mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-09 10:31:14 +00:00
37efe67645
x86 and ppc for 100% dense switch statements when relocations are non-PIC. This support will be extended and enhanced in the coming days to support PIC, and less dense forms of jump tables. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@27947 91177308-0d34-0410-b5e6-96231b3b80d8
734 lines
27 KiB
C++
734 lines
27 KiB
C++
//===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines a MachineCodeEmitter object that is used by the JIT to
|
|
// write machine code to memory and remember where relocatable values are.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "jit"
|
|
#include "JIT.h"
|
|
#include "llvm/Constant.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Type.h"
|
|
#include "llvm/CodeGen/MachineCodeEmitter.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineJumpTableInfo.h"
|
|
#include "llvm/CodeGen/MachineRelocation.h"
|
|
#include "llvm/ExecutionEngine/GenericValue.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Target/TargetJITInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/System/Memory.h"
|
|
#include <algorithm>
|
|
#include <iostream>
|
|
#include <list>
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
Statistic<> NumBytes("jit", "Number of bytes of machine code compiled");
|
|
Statistic<> NumRelos("jit", "Number of relocations applied");
|
|
JIT *TheJIT = 0;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// JITMemoryManager code.
|
|
//
|
|
namespace {
|
|
/// JITMemoryManager - Manage memory for the JIT code generation in a logical,
|
|
/// sane way. This splits a large block of MAP_NORESERVE'd memory into two
|
|
/// sections, one for function stubs, one for the functions themselves. We
|
|
/// have to do this because we may need to emit a function stub while in the
|
|
/// middle of emitting a function, and we don't know how large the function we
|
|
/// are emitting is. This never bothers to release the memory, because when
|
|
/// we are ready to destroy the JIT, the program exits.
|
|
class JITMemoryManager {
|
|
std::list<sys::MemoryBlock> Blocks; // List of blocks allocated by the JIT
|
|
unsigned char *FunctionBase; // Start of the function body area
|
|
unsigned char *GlobalBase; // Start of the Global area
|
|
unsigned char *ConstantBase; // Memory allocated for constant pools
|
|
unsigned char *CurStubPtr, *CurFunctionPtr, *CurConstantPtr, *CurGlobalPtr;
|
|
unsigned char *GOTBase; //Target Specific reserved memory
|
|
|
|
// centralize memory block allocation
|
|
sys::MemoryBlock getNewMemoryBlock(unsigned size);
|
|
public:
|
|
JITMemoryManager(bool useGOT);
|
|
~JITMemoryManager();
|
|
|
|
inline unsigned char *allocateStub(unsigned StubSize);
|
|
inline unsigned char *allocateConstant(unsigned ConstantSize,
|
|
unsigned Alignment);
|
|
inline unsigned char* allocateGlobal(unsigned Size,
|
|
unsigned Alignment);
|
|
inline unsigned char *startFunctionBody();
|
|
inline void endFunctionBody(unsigned char *FunctionEnd);
|
|
inline unsigned char* getGOTBase() const;
|
|
|
|
inline bool isManagingGOT() const;
|
|
};
|
|
}
|
|
|
|
JITMemoryManager::JITMemoryManager(bool useGOT) {
|
|
// Allocate a 16M block of memory for functions
|
|
sys::MemoryBlock FunBlock = getNewMemoryBlock(16 << 20);
|
|
// Allocate a 1M block of memory for Constants
|
|
sys::MemoryBlock ConstBlock = getNewMemoryBlock(1 << 20);
|
|
// Allocate a 1M Block of memory for Globals
|
|
sys::MemoryBlock GVBlock = getNewMemoryBlock(1 << 20);
|
|
|
|
Blocks.push_front(FunBlock);
|
|
Blocks.push_front(ConstBlock);
|
|
Blocks.push_front(GVBlock);
|
|
|
|
FunctionBase = reinterpret_cast<unsigned char*>(FunBlock.base());
|
|
ConstantBase = reinterpret_cast<unsigned char*>(ConstBlock.base());
|
|
GlobalBase = reinterpret_cast<unsigned char*>(GVBlock.base());
|
|
|
|
// Allocate stubs backwards from the base, allocate functions forward
|
|
// from the base.
