mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@6303 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			353 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			353 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- Dominators.cpp - Dominator Calculation -----------------------------===//
 | |
| //
 | |
| // This file implements simple dominator construction algorithms for finding
 | |
| // forward dominators.  Postdominators are available in libanalysis, but are not
 | |
| // included in libvmcore, because it's not needed.  Forward dominators are
 | |
| // needed to support the Verifier pass.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Assembly/Writer.h"
 | |
| #include "Support/DepthFirstIterator.h"
 | |
| #include "Support/SetOperations.h"
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  DominatorSet Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static RegisterAnalysis<DominatorSet>
 | |
| A("domset", "Dominator Set Construction", true);
 | |
| 
 | |
| // dominates - Return true if A dominates B.  This performs the special checks
 | |
| // neccesary if A and B are in the same basic block.
 | |
| //
 | |
| bool DominatorSetBase::dominates(Instruction *A, Instruction *B) const {
 | |
|   BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
 | |
|   if (BBA != BBB) return dominates(BBA, BBB);
 | |
|   
 | |
|   // Loop through the basic block until we find A or B.
 | |
|   BasicBlock::iterator I = BBA->begin();
 | |
|   for (; &*I != A && &*I != B; ++I) /*empty*/;
 | |
|   
 | |
|   // A dominates B if it is found first in the basic block...
 | |
|   return &*I == A;
 | |
| }
 | |
| 
 | |
| 
 | |
| void DominatorSet::calculateDominatorsFromBlock(BasicBlock *RootBB) {
 | |
|   bool Changed;
 | |
|   Doms[RootBB].insert(RootBB);  // Root always dominates itself...
 | |
|   do {
 | |
|     Changed = false;
 | |
| 
 | |
|     DomSetType WorkingSet;
 | |
|     df_iterator<BasicBlock*> It = df_begin(RootBB), End = df_end(RootBB);
 | |
|     for ( ; It != End; ++It) {
 | |
|       BasicBlock *BB = *It;
 | |
|       pred_iterator PI = pred_begin(BB), PEnd = pred_end(BB);
 | |
|       if (PI != PEnd) {                // Is there SOME predecessor?
 | |
| 	// Loop until we get to a predecessor that has had it's dom set filled
 | |
| 	// in at least once.  We are guaranteed to have this because we are
 | |
| 	// traversing the graph in DFO and have handled start nodes specially,
 | |
| 	// except when there are unreachable blocks.
 | |
| 	//
 | |
| 	while (PI != PEnd && Doms[*PI].empty()) ++PI;
 | |
|         if (PI != PEnd) {     // Not unreachable code case?
 | |
|           WorkingSet = Doms[*PI];
 | |
| 
 | |
|           // Intersect all of the predecessor sets
 | |
|           for (++PI; PI != PEnd; ++PI) {
 | |
|             DomSetType &PredSet = Doms[*PI];
 | |
|             if (PredSet.size())
 | |
|               set_intersect(WorkingSet, PredSet);
 | |
|           }
 | |
|         } else {
 | |
|           // Otherwise this block is unreachable.  it doesn't really matter what
 | |
|           // we use for the dominator set for the node...
 | |
|           //
 | |
|           WorkingSet = Doms[Root];
 | |
|         }
 | |
|       } else if (BB != Root) {
 | |
|         // If this isn't the root basic block and it has no predecessors, it
 | |
|         // must be an unreachable block.  Fib a bit by saying that the root node
 | |
|         // dominates this unreachable node.  This isn't exactly true, because
 | |
|         // there is no path from the entry node to this node, but it is sorta
 | |
|         // true because any paths to this node would have to go through the
 | |
|         // entry node.
 | |
|         //
 | |
|         // This allows for dominator properties to be built for unreachable code
 | |
|         // in a reasonable manner.
 | |
|         //
 | |
|         WorkingSet = Doms[Root];
 | |
|       }
 | |
| 	
 | |
|       WorkingSet.insert(BB);           // A block always dominates itself
 | |
|       DomSetType &BBSet = Doms[BB];
 | |
|       if (BBSet != WorkingSet) {
 | |
| 	BBSet.swap(WorkingSet);        // Constant time operation!
 | |
| 	Changed = true;                // The sets changed.
 | |
|       }
 | |
|       WorkingSet.clear();              // Clear out the set for next iteration
 | |
|     }
 | |
|   } while (Changed);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| // runOnFunction - This method calculates the forward dominator sets for the
 | |
| // specified function.
 | |
| //
 | |
| bool DominatorSet::runOnFunction(Function &F) {
 | |
|   Root = &F.getEntryNode();
 | |
|   assert(pred_begin(Root) == pred_end(Root) &&
 | |
| 	 "Root node has predecessors in function!");
 | |
|   recalculate();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void DominatorSet::recalculate() {
 | |
|   Doms.clear();   // Reset from the last time we were run...
 | |
| 
 | |
|   // Calculate dominator sets for the reachable basic blocks...
