDNode *ToUse = N->OperandList[i].getVal();
 | |
|     ToUse->addUser(i, N);
 | |
|   }
 | |
| 
 | |
|   // Delete any nodes that are still dead after adding the uses for the
 | |
|   // new operands.
 | |
|   SmallVector<SDNode *, 16> DeadNodes;
 | |
|   for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
 | |
|        E = DeadNodeSet.end(); I != E; ++I)
 | |
|     if ((*I)->use_empty())
 | |
|       DeadNodes.push_back(*I);
 | |
|   RemoveDeadNodes(DeadNodes);
 | |
| 
 | |
|   if (IP)
 | |
|     CSEMap.InsertNode(N, IP);   // Memoize the new node.
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getTargetNode - These are used for target selectors to create a new node
 | |
| /// with specified return type(s), target opcode, and operands.
 | |
| ///
 | |
| /// Note that getTargetNode returns the resultant node.  If there is already a
 | |
| /// node of the specified opcode and operands, it returns that node instead of
 | |
| /// the current one.
 | |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
 | |
|   return getNode(~Opcode, VT).getNode();
 | |
| }
 | |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1) {
 | |
|   return getNode(~Opcode, VT, Op1).getNode();
 | |
| }
 | |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
 | |
|                                     SDValue Op1, SDValue Op2) {
 | |
|   return getNode(~Opcode, VT, Op1, Op2).getNode();
 | |
| }
 | |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
 | |
|                                     SDValue Op1, SDValue Op2,
 | |
|                                     SDValue Op3) {
 | |
|   return getNode(~Opcode, VT, Op1, Op2, Op3).getNode();
 | |
| }
 | |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
 | |
|                                     const SDValue *Ops, unsigned NumOps) {
 | |
|   return getNode(~Opcode, VT, Ops, NumOps).getNode();
 | |
| }
 | |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
 | |
|   const MVT *VTs = getNodeValueTypes(VT1, VT2);
 | |
|   SDValue Op;
 | |
|   return getNode(~Opcode, VTs, 2, &Op, 0).getNode();
 | |
| }
 | |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
 | |
|                                     MVT VT2, SDValue Op1) {
 | |
|   const MVT *VTs = getNodeValueTypes(VT1, VT2);
 | |
|   return getNode(~Opcode, VTs, 2, &Op1, 1).getNode();
 | |
| }
 | |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
 | |
|                                     MVT VT2, SDValue Op1,
 | |
|                                     SDValue Op2) {
 | |
|   const MVT *VTs = getNodeValueTypes(VT1, VT2);
 | |
|   SDValue Ops[] = { Op1, Op2 };
 | |
|   return getNode(~Opcode, VTs, 2, Ops, 2).getNode();
 | |
| }
 | |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
 | |
|                                     MVT VT2, SDValue Op1,
 | |
|                                     SDValue Op2, SDValue Op3) {
 | |
|   const MVT *VTs = getNodeValueTypes(VT1, VT2);
 | |
|   SDValue Ops[] = { Op1, Op2, Op3 };
 | |
|   return getNode(~Opcode, VTs, 2, Ops, 3).getNode();
 | |
| }
 | |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
 | |
|                                     const SDValue *Ops, unsigned NumOps) {
 | |
|   const MVT *VTs = getNodeValueTypes(VT1, VT2);
 | |
|   return getNode(~Opcode, VTs, 2, Ops, NumOps).getNode();
 | |
| }
 | |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
 | |
|                                     SDValue Op1, SDValue Op2) {
 | |
|   const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
 | |
|   SDValue Ops[] = { Op1, Op2 };
 | |
|   return getNode(~Opcode, VTs, 3, Ops, 2).getNode();
 | |
| }
 | |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
 | |
|                                     SDValue Op1, SDValue Op2,
 | |
|                                     SDValue Op3) {
 | |
|   const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
 | |
|   SDValue Ops[] = { Op1, Op2, Op3 };
 | |
|   return getNode(~Opcode, VTs, 3, Ops, 3).getNode();
 | |
| }
 | |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
 | |
|                                     const SDValue *Ops, unsigned NumOps) {
 | |
|   const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
 | |
|   return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode();
 | |
| }
 | |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
 | |
|                                     MVT VT2, MVT VT3, MVT VT4,
 | |
|                                     const SDValue *Ops, unsigned NumOps) {
 | |
|   std::vector<MVT> VTList;
 | |
|   VTList.push_back(VT1);
 | |
|   VTList.push_back(VT2);
 | |
|   VTList.push_back(VT3);
 | |
|   VTList.push_back(VT4);
 | |
|   const MVT *VTs = getNodeValueTypes(VTList);
 | |
|   return getNode(~Opcode, VTs, 4, Ops, NumOps).getNode();
 | |
| }
 | |
| SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
 | |
|                                     const std::vector<MVT> &ResultTys,
 | |
|                                     const SDValue *Ops, unsigned NumOps) {
 | |
|   const MVT *VTs = getNodeValueTypes(ResultTys);
 | |
|   return getNode(~Opcode, VTs, ResultTys.size(),
 | |
|                  Ops, NumOps).getNode();
 | |
| }
 | |
| 
 | |
| /// getNodeIfExists - Get the specified node if it's already available, or
 | |
| /// else return NULL.
 | |
| SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
 | |
|                                       const SDValue *Ops, unsigned NumOps) {
 | |
|   if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
 | |
|     FoldingSetNodeID ID;
 | |
|     AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
 | |
|     void *IP = 0;
 | |
|     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|       return E;
 | |
|   }
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
 | |
| /// This can cause recursive merging of nodes in the DAG.
 | |
| ///
 | |
| /// This version assumes From has a single result value.
 | |
| ///
 | |
| void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
 | |
|                                       DAGUpdateListener *UpdateListener) {
 | |
|   SDNode *From = FromN.getNode();
 | |
|   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 
 | |
|          "Cannot replace with this method!");
 | |
|   assert(From != To.getNode() && "Cannot replace uses of with self");
 | |
| 
 | |
|   while (!From->use_empty()) {
 | |
|     SDNode::use_iterator UI = From->use_begin();
 | |
|     SDNode *U = *UI;
 | |
| 
 | |
|     // This node is about to morph, remove its old self from the CSE maps.
 | |
|     RemoveNodeFromCSEMaps(U);
 | |
|     int operandNum = 0;
 | |
|     for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
 | |
|          I != E; ++I, ++operandNum)
 | |
|       if (I->getVal() == From) {
 | |
|         From->removeUser(operandNum, U);
 | |
|         *I = To;
 | |
|         I->setUser(U);
 | |
|         To.getNode()->addUser(operandNum, U);
 | |
|       }    
 | |
| 
 | |
|     // Now that we have modified U, add it back to the CSE maps.  If it already
 | |
|     // exists there, recursively merge the results together.