|
|
CurStubPtr = CurFunctionPtr = FunctionBase + 512*1024;// Use 512k for stubs
|
|
|
|
CurConstantPtr = ConstantBase + ConstBlock.size();
|
|
CurGlobalPtr = GlobalBase + GVBlock.size();
|
|
|
|
//Allocate the GOT just like a global array
|
|
GOTBase = NULL;
|
|
if (useGOT)
|
|
GOTBase = allocateGlobal(sizeof(void*) * 8192, 8);
|
|
}
|
|
|
|
JITMemoryManager::~JITMemoryManager() {
|
|
for (std::list<sys::MemoryBlock>::iterator ib = Blocks.begin(),
|
|
ie = Blocks.end(); ib != ie; ++ib)
|
|
sys::Memory::ReleaseRWX(*ib);
|
|
Blocks.clear();
|
|
}
|
|
|
|
unsigned char *JITMemoryManager::allocateStub(unsigned StubSize) {
|
|
CurStubPtr -= StubSize;
|
|
if (CurStubPtr < FunctionBase) {
|
|
//FIXME: allocate a new block
|
|
std::cerr << "JIT ran out of memory for function stubs!\n";
|
|
abort();
|
|
}
|
|
return CurStubPtr;
|
|
}
|
|
|
|
unsigned char *JITMemoryManager::allocateConstant(unsigned ConstantSize,
|
|
unsigned Alignment) {
|
|
// Reserve space and align pointer.
|
|
CurConstantPtr -= ConstantSize;
|
|
CurConstantPtr =
|
|
(unsigned char *)((intptr_t)CurConstantPtr & ~((intptr_t)Alignment - 1));
|
|
|
|
if (CurConstantPtr < ConstantBase) {
|
|
//Either allocate another MB or 2xConstantSize
|
|
sys::MemoryBlock ConstBlock = getNewMemoryBlock(2 * ConstantSize);
|
|
ConstantBase = reinterpret_cast<unsigned char*>(ConstBlock.base());
|
|
CurConstantPtr = ConstantBase + ConstBlock.size();
|
|
return allocateConstant(ConstantSize, Alignment);
|
|
}
|
|
return CurConstantPtr;
|
|
}
|
|
|
|
unsigned char *JITMemoryManager::allocateGlobal(unsigned Size,
|
|
unsigned Alignment) {
|
|
// Reserve space and align pointer.
|
|
CurGlobalPtr -= Size;
|
|
CurGlobalPtr =
|
|
(unsigned char *)((intptr_t)CurGlobalPtr & ~((intptr_t)Alignment - 1));
|
|
|
|
if (CurGlobalPtr < GlobalBase) {
|
|
//Either allocate another MB or 2xSize
|
|
sys::MemoryBlock GVBlock = getNewMemoryBlock(2 * Size);
|
|
GlobalBase = reinterpret_cast<unsigned char*>(GVBlock.base());
|
|
CurGlobalPtr = GlobalBase + GVBlock.size();
|
|
return allocateGlobal(Size, Alignment);
|
|
}
|
|
return CurGlobalPtr;
|
|
}
|
|
|
|
unsigned char *JITMemoryManager::startFunctionBody() {
|
|
// Round up to an even multiple of 8 bytes, this should eventually be target
|
|
// specific.
|
|
return (unsigned char*)(((intptr_t)CurFunctionPtr + 7) & ~7);
|
|
}
|
|
|
|
void JITMemoryManager::endFunctionBody(unsigned char *FunctionEnd) {
|
|
assert(FunctionEnd > CurFunctionPtr);
|
|
CurFunctionPtr = FunctionEnd;
|
|
}
|
|
|
|
unsigned char* JITMemoryManager::getGOTBase() const {
|
|
return GOTBase;
|
|
}
|
|
|
|
bool JITMemoryManager::isManagingGOT() const {
|
|
return GOTBase != NULL;
|
|
}
|
|
|
|
sys::MemoryBlock JITMemoryManager::getNewMemoryBlock(unsigned size) {
|
|
const sys::MemoryBlock* BOld = 0;
|
|
if (Blocks.size())
|
|
BOld = &Blocks.front();
|
|
//never allocate less than 1 MB
|
|
sys::MemoryBlock B;
|
|
try {
|
|
B = sys::Memory::AllocateRWX(std::max(((unsigned)1 << 20), size), BOld);
|
|
} catch (std::string& err) {
|
|
std::cerr << "Allocation failed when allocating new memory in the JIT\n";
|
|
std::cerr << err << "\n";
|
|
abort();
|
|
}
|
|
Blocks.push_front(B);
|
|
return B;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// JIT lazy compilation code.
