mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-04 21:30:49 +00:00
385f7547b9
2. Change 0 initialization of union to larger component so all is zeroed. 3. Fix the borrow logic in subtraction so it works for > 128 bits. 4. Rewrite fromString to use a simpler but correct algorithm and also to not set the bit width contrary to the user's request. 5. Optimize toString a bit by making it only do one Knuth divide per iteration instead of two. With these changes, all arithmetic passes (verified by pari/GP) up to 1024 bits except for certain division cases. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@34463 91177308-0d34-0410-b5e6-96231b3b80d8
1533 lines
49 KiB
C++
1533 lines
49 KiB
C++
//===-- APInt.cpp - Implement APInt class ---------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by Sheng Zhou and is distributed under the
|
|
// University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a class to represent arbitrary precision integral
|
|
// constant values.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include <cstring>
|
|
#include <cstdlib>
|
|
#ifndef NDEBUG
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
#endif
|
|
|
|
using namespace llvm;
|
|
|
|
// A utility function for allocating memory, checking for allocation failures,
|
|
// and ensuring the contents is zeroed.
|
|
inline static uint64_t* getClearedMemory(uint32_t numWords) {
|
|
uint64_t * result = new uint64_t[numWords];
|
|
assert(result && "APInt memory allocation fails!");
|
|
memset(result, 0, numWords * sizeof(uint64_t));
|
|
return result;
|
|
}
|
|
|
|
// A utility function for allocating memory and checking for allocation failure.
|
|
inline static uint64_t* getMemory(uint32_t numWords) {
|
|
uint64_t * result = new uint64_t[numWords];
|
|
assert(result && "APInt memory allocation fails!");
|
|
return result;
|
|
}
|
|
|
|
APInt::APInt(uint32_t numBits, uint64_t val)
|
|
: BitWidth(numBits), VAL(0) {
|
|
assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
|
|
assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
|
|
if (isSingleWord())
|
|
VAL = val & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - BitWidth));
|
|
else {
|
|
pVal = getClearedMemory(getNumWords());
|
|
pVal[0] = val;
|
|
}
|
|
}
|
|
|
|
APInt::APInt(uint32_t numBits, uint32_t numWords, uint64_t bigVal[])
|
|
: BitWidth(numBits), VAL(0) {
|
|
assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
|
|
assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
|
|
assert(bigVal && "Null pointer detected!");
|
|
if (isSingleWord())
|
|
VAL = bigVal[0] & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - BitWidth));
|
|
else {
|
|
pVal = getMemory(getNumWords());
|
|
// Calculate the actual length of bigVal[].
|
|
uint32_t maxN = std::max<uint32_t>(numWords, getNumWords());
|
|
uint32_t minN = std::min<uint32_t>(numWords, getNumWords());
|
|
memcpy(pVal, bigVal, (minN - 1) * APINT_WORD_SIZE);
|
|
pVal[minN-1] = bigVal[minN-1] &
|
|
(~uint64_t(0ULL) >>
|
|
(APINT_BITS_PER_WORD - BitWidth % APINT_BITS_PER_WORD));
|
|
if (maxN == getNumWords())
|
|
memset(pVal+numWords, 0, (getNumWords() - numWords) * APINT_WORD_SIZE);
|
|
}
|
|
}
|
|
|
|
/// @brief Create a new APInt by translating the char array represented
|
|
/// integer value.
|
|
APInt::APInt(uint32_t numbits, const char StrStart[], uint32_t slen,
|
|
uint8_t radix)
|
|
: BitWidth(numbits), VAL(0) {
|
|
fromString(numbits, StrStart, slen, radix);
|
|
}
|
|
|
|
/// @brief Create a new APInt by translating the string represented
|
|
/// integer value.
|
|
APInt::APInt(uint32_t numbits, const std::string& Val, uint8_t radix)
|
|
: BitWidth(numbits), VAL(0) {
|
|
assert(!Val.empty() && "String empty?");
|
|
fromString(numbits, Val.c_str(), Val.size(), radix);
|
|
}
|
|
|
|
/// @brief Copy constructor
|
|
APInt::APInt(const APInt& that)
|
|
: BitWidth(that.BitWidth), VAL(0) {
|
|
if (isSingleWord())
|
|
VAL = that.VAL;
|
|
else {
|
|
pVal = getMemory(getNumWords());
|
|
memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
|
|
}
|
|
}
|
|
|
|
APInt::~APInt() {
|
|
if (!isSingleWord() && pVal)
|
|
delete[] pVal;
|
|
}
|
|
|
|
/// @brief Copy assignment operator. Create a new object from the given
|
|
/// APInt one by initialization.
|
|
APInt& APInt::operator=(const APInt& RHS) {
|
|
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
|
|
if (isSingleWord())
|
|
VAL = RHS.VAL;
|
|
else
|
|
memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
|
|
return *this;
|
|
}
|
|
|
|
/// @brief Assignment operator. Assigns a common case integer value to
|
|
/// the APInt.
|
|
APInt& APInt::operator=(uint64_t RHS) {
|
|
if (isSingleWord())
|
|
VAL = RHS;
|
|
else {
|
|
pVal[0] = RHS;
|
|
memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
/// add_1 - This function adds a single "digit" integer, y, to the multiple
|
|
/// "digit" integer array, x[]. x[] is modified to reflect the addition and
|
|
/// 1 is returned if there is a carry out, otherwise 0 is returned.
|
|
/// @returns the carry of the addition.
|
|
static uint64_t add_1(uint64_t dest[],
|
|
uint64_t x[], uint32_t len,
|
|
uint64_t y) {
|
|
for (uint32_t i = 0; i < len; ++i) {
|
|
dest[i] = y + x[i];
|
|
if (dest[i] < y)
|
|
y = 1;
|
|
else {
|
|
y = 0;
|
|
break;
|
|
}
|
|
}
|
|
return y;
|
|
}
|
|
|
|
/// @brief Prefix increment operator. Increments the APInt by one.
|
|
APInt& APInt::operator++() {
|
|
if (isSingleWord())
|
|
++VAL;
|
|
else
|
|
add_1(pVal, pVal, getNumWords(), 1);
|
|
clearUnusedBits();
|
|
return *this;
|
|
}
|
|
|
|
/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
|
|
/// the multi-digit integer array, x[], propagating the borrowed 1 value until
|
|
/// no further borrowing is neeeded or it runs out of "digits" in x. The result
|
|
/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
|
|
/// In other words, if y > x then this function returns 1, otherwise 0.
|
|
static uint64_t sub_1(uint64_t x[], uint32_t len,
|
|
uint64_t y) {
|
|
for (uint32_t i = 0; i < len; ++i) {
|
|
uint64_t X = x[i];
|
|
x[i] -= y;
|
|
if (y > X)
|
|
y = 1; // We have to "borrow 1" from next "digit"
|
|
else {
|
|
y = 0; // No need to borrow
|
|
break; // Remaining digits are unchanged so exit early
|
|
}
|
|
}
|
|
return y;
|
|
}
|
|
|
|
/// @brief Prefix decrement operator. Decrements the APInt by one.
|
|
APInt& APInt::operator--() {
|
|
if (isSingleWord())
|
|
--VAL;
|
|
else
|
|
sub_1(pVal, getNumWords(), 1);
|
|
clearUnusedBits();
|
|
return *this;
|
|
}
|
|
|
|
/// add - This function adds the integer array x[] by integer array
|
|
/// y[] and returns the carry.
|
|
static uint64_t add(uint64_t dest[], uint64_t x[], uint64_t y[], uint32_t len) {
|
|
uint64_t carry = 0;
|
|
for (uint32_t i = 0; i< len; ++i) {
|
|
uint64_t save = std::max(x[i],y[i]);
|
|
dest[i] = x[i] + y[i] + carry;
|
|
carry = dest[i] < save ? 1 : 0;
|
|
}
|
|
return carry;
|
|
}
|
|
|
|
/// @brief Addition assignment operator. Adds this APInt by the given APInt&
|
|
/// RHS and assigns the result to this APInt.