 | |
|     if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
 | |
|       ReplaceAllUsesWith(U, Existing, UpdateListener);
 | |
|       // U is now dead.  Inform the listener if it exists and delete it.
 | |
|       if (UpdateListener) 
 | |
|         UpdateListener->NodeDeleted(U, Existing);
 | |
|       DeleteNodeNotInCSEMaps(U);
 | |
|     } else {
 | |
|       // If the node doesn't already exist, we updated it.  Inform a listener if
 | |
|       // it exists.
 | |
|       if (UpdateListener) 
 | |
|         UpdateListener->NodeUpdated(U);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
 | |
| /// This can cause recursive merging of nodes in the DAG.
 | |
| ///
 | |
| /// This version assumes From/To have matching types and numbers of result
 | |
| /// values.
 | |
| ///
 | |
| void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
 | |
|                                       DAGUpdateListener *UpdateListener) {
 | |
|   assert(From->getVTList().VTs == To->getVTList().VTs &&
 | |
|          From->getNumValues() == To->getNumValues() &&
 | |
|          "Cannot use this version of ReplaceAllUsesWith!");
 | |
| 
 | |
|   // Handle the trivial case.
 | |
|   if (From == To)
 | |
|     return;
 | |
| 
 | |
|   while (!From->use_empty()) {
 | |
|     SDNode::use_iterator UI = From->use_begin();
 | |
|     SDNode *U = *UI;
 | |
| 
 | |
|     // This node is about to morph, remove its old self from the CSE maps.
 | |
|     RemoveNodeFromCSEMaps(U);
 | |
|     int operandNum = 0;
 | |
|     for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
 | |
|          I != E; ++I, ++operandNum)
 | |
|       if (I->getVal() == From) {
 | |
|         From->removeUser(operandNum, U);
 | |
|         I->getSDValue().setNode(To);
 | |
|         To->addUser(operandNum, U);
 | |
|       }
 | |
| 
 | |
|     // Now that we have modified U, add it back to the CSE maps.  If it already
 | |
|     // exists there, recursively merge the results together.
 | |
|     if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
 | |
|       ReplaceAllUsesWith(U, Existing, UpdateListener);
 | |
|       // U is now dead.  Inform the listener if it exists and delete it.
 | |
|       if (UpdateListener) 
 | |
|         UpdateListener->NodeDeleted(U, Existing);
 | |
|       DeleteNodeNotInCSEMaps(U);
 | |
|     } else {
 | |
|       // If the node doesn't already exist, we updated it.  Inform a listener if
 | |
|       // it exists.
 | |
|       if (UpdateListener) 
 | |
|         UpdateListener->NodeUpdated(U);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
 | |
| /// This can cause recursive merging of nodes in the DAG.
 | |
| ///
 | |
| /// This version can replace From with any result values.  To must match the
 | |
| /// number and types of values returned by From.
 | |
| void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
 | |
|                                       const SDValue *To,
 | |
|                                       DAGUpdateListener *UpdateListener) {
 | |
|   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
 | |
|     return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
 | |
| 
 | |
|   while (!From->use_empty()) {
 | |
|     SDNode::use_iterator UI = From->use_begin();
 | |
|     SDNode *U = *UI;
 | |
| 
 | |
|     // This node is about to morph, remove its old self from the CSE maps.
 | |
|     RemoveNodeFromCSEMaps(U);
 | |
|     int operandNum = 0;
 | |
|     for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
 | |
|          I != E; ++I, ++operandNum)
 | |
|       if (I->getVal() == From) {
 | |
|         const SDValue &ToOp = To[I->getSDValue().getResNo()];
 | |
|         From->removeUser(operandNum, U);
 | |
|         *I = ToOp;
 | |
|         I->setUser(U);
 | |
|         ToOp.getNode()->addUser(operandNum, U);
 | |
|       }
 | |
| 
 | |
|     // Now that we have modified U, add it back to the CSE maps.  If it already
 | |
|     // exists there, recursively merge the results together.
 | |
|     if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
 | |
|       ReplaceAllUsesWith(U, Existing, UpdateListener);
 | |
|       // U is now dead.  Inform the listener if it exists and delete it.
 | |
|       if (UpdateListener) 
 | |
|         UpdateListener->NodeDeleted(U, Existing);
 | |
|       DeleteNodeNotInCSEMaps(U);
 | |
|     } else {
 | |
|       // If the node doesn't already exist, we updated it.  Inform a listener if
 | |
|       // it exists.
 | |
|       if (UpdateListener) 
 | |
|         UpdateListener->NodeUpdated(U);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
 | |
| /// uses of other values produced by From.getVal() alone.  The Deleted vector is
 | |
| /// handled the same way as for ReplaceAllUsesWith.
 | |
| void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
 | |
|                                              DAGUpdateListener *UpdateListener){
 | |
|   // Handle the really simple, really trivial case efficiently.
 | |
|   if (From == To) return;
 | |
| 
 | |
|   // Handle the simple, trivial, case efficiently.
 | |
|   if (From.getNode()->getNumValues() == 1) {
 | |
|     ReplaceAllUsesWith(From, To, UpdateListener);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Get all of the users of From.getNode().  We want these in a nice,
 | |
|   // deterministically ordered and uniqued set, so we use a SmallSetVector.
 | |
|   SmallSetVector<SDNode*, 16> Users(From.getNode()->use_begin(), From.getNode()->use_end());
 | |
| 
 | |
|   while (!Users.empty()) {
 | |
|     // We know that this user uses some value of From.  If it is the right
 | |
|     // value, update it.
 | |
|     SDNode *User = Users.back();
 | |
|     Users.pop_back();
 | |
|     
 | |
|     // Scan for an operand that matches From.
 | |
|     SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
 | |
|     for (; Op != E; ++Op)
 | |
|       if (*Op == From) break;
 | |
|     
 | |
|     // If there are no matches, the user must use some other result of From.
 | |
|     if (Op == E) continue;
 | |
|       
 | |
|     // Okay, we know this user needs to be updated.  Remove its old self
 | |
|     // from the CSE maps.
 | |
|     RemoveNodeFromCSEMaps(User);
 | |
|     
 | |
|     // Update all operands that match "From" in case there are multiple uses.
 | |
|     for (; Op != E; ++Op) {
 | |
|       if (*Op == From) {
 | |
|         From.getNode()->removeUser(Op-User->op_begin(), User);
 | |
|         *Op = To;
 | |
|         Op->setUser(User);
 | |
|         To.getNode()->addUser(Op-User->op_begin(), User);
 | |
|       }
 | |
|     }
 | |
|                
 | |
|     // Now that we have modified User, add it back to the CSE maps.  If it
 | |
|     // already exists there, recursively merge the results together.
 | |
|     SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
 | |
|     if (!Existing) {
 | |
|       if (UpdateListener) UpdateListener->NodeUpdated(User);
 | |
|       continue;  // Continue on to next user.