|
|
//
|
|
namespace {
|
|
class JITResolverState {
|
|
private:
|
|
/// FunctionToStubMap - Keep track of the stub created for a particular
|
|
/// function so that we can reuse them if necessary.
|
|
std::map<Function*, void*> FunctionToStubMap;
|
|
|
|
/// StubToFunctionMap - Keep track of the function that each stub
|
|
/// corresponds to.
|
|
std::map<void*, Function*> StubToFunctionMap;
|
|
|
|
public:
|
|
std::map<Function*, void*>& getFunctionToStubMap(const MutexGuard& locked) {
|
|
assert(locked.holds(TheJIT->lock));
|
|
return FunctionToStubMap;
|
|
}
|
|
|
|
std::map<void*, Function*>& getStubToFunctionMap(const MutexGuard& locked) {
|
|
assert(locked.holds(TheJIT->lock));
|
|
return StubToFunctionMap;
|
|
}
|
|
};
|
|
|
|
/// JITResolver - Keep track of, and resolve, call sites for functions that
|
|
/// have not yet been compiled.
|
|
class JITResolver {
|
|
/// MCE - The MachineCodeEmitter to use to emit stubs with.
|
|
MachineCodeEmitter &MCE;
|
|
|
|
/// LazyResolverFn - The target lazy resolver function that we actually
|
|
/// rewrite instructions to use.
|
|
TargetJITInfo::LazyResolverFn LazyResolverFn;
|
|
|
|
JITResolverState state;
|
|
|
|
/// ExternalFnToStubMap - This is the equivalent of FunctionToStubMap for
|
|
/// external functions.
|
|
std::map<void*, void*> ExternalFnToStubMap;
|
|
|
|
//map addresses to indexes in the GOT
|
|
std::map<void*, unsigned> revGOTMap;
|
|
unsigned nextGOTIndex;
|
|
|
|
public:
|
|
JITResolver(MachineCodeEmitter &mce) : MCE(mce), nextGOTIndex(0) {
|
|
LazyResolverFn =
|
|
TheJIT->getJITInfo().getLazyResolverFunction(JITCompilerFn);
|
|
}
|
|
|
|
/// getFunctionStub - This returns a pointer to a function stub, creating
|
|
/// one on demand as needed.
|
|
void *getFunctionStub(Function *F);
|
|
|
|
/// getExternalFunctionStub - Return a stub for the function at the
|
|
/// specified address, created lazily on demand.
|
|
void *getExternalFunctionStub(void *FnAddr);
|
|
|
|
/// AddCallbackAtLocation - If the target is capable of rewriting an
|
|
/// instruction without the use of a stub, record the location of the use so
|
|
/// we know which function is being used at the location.
|
|
void *AddCallbackAtLocation(Function *F, void *Location) {
|
|
MutexGuard locked(TheJIT->lock);
|
|
/// Get the target-specific JIT resolver function.
|
|
state.getStubToFunctionMap(locked)[Location] = F;
|
|
return (void*)LazyResolverFn;
|
|
}
|
|
|
|
/// getGOTIndexForAddress - Return a new or existing index in the GOT for
|
|
/// and address. This function only manages slots, it does not manage the
|
|
/// contents of the slots or the memory associated with the GOT.
|
|
unsigned getGOTIndexForAddr(void* addr);
|
|
|
|
/// JITCompilerFn - This function is called to resolve a stub to a compiled
|
|
/// address. If the LLVM Function corresponding to the stub has not yet
|
|
/// been compiled, this function compiles it first.
|
|
static void *JITCompilerFn(void *Stub);
|
|
};
|
|
}
|
|
|
|
/// getJITResolver - This function returns the one instance of the JIT resolver.