|
|
APInt& APInt::operator+=(const APInt& RHS) {
|
|
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
|
|
if (isSingleWord())
|
|
VAL += RHS.VAL;
|
|
else {
|
|
add(pVal, pVal, RHS.pVal, getNumWords());
|
|
}
|
|
clearUnusedBits();
|
|
return *this;
|
|
}
|
|
|
|
/// sub - This function subtracts the integer array x[] by
|
|
/// integer array y[], and returns the borrow-out carry.
|
|
static uint64_t sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
|
|
uint32_t len) {
|
|
bool borrow = false;
|
|
for (uint32_t i = 0; i < len; ++i) {
|
|
uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
|
|
borrow = y[i] > x_tmp || (borrow && x[i] == 0);
|
|
dest[i] = x_tmp - y[i];
|
|
}
|
|
return borrow;
|
|
}
|
|
|
|
/// @brief Subtraction assignment operator. Subtracts this APInt by the given
|
|
/// APInt &RHS and assigns the result to this APInt.
|
|
APInt& APInt::operator-=(const APInt& RHS) {
|
|
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
|
|
if (isSingleWord())
|
|
VAL -= RHS.VAL;
|
|
else
|
|
sub(pVal, pVal, RHS.pVal, getNumWords());
|
|
clearUnusedBits();
|
|
return *this;
|
|
}
|
|
|
|
/// mul_1 - This function performs the multiplication operation on a
|
|
/// large integer (represented as an integer array) and a uint64_t integer.
|
|
/// @returns the carry of the multiplication.
|
|
static uint64_t mul_1(uint64_t dest[],
|
|
uint64_t x[], uint32_t len,
|
|
uint64_t y) {
|
|
// Split y into high 32-bit part and low 32-bit part.
|
|
uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
|
|
uint64_t carry = 0, lx, hx;
|
|
for (uint32_t i = 0; i < len; ++i) {
|
|
lx = x[i] & 0xffffffffULL;
|
|
hx = x[i] >> 32;
|
|
// hasCarry - A flag to indicate if has carry.
|
|
// hasCarry == 0, no carry
|
|
// hasCarry == 1, has carry
|
|
// hasCarry == 2, no carry and the calculation result == 0.
|
|
uint8_t hasCarry = 0;
|
|
dest[i] = carry + lx * ly;
|
|
// Determine if the add above introduces carry.
|
|
hasCarry = (dest[i] < carry) ? 1 : 0;
|
|
carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
|
|
// The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
|
|
// (2^32 - 1) + 2^32 = 2^64.
|
|
hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
|
|
|
|
carry += (lx * hy) & 0xffffffffULL;
|
|
dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
|
|
carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
|
|
(carry >> 32) + ((lx * hy) >> 32) + hx * hy;
|
|
}
|
|
|
|
return carry;
|
|
}
|
|
|
|
/// mul - This function multiplies integer array x[] by integer array y[] and
|
|
/// stores the result into integer array dest[].
|
|
/// Note the array dest[]'s size should no less than xlen + ylen.
|
|
static void mul(uint64_t dest[], uint64_t x[], uint32_t xlen,
|
|
uint64_t y[], uint32_t ylen) {
|
|
dest[xlen] = mul_1(dest, x, xlen, y[0]);
|
|
|
|
for (uint32_t i = 1; i < ylen; ++i) {
|
|
uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
|
|
uint64_t carry = 0, lx, hx;
|
|
for (uint32_t j = 0; j < xlen; ++j) {
|
|
lx = x[j] & 0xffffffffULL;
|
|
hx = x[j] >> 32;
|
|
// hasCarry - A flag to indicate if has carry.
|
|
// hasCarry == 0, no carry
|
|
// hasCarry == 1, has carry
|
|
// hasCarry == 2, no carry and the calculation result == 0.
|
|
uint8_t hasCarry = 0;
|
|
uint64_t resul = carry + lx * ly;
|
|
hasCarry = (resul < carry) ? 1 : 0;
|
|
carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
|
|
hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
|
|
|
|
carry += (lx * hy) & 0xffffffffULL;
|
|
resul = (carry << 32) | (resul & 0xffffffffULL);
|
|
dest[i+j] += resul;
|
|
carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
|
|
(carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
|
|
((lx * hy) >> 32) + hx * hy;
|
|
}
|
|
dest[i+xlen] = carry;
|
|
}
|
|
}
|
|
|
|
/// @brief Multiplication assignment operator. Multiplies this APInt by the
|
|
/// given APInt& RHS and assigns the result to this APInt.
|
|
APInt& APInt::operator*=(const APInt& RHS) {
|
|
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
|
|
if (isSingleWord())
|
|
VAL *= RHS.VAL;
|
|
else {
|
|
// one-based first non-zero bit position.
|
|
uint32_t first = getActiveBits();
|
|
uint32_t xlen = !first ? 0 : whichWord(first - 1) + 1;
|
|
if (!xlen)
|
|
return *this;
|
|
else {
|
|
first = RHS.getActiveBits();
|
|
uint32_t ylen = !first ? 0 : whichWord(first - 1) + 1;
|
|
if (!ylen) {
|
|
memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
|
|
return *this;
|
|
}
|
|
uint64_t *dest = getMemory(xlen+ylen);
|
|
mul(dest, pVal, xlen, RHS.pVal, ylen);
|
|
memcpy(pVal, dest, ((xlen + ylen >= getNumWords()) ?
|
|
getNumWords() : xlen + ylen) * APINT_WORD_SIZE);
|
|
delete[] dest;
|
|
}
|
|
}
|
|
clearUnusedBits();
|
|
return *this;
|
|
}
|
|
|
|
/// @brief Bitwise AND assignment operator. Performs bitwise AND operation on
|
|
/// this APInt and the given APInt& RHS, assigns the result to this APInt.
|
|
APInt& APInt::operator&=(const APInt& RHS) {
|
|
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
|
|
if (isSingleWord()) {
|
|
VAL &= RHS.VAL;
|
|
return *this;
|
|
}
|
|
uint32_t numWords = getNumWords();
|
|
for (uint32_t i = 0; i < numWords; ++i)
|
|
pVal[i] &= RHS.pVal[i];
|
|
return *this;
|
|
}
|
|
|
|
/// @brief Bitwise OR assignment operator. Performs bitwise OR operation on
|
|
/// this APInt and the given APInt& RHS, assigns the result to this APInt.
|
|
APInt& APInt::operator|=(const APInt& RHS) {
|
|
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
|
|
if (isSingleWord()) {
|
|
VAL |= RHS.VAL;
|
|
return *this;
|
|
}
|
|
uint32_t numWords = getNumWords();
|
|
for (uint32_t i = 0; i < numWords; ++i)
|
|
pVal[i] |= RHS.pVal[i];
|
|
return *this;
|
|
}
|
|
|
|
/// @brief Bitwise XOR assignment operator. Performs bitwise XOR operation on
|
|
/// this APInt and the given APInt& RHS, assigns the result to this APInt.
|
|
APInt& APInt::operator^=(const APInt& RHS) {
|
|
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
|
|
if (isSingleWord()) {
|
|
VAL ^= RHS.VAL;
|
|
this->clearUnusedBits();
|
|
return *this;
|
|
}
|
|
uint32_t numWords = getNumWords();
|
|
for (uint32_t i = 0; i < numWords; ++i)
|
|
pVal[i] ^= RHS.pVal[i];
|
|
this->clearUnusedBits();
|
|
return *this;
|
|
}
|
|
|
|
/// @brief Bitwise AND operator. Performs bitwise AND operation on this APInt
|
|
/// and the given APInt& RHS.
