llvm-6502/lib/Target/NVPTX/NVPTXAsmPrinter.cpp
Justin Holewinski 1ce53cb526 [NVPTX] Fix handling of vector arguments
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177847 91177308-0d34-0410-b5e6-96231b3b80d8
2013-03-24 21:17:47 +00:00

2101 lines
64 KiB
C++

//===-- NVPTXAsmPrinter.cpp - NVPTX LLVM assembly writer ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to NVPTX assembly language.
//
//===----------------------------------------------------------------------===//
#include "NVPTXAsmPrinter.h"
#include "MCTargetDesc/NVPTXMCAsmInfo.h"
#include "NVPTX.h"
#include "NVPTXInstrInfo.h"
#include "NVPTXNumRegisters.h"
#include "NVPTXRegisterInfo.h"
#include "NVPTXTargetMachine.h"
#include "NVPTXUtilities.h"
#include "cl_common_defines.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/DebugInfo.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TimeValue.h"
#include "llvm/Target/Mangler.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include <sstream>
using namespace llvm;
#include "NVPTXGenAsmWriter.inc"
bool RegAllocNilUsed = true;
#define DEPOTNAME "__local_depot"
static cl::opt<bool>
EmitLineNumbers("nvptx-emit-line-numbers",
cl::desc("NVPTX Specific: Emit Line numbers even without -G"),
cl::init(true));
namespace llvm {
bool InterleaveSrcInPtx = false;
}
static cl::opt<bool, true>InterleaveSrc("nvptx-emit-src",
cl::ZeroOrMore,
cl::desc("NVPTX Specific: Emit source line in ptx file"),
cl::location(llvm::InterleaveSrcInPtx));
namespace {
/// DiscoverDependentGlobals - Return a set of GlobalVariables on which \p V
/// depends.
void DiscoverDependentGlobals(Value *V,
DenseSet<GlobalVariable*> &Globals) {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
Globals.insert(GV);
else {
if (User *U = dyn_cast<User>(V)) {
for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i) {
DiscoverDependentGlobals(U->getOperand(i), Globals);
}
}
}
}
/// VisitGlobalVariableForEmission - Add \p GV to the list of GlobalVariable
/// instances to be emitted, but only after any dependents have been added
/// first.
void VisitGlobalVariableForEmission(GlobalVariable *GV,
SmallVectorImpl<GlobalVariable*> &Order,
DenseSet<GlobalVariable*> &Visited,
DenseSet<GlobalVariable*> &Visiting) {
// Have we already visited this one?
if (Visited.count(GV)) return;
// Do we have a circular dependency?
if (Visiting.count(GV))
report_fatal_error("Circular dependency found in global variable set");
// Start visiting this global
Visiting.insert(GV);
// Make sure we visit all dependents first
DenseSet<GlobalVariable*> Others;
for (unsigned i = 0, e = GV->getNumOperands(); i != e; ++i)
DiscoverDependentGlobals(GV->getOperand(i), Others);
for (DenseSet<GlobalVariable*>::iterator I = Others.begin(),
E = Others.end(); I != E; ++I)
VisitGlobalVariableForEmission(*I, Order, Visited, Visiting);
// Now we can visit ourself
Order.push_back(GV);
Visited.insert(GV);
Visiting.erase(GV);
}
}
// @TODO: This is a copy from AsmPrinter.cpp. The function is static, so we
// cannot just link to the existing version.
/// LowerConstant - Lower the specified LLVM Constant to an MCExpr.
///
using namespace nvptx;
const MCExpr *nvptx::LowerConstant(const Constant *CV, AsmPrinter &AP) {
MCContext &Ctx = AP.OutContext;
if (CV->isNullValue() || isa<UndefValue>(CV))
return MCConstantExpr::Create(0, Ctx);
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
if (CE == 0)
llvm_unreachable("Unknown constant value to lower!");
switch (CE->getOpcode()) {
default:
// If the code isn't optimized, there may be outstanding folding
// opportunities. Attempt to fold the expression using DataLayout as a
// last resort before giving up.
if (Constant *C =
ConstantFoldConstantExpression(CE, AP.TM.getDataLayout()))
if (C != CE)
return LowerConstant(C, AP);
// Otherwise report the problem to the user.
{
std::string S;
raw_string_ostream OS(S);
OS << "Unsupported expression in static initializer: ";
WriteAsOperand(OS, CE, /*PrintType=*/false,
!AP.MF ? 0 : AP.MF->getFunction()->getParent());
report_fatal_error(OS.str());
}
case Instruction::GetElementPtr: {
const DataLayout &TD = *AP.TM.getDataLayout();
// Generate a symbolic expression for the byte address
APInt OffsetAI(TD.getPointerSizeInBits(), 0);
cast<GEPOperator>(CE)->accumulateConstantOffset(TD, OffsetAI);
const MCExpr *Base = LowerConstant(CE->getOperand(0), AP);
if (!OffsetAI)
return Base;
int64_t Offset = OffsetAI.getSExtValue();
return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
Ctx);
}
case Instruction::Trunc:
// We emit the value and depend on the assembler to truncate the generated
// expression properly. This is important for differences between
// blockaddress labels. Since the two labels are in the same function, it
// is reasonable to treat their delta as a 32-bit value.
// FALL THROUGH.
case Instruction::BitCast:
return LowerConstant(CE->getOperand(0), AP);
case Instruction::IntToPtr: {
const DataLayout &TD = *AP.TM.getDataLayout();
// Handle casts to pointers by changing them into casts to the appropriate
// integer type. This promotes constant folding and simplifies this code.
Constant *Op = CE->getOperand(0);
Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
false/*ZExt*/);
return LowerConstant(Op, AP);
}
case Instruction::PtrToInt: {
const DataLayout &TD = *AP.TM.getDataLayout();
// Support only foldable casts to/from pointers that can be eliminated by
// changing the pointer to the appropriately sized integer type.
Constant *Op = CE->getOperand(0);
Type *Ty = CE->getType();
const MCExpr *OpExpr = LowerConstant(Op, AP);
// We can emit the pointer value into this slot if the slot is an
// integer slot equal to the size of the pointer.
if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
return OpExpr;
// Otherwise the pointer is smaller than the resultant integer, mask off
// the high bits so we are sure to get a proper truncation if the input is
// a constant expr.
unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
}
// The MC library also has a right-shift operator, but it isn't consistently
// signed or unsigned between different targets.
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::SDiv:
case Instruction::SRem:
case Instruction::Shl:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
const MCExpr *LHS = LowerConstant(CE->getOperand(0), AP);
const MCExpr *RHS = LowerConstant(CE->getOperand(1), AP);
switch (CE->getOpcode()) {
default: llvm_unreachable("Unknown binary operator constant cast expr");
case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
}
}
}
}
void NVPTXAsmPrinter::emitLineNumberAsDotLoc(const MachineInstr &MI)
{
if (!EmitLineNumbers)
return;
if (ignoreLoc(MI))
return;
DebugLoc curLoc = MI.getDebugLoc();
if (prevDebugLoc.isUnknown() && curLoc.isUnknown())
return;
if (prevDebugLoc == curLoc)
return;
prevDebugLoc = curLoc;
if (curLoc.isUnknown())
return;
const MachineFunction *MF = MI.getParent()->getParent();
//const TargetMachine &TM = MF->getTarget();
const LLVMContext &ctx = MF->getFunction()->getContext();
DIScope Scope(curLoc.getScope(ctx));
if (!Scope.Verify())
return;
StringRef fileName(Scope.getFilename());
StringRef dirName(Scope.getDirectory());
SmallString<128> FullPathName = dirName;
if (!dirName.empty() && !sys::path::is_absolute(fileName)) {
sys::path::append(FullPathName, fileName);
fileName = FullPathName.str();
}
if (filenameMap.find(fileName.str()) == filenameMap.end())
return;
// Emit the line from the source file.