|
|
///
|
|
static JITResolver &getJITResolver(MachineCodeEmitter *MCE = 0) {
|
|
static JITResolver TheJITResolver(*MCE);
|
|
return TheJITResolver;
|
|
}
|
|
|
|
/// getFunctionStub - This returns a pointer to a function stub, creating
|
|
/// one on demand as needed.
|
|
void *JITResolver::getFunctionStub(Function *F) {
|
|
MutexGuard locked(TheJIT->lock);
|
|
|
|
// If we already have a stub for this function, recycle it.
|
|
void *&Stub = state.getFunctionToStubMap(locked)[F];
|
|
if (Stub) return Stub;
|
|
|
|
// Call the lazy resolver function unless we already KNOW it is an external
|
|
// function, in which case we just skip the lazy resolution step.
|
|
void *Actual = (void*)LazyResolverFn;
|
|
if (F->isExternal() && F->hasExternalLinkage())
|
|
Actual = TheJIT->getPointerToFunction(F);
|
|
|
|
// Otherwise, codegen a new stub. For now, the stub will call the lazy
|
|
// resolver function.
|
|
Stub = TheJIT->getJITInfo().emitFunctionStub(Actual, MCE);
|
|
|
|
if (Actual != (void*)LazyResolverFn) {
|
|
// If we are getting the stub for an external function, we really want the
|
|
// address of the stub in the GlobalAddressMap for the JIT, not the address
|
|
// of the external function.
|
|
TheJIT->updateGlobalMapping(F, Stub);
|
|
}
|
|
|
|
DEBUG(std::cerr << "JIT: Stub emitted at [" << Stub << "] for function '"
|
|
<< F->getName() << "'\n");
|
|
|
|
// Finally, keep track of the stub-to-Function mapping so that the
|
|
// JITCompilerFn knows which function to compile!
|
|
state.getStubToFunctionMap(locked)[Stub] = F;
|
|
return Stub;
|
|
}
|
|
|
|
/// getExternalFunctionStub - Return a stub for the function at the
|
|
/// specified address, created lazily on demand.
|
|
void *JITResolver::getExternalFunctionStub(void *FnAddr) {
|
|
// If we already have a stub for this function, recycle it.
|
|
void *&Stub = ExternalFnToStubMap[FnAddr];
|
|
if (Stub) return Stub;
|
|
|
|
Stub = TheJIT->getJITInfo().emitFunctionStub(FnAddr, MCE);
|
|
DEBUG(std::cerr << "JIT: Stub emitted at [" << Stub
|
|
<< "] for external function at '" << FnAddr << "'\n");
|
|
return Stub;
|
|
}
|
|
|
|
unsigned JITResolver::getGOTIndexForAddr(void* addr) {
|
|
unsigned idx = revGOTMap[addr];
|
|
if (!idx) {
|
|
idx = ++nextGOTIndex;
|
|
revGOTMap[addr] = idx;
|
|
DEBUG(std::cerr << "Adding GOT entry " << idx
|
|
<< " for addr " << addr << "\n");
|
|
// ((void**)MemMgr.getGOTBase())[idx] = addr;
|
|
}
|
|
return idx;
|
|
}
|
|
|
|
/// JITCompilerFn - This function is called when a lazy compilation stub has
|
|
/// been entered. It looks up which function this stub corresponds to, compiles
|
|
/// it if necessary, then returns the resultant function pointer.
|
|
void *JITResolver::JITCompilerFn(void *Stub) {
|
|
JITResolver &JR = getJITResolver();
|
|
|
|
MutexGuard locked(TheJIT->lock);
|
|
|
|
// The address given to us for the stub may not be exactly right, it might be
|
|
// a little bit after the stub. As such, use upper_bound to find it.
|
|
std::map<void*, Function*>::iterator I =
|
|
JR.state.getStubToFunctionMap(locked).upper_bound(Stub);
|
|
assert(I != JR.state.getStubToFunctionMap(locked).begin() &&
|
|
"This is not a known stub!");
|
|
Function *F = (--I)->second;
|
|
|
|
// We might like to remove the stub from the StubToFunction map.