 | |
|     }
 | |
|     
 | |
|     // If there was already an existing matching node, use ReplaceAllUsesWith
 | |
|     // to replace the dead one with the existing one.  This can cause
 | |
|     // recursive merging of other unrelated nodes down the line.
 | |
|     ReplaceAllUsesWith(User, Existing, UpdateListener);
 | |
|     
 | |
|     // User is now dead.  Notify a listener if present.
 | |
|     if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
 | |
|     DeleteNodeNotInCSEMaps(User);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
 | |
| /// uses of other values produced by From.getVal() alone.  The same value may
 | |
| /// appear in both the From and To list.  The Deleted vector is
 | |
| /// handled the same way as for ReplaceAllUsesWith.
 | |
| void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
 | |
|                                               const SDValue *To,
 | |
|                                               unsigned Num,
 | |
|                                               DAGUpdateListener *UpdateListener){
 | |
|   // Handle the simple, trivial case efficiently.
 | |
|   if (Num == 1)
 | |
|     return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
 | |
| 
 | |
|   SmallVector<std::pair<SDNode *, unsigned>, 16> Users;
 | |
|   for (unsigned i = 0; i != Num; ++i)
 | |
|     for (SDNode::use_iterator UI = From[i].getNode()->use_begin(), 
 | |
|          E = From[i].getNode()->use_end(); UI != E; ++UI)
 | |
|       Users.push_back(std::make_pair(*UI, i));
 | |
| 
 | |
|   while (!Users.empty()) {
 | |
|     // We know that this user uses some value of From.  If it is the right
 | |
|     // value, update it.
 | |
|     SDNode *User = Users.back().first;
 | |
|     unsigned i = Users.back().second;
 | |
|     Users.pop_back();
 | |
|     
 | |
|     // Scan for an operand that matches From.
 | |
|     SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
 | |
|     for (; Op != E; ++Op)
 | |
|       if (*Op == From[i]) break;
 | |
|     
 | |
|     // If there are no matches, the user must use some other result of From.
 | |
|     if (Op == E) continue;
 | |
|       
 | |
|     // Okay, we know this user needs to be updated.  Remove its old self
 | |
|     // from the CSE maps.
 | |
|     RemoveNodeFromCSEMaps(User);
 | |
|     
 | |
|     // Update all operands that match "From" in case there are multiple uses.
 | |
|     for (; Op != E; ++Op) {
 | |
|       if (*Op == From[i]) {
 | |
|         From[i].getNode()->removeUser(Op-User->op_begin(), User);
 | |
|         *Op = To[i];
 | |
|         Op->setUser(User);
 | |
|         To[i].getNode()->addUser(Op-User->op_begin(), User);
 | |
|       }
 | |
|     }
 | |
|                
 | |
|     // Now that we have modified User, add it back to the CSE maps.  If it
 | |
|     // already exists there, recursively merge the results together.
 | |
|     SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
 | |
|     if (!Existing) {
 | |
|       if (UpdateListener) UpdateListener->NodeUpdated(User);
 | |
|       continue;  // Continue on to next user.
 | |
|     }
 | |
|     
 | |
|     // If there was already an existing matching node, use ReplaceAllUsesWith
 | |
|     // to replace the dead one with the existing one.  This can cause
 | |
|     // recursive merging of other unrelated nodes down the line.
 | |
|     ReplaceAllUsesWith(User, Existing, UpdateListener);
 | |
|     
 | |
|     // User is now dead.  Notify a listener if present.
 | |
|     if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
 | |
|     DeleteNodeNotInCSEMaps(User);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
 | |
| /// based on their topological order. It returns the maximum id and a vector
 | |
| /// of the SDNodes* in assigned order by reference.
 | |
| unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
 | |
|   unsigned DAGSize = AllNodes.size();
 | |
|   std::vector<SDNode*> Sources;
 | |
| 
 | |
|   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
 | |
|     SDNode *N = I;
 | |
|     unsigned Degree = N->use_size();
 | |
|     // Temporarily use the Node Id as scratch space for the degree count.
 | |
|     N->setNodeId(Degree);
 | |
|     if (Degree == 0)
 | |
|       Sources.push_back(N);
 | |
|   }
 | |
| 
 | |
|   TopOrder.clear();
 | |
|   TopOrder.reserve(DAGSize);
 | |
|   int Id = 0;
 | |
|   while (!Sources.empty()) {
 | |
|     SDNode *N = Sources.back();
 | |
|     Sources.pop_back();
 | |
|     TopOrder.push_back(N);
 | |
|     N->setNodeId(Id++);
 | |
|     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
 | |
|       SDNode *P = I->getVal();
 | |
|       unsigned Degree = P->getNodeId();
 | |
|       --Degree;
 | |
|       P->setNodeId(Degree);
 | |
|       if (Degree == 0)
 | |
|         Sources.push_back(P);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Id;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                              SDNode Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Out-of-line virtual method to give class a home.
 | |
| void SDNode::ANCHOR() {}
 | |
| void UnarySDNode::ANCHOR() {}
 | |
| void BinarySDNode::ANCHOR() {}
 | |
| void TernarySDNode::ANCHOR() {}
 | |
| void HandleSDNode::ANCHOR() {}
 | |
| void ConstantSDNode::ANCHOR() {}
 | |
| void ConstantFPSDNode::ANCHOR() {}
 | |
| void GlobalAddressSDNode::ANCHOR() {}
 | |
| void FrameIndexSDNode::ANCHOR() {}
 | |
| void JumpTableSDNode::ANCHOR() {}
 | |
| void ConstantPoolSDNode::ANCHOR() {}
 | |
| void BasicBlockSDNode::ANCHOR() {}
 | |
| void SrcValueSDNode::ANCHOR() {}
 | |
| void MemOperandSDNode::ANCHOR() {}
 | |
| void RegisterSDNode::ANCHOR() {}
 | |
| void DbgStopPointSDNode::ANCHOR() {}
 | |
| void LabelSDNode::ANCHOR() {}
 | |
| void ExternalSymbolSDNode::ANCHOR() {}
 | |
| void CondCodeSDNode::ANCHOR() {}
 | |
| void ARG_FLAGSSDNode::ANCHOR() {}
 | |
| void VTSDNode::ANCHOR() {}
 | |
| void MemSDNode::ANCHOR() {}
 | |
| void LoadSDNode::ANCHOR() {}
 | |
| void StoreSDNode::ANCHOR() {}
 | |
| void AtomicSDNode::ANCHOR() {}
 | |
| 
 | |
| HandleSDNode::~HandleSDNode() {
 | |
|   DropOperands();
 | |
| }
 | |
| 
 | |
| GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
 | |
|                                          MVT VT, int o)
 | |
|   : SDNode(isa<GlobalVariable>(GA) &&
 | |
|            cast<GlobalVariable>(GA)->isThreadLocal() ?