if (llvm::InterleaveSrcInPtx)
this->emitSrcInText(fileName.str(), curLoc.getLine());
std::stringstream temp;
temp << "\t.loc " << filenameMap[fileName.str()]
<< " " << curLoc.getLine() << " " << curLoc.getCol();
OutStreamer.EmitRawText(Twine(temp.str().c_str()));
}
void NVPTXAsmPrinter::EmitInstruction(const MachineInstr *MI) {
SmallString<128> Str;
raw_svector_ostream OS(Str);
if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA)
emitLineNumberAsDotLoc(*MI);
printInstruction(MI, OS);
OutStreamer.EmitRawText(OS.str());
}
void NVPTXAsmPrinter::printReturnValStr(const Function *F,
raw_ostream &O)
{
const DataLayout *TD = TM.getDataLayout();
const TargetLowering *TLI = TM.getTargetLowering();
Type *Ty = F->getReturnType();
bool isABI = (nvptxSubtarget.getSmVersion() >= 20);
if (Ty->getTypeID() == Type::VoidTyID)
return;
O << " (";
if (isABI) {
if (Ty->isPrimitiveType() || Ty->isIntegerTy()) {
unsigned size = 0;
if (const IntegerType *ITy = dyn_cast<IntegerType>(Ty)) {
size = ITy->getBitWidth();
if (size < 32) size = 32;
} else {
assert(Ty->isFloatingPointTy() &&
"Floating point type expected here");
size = Ty->getPrimitiveSizeInBits();
}
O << ".param .b" << size << " func_retval0";
}
else if (isa<PointerType>(Ty)) {
O << ".param .b" << TLI->getPointerTy().getSizeInBits()
<< " func_retval0";
} else {
if ((Ty->getTypeID() == Type::StructTyID) ||
isa<VectorType>(Ty)) {
SmallVector<EVT, 16> vtparts;
ComputeValueVTs(*TLI, Ty, vtparts);
unsigned totalsz = 0;
for (unsigned i=0,e=vtparts.size(); i!=e; ++i) {
unsigned elems = 1;
EVT elemtype = vtparts[i];
if (vtparts[i].isVector()) {
elems = vtparts[i].getVectorNumElements();
elemtype = vtparts[i].getVectorElementType();
}
for (unsigned j=0, je=elems; j!=je; ++j) {
unsigned sz = elemtype.getSizeInBits();
if (elemtype.isInteger() && (sz < 8)) sz = 8;
totalsz += sz/8;
}
}
unsigned retAlignment = 0;
if (!llvm::getAlign(*F, 0, retAlignment))
retAlignment = TD->getABITypeAlignment(Ty);
O << ".param .align "
<< retAlignment
<< " .b8 func_retval0["
<< totalsz << "]";
} else
assert(false &&
"Unknown return type");
}
} else {
SmallVector<EVT, 16> vtparts;
ComputeValueVTs(*TLI, Ty, vtparts);
unsigned idx = 0;
for (unsigned i=0,e=vtparts.size(); i!=e; ++i) {
unsigned elems = 1;
EVT elemtype = vtparts[i];
if (vtparts[i].isVector()) {
elems = vtparts[i].getVectorNumElements();
elemtype = vtparts[i].getVectorElementType();
}
for (unsigned j=0, je=elems; j!=je; ++j) {
unsigned sz = elemtype.getSizeInBits();
if (elemtype.isInteger() && (sz < 32)) sz = 32;
O << ".reg .b" << sz << " func_retval" << idx;
if (j<je-1) O << ", ";
++idx;
}
if (i < e-1)
O << ", ";
}
}
O << ") ";
return;
}
void NVPTXAsmPrinter::printReturnValStr(const MachineFunction &MF,
raw_ostream &O) {
const Function *F = MF.getFunction();
printReturnValStr(F, O);
}
void NVPTXAsmPrinter::EmitFunctionEntryLabel() {
SmallString<128> Str;
raw_svector_ostream O(Str);
// Set up
MRI = &MF->getRegInfo();
F = MF->getFunction();
emitLinkageDirective(F,O);
if (llvm::isKernelFunction(*F))
O << ".entry ";
else {
O << ".func ";
printReturnValStr(*MF, O);
}
O << *CurrentFnSym;
emitFunctionParamList(*MF, O);
if (llvm::isKernelFunction(*F))
emitKernelFunctionDirectives(*F, O);
OutStreamer.EmitRawText(O.str());
prevDebugLoc = DebugLoc();
}
void NVPTXAsmPrinter::EmitFunctionBodyStart() {
const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
unsigned numRegClasses = TRI.getNumRegClasses();
VRidGlobal2LocalMap = new std::map<unsigned, unsigned>[numRegClasses+1];
OutStreamer.EmitRawText(StringRef("{\n"));
setAndEmitFunctionVirtualRegisters(*MF);
SmallString<128> Str;
raw_svector_ostream O(Str);
emitDemotedVars(MF->getFunction(), O);
OutStreamer.EmitRawText(O.str());
}
void NVPTXAsmPrinter::EmitFunctionBodyEnd() {
OutStreamer.EmitRawText(StringRef("}\n"));
delete []VRidGlobal2LocalMap;
}
void
NVPTXAsmPrinter::emitKernelFunctionDirectives(const Function& F,
raw_ostream &O) const {
// If the NVVM IR has some of reqntid* specified, then output
// the reqntid directive, and set the unspecified ones to 1.
// If none of reqntid* is specified, don't output reqntid directive.
unsigned reqntidx, reqntidy, reqntidz;
bool specified = false;
if (llvm::getReqNTIDx(F, reqntidx) == false) reqntidx = 1;
else specified = true;
if (llvm::getReqNTIDy(F, reqntidy) == false) reqntidy = 1;
else specified = true;
if (llvm::getReqNTIDz(F, reqntidz) == false) reqntidz = 1;
else specified = true;
if (specified)
O << ".reqntid " << reqntidx << ", "
<< reqntidy << ", " << reqntidz << "\n";
// If the NVVM IR has some of maxntid* specified, then output
// the maxntid directive, and set the unspecified ones to 1.
// If none of maxntid* is specified, don't output maxntid directive.
unsigned maxntidx, maxntidy, maxntidz;
specified = false;
if (llvm::getMaxNTIDx(F, maxntidx) == false) maxntidx = 1;
else specified = true;
if (llvm::getMaxNTIDy(F, maxntidy) == false) maxntidy = 1;
else specified = true;
if (llvm::getMaxNTIDz(F, maxntidz) == false) maxntidz = 1;
else specified = true;
if (specified)
O << ".maxntid " << maxntidx << ", "
<< maxntidy << ", " << maxntidz << "\n";
unsigned mincta;
if (llvm::getMinCTASm(F, mincta))
O << ".minnctapersm " << mincta << "\n";
}
void
NVPTXAsmPrinter::getVirtualRegisterName(unsigned vr, bool isVec,
raw_ostream &O) {
const TargetRegisterClass * RC = MRI->getRegClass(vr);
unsigned id = RC->getID();
std::map<unsigned, unsigned> &regmap = VRidGlobal2LocalMap[id];
unsigned mapped_vr = regmap[vr];
if (!isVec) {
O << getNVPTXRegClassStr(RC) << mapped_vr;
return;
}
report_fatal_error("Bad register!");
}
void
NVPTXAsmPrinter::emitVirtualRegister(unsigned int vr, bool isVec,
raw_ostream &O) {
getVirtualRegisterName(vr, isVec, O);
}
void NVPTXAsmPrinter::printVecModifiedImmediate(const MachineOperand &MO,
const char *Modifier,
raw_ostream &O) {
static const char vecelem[] = {'0', '1', '2', '3', '0', '1', '2', '3'};
int Imm = (int)MO.getImm();
if(0 == strcmp(Modifier, "vecelem"))
O << "_" << vecelem[Imm];
else if(0 == strcmp(Modifier, "vecv4comm1")) {
if((Imm < 0) || (Imm > 3))
O << "//";
}
else if(0 == strcmp(Modifier, "vecv4comm2")) {
if((Imm < 4) || (Imm > 7))
O << "//";
}
else if(0 == strcmp(Modifier, "vecv4pos")) {
if(Imm < 0) Imm = 0;
O << "_" << vecelem[Imm%4];
}
else if(0 == strcmp(Modifier, "vecv2comm1")) {
if((Imm < 0) || (Imm > 1))
O << "//";
}
else if(0 == strcmp(Modifier, "vecv2comm2")) {
if((Imm < 2) || (Imm > 3))
O << "//";
}
else if(0 == strcmp(Modifier, "vecv2pos")) {
if(Imm < 0) Imm = 0;
O << "_" << vecelem[Imm%2];
}
else
llvm_unreachable("Unknown Modifier on immediate operand");
}
void NVPTXAsmPrinter::printOperand(const MachineInstr *MI, int opNum,
raw_ostream &O, const char *Modifier) {
const MachineOperand &MO = MI->getOperand(opNum);
switch (MO.getType()) {