|
|
// We can't do that! Multiple threads could be stuck, waiting to acquire the
|
|
// lock above. As soon as the 1st function finishes compiling the function,
|
|
// the next one will be released, and needs to be able to find the function it
|
|
// needs to call.
|
|
//JR.state.getStubToFunctionMap(locked).erase(I);
|
|
|
|
DEBUG(std::cerr << "JIT: Lazily resolving function '" << F->getName()
|
|
<< "' In stub ptr = " << Stub << " actual ptr = "
|
|
<< I->first << "\n");
|
|
|
|
void *Result = TheJIT->getPointerToFunction(F);
|
|
|
|
// We don't need to reuse this stub in the future, as F is now compiled.
|
|
JR.state.getFunctionToStubMap(locked).erase(F);
|
|
|
|
// FIXME: We could rewrite all references to this stub if we knew them.
|
|
|
|
// What we will do is set the compiled function address to map to the
|
|
// same GOT entry as the stub so that later clients may update the GOT
|
|
// if they see it still using the stub address.
|
|
// Note: this is done so the Resolver doesn't have to manage GOT memory
|
|
// Do this without allocating map space if the target isn't using a GOT
|
|
if(JR.revGOTMap.find(Stub) != JR.revGOTMap.end())
|
|
JR.revGOTMap[Result] = JR.revGOTMap[Stub];
|
|
|
|
return Result;
|
|
}
|
|
|
|
|
|
// getPointerToFunctionOrStub - If the specified function has been
|
|
// code-gen'd, return a pointer to the function. If not, compile it, or use
|
|
// a stub to implement lazy compilation if available.
|
|
//
|
|
void *JIT::getPointerToFunctionOrStub(Function *F) {
|
|
// If we have already code generated the function, just return the address.
|
|
if (void *Addr = getPointerToGlobalIfAvailable(F))
|
|
return Addr;
|
|
|
|
// Get a stub if the target supports it
|
|
return getJITResolver(MCE).getFunctionStub(F);
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// JITEmitter code.
|
|
//
|
|
namespace {
|
|
/// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
|
|
/// used to output functions to memory for execution.
|
|
class JITEmitter : public MachineCodeEmitter {
|
|
JITMemoryManager MemMgr;
|
|
|
|
// CurBlock - The start of the current block of memory. CurByte - The
|
|
// current byte being emitted to.
|
|
unsigned char *CurBlock, *CurByte;
|
|
|
|
// When outputting a function stub in the context of some other function, we
|
|
// save CurBlock and CurByte here.
|
|
unsigned char *SavedCurBlock, *SavedCurByte;
|
|
|
|
/// Relocations - These are the relocations that the function needs, as
|
|
/// emitted.
|
|
std::vector<MachineRelocation> Relocations;
|
|
|
|
/// ConstantPool - The constant pool for the current function.
|
|
///
|
|
MachineConstantPool *ConstantPool;
|
|
|
|
/// ConstantPoolBase - A pointer to the first entry in the constant pool.
|
|
///
|
|
void *ConstantPoolBase;
|
|
|
|
/// ConstantPool - The constant pool for the current function.
|
|
///
|
|
MachineJumpTableInfo *JumpTable;
|
|
|
|
/// JumpTableBase - A pointer to the first entry in the jump table.