|
|
APInt APInt::operator&(const APInt& RHS) const {
|
|
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
|
|
if (isSingleWord())
|
|
return APInt(getBitWidth(), VAL & RHS.VAL);
|
|
|
|
APInt Result(*this);
|
|
uint32_t numWords = getNumWords();
|
|
for (uint32_t i = 0; i < numWords; ++i)
|
|
Result.pVal[i] &= RHS.pVal[i];
|
|
return Result;
|
|
}
|
|
|
|
/// @brief Bitwise OR operator. Performs bitwise OR operation on this APInt
|
|
/// and the given APInt& RHS.
|
|
APInt APInt::operator|(const APInt& RHS) const {
|
|
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
|
|
if (isSingleWord())
|
|
return APInt(getBitWidth(), VAL | RHS.VAL);
|
|
|
|
APInt Result(*this);
|
|
uint32_t numWords = getNumWords();
|
|
for (uint32_t i = 0; i < numWords; ++i)
|
|
Result.pVal[i] |= RHS.pVal[i];
|
|
return Result;
|
|
}
|
|
|
|
/// @brief Bitwise XOR operator. Performs bitwise XOR operation on this APInt
|
|
/// and the given APInt& RHS.
|
|
APInt APInt::operator^(const APInt& RHS) const {
|
|
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
|
|
if (isSingleWord()) {
|
|
APInt Result(BitWidth, VAL ^ RHS.VAL);
|
|
Result.clearUnusedBits();
|
|
return Result;
|
|
}
|
|
APInt Result(*this);
|
|
uint32_t numWords = getNumWords();
|
|
for (uint32_t i = 0; i < numWords; ++i)
|
|
Result.pVal[i] ^= RHS.pVal[i];
|
|
return Result;
|
|
}
|
|
|
|
/// @brief Logical negation operator. Performs logical negation operation on
|
|
/// this APInt.
|
|
bool APInt::operator !() const {
|
|
if (isSingleWord())
|
|
return !VAL;
|
|
|
|
for (uint32_t i = 0; i < getNumWords(); ++i)
|
|
if (pVal[i])
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// @brief Multiplication operator. Multiplies this APInt by the given APInt&
|
|
/// RHS.
|
|
APInt APInt::operator*(const APInt& RHS) const {
|
|
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
|
|
if (isSingleWord()) {
|
|
APInt Result(BitWidth, VAL * RHS.VAL);
|
|
Result.clearUnusedBits();
|
|
return Result;
|
|
}
|
|
APInt Result(*this);
|
|
Result *= RHS;
|
|
Result.clearUnusedBits();
|
|
return Result;
|
|
}
|
|
|
|
/// @brief Addition operator. Adds this APInt by the given APInt& RHS.
|
|
APInt APInt::operator+(const APInt& RHS) const {
|
|
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
|
|
if (isSingleWord()) {
|
|
APInt Result(BitWidth, VAL + RHS.VAL);
|
|
Result.clearUnusedBits();
|
|
return Result;
|
|
}
|
|
APInt Result(BitWidth, 0);
|
|
add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
|
|
Result.clearUnusedBits();
|
|
return Result;
|
|
}
|
|
|
|
/// @brief Subtraction operator. Subtracts this APInt by the given APInt& RHS
|
|
APInt APInt::operator-(const APInt& RHS) const {
|
|
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
|
|
if (isSingleWord()) {
|
|
APInt Result(BitWidth, VAL - RHS.VAL);
|
|
Result.clearUnusedBits();
|
|
return Result;
|
|
}
|
|
APInt Result(BitWidth, 0);
|
|
sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
|
|
Result.clearUnusedBits();
|
|
return Result;
|
|
}
|
|
|
|
/// @brief Array-indexing support.
|
|
bool APInt::operator[](uint32_t bitPosition) const {
|
|
return (maskBit(bitPosition) & (isSingleWord() ?
|
|
VAL : pVal[whichWord(bitPosition)])) != 0;
|
|
}
|
|
|
|
/// @brief Equality operator. Compare this APInt with the given APInt& RHS
|
|
/// for the validity of the equality relationship.
|
|
bool APInt::operator==(const APInt& RHS) const {
|
|
if (isSingleWord())
|
|
return VAL == RHS.VAL;
|
|
|
|
uint32_t n1 = getActiveBits();
|
|
uint32_t n2 = RHS.getActiveBits();
|
|
if (n1 != n2)
|
|
return false;
|
|
|
|
if (n1 <= APINT_BITS_PER_WORD)
|
|
return pVal[0] == RHS.pVal[0];
|
|
|
|
for (int i = whichWord(n1 - 1); i >= 0; --i)
|
|
if (pVal[i] != RHS.pVal[i])
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// @brief Equality operator. Compare this APInt with the given uint64_t value
|
|
/// for the validity of the equality relationship.
|
|
bool APInt::operator==(uint64_t Val) const {
|
|
if (isSingleWord())
|
|
return VAL == Val;
|
|
|
|
uint32_t n = getActiveBits();
|
|
if (n <= APINT_BITS_PER_WORD)
|
|
return pVal[0] == Val;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
/// @brief Unsigned less than comparison
|
|
bool APInt::ult(const APInt& RHS) const {
|
|
assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
|
|
if (isSingleWord())
|
|
return VAL < RHS.VAL;
|
|
else {
|
|
uint32_t n1 = getActiveBits();
|
|
uint32_t n2 = RHS.getActiveBits();
|
|
if (n1 < n2)
|
|
return true;
|
|
else if (n2 < n1)
|
|
return false;
|
|
else if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
|
|
return pVal[0] < RHS.pVal[0];
|
|
for (int i = whichWord(n1 - 1); i >= 0; --i) {
|
|
if (pVal[i] > RHS.pVal[i]) return false;
|
|
else if (pVal[i] < RHS.pVal[i]) return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// @brief Signed less than comparison
|
|
bool APInt::slt(const APInt& RHS) const {
|
|
assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
|
|
if (isSingleWord()) {
|
|
int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
|
|
int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
|
|
return lhsSext < rhsSext;
|
|
}
|
|
|
|
APInt lhs(*this);
|
|
APInt rhs(*this);
|
|
bool lhsNegative = false;
|
|
bool rhsNegative = false;
|
|
if (lhs[BitWidth-1]) {
|
|
lhsNegative = true;
|
|
lhs.flip();
|
|
lhs++;
|
|
}
|
|
if (rhs[BitWidth-1]) {
|
|
rhsNegative = true;
|
|
rhs.flip();
|
|
rhs++;
|
|
}
|
|
if (lhsNegative)
|
|
if (rhsNegative)
|
|
return !lhs.ult(rhs);
|
|
else
|
|
return true;
|
|
else if (rhsNegative)
|
|
return false;
|
|
else
|
|
return lhs.ult(rhs);
|
|
}
|
|
|
|
/// Set the given bit to 1 whose poition is given as "bitPosition".
|
|
/// @brief Set a given bit to 1.
|
|
APInt& APInt::set(uint32_t bitPosition) {
|
|
if (isSingleWord()) VAL |= maskBit(bitPosition);
|
|
else pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
|
|
return *this;
|
|
}
|
|
|
|
/// @brief Set every bit to 1.
|
|
APInt& APInt::set() {
|
|
if (isSingleWord())
|
|
VAL = ~0ULL >> (APINT_BITS_PER_WORD - BitWidth);
|
|
else {
|
|
for (uint32_t i = 0; i < getNumWords() - 1; ++i)
|
|
pVal[i] = -1ULL;
|
|
pVal[getNumWords() - 1] = ~0ULL >>
|
|
(APINT_BITS_PER_WORD - BitWidth % APINT_BITS_PER_WORD);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
/// Set the given bit to 0 whose position is given as "bitPosition".
|
|
/// @brief Set a given bit to 0.
|
|
APInt& APInt::clear(uint32_t bitPosition) {
|
|
if (isSingleWord())
|
|
VAL &= ~maskBit(bitPosition);
|
|
else
|
|
pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
|
|
return *this;
|
|
}
|
|
|
|
/// @brief Set every bit to 0.