case MachineOperand::MO_Register:
if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
if (MO.getReg() == NVPTX::VRDepot)
O << DEPOTNAME << getFunctionNumber();
else
O << getRegisterName(MO.getReg());
} else {
if (!Modifier)
emitVirtualRegister(MO.getReg(), false, O);
else {
if (strcmp(Modifier, "vecfull") == 0)
emitVirtualRegister(MO.getReg(), true, O);
else
llvm_unreachable(
"Don't know how to handle the modifier on virtual register.");
}
}
return;
case MachineOperand::MO_Immediate:
if (!Modifier)
O << MO.getImm();
else if (strstr(Modifier, "vec") == Modifier)
printVecModifiedImmediate(MO, Modifier, O);
else
llvm_unreachable("Don't know how to handle modifier on immediate operand");
return;
case MachineOperand::MO_FPImmediate:
printFPConstant(MO.getFPImm(), O);
break;
case MachineOperand::MO_GlobalAddress:
O << *Mang->getSymbol(MO.getGlobal());
break;
case MachineOperand::MO_ExternalSymbol: {
const char * symbname = MO.getSymbolName();
if (strstr(symbname, ".PARAM") == symbname) {
unsigned index;
sscanf(symbname+6, "%u[];", &index);
printParamName(index, O);
}
else if (strstr(symbname, ".HLPPARAM") == symbname) {
unsigned index;
sscanf(symbname+9, "%u[];", &index);
O << *CurrentFnSym << "_param_" << index << "_offset";
}
else
O << symbname;
break;
}
case MachineOperand::MO_MachineBasicBlock:
O << *MO.getMBB()->getSymbol();
return;
default:
llvm_unreachable("Operand type not supported.");
}
}
void NVPTXAsmPrinter::
printImplicitDef(const MachineInstr *MI, raw_ostream &O) const {
#ifndef __OPTIMIZE__
O << "\t// Implicit def :";
//printOperand(MI, 0);
O << "\n";
#endif
}
void NVPTXAsmPrinter::printMemOperand(const MachineInstr *MI, int opNum,
raw_ostream &O, const char *Modifier) {
printOperand(MI, opNum, O);
if (Modifier && !strcmp(Modifier, "add")) {
O << ", ";
printOperand(MI, opNum+1, O);
} else {
if (MI->getOperand(opNum+1).isImm() &&
MI->getOperand(opNum+1).getImm() == 0)
return; // don't print ',0' or '+0'
O << "+";
printOperand(MI, opNum+1, O);
}
}
void NVPTXAsmPrinter::printLdStCode(const MachineInstr *MI, int opNum,
raw_ostream &O, const char *Modifier)
{
if (Modifier) {
const MachineOperand &MO = MI->getOperand(opNum);
int Imm = (int)MO.getImm();
if (!strcmp(Modifier, "volatile")) {
if (Imm)
O << ".volatile";
} else if (!strcmp(Modifier, "addsp")) {
switch (Imm) {
case NVPTX::PTXLdStInstCode::GLOBAL: O << ".global"; break;
case NVPTX::PTXLdStInstCode::SHARED: O << ".shared"; break;
case NVPTX::PTXLdStInstCode::LOCAL: O << ".local"; break;
case NVPTX::PTXLdStInstCode::PARAM: O << ".param"; break;
case NVPTX::PTXLdStInstCode::CONSTANT: O << ".const"; break;
case NVPTX::PTXLdStInstCode::GENERIC:
if (!nvptxSubtarget.hasGenericLdSt())
O << ".global";
break;
default:
llvm_unreachable("Wrong Address Space");
}
}
else if (!strcmp(Modifier, "sign")) {
if (Imm==NVPTX::PTXLdStInstCode::Signed)
O << "s";
else if (Imm==NVPTX::PTXLdStInstCode::Unsigned)
O << "u";
else
O << "f";
}
else if (!strcmp(Modifier, "vec")) {
if (Imm==NVPTX::PTXLdStInstCode::V2)
O << ".v2";
else if (Imm==NVPTX::PTXLdStInstCode::V4)
O << ".v4";
}
else
llvm_unreachable("Unknown Modifier");
}
else
llvm_unreachable("Empty Modifier");
}
void NVPTXAsmPrinter::emitDeclaration (const Function *F, raw_ostream &O) {
emitLinkageDirective(F,O);
if (llvm::isKernelFunction(*F))
O << ".entry ";
else
O << ".func ";
printReturnValStr(F, O);
O << *CurrentFnSym << "\n";
emitFunctionParamList(F, O);
O << ";\n";
}
static bool usedInGlobalVarDef(const Constant *C)
{
if (!C)
return false;
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
if (GV->getName().str() == "llvm.used")
return false;
return true;
}
for (Value::const_use_iterator ui=C->use_begin(), ue=C->use_end();
ui!=ue; ++ui) {
const Constant *C = dyn_cast<Constant>(*ui);
if (usedInGlobalVarDef(C))
return true;
}
return false;
}
static bool usedInOneFunc(const User *U, Function const *&oneFunc)
{
if (const GlobalVariable *othergv = dyn_cast<GlobalVariable>(U)) {
if (othergv->getName().str() == "llvm.used")
return true;
}
if (const Instruction *instr = dyn_cast<Instruction>(U)) {
if (instr->getParent() && instr->getParent()->getParent()) {
const Function *curFunc = instr->getParent()->getParent();
if (oneFunc && (curFunc != oneFunc))
return false;
oneFunc = curFunc;
return true;
}
else
return false;
}
if (const MDNode *md = dyn_cast<MDNode>(U))
if (md->hasName() && ((md->getName().str() == "llvm.dbg.gv") ||
(md->getName().str() == "llvm.dbg.sp")))
return true;
for (User::const_use_iterator ui=U->use_begin(), ue=U->use_end();
ui!=ue; ++ui) {
if (usedInOneFunc(*ui, oneFunc) == false)
return false;
}
return true;
}
/* Find out if a global variable can be demoted to local scope.
* Currently, this is valid for CUDA shared variables, which have local
* scope and global lifetime. So the conditions to check are :
* 1. Is the global variable in shared address space?
* 2. Does it have internal linkage?
* 3. Is the global variable referenced only in one function?
*/
static bool canDemoteGlobalVar(const GlobalVariable *gv, Function const *&f) {
if (gv->hasInternalLinkage() == false)
return false;
const PointerType *Pty = gv->getType();
if (Pty->getAddressSpace() != llvm::ADDRESS_SPACE_SHARED)
return false;
const Function *oneFunc = 0;
bool flag = usedInOneFunc(gv, oneFunc);
if (flag == false)
return false;
if (!oneFunc)
return false;
f = oneFunc;
return true;
}
static bool useFuncSeen(const Constant *C,
llvm::DenseMap<const Function *, bool> &seenMap) {
for (Value::const_use_iterator ui=C->use_begin(), ue=C->use_end();
ui!=ue; ++ui) {
if (const Constant *cu = dyn_cast<Constant>(*ui)) {
if (useFuncSeen(cu, seenMap))
return true;
} else if (const Instruction *I = dyn_cast<Instruction>(*ui)) {
const BasicBlock *bb = I->getParent();
if (!bb) continue;
const Function *caller = bb->getParent();
if (!caller) continue;
if (seenMap.find(caller) != seenMap.end())
return true;
}
}
return false;
}
void NVPTXAsmPrinter::emitDeclarations (Module &M, raw_ostream &O) {
llvm::DenseMap<const Function *, bool> seenMap;
for (Module::const_iterator FI=M.begin(), FE=M.end();
FI!=FE; ++FI) {
const Function *F = FI;
if (F->isDeclaration()) {
if (F->use_empty())
continue;
if (F->getIntrinsicID())
continue;
CurrentFnSym = Mang->getSymbol(F);
emitDeclaration(F, O);
continue;
}
for (Value::const_use_iterator iter=F->use_begin(),
iterEnd=F->use_end(); iter!=iterEnd; ++iter) {
if (const Constant *C = dyn_cast<Constant>(*iter)) {
if (usedInGlobalVarDef(C)) {
// The use is in the initialization of a global variable
// that is a function pointer, so print a declaration
// for the original function
CurrentFnSym = Mang->getSymbol(F);
emitDeclaration(F, O);
break;
}
// Emit a declaration of this function if the function that
// uses this constant expr has already been seen.