|
|
///
|
|
void *JumpTableBase;
|
|
public:
|
|
JITEmitter(JIT &jit) : MemMgr(jit.getJITInfo().needsGOT()) {
|
|
TheJIT = &jit;
|
|
DEBUG(std::cerr <<
|
|
(MemMgr.isManagingGOT() ? "JIT is managing GOT\n"
|
|
: "JIT is not managing GOT\n"));
|
|
}
|
|
|
|
virtual void startFunction(MachineFunction &F);
|
|
virtual void finishFunction(MachineFunction &F);
|
|
virtual void emitConstantPool(MachineConstantPool *MCP);
|
|
virtual void initJumpTableInfo(MachineJumpTableInfo *MJTI);
|
|
virtual void emitJumpTableInfo(MachineJumpTableInfo *MJTI,
|
|
std::map<MachineBasicBlock*,uint64_t> &MBBM);
|
|
virtual void startFunctionStub(unsigned StubSize);
|
|
virtual void* finishFunctionStub(const Function *F);
|
|
virtual void emitByte(unsigned char B);
|
|
virtual void emitWord(unsigned W);
|
|
virtual void emitWordAt(unsigned W, unsigned *Ptr);
|
|
|
|
virtual void addRelocation(const MachineRelocation &MR) {
|
|
Relocations.push_back(MR);
|
|
}
|
|
|
|
virtual uint64_t getCurrentPCValue();
|
|
virtual uint64_t getCurrentPCOffset();
|
|
virtual uint64_t getConstantPoolEntryAddress(unsigned Entry);
|
|
virtual uint64_t getJumpTableEntryAddress(unsigned Entry);
|
|
virtual unsigned char* allocateGlobal(unsigned size, unsigned alignment);
|
|
|
|
private:
|
|
void *getPointerToGlobal(GlobalValue *GV, void *Reference, bool NoNeedStub);
|
|
};
|
|
}
|
|
|
|
MachineCodeEmitter *JIT::createEmitter(JIT &jit) {
|
|
return new JITEmitter(jit);
|
|
}
|
|
|
|
void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
|
|
bool DoesntNeedStub) {
|
|
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
|
|
/// FIXME: If we straightened things out, this could actually emit the
|
|
/// global immediately instead of queuing it for codegen later!
|
|
return TheJIT->getOrEmitGlobalVariable(GV);
|
|
}
|
|
|
|
// If we have already compiled the function, return a pointer to its body.
|
|
Function *F = cast<Function>(V);
|
|
void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
|
|
if (ResultPtr) return ResultPtr;
|
|
|
|
if (F->hasExternalLinkage() && F->isExternal()) {
|
|
// If this is an external function pointer, we can force the JIT to
|
|
// 'compile' it, which really just adds it to the map.
|
|
if (DoesntNeedStub)
|
|
return TheJIT->getPointerToFunction(F);
|
|
|
|
return getJITResolver(this).getFunctionStub(F);
|
|
}
|
|
|
|
// Okay, the function has not been compiled yet, if the target callback
|
|
// mechanism is capable of rewriting the instruction directly, prefer to do
|
|
// that instead of emitting a stub.
|
|
if (DoesntNeedStub)
|
|
return getJITResolver(this).AddCallbackAtLocation(F, Reference);
|
|
|
|
// Otherwise, we have to emit a lazy resolving stub.
|
|
return getJITResolver(this).getFunctionStub(F);
|
|
}
|
|
|
|
void JITEmitter::startFunction(MachineFunction &F) {
|
|
CurByte = CurBlock = MemMgr.startFunctionBody();
|
|
TheJIT->addGlobalMapping(F.getFunction(), CurBlock);
|
|
}
|
|
|
|
void JITEmitter::finishFunction(MachineFunction &F) {
|
|
MemMgr.endFunctionBody(CurByte);
|
|
NumBytes += CurByte-CurBlock;
|
|
|
|
if (!Relocations.empty()) {
|
|
NumRelos += Relocations.size();
|
|
|
|
// Resolve the relocations to concrete pointers.
|
|
for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
|
|
MachineRelocation &MR = Relocations[i];
|
|
void *ResultPtr;
|
|
if (MR.isString()) {
|
|
ResultPtr = TheJIT->getPointerToNamedFunction(MR.getString());
|
|
|
|
// If the target REALLY wants a stub for this function, emit it now.
|
|
if (!MR.doesntNeedFunctionStub())
|
|
ResultPtr = getJITResolver(this).getExternalFunctionStub(ResultPtr);
|
|
} else if (MR.isGlobalValue())
|
|
ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
|
|
CurBlock+MR.getMachineCodeOffset(),
|
|
MR.doesntNeedFunctionStub());
|
|
else //ConstantPoolIndex
|
|
ResultPtr =
|
|
(void*)(intptr_t)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
|
|
|
|
MR.setResultPointer(ResultPtr);
|
|
|
|
// if we are managing the GOT and the relocation wants an index,
|
|
// give it one
|
|
if (MemMgr.isManagingGOT() && !MR.isConstantPoolIndex() &&
|
|
MR.isGOTRelative()) {
|
|
unsigned idx = getJITResolver(this).getGOTIndexForAddr(ResultPtr);
|
|
MR.setGOTIndex(idx);
|
|
if (((void**)MemMgr.getGOTBase())[idx] != ResultPtr) {
|
|
DEBUG(std::cerr << "GOT was out of date for " << ResultPtr
|
|
<< " pointing at " << ((void**)MemMgr.getGOTBase())[idx]
|
|
<< "\n");
|
|
((void**)MemMgr.getGOTBase())[idx] = ResultPtr;
|
|
}
|
|
}
|
|
}
|
|
|
|
TheJIT->getJITInfo().relocate(CurBlock, &Relocations[0],
|
|
Relocations.size(), MemMgr.getGOTBase());
|
|
}
|
|
|
|
//Update the GOT entry for F to point to the new code.