|
|
APInt& APInt::clear() {
|
|
if (isSingleWord())
|
|
VAL = 0;
|
|
else
|
|
memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
|
|
return *this;
|
|
}
|
|
|
|
/// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on
|
|
/// this APInt.
|
|
APInt APInt::operator~() const {
|
|
APInt API(*this);
|
|
API.flip();
|
|
return API;
|
|
}
|
|
|
|
/// @brief Toggle every bit to its opposite value.
|
|
APInt& APInt::flip() {
|
|
if (isSingleWord()) VAL = (~(VAL <<
|
|
(APINT_BITS_PER_WORD - BitWidth))) >> (APINT_BITS_PER_WORD - BitWidth);
|
|
else {
|
|
uint32_t i = 0;
|
|
for (; i < getNumWords() - 1; ++i)
|
|
pVal[i] = ~pVal[i];
|
|
uint32_t offset =
|
|
APINT_BITS_PER_WORD - (BitWidth - APINT_BITS_PER_WORD * (i - 1));
|
|
pVal[i] = (~(pVal[i] << offset)) >> offset;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
/// Toggle a given bit to its opposite value whose position is given
|
|
/// as "bitPosition".
|
|
/// @brief Toggles a given bit to its opposite value.
|
|
APInt& APInt::flip(uint32_t bitPosition) {
|
|
assert(bitPosition < BitWidth && "Out of the bit-width range!");
|
|
if ((*this)[bitPosition]) clear(bitPosition);
|
|
else set(bitPosition);
|
|
return *this;
|
|
}
|
|
|
|
/// getMaxValue - This function returns the largest value
|
|
/// for an APInt of the specified bit-width and if isSign == true,
|
|
/// it should be largest signed value, otherwise unsigned value.
|
|
APInt APInt::getMaxValue(uint32_t numBits, bool isSign) {
|
|
APInt Result(numBits, 0);
|
|
Result.set();
|
|
if (isSign)
|
|
Result.clear(numBits - 1);
|
|
return Result;
|
|
}
|
|
|
|
/// getMinValue - This function returns the smallest value for
|
|
/// an APInt of the given bit-width and if isSign == true,
|
|
/// it should be smallest signed value, otherwise zero.
|
|
APInt APInt::getMinValue(uint32_t numBits, bool isSign) {
|
|
APInt Result(numBits, 0);
|
|
if (isSign)
|
|
Result.set(numBits - 1);
|
|
return Result;
|
|
}
|
|
|
|
/// getAllOnesValue - This function returns an all-ones value for
|
|
/// an APInt of the specified bit-width.
|
|
APInt APInt::getAllOnesValue(uint32_t numBits) {
|
|
return getMaxValue(numBits, false);
|
|
}
|
|
|
|
/// getNullValue - This function creates an '0' value for an
|
|
/// APInt of the specified bit-width.
|
|
APInt APInt::getNullValue(uint32_t numBits) {
|
|
return getMinValue(numBits, false);
|
|
}
|
|
|
|
/// HiBits - This function returns the high "numBits" bits of this APInt.
|
|
APInt APInt::getHiBits(uint32_t numBits) const {
|
|
return APIntOps::lshr(*this, BitWidth - numBits);
|
|
}
|
|
|
|
/// LoBits - This function returns the low "numBits" bits of this APInt.
|
|
APInt APInt::getLoBits(uint32_t numBits) const {
|
|
return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
|
|
BitWidth - numBits);
|
|
}
|
|
|
|
bool APInt::isPowerOf2() const {
|
|
return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
|
|
}
|
|
|
|
/// countLeadingZeros - This function is a APInt version corresponding to
|
|
/// llvm/include/llvm/Support/MathExtras.h's function
|
|
/// countLeadingZeros_{32, 64}. It performs platform optimal form of counting
|
|
/// the number of zeros from the most significant bit to the first one bit.
|
|
/// @returns numWord() * 64 if the value is zero.
|
|
uint32_t APInt::countLeadingZeros() const {
|
|
uint32_t Count = 0;
|
|
if (isSingleWord())
|
|
Count = CountLeadingZeros_64(VAL);
|
|
else {
|
|
for (uint32_t i = getNumWords(); i > 0u; --i) {
|
|
if (pVal[i-1] == 0)
|
|
Count += APINT_BITS_PER_WORD;
|
|
else {
|
|
Count += CountLeadingZeros_64(pVal[i-1]);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return Count - (APINT_BITS_PER_WORD - (BitWidth % APINT_BITS_PER_WORD));
|
|
}
|
|
|
|
/// countTrailingZeros - This function is a APInt version corresponding to
|
|
/// llvm/include/llvm/Support/MathExtras.h's function
|
|
/// countTrailingZeros_{32, 64}. It performs platform optimal form of counting
|
|
/// the number of zeros from the least significant bit to the first one bit.
|
|
/// @returns numWord() * 64 if the value is zero.
|
|
uint32_t APInt::countTrailingZeros() const {
|
|
if (isSingleWord())
|
|
return CountTrailingZeros_64(VAL);
|
|
APInt Tmp( ~(*this) & ((*this) - APInt(BitWidth,1)) );
|
|
return getNumWords() * APINT_BITS_PER_WORD - Tmp.countLeadingZeros();
|
|
}
|
|
|
|
/// countPopulation - This function is a APInt version corresponding to
|
|
/// llvm/include/llvm/Support/MathExtras.h's function
|
|
/// countPopulation_{32, 64}. It counts the number of set bits in a value.
|
|
/// @returns 0 if the value is zero.
|
|
uint32_t APInt::countPopulation() const {
|
|
if (isSingleWord())
|
|
return CountPopulation_64(VAL);
|
|
uint32_t Count = 0;
|
|
for (uint32_t i = 0; i < getNumWords(); ++i)
|
|
Count += CountPopulation_64(pVal[i]);
|
|
return Count;
|
|
}
|
|
|
|
|
|
/// byteSwap - This function returns a byte-swapped representation of the
|
|
/// this APInt.
|
|
APInt APInt::byteSwap() const {
|
|
assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
|
|
if (BitWidth == 16)
|
|
return APInt(BitWidth, ByteSwap_16(VAL));
|
|
else if (BitWidth == 32)
|
|
return APInt(BitWidth, ByteSwap_32(VAL));
|
|
else if (BitWidth == 48) {
|
|
uint64_t Tmp1 = ((VAL >> 32) << 16) | (VAL & 0xFFFF);
|
|
Tmp1 = ByteSwap_32(Tmp1);
|
|
uint64_t Tmp2 = (VAL >> 16) & 0xFFFF;
|
|
Tmp2 = ByteSwap_16(Tmp2);
|
|
return
|
|
APInt(BitWidth,
|
|
(Tmp1 & 0xff) | ((Tmp1<<16) & 0xffff00000000ULL) | (Tmp2 << 16));
|
|
} else if (BitWidth == 64)
|
|
return APInt(BitWidth, ByteSwap_64(VAL));
|
|
else {
|
|
APInt Result(BitWidth, 0);
|
|
char *pByte = (char*)Result.pVal;
|
|
for (uint32_t i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
|
|
char Tmp = pByte[i];
|
|
pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
|
|
pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
|
|
}
|
|
return Result;
|
|
}
|
|
}
|
|
|
|
/// GreatestCommonDivisor - This function returns the greatest common
|
|
/// divisor of the two APInt values using Enclid's algorithm.
|
|
APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
|
|
const APInt& API2) {
|
|
APInt A = API1, B = API2;
|
|
while (!!B) {
|
|
APInt T = B;
|
|
B = APIntOps::urem(A, B);
|
|
A = T;
|
|
}
|
|
return A;
|
|
}
|
|
|
|
/// DoubleRoundToAPInt - This function convert a double value to
|
|
/// a APInt value.