if (useFuncSeen(C, seenMap)) {
CurrentFnSym = Mang->getSymbol(F);
emitDeclaration(F, O);
break;
}
}
if (!isa<Instruction>(*iter)) continue;
const Instruction *instr = cast<Instruction>(*iter);
const BasicBlock *bb = instr->getParent();
if (!bb) continue;
const Function *caller = bb->getParent();
if (!caller) continue;
// If a caller has already been seen, then the caller is
// appearing in the module before the callee. so print out
// a declaration for the callee.
if (seenMap.find(caller) != seenMap.end()) {
CurrentFnSym = Mang->getSymbol(F);
emitDeclaration(F, O);
break;
}
}
seenMap[F] = true;
}
}
void NVPTXAsmPrinter::recordAndEmitFilenames(Module &M) {
DebugInfoFinder DbgFinder;
DbgFinder.processModule(M);
unsigned i=1;
for (DebugInfoFinder::iterator I = DbgFinder.compile_unit_begin(),
E = DbgFinder.compile_unit_end(); I != E; ++I) {
DICompileUnit DIUnit(*I);
StringRef Filename(DIUnit.getFilename());
StringRef Dirname(DIUnit.getDirectory());
SmallString<128> FullPathName = Dirname;
if (!Dirname.empty() && !sys::path::is_absolute(Filename)) {
sys::path::append(FullPathName, Filename);
Filename = FullPathName.str();
}
if (filenameMap.find(Filename.str()) != filenameMap.end())
continue;
filenameMap[Filename.str()] = i;
OutStreamer.EmitDwarfFileDirective(i, "", Filename.str());
++i;
}
for (DebugInfoFinder::iterator I = DbgFinder.subprogram_begin(),
E = DbgFinder.subprogram_end(); I != E; ++I) {
DISubprogram SP(*I);
StringRef Filename(SP.getFilename());
StringRef Dirname(SP.getDirectory());
SmallString<128> FullPathName = Dirname;
if (!Dirname.empty() && !sys::path::is_absolute(Filename)) {
sys::path::append(FullPathName, Filename);
Filename = FullPathName.str();
}
if (filenameMap.find(Filename.str()) != filenameMap.end())
continue;
filenameMap[Filename.str()] = i;
++i;
}
}
bool NVPTXAsmPrinter::doInitialization (Module &M) {
SmallString<128> Str1;
raw_svector_ostream OS1(Str1);
MMI = getAnalysisIfAvailable<MachineModuleInfo>();
MMI->AnalyzeModule(M);
// We need to call the parent's one explicitly.
//bool Result = AsmPrinter::doInitialization(M);
// Initialize TargetLoweringObjectFile.
const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
.Initialize(OutContext, TM);
Mang = new Mangler(OutContext, *TM.getDataLayout());
// Emit header before any dwarf directives are emitted below.
emitHeader(M, OS1);
OutStreamer.EmitRawText(OS1.str());
// Already commented out
//bool Result = AsmPrinter::doInitialization(M);
if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA)
recordAndEmitFilenames(M);
SmallString<128> Str2;
raw_svector_ostream OS2(Str2);
emitDeclarations(M, OS2);
// As ptxas does not support forward references of globals, we need to first
// sort the list of module-level globals in def-use order. We visit each
// global variable in order, and ensure that we emit it *after* its dependent
// globals. We use a little extra memory maintaining both a set and a list to
// have fast searches while maintaining a strict ordering.
SmallVector<GlobalVariable*,8> Globals;
DenseSet<GlobalVariable*> GVVisited;
DenseSet<GlobalVariable*> GVVisiting;
// Visit each global variable, in order
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I)
VisitGlobalVariableForEmission(I, Globals, GVVisited, GVVisiting);
assert(GVVisited.size() == M.getGlobalList().size() &&
"Missed a global variable");
assert(GVVisiting.size() == 0 && "Did not fully process a global variable");
// Print out module-level global variables in proper order
for (unsigned i = 0, e = Globals.size(); i != e; ++i)
printModuleLevelGV(Globals[i], OS2);
OS2 << '\n';
OutStreamer.EmitRawText(OS2.str());
return false; // success
}
void NVPTXAsmPrinter::emitHeader (Module &M, raw_ostream &O) {
O << "//\n";
O << "// Generated by LLVM NVPTX Back-End\n";
O << "//\n";
O << "\n";
unsigned PTXVersion = nvptxSubtarget.getPTXVersion();
O << ".version " << (PTXVersion / 10) << "." << (PTXVersion % 10) << "\n";
O << ".target ";
O << nvptxSubtarget.getTargetName();
if (nvptxSubtarget.getDrvInterface() == NVPTX::NVCL)
O << ", texmode_independent";
if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA) {
if (!nvptxSubtarget.hasDouble())
O << ", map_f64_to_f32";
}
if (MAI->doesSupportDebugInformation())
O << ", debug";
O << "\n";
O << ".address_size ";
if (nvptxSubtarget.is64Bit())
O << "64";
else
O << "32";
O << "\n";
O << "\n";
}
bool NVPTXAsmPrinter::doFinalization(Module &M) {
// XXX Temproarily remove global variables so that doFinalization() will not
// emit them again (global variables are emitted at beginning).
Module::GlobalListType &global_list = M.getGlobalList();
int i, n = global_list.size();
GlobalVariable **gv_array = new GlobalVariable* [n];
// first, back-up GlobalVariable in gv_array
i = 0;
for (Module::global_iterator I = global_list.begin(), E = global_list.end();
I != E; ++I)
gv_array[i++] = &*I;
// second, empty global_list
while (!global_list.empty())
global_list.remove(global_list.begin());
// call doFinalization
bool ret = AsmPrinter::doFinalization(M);
// now we restore global variables
for (i = 0; i < n; i ++)
global_list.insert(global_list.end(), gv_array[i]);
delete[] gv_array;
return ret;
//bool Result = AsmPrinter::doFinalization(M);
// Instead of calling the parents doFinalization, we may
// clone parents doFinalization and customize here.
// Currently, we if NVISA out the EmitGlobals() in
// parent's doFinalization, which is too intrusive.
//
// Same for the doInitialization.
//return Result;
}
// This function emits appropriate linkage directives for
// functions and global variables.
//
// extern function declaration -> .extern
// extern function definition -> .visible
// external global variable with init -> .visible
// external without init -> .extern
// appending -> not allowed, assert.
void NVPTXAsmPrinter::emitLinkageDirective(const GlobalValue* V, raw_ostream &O)
{
if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA) {
if (V->hasExternalLinkage()) {
if (isa<GlobalVariable>(V)) {
const GlobalVariable *GVar = cast<GlobalVariable>(V);
if (GVar) {
if (GVar->hasInitializer())
O << ".visible ";
else
O << ".extern ";
}
} else if (V->isDeclaration())
O << ".extern ";
else
O << ".visible ";
} else if (V->hasAppendingLinkage()) {
std::string msg;
msg.append("Error: ");
msg.append("Symbol ");
if (V->hasName())
msg.append(V->getName().str());
msg.append("has unsupported appending linkage type");
llvm_unreachable(msg.c_str());
}
}
}
void NVPTXAsmPrinter::printModuleLevelGV(GlobalVariable* GVar, raw_ostream &O,
bool processDemoted) {
// Skip meta data
if (GVar->hasSection()) {
if (GVar->getSection() == "llvm.metadata")
return;
}
const DataLayout *TD = TM.getDataLayout();
// GlobalVariables are always constant pointers themselves.
const PointerType *PTy = GVar->getType();
Type *ETy = PTy->getElementType();
if (GVar->hasExternalLinkage()) {
if (GVar->hasInitializer())
O << ".visible ";
else
O << ".extern ";
}
if (llvm::isTexture(*GVar)) {
O << ".global .texref " << llvm::getTextureName(*GVar) << ";\n";
return;
}
if (llvm::isSurface(*GVar)) {
O << ".global .surfref " << llvm::getSurfaceName(*GVar) << ";\n";
return;
}
if (GVar->isDeclaration()) {
// (extern) declarations, no definition or initializer
// Currently the only known declaration is for an automatic __local
// (.shared) promoted to global.