 | |
|   calculateDominatorsFromBlock(Root);
 | |
| 
 | |
|   // Every basic block in the function should at least dominate themselves, and
 | |
|   // thus every basic block should have an entry in Doms.  The one case where we
 | |
|   // miss this is when a basic block is unreachable.  To get these we now do an
 | |
|   // extra pass over the function, calculating dominator information for
 | |
|   // unreachable blocks.
 | |
|   //
 | |
|   Function *F = Root->getParent();
 | |
|   for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
 | |
|     if (Doms[I].count(I) == 0)
 | |
|       calculateDominatorsFromBlock(I);
 | |
| }
 | |
| 
 | |
| 
 | |
| static std::ostream &operator<<(std::ostream &o,
 | |
|                                 const std::set<BasicBlock*> &BBs) {
 | |
|   for (std::set<BasicBlock*>::const_iterator I = BBs.begin(), E = BBs.end();
 | |
|        I != E; ++I) {
 | |
|     o << "  ";
 | |
|     WriteAsOperand(o, *I, false);
 | |
|     o << "\n";
 | |
|    }
 | |
|   return o;
 | |
| }
 | |
| 
 | |
| void DominatorSetBase::print(std::ostream &o) const {
 | |
|   for (const_iterator I = begin(), E = end(); I != E; ++I) {
 | |
|     o << "=============================--------------------------------\n"
 | |
|       << "\nDominator Set For Basic Block: ";
 | |
|     WriteAsOperand(o, I->first, false);
 | |
|     o  << "\n-------------------------------\n" << I->second << "\n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  ImmediateDominators Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static RegisterAnalysis<ImmediateDominators>
 | |
| C("idom", "Immediate Dominators Construction", true);
 | |
| 
 | |
| // calcIDoms - Calculate the immediate dominator mapping, given a set of
 | |
| // dominators for every basic block.
 | |
| void ImmediateDominatorsBase::calcIDoms(const DominatorSetBase &DS) {
 | |
|   // Loop over all of the nodes that have dominators... figuring out the IDOM
 | |
|   // for each node...
 | |
|   //
 | |
|   for (DominatorSet::const_iterator DI = DS.begin(), DEnd = DS.end(); 
 | |
|        DI != DEnd; ++DI) {
 | |
|     BasicBlock *BB = DI->first;
 | |
|     const DominatorSet::DomSetType &Dominators = DI->second;
 | |
|     unsigned DomSetSize = Dominators.size();
 | |
|     if (DomSetSize == 1) continue;  // Root node... IDom = null
 | |
| 
 | |
|     // Loop over all dominators of this node.  This corresponds to looping over
 | |
|     // nodes in the dominator chain, looking for a node whose dominator set is
 | |
|     // equal to the current nodes, except that the current node does not exist
 | |
|     // in it.  This means that it is one level higher in the dom chain than the
 | |
|     // current node, and it is our idom!
 | |
|     //
 | |
|     DominatorSet::DomSetType::const_iterator I = Dominators.begin();
 | |
|     DominatorSet::DomSetType::const_iterator End = Dominators.end();
 | |
|     for (; I != End; ++I) {   // Iterate over dominators...
 | |
|       // All of our dominators should form a chain, where the number of elements
 | |
|       // in the dominator set indicates what level the node is at in the chain.
 | |
|       // We want the node immediately above us, so it will have an identical 
 | |
|       // dominator set, except that BB will not dominate it... therefore it's
 | |
|       // dominator set size will be one less than BB's...
 | |
|       //
 | |
|       if (DS.getDominators(*I).size() == DomSetSize - 1) {
 | |
| 	IDoms[BB] = *I;
 | |
| 	break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ImmediateDominatorsBase::print(std::ostream &o) const {
 | |
|   for (const_iterator I = begin(), E = end(); I != E; ++I) {
 | |
|     o << "=============================--------------------------------\n"
 | |
|       << "\nImmediate Dominator For Basic Block:";
 | |
|     WriteAsOperand(o, I->first, false);
 | |
|     o << " is:";
 | |
|     WriteAsOperand(o, I->second, false);
 | |
|     o << "\n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  DominatorTree Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static RegisterAnalysis<DominatorTree>
 | |
| E("domtree", "Dominator Tree Construction", true);
 | |
| 
 | |
| // DominatorTreeBase::reset - Free all of the tree node memory.
 | |
| //
 | |
| void DominatorTreeBase::reset() { 
 | |
|   for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I)
 | |
|     delete I->second;
 | |
|   Nodes.clear();
 | |
| }
 | |
| 
 | |
| void DominatorTreeBase::Node2::setIDom(Node2 *NewIDom) {
 | |
|   assert(IDom && "No immediate dominator?");
 | |
|   if (IDom != NewIDom) {
 | |
|     std::vector<Node*>::iterator I =
 | |
|       std::find(IDom->Children.begin(), IDom->Children.end(), this);
 | |
|     assert(I != IDom->Children.end() &&
 | |
|            "Not in immediate dominator children set!");
 | |
|     // I am no longer your child...
 | |
|     IDom->Children.erase(I);
 | |
| 
 | |
|     // Switch to new dominator
 | |
|     IDom = NewIDom;
 | |
|     IDom->Children.push_back(this);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| void DominatorTree::calculate(const DominatorSet &DS) {
 | |
|   Nodes[Root] = new Node(Root, 0);   // Add a node for the root...