|
|
APInt llvm::APIntOps::RoundDoubleToAPInt(double Double) {
|
|
union {
|
|
double D;
|
|
uint64_t I;
|
|
} T;
|
|
T.D = Double;
|
|
bool isNeg = T.I >> 63;
|
|
int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
|
|
if (exp < 0)
|
|
return APInt(64ull, 0u);
|
|
uint64_t mantissa = ((T.I << 12) >> 12) | (1ULL << 52);
|
|
if (exp < 52)
|
|
return isNeg ? -APInt(64u, mantissa >> (52 - exp)) :
|
|
APInt(64u, mantissa >> (52 - exp));
|
|
APInt Tmp(exp + 1, mantissa);
|
|
Tmp = Tmp.shl(exp - 52);
|
|
return isNeg ? -Tmp : Tmp;
|
|
}
|
|
|
|
/// RoundToDouble - This function convert this APInt to a double.
|
|
/// The layout for double is as following (IEEE Standard 754):
|
|
/// --------------------------------------
|
|
/// | Sign Exponent Fraction Bias |
|
|
/// |-------------------------------------- |
|
|
/// | 1[63] 11[62-52] 52[51-00] 1023 |
|
|
/// --------------------------------------
|
|
double APInt::roundToDouble(bool isSigned) const {
|
|
|
|
// Handle the simple case where the value is contained in one uint64_t.
|
|
if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
|
|
if (isSigned) {
|
|
int64_t sext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
|
|
return double(sext);
|
|
} else
|
|
return double(VAL);
|
|
}
|
|
|
|
// Determine if the value is negative.
|
|
bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
|
|
|
|
// Construct the absolute value if we're negative.
|
|
APInt Tmp(isNeg ? -(*this) : (*this));
|
|
|
|
// Figure out how many bits we're using.
|
|
uint32_t n = Tmp.getActiveBits();
|
|
|
|
// The exponent (without bias normalization) is just the number of bits
|
|
// we are using. Note that the sign bit is gone since we constructed the
|
|
// absolute value.
|
|
uint64_t exp = n;
|
|
|
|
// Return infinity for exponent overflow
|
|
if (exp > 1023) {
|
|
if (!isSigned || !isNeg)
|
|
return double(1.0E300 * 1.0E300); // positive infinity
|
|
else
|
|
return double(-1.0E300 * 1.0E300); // negative infinity
|
|
}
|
|
exp += 1023; // Increment for 1023 bias
|
|
|
|
// Number of bits in mantissa is 52. To obtain the mantissa value, we must
|
|
// extract the high 52 bits from the correct words in pVal.
|
|
uint64_t mantissa;
|
|
unsigned hiWord = whichWord(n-1);
|
|
if (hiWord == 0) {
|
|
mantissa = Tmp.pVal[0];
|
|
if (n > 52)
|
|
mantissa >>= n - 52; // shift down, we want the top 52 bits.
|
|
} else {
|
|
assert(hiWord > 0 && "huh?");
|
|
uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
|
|
uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
|
|
mantissa = hibits | lobits;
|
|
}
|
|
|
|
// The leading bit of mantissa is implicit, so get rid of it.
|
|
uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
|
|
union {
|
|
double D;
|
|
uint64_t I;
|
|
} T;
|
|
T.I = sign | (exp << 52) | mantissa;
|
|
return T.D;
|
|
}
|
|
|
|
// Truncate to new width.
|
|
void APInt::trunc(uint32_t width) {
|
|
assert(width < BitWidth && "Invalid APInt Truncate request");
|
|
}
|
|
|
|
// Sign extend to a new width.
|
|
void APInt::sext(uint32_t width) {
|
|
assert(width > BitWidth && "Invalid APInt SignExtend request");
|
|
}
|
|
|
|
// Zero extend to a new width.
|
|
void APInt::zext(uint32_t width) {
|
|
assert(width > BitWidth && "Invalid APInt ZeroExtend request");
|
|
}
|
|
|
|
/// Arithmetic right-shift this APInt by shiftAmt.
|
|
/// @brief Arithmetic right-shift function.
|
|
APInt APInt::ashr(uint32_t shiftAmt) const {
|
|
APInt API(*this);
|
|
if (API.isSingleWord())
|
|
API.VAL =
|
|
(((int64_t(API.VAL) << (APINT_BITS_PER_WORD - API.BitWidth)) >>
|
|
(APINT_BITS_PER_WORD - API.BitWidth)) >> shiftAmt) &
|
|
(~uint64_t(0UL) >> (APINT_BITS_PER_WORD - API.BitWidth));
|
|
else {
|
|
if (shiftAmt >= API.BitWidth) {
|
|
memset(API.pVal, API[API.BitWidth-1] ? 1 : 0,
|
|
(API.getNumWords()-1) * APINT_WORD_SIZE);
|
|
API.pVal[API.getNumWords() - 1] =
|
|
~uint64_t(0UL) >>
|
|
(APINT_BITS_PER_WORD - API.BitWidth % APINT_BITS_PER_WORD);
|
|
} else {
|
|
uint32_t i = 0;
|
|
for (; i < API.BitWidth - shiftAmt; ++i)
|
|
if (API[i+shiftAmt])
|
|
API.set(i);
|
|
else
|
|
API.clear(i);
|
|
for (; i < API.BitWidth; ++i)
|
|
if (API[API.BitWidth-1])
|
|
API.set(i);
|
|
else API.clear(i);
|
|
}
|
|
}
|
|
return API;
|
|
}
|
|
|
|
/// Logical right-shift this APInt by shiftAmt.
|
|
/// @brief Logical right-shift function.
|
|
APInt APInt::lshr(uint32_t shiftAmt) const {
|
|
APInt API(*this);
|
|
if (API.isSingleWord())
|
|
API.VAL >>= shiftAmt;
|
|
else {
|
|
if (shiftAmt >= API.BitWidth)
|
|
memset(API.pVal, 0, API.getNumWords() * APINT_WORD_SIZE);
|
|
uint32_t i = 0;
|
|
for (i = 0; i < API.BitWidth - shiftAmt; ++i)
|
|
if (API[i+shiftAmt]) API.set(i);
|
|
else API.clear(i);
|
|
for (; i < API.BitWidth; ++i)
|
|
API.clear(i);
|
|
}
|
|
return API;
|
|
}
|
|
|
|
/// Left-shift this APInt by shiftAmt.
|
|
/// @brief Left-shift function.
|
|
APInt APInt::shl(uint32_t shiftAmt) const {
|
|
APInt API(*this);
|
|
if (API.isSingleWord())
|
|
API.VAL <<= shiftAmt;
|
|
else if (shiftAmt >= API.BitWidth)
|
|
memset(API.pVal, 0, API.getNumWords() * APINT_WORD_SIZE);
|
|
else {
|
|
if (uint32_t offset = shiftAmt / APINT_BITS_PER_WORD) {
|
|
for (uint32_t i = API.getNumWords() - 1; i > offset - 1; --i)
|
|
API.pVal[i] = API.pVal[i-offset];
|
|
memset(API.pVal, 0, offset * APINT_WORD_SIZE);
|
|
}
|
|
shiftAmt %= APINT_BITS_PER_WORD;
|
|
uint32_t i;
|
|
for (i = API.getNumWords() - 1; i > 0; --i)
|
|
API.pVal[i] = (API.pVal[i] << shiftAmt) |
|
|
(API.pVal[i-1] >> (APINT_BITS_PER_WORD - shiftAmt));
|
|
API.pVal[i] <<= shiftAmt;
|
|
}
|
|
API.clearUnusedBits();
|
|
return API;
|
|
}
|
|
|
|
#if 0
|
|
/// subMul - This function substracts x[len-1:0] * y from
|
|
/// dest[offset+len-1:offset], and returns the most significant
|
|
/// word of the product, minus the borrow-out from the subtraction.