 | |
|            // Thread Local
 | |
|            (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
 | |
|            // Non Thread Local
 | |
|            (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
 | |
|            getSDVTList(VT)), Offset(o) {
 | |
|   TheGlobal = const_cast<GlobalValue*>(GA);
 | |
| }
 | |
| 
 | |
| MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, MVT memvt,
 | |
|                      const Value *srcValue, int SVO,
 | |
|                      unsigned alignment, bool vol)
 | |
|  : SDNode(Opc, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
 | |
|    Flags(encodeMemSDNodeFlags(vol, alignment)) {
 | |
| 
 | |
|   assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
 | |
|   assert(getAlignment() == alignment && "Alignment representation error!");
 | |
|   assert(isVolatile() == vol && "Volatile representation error!");
 | |
| }
 | |
| 
 | |
| /// getMemOperand - Return a MachineMemOperand object describing the memory
 | |
| /// reference performed by this memory reference.
 | |
| MachineMemOperand MemSDNode::getMemOperand() const {
 | |
|   int Flags;
 | |
|   if (isa<LoadSDNode>(this))
 | |
|     Flags = MachineMemOperand::MOLoad;
 | |
|   else if (isa<StoreSDNode>(this))
 | |
|     Flags = MachineMemOperand::MOStore;
 | |
|   else {
 | |
|     assert(isa<AtomicSDNode>(this) && "Unknown MemSDNode opcode!");
 | |
|     Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
 | |
|   }
 | |
| 
 | |
|   int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
 | |
|   if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
 | |
|   
 | |
|   // Check if the memory reference references a frame index
 | |
|   const FrameIndexSDNode *FI = 
 | |
|   dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
 | |
|   if (!getSrcValue() && FI)
 | |
|     return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
 | |
|                              Flags, 0, Size, getAlignment());
 | |
|   else
 | |
|     return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
 | |
|                              Size, getAlignment());
 | |
| }
 | |
| 
 | |
| /// Profile - Gather unique data for the node.
 | |
| ///
 | |
| void SDNode::Profile(FoldingSetNodeID &ID) const {
 | |
|   AddNodeIDNode(ID, this);
 | |
| }
 | |
| 
 | |
| /// getValueTypeList - Return a pointer to the specified value type.
 | |
| ///
 | |
| const MVT *SDNode::getValueTypeList(MVT VT) {
 | |
|   if (VT.isExtended()) {
 | |
|     static std::set<MVT, MVT::compareRawBits> EVTs;
 | |
|     return &(*EVTs.insert(VT).first);
 | |
|   } else {
 | |
|     static MVT VTs[MVT::LAST_VALUETYPE];
 | |
|     VTs[VT.getSimpleVT()] = VT;
 | |
|     return &VTs[VT.getSimpleVT()];
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
 | |
| /// indicated value.  This method ignores uses of other values defined by this
 | |
| /// operation.
 | |
| bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
 | |
|   assert(Value < getNumValues() && "Bad value!");
 | |
| 
 | |
|   // TODO: Only iterate over uses of a given value of the node
 | |
|   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
 | |
|     if (UI.getUse().getSDValue().getResNo() == Value) {
 | |
|       if (NUses == 0)
 | |
|         return false;
 | |
|       --NUses;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Found exactly the right number of uses?
 | |
|   return NUses == 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// hasAnyUseOfValue - Return true if there are any use of the indicated
 | |
| /// value. This method ignores uses of other values defined by this operation.
 | |
| bool SDNode::hasAnyUseOfValue(unsigned Value) const {
 | |
|   assert(Value < getNumValues() && "Bad value!");
 | |
| 
 | |
|   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
 | |
|     if (UI.getUse().getSDValue().getResNo() == Value)
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isOnlyUserOf - Return true if this node is the only use of N.
 | |
| ///
 | |
| bool SDNode::isOnlyUserOf(SDNode *N) const {
 | |
|   bool Seen = false;
 | |
|   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
 | |
|     SDNode *User = *I;
 | |
|     if (User == this)
 | |
|       Seen = true;
 | |
|     else
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return Seen;
 | |
| }
 | |
| 
 | |
| /// isOperand - Return true if this node is an operand of N.
 | |
| ///
 | |
| bool SDValue::isOperandOf(SDNode *N) const {
 | |
|   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
 | |
|     if (*this == N->getOperand(i))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool SDNode::isOperandOf(SDNode *N) const {
 | |
|   for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
 | |
|     if (this == N->OperandList[i].getVal())
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// reachesChainWithoutSideEffects - Return true if this operand (which must
 | |
| /// be a chain) reaches the specified operand without crossing any 
 | |
| /// side-effecting instructions.  In practice, this looks through token
 | |
| /// factors and non-volatile loads.  In order to remain efficient, this only
 | |
| /// looks a couple of nodes in, it does not do an exhaustive search.
 | |
| bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 
 | |
|                                                unsigned Depth) const {
 | |
|   if (*this == Dest) return true;
 | |
|   
 | |
|   // Don't search too deeply, we just want to be able to see through
 | |
|   // TokenFactor's etc.
 | |
|   if (Depth == 0) return false;
 | |
|   
 | |
|   // If this is a token factor, all inputs to the TF happen in parallel.  If any
 | |
|   // of the operands of the TF reach dest, then we can do the xform.
 | |
|   if (getOpcode() == ISD::TokenFactor) {
 | |
|     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | |
|       if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
 | |
|         return true;
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   // Loads don't have side effects, look through them.
 | |
|   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
 | |
|     if (!Ld->isVolatile())
 | |
|       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
 | |
|                             SmallPtrSet<SDNode *, 32> &Visited) {
 | |
|   if (found || !Visited.insert(N))
 | |
|     return;
 | |
| 
 | |
|   for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
 | |
|     SDNode *Op = N->getOperand(i).getNode();
 | |
|     if (Op == P) {
 | |
|       found = true;
 | |
|       return;
 | |
|     }
 | |
|     findPredecessor(Op, P, found, Visited);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isPredecessorOf - Return true if this node is a predecessor of N. This node
 | |
| /// is either an operand of N or it can be reached by recursively traversing
 | |
| /// up the operands.
 | |
| /// NOTE: this is an expensive method. Use it carefully.