emitPTXGlobalVariable(GVar, O);
O << ";\n";
return;
}
if (llvm::isSampler(*GVar)) {
O << ".global .samplerref " << llvm::getSamplerName(*GVar);
Constant *Initializer = NULL;
if (GVar->hasInitializer())
Initializer = GVar->getInitializer();
ConstantInt *CI = NULL;
if (Initializer)
CI = dyn_cast<ConstantInt>(Initializer);
if (CI) {
unsigned sample=CI->getZExtValue();
O << " = { ";
for (int i =0, addr=((sample & __CLK_ADDRESS_MASK ) >>
__CLK_ADDRESS_BASE) ; i < 3 ; i++) {
O << "addr_mode_" << i << " = ";
switch (addr) {
case 0: O << "wrap"; break;
case 1: O << "clamp_to_border"; break;
case 2: O << "clamp_to_edge"; break;
case 3: O << "wrap"; break;
case 4: O << "mirror"; break;
}
O <<", ";
}
O << "filter_mode = ";
switch (( sample & __CLK_FILTER_MASK ) >> __CLK_FILTER_BASE ) {
case 0: O << "nearest"; break;
case 1: O << "linear"; break;
case 2: assert ( 0 && "Anisotropic filtering is not supported");
default: O << "nearest"; break;
}
if (!(( sample &__CLK_NORMALIZED_MASK ) >> __CLK_NORMALIZED_BASE)) {
O << ", force_unnormalized_coords = 1";
}
O << " }";
}
O << ";\n";
return;
}
if (GVar->hasPrivateLinkage()) {
if (!strncmp(GVar->getName().data(), "unrollpragma", 12))
return;
// FIXME - need better way (e.g. Metadata) to avoid generating this global
if (!strncmp(GVar->getName().data(), "filename", 8))
return;
if (GVar->use_empty())
return;
}
const Function *demotedFunc = 0;
if (!processDemoted && canDemoteGlobalVar(GVar, demotedFunc)) {
O << "// " << GVar->getName().str() << " has been demoted\n";
if (localDecls.find(demotedFunc) != localDecls.end())
localDecls[demotedFunc].push_back(GVar);
else {
std::vector<GlobalVariable *> temp;
temp.push_back(GVar);
localDecls[demotedFunc] = temp;
}
return;
}
O << ".";
emitPTXAddressSpace(PTy->getAddressSpace(), O);
if (GVar->getAlignment() == 0)
O << " .align " << (int) TD->getPrefTypeAlignment(ETy);
else
O << " .align " << GVar->getAlignment();
if (ETy->isPrimitiveType() || ETy->isIntegerTy() || isa<PointerType>(ETy)) {
O << " .";
O << getPTXFundamentalTypeStr(ETy, false);
O << " ";
O << *Mang->getSymbol(GVar);
// Ptx allows variable initilization only for constant and global state
// spaces.
if (((PTy->getAddressSpace() == llvm::ADDRESS_SPACE_GLOBAL) ||
(PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST_NOT_GEN) ||
(PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST))
&& GVar->hasInitializer()) {
Constant *Initializer = GVar->getInitializer();
if (!Initializer->isNullValue()) {
O << " = " ;
printScalarConstant(Initializer, O);
}
}
} else {
unsigned int ElementSize =0;
// Although PTX has direct support for struct type and array type and
// LLVM IR is very similar to PTX, the LLVM CodeGen does not support for
// targets that support these high level field accesses. Structs, arrays
// and vectors are lowered into arrays of bytes.
switch (ETy->getTypeID()) {
case Type::StructTyID:
case Type::ArrayTyID:
case Type::VectorTyID:
ElementSize = TD->getTypeStoreSize(ETy);
// Ptx allows variable initilization only for constant and
// global state spaces.
if (((PTy->getAddressSpace() == llvm::ADDRESS_SPACE_GLOBAL) ||
(PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST_NOT_GEN) ||
(PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST))
&& GVar->hasInitializer()) {
Constant *Initializer = GVar->getInitializer();
if (!isa<UndefValue>(Initializer) &&
!Initializer->isNullValue()) {
AggBuffer aggBuffer(ElementSize, O, *this);
bufferAggregateConstant(Initializer, &aggBuffer);
if (aggBuffer.numSymbols) {
if (nvptxSubtarget.is64Bit()) {
O << " .u64 " << *Mang->getSymbol(GVar) <<"[" ;
O << ElementSize/8;
}
else {
O << " .u32 " << *Mang->getSymbol(GVar) <<"[" ;
O << ElementSize/4;
}
O << "]";
}
else {
O << " .b8 " << *Mang->getSymbol(GVar) <<"[" ;
O << ElementSize;
O << "]";
}
O << " = {" ;
aggBuffer.print();
O << "}";
}
else {
O << " .b8 " << *Mang->getSymbol(GVar) ;
if (ElementSize) {
O <<"[" ;
O << ElementSize;
O << "]";
}
}
}
else {
O << " .b8 " << *Mang->getSymbol(GVar);
if (ElementSize) {
O <<"[" ;
O << ElementSize;
O << "]";
}
}
break;
default:
assert( 0 && "type not supported yet");
}
}
O << ";\n";
}
void NVPTXAsmPrinter::emitDemotedVars(const Function *f, raw_ostream &O) {
if (localDecls.find(f) == localDecls.end())
return;
std::vector<GlobalVariable *> &gvars = localDecls[f];
for (unsigned i=0, e=gvars.size(); i!=e; ++i) {
O << "\t// demoted variable\n\t";
printModuleLevelGV(gvars[i], O, true);
}
}
void NVPTXAsmPrinter::emitPTXAddressSpace(unsigned int AddressSpace,
raw_ostream &O) const {
switch (AddressSpace) {
case llvm::ADDRESS_SPACE_LOCAL:
O << "local" ;
break;
case llvm::ADDRESS_SPACE_GLOBAL:
O << "global" ;
break;
case llvm::ADDRESS_SPACE_CONST:
// This logic should be consistent with that in
// getCodeAddrSpace() (NVPTXISelDATToDAT.cpp)
if (nvptxSubtarget.hasGenericLdSt())
O << "global" ;
else
O << "const" ;
break;
case llvm::ADDRESS_SPACE_CONST_NOT_GEN:
O << "const" ;
break;
case llvm::ADDRESS_SPACE_SHARED:
O << "shared" ;
break;
default:
report_fatal_error("Bad address space found while emitting PTX");
break;
}
}
std::string NVPTXAsmPrinter::getPTXFundamentalTypeStr(const Type *Ty,
bool useB4PTR) const {
switch (Ty->getTypeID()) {
default:
llvm_unreachable("unexpected type");
break;
case Type::IntegerTyID: {
unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
if (NumBits == 1)
return "pred";
else if (NumBits <= 64) {
std::string name = "u";
return name + utostr(NumBits);
} else {
llvm_unreachable("Integer too large");
break;
}
break;
}
case Type::FloatTyID:
return "f32";
case Type::DoubleTyID:
return "f64";
case Type::PointerTyID:
if (nvptxSubtarget.is64Bit())
if (useB4PTR) return "b64";
else return "u64";
else
if (useB4PTR) return "b32";
else return "u32";
}
llvm_unreachable("unexpected type");
return NULL;
}
void NVPTXAsmPrinter::emitPTXGlobalVariable(const GlobalVariable* GVar,
raw_ostream &O) {
const DataLayout *TD = TM.getDataLayout();
// GlobalVariables are always constant pointers themselves.
const PointerType *PTy = GVar->getType();
Type *ETy = PTy->getElementType();
O << ".";
emitPTXAddressSpace(PTy->getAddressSpace(), O);
if (GVar->getAlignment() == 0)
O << " .align " << (int) TD->getPrefTypeAlignment(ETy);
else
O << " .align " << GVar->getAlignment();
if (ETy->isPrimitiveType() || ETy->isIntegerTy() || isa<PointerType>(ETy)) {
O << " .";
O << getPTXFundamentalTypeStr(ETy);
O << " ";
O << *Mang->getSymbol(GVar);
return;
}
int64_t ElementSize =0;
// Although PTX has direct support for struct type and array type and LLVM IR
// is very similar to PTX, the LLVM CodeGen does not support for targets that
// support these high level field accesses. Structs and arrays are lowered
// into arrays of bytes.