|
|
static uint32_t subMul(uint32_t dest[], uint32_t offset,
|
|
uint32_t x[], uint32_t len, uint32_t y) {
|
|
uint64_t yl = (uint64_t) y & 0xffffffffL;
|
|
uint32_t carry = 0;
|
|
uint32_t j = 0;
|
|
do {
|
|
uint64_t prod = ((uint64_t) x[j] & 0xffffffffUL) * yl;
|
|
uint32_t prod_low = (uint32_t) prod;
|
|
uint32_t prod_high = (uint32_t) (prod >> 32);
|
|
prod_low += carry;
|
|
carry = (prod_low < carry ? 1 : 0) + prod_high;
|
|
uint32_t x_j = dest[offset+j];
|
|
prod_low = x_j - prod_low;
|
|
if (prod_low > x_j) ++carry;
|
|
dest[offset+j] = prod_low;
|
|
} while (++j < len);
|
|
return carry;
|
|
}
|
|
|
|
/// unitDiv - This function divides N by D,
|
|
/// and returns (remainder << 32) | quotient.
|
|
/// Assumes (N >> 32) < D.
|
|
static uint64_t unitDiv(uint64_t N, uint32_t D) {
|
|
uint64_t q, r; // q: quotient, r: remainder.
|
|
uint64_t a1 = N >> 32; // a1: high 32-bit part of N.
|
|
uint64_t a0 = N & 0xffffffffL; // a0: low 32-bit part of N
|
|
if (a1 < ((D - a1 - (a0 >> 31)) & 0xffffffffL)) {
|
|
q = N / D;
|
|
r = N % D;
|
|
}
|
|
else {
|
|
// Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d
|
|
uint64_t c = N - ((uint64_t) D << 31);
|
|
// Divide (c1*2^32 + c0) by d
|
|
q = c / D;
|
|
r = c % D;
|
|
// Add 2^31 to quotient
|
|
q += 1 << 31;
|
|
}
|
|
|
|
return (r << 32) | (q & 0xFFFFFFFFl);
|
|
}
|
|
|
|
#endif
|
|
|
|
/// div - This is basically Knuth's formulation of the classical algorithm.
|
|
/// Correspondance with Knuth's notation:
|
|
/// Knuth's u[0:m+n] == zds[nx:0].
|
|
/// Knuth's v[1:n] == y[ny-1:0]
|
|
/// Knuth's n == ny.
|
|
/// Knuth's m == nx-ny.
|
|
/// Our nx == Knuth's m+n.
|
|
/// Could be re-implemented using gmp's mpn_divrem:
|
|
/// zds[nx] = mpn_divrem (&zds[ny], 0, zds, nx, y, ny).
|
|
|
|
/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
|
|
/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
|
|
/// variables here have the same names as in the algorithm. Comments explain
|
|
/// the algorithm and any deviation from it.
|
|
static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
|
|
uint32_t m, uint32_t n) {
|
|
assert(u && "Must provide dividend");
|
|
assert(v && "Must provide divisor");
|
|
assert(q && "Must provide quotient");
|
|
assert(n>1 && "n must be > 1");
|
|
|
|
// Knuth uses the value b as the base of the number system. In our case b
|
|
// is 2^31 so we just set it to -1u.
|
|
uint64_t b = uint64_t(1) << 32;
|
|
|
|
// D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
|
|
// u and v by d. Note that we have taken Knuth's advice here to use a power
|
|
// of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
|
|
// 2 allows us to shift instead of multiply and it is easy to determine the
|
|
// shift amount from the leading zeros. We are basically normalizing the u
|
|
// and v so that its high bits are shifted to the top of v's range without
|
|
// overflow. Note that this can require an extra word in u so that u must
|
|
// be of length m+n+1.
|
|
uint32_t shift = CountLeadingZeros_32(v[n-1]);
|
|
uint32_t v_carry = 0;
|
|
uint32_t u_carry = 0;
|
|
if (shift) {
|
|
for (uint32_t i = 0; i < m+n; ++i) {
|
|
uint32_t u_tmp = u[i] >> (32 - shift);
|
|
u[i] = (u[i] << shift) | u_carry;
|
|
u_carry = u_tmp;
|
|
}
|
|
for (uint32_t i = 0; i < n; ++i) {
|
|
uint32_t v_tmp = v[i] >> (32 - shift);
|
|
v[i] = (v[i] << shift) | v_carry;
|
|
v_carry = v_tmp;
|
|
}
|
|
}
|
|
u[m+n] = u_carry;
|
|
|
|
// D2. [Initialize j.] Set j to m. This is the loop counter over the places.
|
|
int j = m;
|
|
do {
|
|
// D3. [Calculate q'.].
|
|
// Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
|
|
// Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
|
|
// Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
|
|
// qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
|
|
// on v[n-2] determines at high speed most of the cases in which the trial
|
|
// value qp is one too large, and it eliminates all cases where qp is two
|
|
// too large.
|
|
uint64_t qp = ((uint64_t(u[j+n]) << 32) | uint64_t(u[j+n-1])) / v[n-1];
|
|
uint64_t rp = ((uint64_t(u[j+n]) << 32) | uint64_t(u[j+n-1])) % v[n-1];
|
|
if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
|
|
qp--;
|
|
rp += v[n-1];
|
|
}
|
|
if (rp < b)
|
|
if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
|
|
qp--;
|
|
rp += v[n-1];
|
|
}
|
|
|
|
// D4. [Multiply and subtract.] Replace u with u - q*v (for each word).
|
|
uint32_t borrow = 0;
|
|
for (uint32_t i = 0; i < n; i++) {
|
|
uint32_t save = u[j+i];
|
|
u[j+i] = uint64_t(u[j+i]) - (qp * v[i]) - borrow;
|
|
if (u[j+i] > save) {
|
|
borrow = 1;
|
|
u[j+i+1] += b;
|
|
} else {
|
|
borrow = 0;
|
|
}
|
|
}
|
|
if (borrow)
|
|
u[j+n] += 1;
|
|
|
|
// D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
|
|
// negative, go to step D6; otherwise go on to step D7.
|
|
q[j] = qp;
|
|
if (borrow) {
|
|
// D6. [Add back]. The probability that this step is necessary is very
|
|
// small, on the order of only 2/b. Make sure that test data accounts for
|
|
// this possibility. Decreate qj by 1 and add v[...] to u[...]. A carry
|
|
// will occur to the left of u[j+n], and it should be ignored since it
|
|
// cancels with the borrow that occurred in D4.
|
|
uint32_t carry = 0;
|
|
for (uint32_t i = 0; i < n; i++) {
|
|
uint32_t save = u[j+i];
|
|
u[j+i] += v[i] + carry;
|
|
carry = u[j+i] < save;
|
|
}
|
|
}
|
|
|
|
// D7. [Loop on j.] Decreate j by one. Now if j >= 0, go back to D3.
|
|
j--;
|
|
} while (j >= 0);
|
|
|
|
// D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
|
|
// remainder may be obtained by dividing u[...] by d. If r is non-null we
|
|
// compute the remainder (urem uses this).
|
|
if (r) {
|
|
// The value d is expressed by the "shift" value above since we avoided
|
|
// multiplication by d by using a shift left. So, all we have to do is
|
|
// shift right here. In order to mak
|
|
uint32_t mask = ~0u >> (32 - shift);
|
|
uint32_t carry = 0;
|
|
for (int i = n-1; i >= 0; i--) {
|
|
uint32_t save = u[i] & mask;
|
|
r[i] = (u[i] >> shift) | carry;
|
|
carry = save;
|
|
}
|
|
}
|
|
}
|
|
|
|
// This function makes calling KnuthDiv a little more convenient. It uses
|
|
// APInt parameters instead of uint32_t* parameters. It can also divide APInt
|
|
// values of different widths.