 | |
| bool SDNode::isPredecessorOf(SDNode *N) const {
 | |
|   SmallPtrSet<SDNode *, 32> Visited;
 | |
|   bool found = false;
 | |
|   findPredecessor(N, this, found, Visited);
 | |
|   return found;
 | |
| }
 | |
| 
 | |
| uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
 | |
|   assert(Num < NumOperands && "Invalid child # of SDNode!");
 | |
|   return cast<ConstantSDNode>(OperandList[Num])->getValue();
 | |
| }
 | |
| 
 | |
| std::string SDNode::getOperationName(const SelectionDAG *G) const {
 | |
|   switch (getOpcode()) {
 | |
|   default:
 | |
|     if (getOpcode() < ISD::BUILTIN_OP_END)
 | |
|       return "<<Unknown DAG Node>>";
 | |
|     if (isMachineOpcode()) {
 | |
|       if (G)
 | |
|         if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
 | |
|           if (getMachineOpcode() < TII->getNumOpcodes())
 | |
|             return TII->get(getMachineOpcode()).getName();
 | |
|       return "<<Unknown Machine Node>>";
 | |
|     }
 | |
|     if (G) {
 | |
|       TargetLowering &TLI = G->getTargetLoweringInfo();
 | |
|       const char *Name = TLI.getTargetNodeName(getOpcode());
 | |
|       if (Name) return Name;
 | |
|       return "<<Unknown Target Node>>";
 | |
|     }
 | |
|     return "<<Unknown Node>>";
 | |
|    
 | |
| #ifndef NDEBUG
 | |
|   case ISD::DELETED_NODE:
 | |
|     return "<<Deleted Node!>>";
 | |
| #endif
 | |
|   case ISD::PREFETCH:      return "Prefetch";
 | |
|   case ISD::MEMBARRIER:    return "MemBarrier";
 | |
|   case ISD::ATOMIC_CMP_SWAP_8:  return "AtomicCmpSwap8";
 | |
|   case ISD::ATOMIC_SWAP_8:      return "AtomicSwap8";
 | |
|   case ISD::ATOMIC_LOAD_ADD_8:  return "AtomicLoadAdd8";
 | |
|   case ISD::ATOMIC_LOAD_SUB_8:  return "AtomicLoadSub8";
 | |
|   case ISD::ATOMIC_LOAD_AND_8:  return "AtomicLoadAnd8";
 | |
|   case ISD::ATOMIC_LOAD_OR_8:   return "AtomicLoadOr8";
 | |
|   case ISD::ATOMIC_LOAD_XOR_8:  return "AtomicLoadXor8";
 | |
|   case ISD::ATOMIC_LOAD_NAND_8: return "AtomicLoadNand8";
 | |
|   case ISD::ATOMIC_LOAD_MIN_8:  return "AtomicLoadMin8";
 | |
|   case ISD::ATOMIC_LOAD_MAX_8:  return "AtomicLoadMax8";
 | |
|   case ISD::ATOMIC_LOAD_UMIN_8: return "AtomicLoadUMin8";
 | |
|   case ISD::ATOMIC_LOAD_UMAX_8: return "AtomicLoadUMax8";
 | |
|   case ISD::ATOMIC_CMP_SWAP_16:  return "AtomicCmpSwap16";
 | |
|   case ISD::ATOMIC_SWAP_16:      return "AtomicSwap16";
 | |
|   case ISD::ATOMIC_LOAD_ADD_16:  return "AtomicLoadAdd16";
 | |
|   case ISD::ATOMIC_LOAD_SUB_16:  return "AtomicLoadSub16";
 | |
|   case ISD::ATOMIC_LOAD_AND_16:  return "AtomicLoadAnd16";
 | |
|   case ISD::ATOMIC_LOAD_OR_16:   return "AtomicLoadOr16";
 | |
|   case ISD::ATOMIC_LOAD_XOR_16:  return "AtomicLoadXor16";
 | |
|   case ISD::ATOMIC_LOAD_NAND_16: return "AtomicLoadNand16";
 | |
|   case ISD::ATOMIC_LOAD_MIN_16:  return "AtomicLoadMin16";
 | |
|   case ISD::ATOMIC_LOAD_MAX_16:  return "AtomicLoadMax16";
 | |
|   case ISD::ATOMIC_LOAD_UMIN_16: return "AtomicLoadUMin16";
 | |
|   case ISD::ATOMIC_LOAD_UMAX_16: return "AtomicLoadUMax16";
 | |
|   case ISD::ATOMIC_CMP_SWAP_32:  return "AtomicCmpSwap32";
 | |
|   case ISD::ATOMIC_SWAP_32:      return "AtomicSwap32";
 | |
|   case ISD::ATOMIC_LOAD_ADD_32:  return "AtomicLoadAdd32";
 | |
|   case ISD::ATOMIC_LOAD_SUB_32:  return "AtomicLoadSub32";
 | |
|   case ISD::ATOMIC_LOAD_AND_32:  return "AtomicLoadAnd32";
 | |
|   case ISD::ATOMIC_LOAD_OR_32:   return "AtomicLoadOr32";
 | |
|   case ISD::ATOMIC_LOAD_XOR_32:  return "AtomicLoadXor32";
 | |
|   case ISD::ATOMIC_LOAD_NAND_32: return "AtomicLoadNand32";
 | |
|   case ISD::ATOMIC_LOAD_MIN_32:  return "AtomicLoadMin32";
 | |
|   case ISD::ATOMIC_LOAD_MAX_32:  return "AtomicLoadMax32";
 | |
|   case ISD::ATOMIC_LOAD_UMIN_32: return "AtomicLoadUMin32";
 | |
|   case ISD::ATOMIC_LOAD_UMAX_32: return "AtomicLoadUMax32";
 | |
|   case ISD::ATOMIC_CMP_SWAP_64:  return "AtomicCmpSwap64";
 | |
|   case ISD::ATOMIC_SWAP_64:      return "AtomicSwap64";
 | |
|   case ISD::ATOMIC_LOAD_ADD_64:  return "AtomicLoadAdd64";
 | |
|   case ISD::ATOMIC_LOAD_SUB_64:  return "AtomicLoadSub64";
 | |
|   case ISD::ATOMIC_LOAD_AND_64:  return "AtomicLoadAnd64";
 | |
|   case ISD::ATOMIC_LOAD_OR_64:   return "AtomicLoadOr64";
 | |
|   case ISD::ATOMIC_LOAD_XOR_64:  return "AtomicLoadXor64";
 | |
|   case ISD::ATOMIC_LOAD_NAND_64: return "AtomicLoadNand64";
 | |
|   case ISD::ATOMIC_LOAD_MIN_64:  return "AtomicLoadMin64";
 | |
|   case ISD::ATOMIC_LOAD_MAX_64:  return "AtomicLoadMax64";
 | |
|   case ISD::ATOMIC_LOAD_UMIN_64: return "AtomicLoadUMin64";
 | |
|   case ISD::ATOMIC_LOAD_UMAX_64: return "AtomicLoadUMax64";
 | |
|   case ISD::PCMARKER:      return "PCMarker";
 | |
|   case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
 | |
|   case ISD::SRCVALUE:      return "SrcValue";
 | |
|   case ISD::MEMOPERAND:    return "MemOperand";
 | |
|   case ISD::EntryToken:    return "EntryToken";
 | |
|   case ISD::TokenFactor:   return "TokenFactor";
 | |
|   case ISD::AssertSext:    return "AssertSext";
 | |
|   case ISD::AssertZext:    return "AssertZext";
 | |
| 
 | |
|   case ISD::BasicBlock:    return "BasicBlock";
 | |
|   case ISD::ARG_FLAGS:     return "ArgFlags";
 | |
|   case ISD::VALUETYPE:     return "ValueType";
 | |
|   case ISD::Register:      return "Register";
 | |
| 
 | |
|   case ISD::Constant:      return "Constant";
 | |