switch (ETy->getTypeID()) {
case Type::StructTyID:
case Type::ArrayTyID:
case Type::VectorTyID:
ElementSize = TD->getTypeStoreSize(ETy);
O << " .b8 " << *Mang->getSymbol(GVar) <<"[" ;
if (ElementSize) {
O << itostr(ElementSize) ;
}
O << "]";
break;
default:
assert( 0 && "type not supported yet");
}
return ;
}
static unsigned int
getOpenCLAlignment(const DataLayout *TD,
Type *Ty) {
if (Ty->isPrimitiveType() || Ty->isIntegerTy() || isa<PointerType>(Ty))
return TD->getPrefTypeAlignment(Ty);
const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
if (ATy)
return getOpenCLAlignment(TD, ATy->getElementType());
const VectorType *VTy = dyn_cast<VectorType>(Ty);
if (VTy) {
Type *ETy = VTy->getElementType();
unsigned int numE = VTy->getNumElements();
unsigned int alignE = TD->getPrefTypeAlignment(ETy);
if (numE == 3)
return 4*alignE;
else
return numE*alignE;
}
const StructType *STy = dyn_cast<StructType>(Ty);
if (STy) {
unsigned int alignStruct = 1;
// Go through each element of the struct and find the
// largest alignment.
for (unsigned i=0, e=STy->getNumElements(); i != e; i++) {
Type *ETy = STy->getElementType(i);
unsigned int align = getOpenCLAlignment(TD, ETy);
if (align > alignStruct)
alignStruct = align;
}
return alignStruct;
}
const FunctionType *FTy = dyn_cast<FunctionType>(Ty);
if (FTy)
return TD->getPointerPrefAlignment();
return TD->getPrefTypeAlignment(Ty);
}
void NVPTXAsmPrinter::printParamName(Function::const_arg_iterator I,
int paramIndex, raw_ostream &O) {
if ((nvptxSubtarget.getDrvInterface() == NVPTX::NVCL) ||
(nvptxSubtarget.getDrvInterface() == NVPTX::CUDA))
O << *CurrentFnSym << "_param_" << paramIndex;
else {
std::string argName = I->getName();
const char *p = argName.c_str();
while (*p) {
if (*p == '.')
O << "_";
else
O << *p;
p++;
}
}
}
void NVPTXAsmPrinter::printParamName(int paramIndex, raw_ostream &O) {
Function::const_arg_iterator I, E;
int i = 0;
if ((nvptxSubtarget.getDrvInterface() == NVPTX::NVCL) ||
(nvptxSubtarget.getDrvInterface() == NVPTX::CUDA)) {
O << *CurrentFnSym << "_param_" << paramIndex;
return;
}
for (I = F->arg_begin(), E = F->arg_end(); I != E; ++I, i++) {
if (i==paramIndex) {
printParamName(I, paramIndex, O);
return;
}
}
llvm_unreachable("paramIndex out of bound");
}
void NVPTXAsmPrinter::emitFunctionParamList(const Function *F,
raw_ostream &O) {
const DataLayout *TD = TM.getDataLayout();
const AttributeSet &PAL = F->getAttributes();
const TargetLowering *TLI = TM.getTargetLowering();
Function::const_arg_iterator I, E;
unsigned paramIndex = 0;
bool first = true;
bool isKernelFunc = llvm::isKernelFunction(*F);
bool isABI = (nvptxSubtarget.getSmVersion() >= 20);
MVT thePointerTy = TLI->getPointerTy();
O << "(\n";
for (I = F->arg_begin(), E = F->arg_end(); I != E; ++I, paramIndex++) {
Type *Ty = I->getType();
if (!first)
O << ",\n";
first = false;
// Handle image/sampler parameters
if (llvm::isSampler(*I) || llvm::isImage(*I)) {
if (llvm::isImage(*I)) {
std::string sname = I->getName();
if (llvm::isImageWriteOnly(*I))
O << "\t.param .surfref " << *CurrentFnSym << "_param_" << paramIndex;
else // Default image is read_only
O << "\t.param .texref " << *CurrentFnSym << "_param_" << paramIndex;
}
else // Should be llvm::isSampler(*I)
O << "\t.param .samplerref " << *CurrentFnSym << "_param_"
<< paramIndex;
continue;
}
if (PAL.hasAttribute(paramIndex+1, Attribute::ByVal) == false) {
if (Ty->isVectorTy()) {
// Just print .param .b8 .align <a> .param[size];
// <a> = PAL.getparamalignment
// size = typeallocsize of element type
unsigned align = PAL.getParamAlignment(paramIndex+1);
if (align == 0)
align = TD->getABITypeAlignment(Ty);
unsigned sz = TD->getTypeAllocSize(Ty);
O << "\t.param .align " << align
<< " .b8 ";
printParamName(I, paramIndex, O);
O << "[" << sz << "]";
continue;
}
// Just a scalar
const PointerType *PTy = dyn_cast<PointerType>(Ty);
if (isKernelFunc) {
if (PTy) {
// Special handling for pointer arguments to kernel
O << "\t.param .u" << thePointerTy.getSizeInBits() << " ";
if (nvptxSubtarget.getDrvInterface() != NVPTX::CUDA) {
Type *ETy = PTy->getElementType();
int addrSpace = PTy->getAddressSpace();
switch(addrSpace) {
default:
O << ".ptr ";
break;
case llvm::ADDRESS_SPACE_CONST_NOT_GEN:
O << ".ptr .const ";
break;
case llvm::ADDRESS_SPACE_SHARED:
O << ".ptr .shared ";
break;
case llvm::ADDRESS_SPACE_GLOBAL:
case llvm::ADDRESS_SPACE_CONST:
O << ".ptr .global ";
break;
}
O << ".align " << (int)getOpenCLAlignment(TD, ETy) << " ";
}
printParamName(I, paramIndex, O);
continue;
}
// non-pointer scalar to kernel func
O << "\t.param ."
<< getPTXFundamentalTypeStr(Ty) << " ";
printParamName(I, paramIndex, O);
continue;
}
// Non-kernel function, just print .param .b<size> for ABI
// and .reg .b<size> for non ABY
unsigned sz = 0;
if (isa<IntegerType>(Ty)) {
sz = cast<IntegerType>(Ty)->getBitWidth();
if (sz < 32) sz = 32;
}
else if (isa<PointerType>(Ty))
sz = thePointerTy.getSizeInBits();
else
sz = Ty->getPrimitiveSizeInBits();
if (isABI)
O << "\t.param .b" << sz << " ";
else
O << "\t.reg .b" << sz << " ";
printParamName(I, paramIndex, O);
continue;
}
// param has byVal attribute. So should be a pointer
const PointerType *PTy = dyn_cast<PointerType>(Ty);
assert(PTy &&
"Param with byval attribute should be a pointer type");
Type *ETy = PTy->getElementType();
if (isABI || isKernelFunc) {
// Just print .param .b8 .align <a> .param[size];
// <a> = PAL.getparamalignment
// size = typeallocsize of element type
unsigned align = PAL.getParamAlignment(paramIndex+1);
if (align == 0)
align = TD->getABITypeAlignment(ETy);
unsigned sz = TD->getTypeAllocSize(ETy);
O << "\t.param .align " << align
<< " .b8 ";
printParamName(I, paramIndex, O);
O << "[" << sz << "]";
continue;
} else {
// Split the ETy into constituent parts and
// print .param .b<size> <name> for each part.
// Further, if a part is vector, print the above for
// each vector element.