|
|
void APInt::divide(const APInt LHS, uint32_t lhsWords,
|
|
const APInt &RHS, uint32_t rhsWords,
|
|
APInt *Quotient, APInt *Remainder)
|
|
{
|
|
assert(lhsWords >= rhsWords && "Fractional result");
|
|
|
|
// First, compose the values into an array of 32-bit words instead of
|
|
// 64-bit words. This is a necessity of both the "short division" algorithm
|
|
// and the the Knuth "classical algorithm" which requires there to be native
|
|
// operations for +, -, and * on an m bit value with an m*2 bit result. We
|
|
// can't use 64-bit operands here because we don't have native results of
|
|
// 128-bits. Furthremore, casting the 64-bit values to 32-bit values won't
|
|
// work on large-endian machines.
|
|
uint64_t mask = ~0ull >> (sizeof(uint32_t)*8);
|
|
uint32_t n = rhsWords * 2;
|
|
uint32_t m = (lhsWords * 2) - n;
|
|
// FIXME: allocate space on stack if m and n are sufficiently small.
|
|
uint32_t *U = new uint32_t[m + n + 1];
|
|
memset(U, 0, (m+n+1)*sizeof(uint32_t));
|
|
for (unsigned i = 0; i < lhsWords; ++i) {
|
|
uint64_t tmp = (lhsWords == 1 ? LHS.VAL : LHS.pVal[i]);
|
|
U[i * 2] = tmp & mask;
|
|
U[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
|
|
}
|
|
U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
|
|
|
|
uint32_t *V = new uint32_t[n];
|
|
memset(V, 0, (n)*sizeof(uint32_t));
|
|
for (unsigned i = 0; i < rhsWords; ++i) {
|
|
uint64_t tmp = (rhsWords == 1 ? RHS.VAL : RHS.pVal[i]);
|
|
V[i * 2] = tmp & mask;
|
|
V[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
|
|
}
|
|
|
|
// Set up the quotient and remainder
|
|
uint32_t *Q = new uint32_t[m+n];
|
|
memset(Q, 0, (m+n) * sizeof(uint32_t));
|
|
uint32_t *R = 0;
|
|
if (Remainder) {
|
|
R = new uint32_t[n];
|
|
memset(R, 0, n * sizeof(uint32_t));
|
|
}
|
|
|
|
// Now, adjust m and n for the Knuth division. n is the number of words in
|
|
// the divisor. m is the number of words by which the dividend exceeds the
|
|
// divisor (i.e. m+n is the length of the dividend). These sizes must not
|
|
// contain any zero words or the Knuth algorithm fails.
|
|
for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
|
|
n--;
|
|
m++;
|
|
}
|
|
for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
|
|
m--;
|
|
|
|
// If we're left with only a single word for the divisor, Knuth doesn't work
|
|
// so we implement the short division algorithm here. This is much simpler
|
|
// and faster because we are certain that we can divide a 64-bit quantity
|
|
// by a 32-bit quantity at hardware speed and short division is simply a
|
|
// series of such operations. This is just like doing short division but we
|
|
// are using base 2^32 instead of base 10.
|
|
assert(n != 0 && "Divide by zero?");
|
|
if (n == 1) {
|
|
uint32_t divisor = V[0];
|
|
uint32_t remainder = 0;
|
|
for (int i = m+n-1; i >= 0; i--) {
|
|
uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
|
|
if (partial_dividend == 0) {
|
|
Q[i] = 0;
|
|
remainder = 0;
|
|
} else if (partial_dividend < divisor) {
|
|
Q[i] = 0;
|
|
remainder = partial_dividend;
|
|
} else if (partial_dividend == divisor) {
|
|
Q[i] = 1;
|
|
remainder = 0;
|
|
} else {
|
|
Q[i] = partial_dividend / divisor;
|
|
remainder = partial_dividend - (Q[i] * divisor);
|
|
}
|
|
}
|
|
if (R)
|
|
R[0] = remainder;
|
|
} else {
|
|
// Now we're ready to invoke the Knuth classical divide algorithm. In this
|
|
// case n > 1.
|
|
KnuthDiv(U, V, Q, R, m, n);
|
|
}
|
|
|
|
// If the caller wants the quotient
|
|
if (Quotient) {
|
|
// Set up the Quotient value's memory.
|
|
if (Quotient->BitWidth != LHS.BitWidth) {
|
|
if (Quotient->isSingleWord())
|
|
Quotient->VAL = 0;
|
|
else
|
|
delete Quotient->pVal;
|
|
Quotient->BitWidth = LHS.BitWidth;
|
|
if (!Quotient->isSingleWord())
|
|
Quotient->pVal = getClearedMemory(lhsWords);
|
|
} else
|
|
Quotient->clear();
|
|
|
|
// The quotient is in Q. Reconstitute the quotient into Quotient's low
|
|
// order words.
|
|
if (lhsWords == 1) {
|
|
uint64_t tmp =
|
|
uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
|
|
if (Quotient->isSingleWord())
|
|
Quotient->VAL = tmp;
|
|
else
|
|
Quotient->pVal[0] = tmp;
|
|
} else {
|
|
assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
|
|
for (unsigned i = 0; i < lhsWords; ++i)
|
|
Quotient->pVal[i] =
|
|
uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
|
|
}
|
|
}
|
|
|
|
// If the caller wants the remainder
|
|
if (Remainder) {
|
|
// Set up the Remainder value's memory.
|
|
if (Remainder->BitWidth != RHS.BitWidth) {
|
|
if (Remainder->isSingleWord())
|
|
Remainder->VAL = 0;
|
|
else
|
|
delete Remainder->pVal;
|
|
Remainder->BitWidth = RHS.BitWidth;
|
|
if (!Remainder->isSingleWord())
|
|
Remainder->pVal = getClearedMemory(rhsWords);
|
|
} else
|
|
Remainder->clear();
|
|
|
|
// The remainder is in R. Reconstitute the remainder into Remainder's low
|
|
// order words.
|
|
if (rhsWords == 1) {
|
|
uint64_t tmp =
|
|
uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
|
|
if (Remainder->isSingleWord())
|
|
Remainder->VAL = tmp;
|
|
else
|
|
Remainder->pVal[0] = tmp;
|
|
} else {
|
|
assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
|
|
for (unsigned i = 0; i < rhsWords; ++i)
|
|
Remainder->pVal[i] =
|
|
uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
|
|
}
|
|
}
|
|
|
|
// Clean up the memory we allocated.
|
|
delete [] U;
|
|
delete [] V;
|
|
delete [] Q;
|
|
delete [] R;
|
|
}
|
|
|
|
/// Unsigned divide this APInt by APInt RHS.
|
|
/// @brief Unsigned division function for APInt.
|
|
APInt APInt::udiv(const APInt& RHS) const {
|
|
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
|
|
|
|
// First, deal with the easy case
|
|
if (isSingleWord()) {
|
|
assert(RHS.VAL != 0 && "Divide by zero?");
|
|
return APInt(BitWidth, VAL / RHS.VAL);
|
|
}
|
|
|
|
// Get some facts about the LHS and RHS number of bits and words
|
|
uint32_t rhsBits = RHS.getActiveBits();
|
|
uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
|
|
assert(rhsWords && "Divided by zero???");
|
|
uint32_t lhsBits = this->getActiveBits();
|
|
uint32_t lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
|
|
|
|
// Make a temporary to hold the result
|
|
APInt Result(*this);
|
|
|
|
// Deal with some degenerate cases
|
|
if (!lhsWords)
|
|
return Result; // 0 / X == 0
|
|
else if (lhsWords < rhsWords || Result.ult(RHS)) {
|
|
// X / Y with X < Y == 0
|
|
memset(Result.pVal, 0, Result.getNumWords() * APINT_WORD_SIZE);
|
|
return Result;
|
|
} else if (Result == RHS) {
|
|
// X / X == 1
|
|
memset(Result.pVal, 0, Result.getNumWords() * APINT_WORD_SIZE);
|
|
Result.pVal[0] = 1;
|
|
return Result;
|
|
} else if (lhsWords == 1 && rhsWords == 1) {
|
|
// All high words are zero, just use native divide
|
|
Result.pVal[0] /= RHS.pVal[0];
|
|
return Result;
|
|
}
|
|
|
|
// We have to compute it the hard way. Invoke the Knuth divide algorithm.