|   case ISD::ConstantFP:    return "ConstantFP";
 | |
|   case ISD::GlobalAddress: return "GlobalAddress";
 | |
|   case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
 | |
|   case ISD::FrameIndex:    return "FrameIndex";
 | |
|   case ISD::JumpTable:     return "JumpTable";
 | |
|   case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
 | |
|   case ISD::RETURNADDR: return "RETURNADDR";
 | |
|   case ISD::FRAMEADDR: return "FRAMEADDR";
 | |
|   case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
 | |
|   case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
 | |
|   case ISD::EHSELECTION: return "EHSELECTION";
 | |
|   case ISD::EH_RETURN: return "EH_RETURN";
 | |
|   case ISD::ConstantPool:  return "ConstantPool";
 | |
|   case ISD::ExternalSymbol: return "ExternalSymbol";
 | |
|   case ISD::INTRINSIC_WO_CHAIN: {
 | |
|     unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
 | |
|     return Intrinsic::getName((Intrinsic::ID)IID);
 | |
|   }
 | |
|   case ISD::INTRINSIC_VOID:
 | |
|   case ISD::INTRINSIC_W_CHAIN: {
 | |
|     unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
 | |
|     return Intrinsic::getName((Intrinsic::ID)IID);
 | |
|   }
 | |
| 
 | |
|   case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
 | |
|   case ISD::TargetConstant: return "TargetConstant";
 | |
|   case ISD::TargetConstantFP:return "TargetConstantFP";
 | |
|   case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
 | |
|   case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
 | |
|   case ISD::TargetFrameIndex: return "TargetFrameIndex";
 | |
|   case ISD::TargetJumpTable:  return "TargetJumpTable";
 | |
|   case ISD::TargetConstantPool:  return "TargetConstantPool";
 | |
|   case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
 | |
| 
 | |
|   case ISD::CopyToReg:     return "CopyToReg";
 | |
|   case ISD::CopyFromReg:   return "CopyFromReg";
 | |
|   case ISD::UNDEF:         return "undef";
 | |
|   case ISD::MERGE_VALUES:  return "merge_values";
 | |
|   case ISD::INLINEASM:     return "inlineasm";
 | |
|   case ISD::DBG_LABEL:     return "dbg_label";
 | |
|   case ISD::EH_LABEL:      return "eh_label";
 | |
|   case ISD::DECLARE:       return "declare";
 | |
|   case ISD::HANDLENODE:    return "handlenode";
 | |
|   case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
 | |
|   case ISD::CALL:          return "call";
 | |
|     
 | |
|   // Unary operators
 | |
|   case ISD::FABS:   return "fabs";
 | |
|   case ISD::FNEG:   return "fneg";
 | |
|   case ISD::FSQRT:  return "fsqrt";
 | |
|   case ISD::FSIN:   return "fsin";
 | |
|   case ISD::FCOS:   return "fcos";
 | |
|   case ISD::FPOWI:  return "fpowi";
 | |
|   case ISD::FPOW:   return "fpow";
 | |
|   case ISD::FTRUNC: return "ftrunc";
 | |
|   case ISD::FFLOOR: return "ffloor";
 | |
|   case ISD::FCEIL:  return "fceil";
 | |
|   case ISD::FRINT:  return "frint";
 | |
|   case ISD::FNEARBYINT: return "fnearbyint";
 | |
| 
 | |
|   // Binary operators
 | |
|   case ISD::ADD:    return "add";
 | |
|   case ISD::SUB:    return "sub";
 | |
|   case ISD::MUL:    return "mul";
 | |
|   case ISD::MULHU:  return "mulhu";
 | |
|   case ISD::MULHS:  return "mulhs";
 | |
|   case ISD::SDIV:   return "sdiv";
 | |
|   case ISD::UDIV:   return "udiv";
 | |
|   case ISD::SREM:   return "srem";
 | |
|   case ISD::UREM:   return "urem";
 | |
|   case ISD::SMUL_LOHI:  return "smul_lohi";
 | |
|   case ISD::UMUL_LOHI:  return "umul_lohi";
 | |
|   case ISD::SDIVREM:    return "sdivrem";
 | |
|   case ISD::UDIVREM:    return "divrem";
 | |
|   case ISD::AND:    return "and";
 | |
|   case ISD::OR:     return "or";
 | |
|   case ISD::XOR:    return "xor";
 | |
|   case ISD::SHL:    return "shl";
 | |
|   case ISD::SRA:    return "sra";
 | |
|   case ISD::SRL:    return "srl";
 | |
|   case ISD::ROTL:   return "rotl";
 | |
|   case ISD::ROTR:   return "rotr";
 | |
|   case ISD::FADD:   return "fadd";
 | |
|   case ISD::FSUB:   return "fsub";
 | |
|   case ISD::FMUL:   return "fmul";
 | |
|   case ISD::FDIV:   return "fdiv";
 | |
|   case ISD::FREM:   return "frem";
 | |
|   case ISD::FCOPYSIGN: return "fcopysign";
 | |
|   case ISD::FGETSIGN:  return "fgetsign";
 | |
| 
 | |
|   case ISD::SETCC:       return "setcc";
 | |
|   case ISD::VSETCC:      return "vsetcc";
 | |
|   case ISD::SELECT:      return "select";
 | |
|   case ISD::SELECT_CC:   return "select_cc";
 | |
|   case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
 | |
|   case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
 | |
|   case ISD::CONCAT_VECTORS:      return "concat_vectors";
 | |
|   case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
 | |
|   case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
 | |
|   case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
 | |
|   case ISD::CARRY_FALSE:         return "carry_false";
 | |
|   case ISD::ADDC:        return "addc";
 | |
|   case ISD::ADDE:        return "adde";
 | |
|   case ISD::SUBC:        return "subc";
 | |
|   case ISD::SUBE:        return "sube";
 | |
|   case ISD::SHL_PARTS:   return "shl_parts";
 | |
|   case ISD::SRA_PARTS:   return "sra_parts";
 | |
|   case ISD::SRL_PARTS:   return "srl_parts";
 | |
|   
 | |
|   case ISD::EXTRACT_SUBREG:     return "extract_subreg";
 | |
|   case ISD::INSERT_SUBREG:      return "insert_subreg";
 | |
|   
 | |
|   // Conversion operators.