SmallVector<EVT, 16> vtparts;
ComputeValueVTs(*TLI, ETy, vtparts);
for (unsigned i=0,e=vtparts.size(); i!=e; ++i) {
unsigned elems = 1;
EVT elemtype = vtparts[i];
if (vtparts[i].isVector()) {
elems = vtparts[i].getVectorNumElements();
elemtype = vtparts[i].getVectorElementType();
}
for (unsigned j=0,je=elems; j!=je; ++j) {
unsigned sz = elemtype.getSizeInBits();
if (elemtype.isInteger() && (sz < 32)) sz = 32;
O << "\t.reg .b" << sz << " ";
printParamName(I, paramIndex, O);
if (j<je-1) O << ",\n";
++paramIndex;
}
if (i<e-1)
O << ",\n";
}
--paramIndex;
continue;
}
}
O << "\n)\n";
}
void NVPTXAsmPrinter::emitFunctionParamList(const MachineFunction &MF,
raw_ostream &O) {
const Function *F = MF.getFunction();
emitFunctionParamList(F, O);
}
void NVPTXAsmPrinter::
setAndEmitFunctionVirtualRegisters(const MachineFunction &MF) {
SmallString<128> Str;
raw_svector_ostream O(Str);
// Map the global virtual register number to a register class specific
// virtual register number starting from 1 with that class.
const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
//unsigned numRegClasses = TRI->getNumRegClasses();
// Emit the Fake Stack Object
const MachineFrameInfo *MFI = MF.getFrameInfo();
int NumBytes = (int) MFI->getStackSize();
if (NumBytes) {
O << "\t.local .align " << MFI->getMaxAlignment() << " .b8 \t"
<< DEPOTNAME
<< getFunctionNumber() << "[" << NumBytes << "];\n";
if (nvptxSubtarget.is64Bit()) {
O << "\t.reg .b64 \t%SP;\n";
O << "\t.reg .b64 \t%SPL;\n";
}
else {
O << "\t.reg .b32 \t%SP;\n";
O << "\t.reg .b32 \t%SPL;\n";
}
}
// Go through all virtual registers to establish the mapping between the
// global virtual
// register number and the per class virtual register number.
// We use the per class virtual register number in the ptx output.
unsigned int numVRs = MRI->getNumVirtRegs();
for (unsigned i=0; i< numVRs; i++) {
unsigned int vr = TRI->index2VirtReg(i);
const TargetRegisterClass *RC = MRI->getRegClass(vr);
std::map<unsigned, unsigned> &regmap = VRidGlobal2LocalMap[RC->getID()];
int n = regmap.size();
regmap.insert(std::make_pair(vr, n+1));
}
// Emit register declarations
// @TODO: Extract out the real register usage
O << "\t.reg .pred %p<" << NVPTXNumRegisters << ">;\n";
O << "\t.reg .s16 %rc<" << NVPTXNumRegisters << ">;\n";
O << "\t.reg .s16 %rs<" << NVPTXNumRegisters << ">;\n";
O << "\t.reg .s32 %r<" << NVPTXNumRegisters << ">;\n";
O << "\t.reg .s64 %rl<" << NVPTXNumRegisters << ">;\n";
O << "\t.reg .f32 %f<" << NVPTXNumRegisters << ">;\n";
O << "\t.reg .f64 %fl<" << NVPTXNumRegisters << ">;\n";
// Emit declaration of the virtual registers or 'physical' registers for
// each register class
//for (unsigned i=0; i< numRegClasses; i++) {
// std::map<unsigned, unsigned> &regmap = VRidGlobal2LocalMap[i];
// const TargetRegisterClass *RC = TRI->getRegClass(i);
// std::string rcname = getNVPTXRegClassName(RC);
// std::string rcStr = getNVPTXRegClassStr(RC);
// //int n = regmap.size();
// if (!isNVPTXVectorRegClass(RC)) {
// O << "\t.reg " << rcname << " \t" << rcStr << "<"
// << NVPTXNumRegisters << ">;\n";
// }
// Only declare those registers that may be used. And do not emit vector
// registers as
// they are all elementized to scalar registers.
//if (n && !isNVPTXVectorRegClass(RC)) {
// if (RegAllocNilUsed) {
// O << "\t.reg " << rcname << " \t" << rcStr << "<" << (n+1)
// << ">;\n";
// }
// else {
// O << "\t.reg " << rcname << " \t" << StrToUpper(rcStr)
// << "<" << 32 << ">;\n";
// }
//}
//}
OutStreamer.EmitRawText(O.str());
}
void NVPTXAsmPrinter::printFPConstant(const ConstantFP *Fp, raw_ostream &O) {
APFloat APF = APFloat(Fp->getValueAPF()); // make a copy
bool ignored;
unsigned int numHex;
const char *lead;
if (Fp->getType()->getTypeID()==Type::FloatTyID) {
numHex = 8;
lead = "0f";
APF.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
&ignored);
} else if (Fp->getType()->getTypeID() == Type::DoubleTyID) {
numHex = 16;
lead = "0d";
APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
&ignored);
} else
llvm_unreachable("unsupported fp type");
APInt API = APF.bitcastToAPInt();
std::string hexstr(utohexstr(API.getZExtValue()));
O << lead;
if (hexstr.length() < numHex)
O << std::string(numHex - hexstr.length(), '0');
O << utohexstr(API.getZExtValue());
}
void NVPTXAsmPrinter::printScalarConstant(Constant *CPV, raw_ostream &O) {
if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
O << CI->getValue();
return;
}
if (ConstantFP *CFP = dyn_cast<ConstantFP>(CPV)) {
printFPConstant(CFP, O);
return;
}
if (isa<ConstantPointerNull>(CPV)) {
O << "0";
return;
}
if (GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
O << *Mang->getSymbol(GVar);
return;
}
if (ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
Value *v = Cexpr->stripPointerCasts();
if (GlobalValue *GVar = dyn_cast<GlobalValue>(v)) {
O << *Mang->getSymbol(GVar);
return;
} else {
O << *LowerConstant(CPV, *this);
return;
}
}
llvm_unreachable("Not scalar type found in printScalarConstant()");
}
void NVPTXAsmPrinter::bufferLEByte(Constant *CPV, int Bytes,
AggBuffer *aggBuffer) {
const DataLayout *TD = TM.getDataLayout();
if (isa<UndefValue>(CPV) || CPV->isNullValue()) {
int s = TD->getTypeAllocSize(CPV->getType());
if (s<Bytes)
s = Bytes;
aggBuffer->addZeros(s);
return;
}
unsigned char *ptr;
switch (CPV->getType()->getTypeID()) {
case Type::IntegerTyID: {
const Type *ETy = CPV->getType();
if ( ETy == Type::getInt8Ty(CPV->getContext()) ){
unsigned char c =
(unsigned char)(dyn_cast<ConstantInt>(CPV))->getZExtValue();
ptr = &c;
aggBuffer->addBytes(ptr, 1, Bytes);
} else if ( ETy == Type::getInt16Ty(CPV->getContext()) ) {
short int16 =
(short)(dyn_cast<ConstantInt>(CPV))->getZExtValue();
ptr = (unsigned char*)&int16;
aggBuffer->addBytes(ptr, 2, Bytes);
} else if ( ETy == Type::getInt32Ty(CPV->getContext()) ) {
if (ConstantInt *constInt = dyn_cast<ConstantInt>(CPV)) {
int int32 =(int)(constInt->getZExtValue());
ptr = (unsigned char*)&int32;
aggBuffer->addBytes(ptr, 4, Bytes);
break;
} else if (ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
if (ConstantInt *constInt =
dyn_cast<ConstantInt>(ConstantFoldConstantExpression(
Cexpr, TD))) {
int int32 =(int)(constInt->getZExtValue());
ptr = (unsigned char*)&int32;
aggBuffer->addBytes(ptr, 4, Bytes);
break;
}
if (Cexpr->getOpcode() == Instruction::PtrToInt) {
Value *v = Cexpr->getOperand(0)->stripPointerCasts();
aggBuffer->addSymbol(v);
aggBuffer->addZeros(4);
break;
}
}
llvm_unreachable("unsupported integer const type");
} else if (ETy == Type::getInt64Ty(CPV->getContext()) ) {
if (ConstantInt *constInt = dyn_cast<ConstantInt>(CPV)) {
long long int64 =(long long)(constInt->getZExtValue());
ptr = (unsigned char*)&int64;
aggBuffer->addBytes(ptr, 8, Bytes);
break;
} else if (ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
if (ConstantInt *constInt = dyn_cast<ConstantInt>(
ConstantFoldConstantExpression(Cexpr, TD))) {
long long int64 =(long long)(constInt->getZExtValue());