|
|
APInt Quotient(1,0); // to hold result.
|
|
divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
|
|
return Quotient;
|
|
}
|
|
|
|
/// Unsigned remainder operation on APInt.
|
|
/// @brief Function for unsigned remainder operation.
|
|
APInt APInt::urem(const APInt& RHS) const {
|
|
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
|
|
if (isSingleWord()) {
|
|
assert(RHS.VAL != 0 && "Remainder by zero?");
|
|
return APInt(BitWidth, VAL % RHS.VAL);
|
|
}
|
|
|
|
// Make a temporary to hold the result
|
|
APInt Result(*this);
|
|
|
|
// Get some facts about the RHS
|
|
uint32_t rhsBits = RHS.getActiveBits();
|
|
uint32_t rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
|
|
assert(rhsWords && "Performing remainder operation by zero ???");
|
|
|
|
// Get some facts about the LHS
|
|
uint32_t lhsBits = Result.getActiveBits();
|
|
uint32_t lhsWords = !lhsBits ? 0 : (Result.whichWord(lhsBits - 1) + 1);
|
|
|
|
// Check the degenerate cases
|
|
if (lhsWords == 0) {
|
|
// 0 % Y == 0
|
|
memset(Result.pVal, 0, Result.getNumWords() * APINT_WORD_SIZE);
|
|
return Result;
|
|
} else if (lhsWords < rhsWords || Result.ult(RHS)) {
|
|
// X % Y == X iff X < Y
|
|
return Result;
|
|
} else if (Result == RHS) {
|
|
// X % X == 0;
|
|
memset(Result.pVal, 0, Result.getNumWords() * APINT_WORD_SIZE);
|
|
return Result;
|
|
} else if (lhsWords == 1) {
|
|
// All high words are zero, just use native remainder
|
|
Result.pVal[0] %= RHS.pVal[0];
|
|
return Result;
|
|
}
|
|
|
|
// We have to compute it the hard way. Invoke the Knute divide algorithm.
|
|
APInt Remainder(1,0);
|
|
divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
|
|
return Remainder;
|
|
}
|
|
|
|
/// @brief Converts a char array into an integer.
|
|
void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen,
|
|
uint8_t radix) {
|
|
// Check our assumptions here
|
|
assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
|
|
"Radix should be 2, 8, 10, or 16!");
|
|
assert(str && "String is null?");
|
|
assert(slen <= numbits || radix != 2 && "Insufficient bit width");
|
|
assert(slen*3 <= numbits || radix != 8 && "Insufficient bit width");
|
|
assert(slen*4 <= numbits || radix != 16 && "Insufficient bit width");
|
|
assert((slen*64)/20 <= numbits || radix != 10 && "Insufficient bit width");
|
|
|
|
// Allocate memory
|
|
if (!isSingleWord())
|
|
pVal = getClearedMemory(getNumWords());
|
|
|
|
// Figure out if we can shift instead of multiply
|
|
uint32_t shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
|
|
|
|
// Set up an APInt for the digit to add outside the loop so we don't
|
|
// constantly construct/destruct it.
|
|
APInt apdigit(getBitWidth(), 0);
|
|
APInt apradix(getBitWidth(), radix);
|
|
|
|
// Enter digit traversal loop
|
|
for (unsigned i = 0; i < slen; i++) {
|
|
// Get a digit
|
|
uint32_t digit = 0;
|
|
char cdigit = str[i];
|
|
if (isdigit(cdigit))
|
|
digit = cdigit - '0';
|
|
else if (isxdigit(cdigit))
|
|
if (cdigit >= 'a')
|
|
digit = cdigit - 'a' + 10;
|
|
else if (cdigit >= 'A')
|
|
digit = cdigit - 'A' + 10;
|
|
else
|
|
assert(0 && "huh?");
|
|
else
|
|
assert(0 && "Invalid character in digit string");
|
|
|
|
// Shift or multiple the value by the radix
|
|
if (shift)
|
|
this->shl(shift);
|
|
else
|
|
*this *= apradix;
|
|
|
|
// Add in the digit we just interpreted
|
|
apdigit.pVal[0] = digit;
|
|
*this += apdigit;
|
|
}
|
|
}
|
|
|
|
/// to_string - This function translates the APInt into a string.
|
|
std::string APInt::toString(uint8_t radix, bool wantSigned) const {
|
|
assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
|
|
"Radix should be 2, 8, 10, or 16!");
|
|
static const char *digits[] = {
|
|
"0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F"
|
|
};
|
|
std::string result;
|
|
uint32_t bits_used = getActiveBits();
|
|
if (isSingleWord()) {
|
|
char buf[65];
|
|
const char *format = (radix == 10 ? (wantSigned ? "%lld" : "%llu") :
|
|
(radix == 16 ? "%llX" : (radix == 8 ? "%llo" : 0)));
|
|
if (format) {
|
|
if (wantSigned) {
|
|
int64_t sextVal = (int64_t(VAL) << (APINT_BITS_PER_WORD-BitWidth)) >>
|
|
(APINT_BITS_PER_WORD-BitWidth);
|
|
sprintf(buf, format, sextVal);
|
|
} else
|
|
sprintf(buf, format, VAL);
|
|
} else {
|
|
memset(buf, 0, 65);
|
|
uint64_t v = VAL;
|
|
while (bits_used) {
|
|
uint32_t bit = v & 1;
|
|
bits_used--;
|
|
buf[bits_used] = digits[bit][0];
|
|
v >>=1;
|
|
}
|
|
}
|
|
result = buf;
|
|
return result;
|
|
}
|
|
|
|
if (radix != 10) {
|
|
uint64_t mask = radix - 1;
|
|
uint32_t shift = (radix == 16 ? 4 : radix == 8 ? 3 : 1);
|
|
uint32_t nibbles = APINT_BITS_PER_WORD / shift;
|
|
for (uint32_t i = 0; i < getNumWords(); ++i) {
|
|
uint64_t value = pVal[i];
|
|
for (uint32_t j = 0; j < nibbles; ++j) {
|
|
result.insert(0, digits[ value & mask ]);
|
|
value >>= shift;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
APInt tmp(*this);
|
|
APInt divisor(4, radix);
|
|
APInt zero(tmp.getBitWidth(), 0);
|
|
size_t insert_at = 0;
|
|
if (wantSigned && tmp[BitWidth-1]) {
|
|
// They want to print the signed version and it is a negative value
|
|
// Flip the bits and add one to turn it into the equivalent positive
|
|
// value and put a '-' in the result.
|
|
tmp.flip();
|
|
tmp++;
|
|
result = "-";
|
|
insert_at = 1;
|
|
}
|
|
if (tmp == APInt(tmp.getBitWidth(), 0))
|
|
result = "0";
|
|
else while (tmp.ne(zero)) {
|
|
APInt APdigit(1,0);
|
|
APInt tmp2(tmp.getBitWidth(), 0);
|
|
divide(tmp, tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
|
|
&APdigit);
|
|
uint32_t digit = APdigit.getValue();
|
|
assert(digit < radix && "divide failed");
|
|
result.insert(insert_at,digits[digit]);
|
|
tmp = tmp2;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
void APInt::dump() const
|
|
{
|
|
std::cerr << "APInt(" << BitWidth << ")=" << std::setbase(16);
|
|
if (isSingleWord())
|
|
std::cerr << VAL;
|
|
else for (unsigned i = getNumWords(); i > 0; i--) {
|
|
std::cerr << pVal[i-1] << " ";
|
|
}
|
|
std::cerr << " (" << this->toString(10, false) << ")\n" << std::setbase(10);
|
|
}
|
|
#endif
|