 | |
|   case ISD::SIGN_EXTEND: return "sign_extend";
 | |
|   case ISD::ZERO_EXTEND: return "zero_extend";
 | |
|   case ISD::ANY_EXTEND:  return "any_extend";
 | |
|   case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
 | |
|   case ISD::TRUNCATE:    return "truncate";
 | |
|   case ISD::FP_ROUND:    return "fp_round";
 | |
|   case ISD::FLT_ROUNDS_: return "flt_rounds";
 | |
|   case ISD::FP_ROUND_INREG: return "fp_round_inreg";
 | |
|   case ISD::FP_EXTEND:   return "fp_extend";
 | |
| 
 | |
|   case ISD::SINT_TO_FP:  return "sint_to_fp";
 | |
|   case ISD::UINT_TO_FP:  return "uint_to_fp";
 | |
|   case ISD::FP_TO_SINT:  return "fp_to_sint";
 | |
|   case ISD::FP_TO_UINT:  return "fp_to_uint";
 | |
|   case ISD::BIT_CONVERT: return "bit_convert";
 | |
| 
 | |
|     // Control flow instructions
 | |
|   case ISD::BR:      return "br";
 | |
|   case ISD::BRIND:   return "brind";
 | |
|   case ISD::BR_JT:   return "br_jt";
 | |
|   case ISD::BRCOND:  return "brcond";
 | |
|   case ISD::BR_CC:   return "br_cc";
 | |
|   case ISD::RET:     return "ret";
 | |
|   case ISD::CALLSEQ_START:  return "callseq_start";
 | |
|   case ISD::CALLSEQ_END:    return "callseq_end";
 | |
| 
 | |
|     // Other operators
 | |
|   case ISD::LOAD:               return "load";
 | |
|   case ISD::STORE:              return "store";
 | |
|   case ISD::VAARG:              return "vaarg";
 | |
|   case ISD::VACOPY:             return "vacopy";
 | |
|   case ISD::VAEND:              return "vaend";
 | |
|   case ISD::VASTART:            return "vastart";
 | |
|   case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
 | |
|   case ISD::EXTRACT_ELEMENT:    return "extract_element";
 | |
|   case ISD::BUILD_PAIR:         return "build_pair";
 | |
|   case ISD::STACKSAVE:          return "stacksave";
 | |
|   case ISD::STACKRESTORE:       return "stackrestore";
 | |
|   case ISD::TRAP:               return "trap";
 | |
| 
 | |
|   // Bit manipulation
 | |
|   case ISD::BSWAP:   return "bswap";
 | |
|   case ISD::CTPOP:   return "ctpop";
 | |
|   case ISD::CTTZ:    return "cttz";
 | |
|   case ISD::CTLZ:    return "ctlz";
 | |
| 
 | |
|   // Debug info
 | |
|   case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
 | |
|   case ISD::DEBUG_LOC: return "debug_loc";
 | |
| 
 | |
|   // Trampolines
 | |
|   case ISD::TRAMPOLINE: return "trampoline";
 | |
| 
 | |
|   case ISD::CONDCODE:
 | |
|     switch (cast<CondCodeSDNode>(this)->get()) {
 | |
|     default: assert(0 && "Unknown setcc condition!");
 | |
|     case ISD::SETOEQ:  return "setoeq";
 | |
|     case ISD::SETOGT:  return "setogt";
 | |
|     case ISD::SETOGE:  return "setoge";
 | |
|     case ISD::SETOLT:  return "setolt";
 | |
|     case ISD::SETOLE:  return "setole";
 | |
|     case ISD::SETONE:  return "setone";
 | |
| 
 | |
|     case ISD::SETO:    return "seto";
 | |
|     case ISD::SETUO:   return "setuo";
 | |
|     case ISD::SETUEQ:  return "setue";
 | |
|     case ISD::SETUGT:  return "setugt";
 | |
|     case ISD::SETUGE:  return "setuge";
 | |
|     case ISD::SETULT:  return "setult";
 | |
|     case ISD::SETULE:  return "setule";
 | |
|     case ISD::SETUNE:  return "setune";
 | |
| 
 | |
|     case ISD::SETEQ:   return "seteq";
 | |
|     case ISD::SETGT:   return "setgt";
 | |
|     case ISD::SETGE:   return "setge";
 | |
|     case ISD::SETLT:   return "setlt";
 | |
|     case ISD::SETLE:   return "setle";
 | |
|     case ISD::SETNE:   return "setne";
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
 | |
|   switch (AM) {
 | |
|   default:
 | |
|     return "";
 | |
|   case ISD::PRE_INC:
 | |
|     return "<pre-inc>";
 | |
|   case ISD::PRE_DEC:
 | |
|     return "<pre-dec>";
 | |
|   case ISD::POST_INC:
 | |
|     return "<post-inc>";
 | |
|   case ISD::POST_DEC:
 | |
|     return "<post-dec>";
 | |
|   }
 | |
| }
 | |
| 
 | |
| std::string ISD::ArgFlagsTy::getArgFlagsString() {
 | |
|   std::string S = "< ";
 | |
| 
 | |
|   if (isZExt())
 | |
|     S += "zext ";
 | |
|   if (isSExt())
 | |
|     S += "sext ";
 | |
|   if (isInReg())
 | |
|     S += "inreg ";
 | |
|   if (isSRet())
 | |
|     S += "sret ";
 | |
|   if (isByVal())
 | |
|     S += "byval ";
 | |
|   if (isNest())
 | |
|     S += "nest ";
 | |
|   if (getByValAlign())
 | |
|     S += "byval-align:" + utostr(getByValAlign()) + " ";
 | |
|   if (getOrigAlign())
 | |
|     S += "orig-align:" + utostr(getOrigAlign()) + " ";
 | |
|   if (getByValSize())
 | |
|     S += "byval-size:" + utostr(getByValSize()) + " ";
 | |
|   return S + ">";
 | |
| }
 | |
| 
 | |
| void SDNode::dump() const { dump(0); }
 | |
| void SDNode::dump(const SelectionDAG *G) const {
 | |
|   print(errs(), G);
 | |
|   errs().flush();
 | |
| }
 | |
| 
 | |
| void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
 | |
|   OS << (void*)this << ": ";
 | |
| 
 | |
|   for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
 | |
|     if (i) OS << ",";
 | |
|     if (getValueType(i) == MVT::Other)
 | |
|       OS << "ch";
 | |
|     else
 | |
|       OS << getValueType(i).getMVTString();
 | |
|   }
 | |
|   OS << " = " << getOperationName(G);
 | |
| 
 | |
|   OS << " ";
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
 | |
|     if (i) OS << ", ";
 | |
|     OS << (void*)getOperand(i).getNode();
 | |
|     if (unsigned RN = getOperand(i).getResNo())
 | |
|       OS << ":" << RN;
 | |
|   }
 | |
| 
 | |
|   if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
 | |
|     SDNode *Mask = getOperand(2).getNode();
 | |
|     OS << "<";
 | |
|     for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
 | |
|       if (i) OS << ",";
 | |
|       if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
 | |
|         OS << "u";
 | |
|       else
 | |
|         OS << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
 | |
|     }
 | |
|     OS << ">";
 | |
|   }
 | |
| 
 | |
|   if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
 | |
|     OS << '<' << CSDN->getAPIntValue() << '>';
 | |
|   } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
 | |