ptr = (unsigned char*)&int64;
aggBuffer->addBytes(ptr, 8, Bytes);
break;
}
if (Cexpr->getOpcode() == Instruction::PtrToInt) {
Value *v = Cexpr->getOperand(0)->stripPointerCasts();
aggBuffer->addSymbol(v);
aggBuffer->addZeros(8);
break;
}
}
llvm_unreachable("unsupported integer const type");
} else
llvm_unreachable("unsupported integer const type");
break;
}
case Type::FloatTyID:
case Type::DoubleTyID: {
ConstantFP *CFP = dyn_cast<ConstantFP>(CPV);
const Type* Ty = CFP->getType();
if (Ty == Type::getFloatTy(CPV->getContext())) {
float float32 = (float)CFP->getValueAPF().convertToFloat();
ptr = (unsigned char*)&float32;
aggBuffer->addBytes(ptr, 4, Bytes);
} else if (Ty == Type::getDoubleTy(CPV->getContext())) {
double float64 = CFP->getValueAPF().convertToDouble();
ptr = (unsigned char*)&float64;
aggBuffer->addBytes(ptr, 8, Bytes);
}
else {
llvm_unreachable("unsupported fp const type");
}
break;
}
case Type::PointerTyID: {
if (GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
aggBuffer->addSymbol(GVar);
}
else if (ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
Value *v = Cexpr->stripPointerCasts();
aggBuffer->addSymbol(v);
}
unsigned int s = TD->getTypeAllocSize(CPV->getType());
aggBuffer->addZeros(s);
break;
}
case Type::ArrayTyID:
case Type::VectorTyID:
case Type::StructTyID: {
if (isa<ConstantArray>(CPV) || isa<ConstantVector>(CPV) ||
isa<ConstantStruct>(CPV)) {
int ElementSize = TD->getTypeAllocSize(CPV->getType());
bufferAggregateConstant(CPV, aggBuffer);
if ( Bytes > ElementSize )
aggBuffer->addZeros(Bytes-ElementSize);
}
else if (isa<ConstantAggregateZero>(CPV))
aggBuffer->addZeros(Bytes);
else
llvm_unreachable("Unexpected Constant type");
break;
}
default:
llvm_unreachable("unsupported type");
}
}
void NVPTXAsmPrinter::bufferAggregateConstant(Constant *CPV,
AggBuffer *aggBuffer) {
const DataLayout *TD = TM.getDataLayout();
int Bytes;
// Old constants
if (isa<ConstantArray>(CPV) || isa<ConstantVector>(CPV)) {
if (CPV->getNumOperands())
for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i)
bufferLEByte(cast<Constant>(CPV->getOperand(i)), 0, aggBuffer);
return;
}
if (const ConstantDataSequential *CDS =
dyn_cast<ConstantDataSequential>(CPV)) {
if (CDS->getNumElements())
for (unsigned i = 0; i < CDS->getNumElements(); ++i)
bufferLEByte(cast<Constant>(CDS->getElementAsConstant(i)), 0,
aggBuffer);
return;
}
if (isa<ConstantStruct>(CPV)) {
if (CPV->getNumOperands()) {
StructType *ST = cast<StructType>(CPV->getType());
for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i) {
if ( i == (e - 1))
Bytes = TD->getStructLayout(ST)->getElementOffset(0) +
TD->getTypeAllocSize(ST)
- TD->getStructLayout(ST)->getElementOffset(i);
else
Bytes = TD->getStructLayout(ST)->getElementOffset(i+1) -
TD->getStructLayout(ST)->getElementOffset(i);
bufferLEByte(cast<Constant>(CPV->getOperand(i)), Bytes,
aggBuffer);
}
}
return;
}
llvm_unreachable("unsupported constant type in printAggregateConstant()");
}
// buildTypeNameMap - Run through symbol table looking for type names.
//
bool NVPTXAsmPrinter::isImageType(const Type *Ty) {
std::map<const Type *, std::string>::iterator PI = TypeNameMap.find(Ty);
if (PI != TypeNameMap.end() &&
(!PI->second.compare("struct._image1d_t") ||
!PI->second.compare("struct._image2d_t") ||
!PI->second.compare("struct._image3d_t")))
return true;
return false;
}
/// PrintAsmOperand - Print out an operand for an inline asm expression.
///
bool NVPTXAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode,
raw_ostream &O) {
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
switch (ExtraCode[0]) {
default:
// See if this is a generic print operand
return AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O);
case 'r':
break;
}
}
printOperand(MI, OpNo, O);
return false;
}
bool NVPTXAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode,
raw_ostream &O) {
if (ExtraCode && ExtraCode[0])
return true; // Unknown modifier
O << '[';
printMemOperand(MI, OpNo, O);
O << ']';
return false;
}
bool NVPTXAsmPrinter::ignoreLoc(const MachineInstr &MI)
{
switch(MI.getOpcode()) {
default:
return false;
case NVPTX::CallArgBeginInst: case NVPTX::CallArgEndInst0:
case NVPTX::CallArgEndInst1: case NVPTX::CallArgF32:
case NVPTX::CallArgF64: case NVPTX::CallArgI16:
case NVPTX::CallArgI32: case NVPTX::CallArgI32imm:
case NVPTX::CallArgI64: case NVPTX::CallArgI8:
case NVPTX::CallArgParam: case NVPTX::CallVoidInst:
case NVPTX::CallVoidInstReg: case NVPTX::Callseq_End:
case NVPTX::CallVoidInstReg64:
case NVPTX::DeclareParamInst: case NVPTX::DeclareRetMemInst:
case NVPTX::DeclareRetRegInst: case NVPTX::DeclareRetScalarInst:
case NVPTX::DeclareScalarParamInst: case NVPTX::DeclareScalarRegInst:
case NVPTX::StoreParamF32: case NVPTX::StoreParamF64:
case NVPTX::StoreParamI16: case NVPTX::StoreParamI32:
case NVPTX::StoreParamI64: case NVPTX::StoreParamI8:
case NVPTX::StoreParamS32I8: case NVPTX::StoreParamU32I8:
case NVPTX::StoreParamS32I16: case NVPTX::StoreParamU32I16:
case NVPTX::StoreRetvalF32: case NVPTX::StoreRetvalF64:
case NVPTX::StoreRetvalI16: case NVPTX::StoreRetvalI32:
case NVPTX::StoreRetvalI64: case NVPTX::StoreRetvalI8:
case NVPTX::LastCallArgF32: case NVPTX::LastCallArgF64:
case NVPTX::LastCallArgI16: case NVPTX::LastCallArgI32:
case NVPTX::LastCallArgI32imm: case NVPTX::LastCallArgI64:
case NVPTX::LastCallArgI8: case NVPTX::LastCallArgParam:
case NVPTX::LoadParamMemF32: case NVPTX::LoadParamMemF64:
case NVPTX::LoadParamMemI16: case NVPTX::LoadParamMemI32:
case NVPTX::LoadParamMemI64: case NVPTX::LoadParamMemI8:
case NVPTX::LoadParamRegF32: case NVPTX::LoadParamRegF64:
case NVPTX::LoadParamRegI16: case NVPTX::LoadParamRegI32:
case NVPTX::LoadParamRegI64: case NVPTX::LoadParamRegI8:
case NVPTX::PrototypeInst: case NVPTX::DBG_VALUE:
return true;
}
return false;
}
// Force static initialization.
extern "C" void LLVMInitializeNVPTXBackendAsmPrinter() {
RegisterAsmPrinter<NVPTXAsmPrinter> X(TheNVPTXTarget32);
RegisterAsmPrinter<NVPTXAsmPrinter> Y(TheNVPTXTarget64);
}
void NVPTXAsmPrinter::emitSrcInText(StringRef filename, unsigned line) {
std::stringstream temp;
LineReader * reader = this->getReader(filename.str());
temp << "\n//";
temp << filename.str();
temp << ":";
temp << line;
temp << " ";
temp << reader->readLine(line);
temp << "\n";
this->OutStreamer.EmitRawText(Twine(temp.str()));
}
LineReader *NVPTXAsmPrinter::getReader(std::string filename) {
if (reader == NULL) {
reader = new LineReader(filename);
}
if (reader->fileName() != filename) {
delete reader;
reader = new LineReader(filename);
}
return reader;
}
std::string
LineReader::readLine(unsigned lineNum) {
if (lineNum < theCurLine) {
theCurLine = 0;
fstr.seekg(0,std::ios::beg);
}
while (theCurLine < lineNum) {
fstr.getline(buff,500);
theCurLine++;
}
return buff;
}
// Force static initialization.
extern "C" void LLVMInitializeNVPTXAsmPrinter() {
RegisterAsmPrinter<NVPTXAsmPrinter> X(TheNVPTXTarget32);
RegisterAsmPrinter<NVPTXAsmPrinter> Y(TheNVPTXTarget64);
}