 | |
| 
 | |
|   // Iterate over all nodes in depth first order...
 | |
|   for (df_iterator<BasicBlock*> I = df_begin(Root), E = df_end(Root);
 | |
|        I != E; ++I) {
 | |
|     BasicBlock *BB = *I;
 | |
|     const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
 | |
|     unsigned DomSetSize = Dominators.size();
 | |
|     if (DomSetSize == 1) continue;  // Root node... IDom = null
 | |
|       
 | |
|     // Loop over all dominators of this node. This corresponds to looping over
 | |
|     // nodes in the dominator chain, looking for a node whose dominator set is
 | |
|     // equal to the current nodes, except that the current node does not exist
 | |
|     // in it. This means that it is one level higher in the dom chain than the
 | |
|     // current node, and it is our idom!  We know that we have already added
 | |
|     // a DominatorTree node for our idom, because the idom must be a
 | |
|     // predecessor in the depth first order that we are iterating through the
 | |
|     // function.
 | |
|     //
 | |
|     DominatorSet::DomSetType::const_iterator I = Dominators.begin();
 | |
|     DominatorSet::DomSetType::const_iterator End = Dominators.end();
 | |
|     for (; I != End; ++I) {   // Iterate over dominators...
 | |
|       // All of our dominators should form a chain, where the number of
 | |
|       // elements in the dominator set indicates what level the node is at in
 | |
|       // the chain.  We want the node immediately above us, so it will have
 | |
|       // an identical dominator set, except that BB will not dominate it...
 | |
|       // therefore it's dominator set size will be one less than BB's...
 | |
|       //
 | |
|       if (DS.getDominators(*I).size() == DomSetSize - 1) {
 | |
|         // We know that the immediate dominator should already have a node, 
 | |
|         // because we are traversing the CFG in depth first order!
 | |
|         //
 | |
|         Node *IDomNode = Nodes[*I];
 | |
|         assert(IDomNode && "No node for IDOM?");
 | |
|         
 | |
|         // Add a new tree node for this BasicBlock, and link it as a child of
 | |
|         // IDomNode
 | |
|         Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| static std::ostream &operator<<(std::ostream &o,
 | |
|                                 const DominatorTreeBase::Node *Node) {
 | |
|   return o << Node->getNode()
 | |
|            << "\n------------------------------------------\n";
 | |
| }
 | |
| 
 | |
| static void PrintDomTree(const DominatorTreeBase::Node *N, std::ostream &o,
 | |
|                          unsigned Lev) {
 | |
|   o << "Level #" << Lev << ":  " << N;
 | |
|   for (DominatorTreeBase::Node::const_iterator I = N->begin(), E = N->end(); 
 | |
|        I != E; ++I) {
 | |
|     PrintDomTree(*I, o, Lev+1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void DominatorTreeBase::print(std::ostream &o) const {
 | |
|   o << "=============================--------------------------------\n"
 | |
|     << "Inorder Dominator Tree:\n";
 | |
|   PrintDomTree(Nodes.find(getRoot())->second, o, 1);
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  DominanceFrontier Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static RegisterAnalysis<DominanceFrontier>
 | |
| G("domfrontier", "Dominance Frontier Construction", true);
 | |
| 
 | |
| const DominanceFrontier::DomSetType &
 | |
| DominanceFrontier::calculate(const DominatorTree &DT, 
 | |
|                              const DominatorTree::Node *Node) {
 | |
|   // Loop over CFG successors to calculate DFlocal[Node]
 | |
|   BasicBlock *BB = Node->getNode();
 | |
|   DomSetType &S = Frontiers[BB];       // The new set to fill in...
 | |
| 
 | |
|   for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
 | |
|        SI != SE; ++SI) {
 | |
|     // Does Node immediately dominate this successor?
 | |
|     if (DT[*SI]->getIDom() != Node)
 | |
|       S.insert(*SI);
 | |
|   }
 | |
| 
 | |
|   // At this point, S is DFlocal.  Now we union in DFup's of our children...
 | |
|   // Loop through and visit the nodes that Node immediately dominates (Node's
 | |
|   // children in the IDomTree)
 | |
|   //
 | |
|   for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end();
 | |
|        NI != NE; ++NI) {
 | |
|     DominatorTree::Node *IDominee = *NI;
 | |
|     const DomSetType &ChildDF = calculate(DT, IDominee);
 | |
| 
 | |
|     DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
 | |
|     for (; CDFI != CDFE; ++CDFI) {
 | |
|       if (!Node->dominates(DT[*CDFI]))
 | |
| 	S.insert(*CDFI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| void DominanceFrontierBase::print(std::ostream &o) const {
 | |
|   for (const_iterator I = begin(), E = end(); I != E; ++I) {
 | |
|     o << "=============================--------------------------------\n"
 | |
|       << "\nDominance Frontier For Basic Block\n";
 | |
|     WriteAsOperand(o, I->first, false);
 | |
|     o << " is: \n" << I->second << "\n";
 | |
|   }
 | |
| }
 |