|     if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
 | |
|       OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
 | |
|     else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
 | |
|       OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
 | |
|     else {
 | |
|       OS << "<APFloat(";
 | |
|       CSDN->getValueAPF().convertToAPInt().dump();
 | |
|       OS << ")>";
 | |
|     }
 | |
|   } else if (const GlobalAddressSDNode *GADN =
 | |
|              dyn_cast<GlobalAddressSDNode>(this)) {
 | |
|     int offset = GADN->getOffset();
 | |
|     OS << '<';
 | |
|     WriteAsOperand(OS, GADN->getGlobal());
 | |
|     OS << '>';
 | |
|     if (offset > 0)
 | |
|       OS << " + " << offset;
 | |
|     else
 | |
|       OS << " " << offset;
 | |
|   } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
 | |
|     OS << "<" << FIDN->getIndex() << ">";
 | |
|   } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
 | |
|     OS << "<" << JTDN->getIndex() << ">";
 | |
|   } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
 | |
|     int offset = CP->getOffset();
 | |
|     if (CP->isMachineConstantPoolEntry())
 | |
|       OS << "<" << *CP->getMachineCPVal() << ">";
 | |
|     else
 | |
|       OS << "<" << *CP->getConstVal() << ">";
 | |
|     if (offset > 0)
 | |
|       OS << " + " << offset;
 | |
|     else
 | |
|       OS << " " << offset;
 | |
|   } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
 | |
|     OS << "<";
 | |
|     const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
 | |
|     if (LBB)
 | |
|       OS << LBB->getName() << " ";
 | |
|     OS << (const void*)BBDN->getBasicBlock() << ">";
 | |
|   } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
 | |
|     if (G && R->getReg() &&
 | |
|         TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
 | |
|       OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
 | |
|     } else {
 | |
|       OS << " #" << R->getReg();
 | |
|     }
 | |
|   } else if (const ExternalSymbolSDNode *ES =
 | |
|              dyn_cast<ExternalSymbolSDNode>(this)) {
 | |
|     OS << "'" << ES->getSymbol() << "'";
 | |
|   } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
 | |
|     if (M->getValue())
 | |
|       OS << "<" << M->getValue() << ">";
 | |
|     else
 | |
|       OS << "<null>";
 | |
|   } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
 | |
|     if (M->MO.getValue())
 | |
|       OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
 | |
|     else
 | |
|       OS << "<null:" << M->MO.getOffset() << ">";
 | |
|   } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
 | |
|     OS << N->getArgFlags().getArgFlagsString();
 | |
|   } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
 | |
|     OS << ":" << N->getVT().getMVTString();
 | |
|   }
 | |
|   else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
 | |
|     const Value *SrcValue = LD->getSrcValue();
 | |
|     int SrcOffset = LD->getSrcValueOffset();
 | |
|     OS << " <";
 | |
|     if (SrcValue)
 | |
|       OS << SrcValue;
 | |
|     else
 | |
|       OS << "null";
 | |
|     OS << ":" << SrcOffset << ">";
 | |
| 
 | |
|     bool doExt = true;
 | |
|     switch (LD->getExtensionType()) {
 | |
|     default: doExt = false; break;
 | |
|     case ISD::EXTLOAD: OS << " <anyext "; break;
 | |
|     case ISD::SEXTLOAD: OS << " <sext "; break;
 | |
|     case ISD::ZEXTLOAD: OS << " <zext "; break;
 | |
|     }
 | |
|     if (doExt)
 | |
|       OS << LD->getMemoryVT().getMVTString() << ">";
 | |
| 
 | |
|     const char *AM = getIndexedModeName(LD->getAddressingMode());
 | |
|     if (*AM)
 | |
|       OS << " " << AM;
 | |
|     if (LD->isVolatile())
 | |
|       OS << " <volatile>";
 | |
|     OS << " alignment=" << LD->getAlignment();
 | |
|   } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
 | |
|     const Value *SrcValue = ST->getSrcValue();
 | |
|     int SrcOffset = ST->getSrcValueOffset();
 | |
|     OS << " <";
 | |
|     if (SrcValue)
 | |
|       OS << SrcValue;
 | |
|     else
 | |
|       OS << "null";
 | |
|     OS << ":" << SrcOffset << ">";
 | |
| 
 | |
|     if (ST->isTruncatingStore())
 | |
|       OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
 | |
| 
 | |
|     const char *AM = getIndexedModeName(ST->getAddressingMode());
 | |
|     if (*AM)
 | |
|       OS << " " << AM;
 | |
|     if (ST->isVolatile())
 | |
|       OS << " <volatile>";
 | |
|     OS << " alignment=" << ST->getAlignment();
 | |
|   } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
 | |
|     const Value *SrcValue = AT->getSrcValue();
 | |
|     int SrcOffset = AT->getSrcValueOffset();
 | |
|     OS << " <";
 | |
|     if (SrcValue)
 | |
|       OS << SrcValue;
 | |
|     else
 | |
|       OS << "null";
 | |
|     OS << ":" << SrcOffset << ">";
 | |
|     if (AT->isVolatile())
 | |
|       OS << " <volatile>";
 | |
|     OS << " alignment=" << AT->getAlignment();
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
 | |
|   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
 | |
|     if (N->getOperand(i).getNode()->hasOneUse())
 | |
|       DumpNodes(N->getOperand(i).getNode(), indent+2, G);
 | |
|     else
 | |
|       cerr << "\n" << std::string(indent+2, ' ')
 | |
|            << (void*)N->getOperand(i).getNode() << ": <multiple use>";
 | |
| 
 | |
| 
 | |
|   cerr << "\n" << std::string(indent, ' ');
 | |
|   N->dump(G);
 | |
| }
 | |
| 
 | |
| void SelectionDAG::dump() const {
 | |
|   cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
 | |
|   
 | |
|   for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
 | |
|        I != E; ++I) {
 | |
|     const SDNode *N = I;
 | |
|     if (!N->hasOneUse() && N != getRoot().getNode())
 | |
|       DumpNodes(N, 2, this);
 | |
|   }
 | |
| 
 | |
|   if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
 | |
| 
 | |
|   cerr << "\n\n";
 | |
| }
 | |
| 
 | |
| const Type *ConstantPoolSDNode::getType() const {
 | |
|   if (isMachineConstantPoolEntry())
 | |
|     return Val.MachineCPVal->getType();
 | |
|   return Val.ConstVal->getType();
 | |
| }
 |