|
|
if(MemMgr.isManagingGOT()) {
|
|
unsigned idx = getJITResolver(this).getGOTIndexForAddr((void*)CurBlock);
|
|
if (((void**)MemMgr.getGOTBase())[idx] != (void*)CurBlock) {
|
|
DEBUG(std::cerr << "GOT was out of date for " << (void*)CurBlock
|
|
<< " pointing at " << ((void**)MemMgr.getGOTBase())[idx] << "\n");
|
|
((void**)MemMgr.getGOTBase())[idx] = (void*)CurBlock;
|
|
}
|
|
}
|
|
|
|
DEBUG(std::cerr << "JIT: Finished CodeGen of [" << (void*)CurBlock
|
|
<< "] Function: " << F.getFunction()->getName()
|
|
<< ": " << CurByte-CurBlock << " bytes of text, "
|
|
<< Relocations.size() << " relocations\n");
|
|
Relocations.clear();
|
|
}
|
|
|
|
void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
|
|
const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
|
|
if (Constants.empty()) return;
|
|
|
|
unsigned Size = Constants.back().Offset;
|
|
Size += TheJIT->getTargetData().getTypeSize(Constants.back().Val->getType());
|
|
|
|
ConstantPoolBase = MemMgr.allocateConstant(Size,
|
|
1 << MCP->getConstantPoolAlignment());
|
|
ConstantPool = MCP;
|
|
|
|
// Initialize the memory for all of the constant pool entries.
|
|
for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
|
|
void *CAddr = (char*)ConstantPoolBase+Constants[i].Offset;
|
|
TheJIT->InitializeMemory(Constants[i].Val, CAddr);
|
|
}
|
|
}
|
|
|
|
void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
|
|
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
|
|
if (JT.empty()) return;
|
|
|
|
unsigned Size = 0;
|
|
unsigned EntrySize = MJTI->getEntrySize();
|
|
for (unsigned i = 0, e = JT.size(); i != e; ++i)
|
|
Size += JT[i].MBBs.size() * EntrySize;
|
|
|
|
// Just allocate space for all the jump tables now. We will fix up the actual
|
|
// MBB entries in the tables after we emit the code for each block, since then
|
|
// we will know the final locations of the MBBs in memory.
|
|
JumpTable = MJTI;
|
|
JumpTableBase = MemMgr.allocateConstant(Size, MJTI->getAlignment());
|
|
}
|
|
|
|
void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI,
|
|
std::map<MachineBasicBlock*,uint64_t> &MBBM){
|
|
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
|
|
if (JT.empty()) return;
|
|
|
|
unsigned Offset = 0;
|
|
unsigned EntrySize = MJTI->getEntrySize();
|
|
|
|
// For each jump table, map each target in the jump table to the address of
|
|
// an emitted MachineBasicBlock.
|
|
for (unsigned i = 0, e = JT.size(); i != e; ++i) {
|
|
const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
|
|
for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
|
|
uint64_t addr = MBBM[MBBs[mi]];
|
|
GenericValue addrgv;
|
|
const Type *Ty;
|
|
if (EntrySize == 4) {
|
|
addrgv.UIntVal = addr;
|
|
Ty = Type::UIntTy;
|
|
} else if (EntrySize == 8) {
|
|
addrgv.ULongVal = addr;
|
|
Ty = Type::ULongTy;
|
|
} else {
|
|
assert(0 && "Unhandled jump table entry size!");
|
|
abort();
|
|
}
|
|
// Store the address of the basic block for this jump table slot in the
|
|
// memory we allocated for the jump table in 'initJumpTableInfo'
|
|
void *ptr = (void *)((char *)JumpTableBase + Offset);
|
|
TheJIT->StoreValueToMemory(addrgv, (GenericValue *)ptr, Ty);
|
|
Offset += EntrySize;
|
|
}
|
|
}
|
|
}
|
|
|
|
void JITEmitter::startFunctionStub(unsigned StubSize) {
|
|
SavedCurBlock = CurBlock; SavedCurByte = CurByte;
|
|
CurByte = CurBlock = MemMgr.allocateStub(StubSize);
|
|
}
|
|
|
|
void *JITEmitter::finishFunctionStub(const Function *F) {
|
|
NumBytes += CurByte-CurBlock;
|
|
std::swap(CurBlock, SavedCurBlock);
|
|
CurByte = SavedCurByte;
|
|
return SavedCurBlock;
|
|
}
|
|
|
|
void JITEmitter::emitByte(unsigned char B) {
|
|
*CurByte++ = B; // Write the byte to memory
|
|
}
|
|
|
|
void JITEmitter::emitWord(unsigned W) {
|
|
// This won't work if the endianness of the host and target don't agree! (For
|
|
// a JIT this can't happen though. :)
|
|
*(unsigned*)CurByte = W;
|
|
CurByte += sizeof(unsigned);
|
|
}
|
|
|
|
void JITEmitter::emitWordAt(unsigned W, unsigned *Ptr) {
|
|
*Ptr = W;
|
|
}
|
|
|
|
// getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
|
|
// in the constant pool that was last emitted with the 'emitConstantPool'
|
|
// method.
|
|
//
|
|
uint64_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) {
|
|
assert(ConstantNum < ConstantPool->getConstants().size() &&
|
|
"Invalid ConstantPoolIndex!");
|
|
return (intptr_t)ConstantPoolBase +
|
|
ConstantPool->getConstants()[ConstantNum].Offset;
|
|
}
|
|
|
|
// getJumpTableEntryAddress - Return the address of the JumpTable with index
|
|
// 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
|
|
//
|
|
uint64_t JITEmitter::getJumpTableEntryAddress(unsigned Index) {
|
|
const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
|
|
assert(Index < JT.size() && "Invalid jump table index!");
|
|
|
|
unsigned Offset = 0;
|
|
unsigned EntrySize = JumpTable->getEntrySize();
|
|
|
|
for (unsigned i = 0; i < Index; ++i)
|
|
Offset += JT[i].MBBs.size() * EntrySize;
|
|
|
|
return (uint64_t)((char *)JumpTableBase + Offset);
|
|
}
|
|
|
|
unsigned char* JITEmitter::allocateGlobal(unsigned size, unsigned alignment)
|
|
{
|
|
return MemMgr.allocateGlobal(size, alignment);
|
|
}
|
|
|
|
// getCurrentPCValue - This returns the address that the next emitted byte
|
|
// will be output to.
|
|
//
|
|
uint64_t JITEmitter::getCurrentPCValue() {
|
|
return (intptr_t)CurByte;
|
|
}
|
|
|
|
uint64_t JITEmitter::getCurrentPCOffset() {
|
|
return (intptr_t)CurByte-(intptr_t)CurBlock;
|
|
}
|
|
|
|
// getPointerToNamedFunction - This function is used as a global wrapper to
|
|
// JIT::getPointerToNamedFunction for the purpose of resolving symbols when
|
|
// bugpoint is debugging the JIT. In that scenario, we are loading an .so and
|
|
// need to resolve function(s) that are being mis-codegenerated, so we need to
|
|
// resolve their addresses at runtime, and this is the way to do it.
|
|
extern "C" {
|
|
void *getPointerToNamedFunction(const char *Name) {
|
|
Module &M = TheJIT->getModule();
|
|
if (Function *F = M.getNamedFunction(Name))
|
|
return TheJIT->getPointerToFunction(F);
|
|
return TheJIT->getPointerToNamedFunction(Name);
|
|
}
|
|
}
|