mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55779 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1362 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1362 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- GVN.cpp - Eliminate redundant values and loads ------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass performs global value numbering to eliminate fully redundant
 | |
| // instructions.  It also performs simple dead load elimination.
 | |
| //
 | |
| // Note that this pass does the value numbering itself, it does not use the
 | |
| // ValueNumbering analysis passes.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "gvn"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/BasicBlock.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Value.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/MemoryDependenceAnalysis.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumGVNInstr, "Number of instructions deleted");
 | |
| STATISTIC(NumGVNLoad, "Number of loads deleted");
 | |
| STATISTIC(NumGVNPRE, "Number of instructions PRE'd");
 | |
| STATISTIC(NumGVNBlocks, "Number of blocks merged");
 | |
| 
 | |
| static cl::opt<bool> EnablePRE("enable-pre",
 | |
|                                cl::init(true), cl::Hidden);
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         ValueTable Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// This class holds the mapping between values and value numbers.  It is used
 | |
| /// as an efficient mechanism to determine the expression-wise equivalence of
 | |
| /// two values.
 | |
| namespace {
 | |
|   struct VISIBILITY_HIDDEN Expression {
 | |
|     enum ExpressionOpcode { ADD, SUB, MUL, UDIV, SDIV, FDIV, UREM, SREM, 
 | |
|                             FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ, 
 | |
|                             ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE, 
 | |
|                             ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ, 
 | |
|                             FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE, 
 | |
|                             FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE, 
 | |
|                             FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
 | |
|                             SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
 | |
|                             FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT, 
 | |
|                             PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, CONSTANT,
 | |
|                             EMPTY, TOMBSTONE };
 | |
| 
 | |
|     ExpressionOpcode opcode;
 | |
|     const Type* type;
 | |
|     uint32_t firstVN;
 | |
|     uint32_t secondVN;
 | |
|     uint32_t thirdVN;
 | |
|     SmallVector<uint32_t, 4> varargs;
 | |
|     Value* function;
 | |
|   
 | |
|     Expression() { }
 | |
|     Expression(ExpressionOpcode o) : opcode(o) { }
 | |
|   
 | |
|     bool operator==(const Expression &other) const {
 | |
|       if (opcode != other.opcode)
 | |
|         return false;
 | |
|       else if (opcode == EMPTY || opcode == TOMBSTONE)
 | |
|         return true;
 | |
|       else if (type != other.type)
 | |
|         return false;
 | |
|       else if (function != other.function)
 | |
|         return false;
 | |
|       else if (firstVN != other.firstVN)
 | |
|         return false;
 | |
|       else if (secondVN != other.secondVN)
 | |
|         return false;
 | |
|       else if (thirdVN != other.thirdVN)
 | |
|         return false;
 | |
|       else {
 | |
|         if (varargs.size() != other.varargs.size())
 | |
|           return false;
 | |
|       
 | |
|         for (size_t i = 0; i < varargs.size(); ++i)
 | |
|           if (varargs[i] != other.varargs[i])
 | |
|             return false;
 | |
|     
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   
 | |
|     bool operator!=(const Expression &other) const {
 | |
|       if (opcode != other.opcode)
 | |
|         return true;
 | |
|       else if (opcode == EMPTY || opcode == TOMBSTONE)
 | |
|         return false;
 | |
|       else if (type != other.type)
 | |
|         return true;
 | |
|       else if (function != other.function)
 | |
|         return true;
 | |
|       else if (firstVN != other.firstVN)
 | |
|         return true;
 | |
|       else if (secondVN != other.secondVN)
 | |
|         return true;
 | |
|       else if (thirdVN != other.thirdVN)
 | |
|         return true;
 | |
|       else {
 | |
|         if (varargs.size() != other.varargs.size())
 | |
|           return true;
 | |
|       
 | |
|         for (size_t i = 0; i < varargs.size(); ++i)
 | |
|           if (varargs[i] != other.varargs[i])
 | |
|             return true;
 | |
|     
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
|   };
 | |
|   
 | |
|   class VISIBILITY_HIDDEN ValueTable {
 | |
|     private:
 | |
|       DenseMap<Value*, uint32_t> valueNumbering;
 | |
|       DenseMap<Expression, uint32_t> expressionNumbering;
 | |
|       AliasAnalysis* AA;
 | |
|       MemoryDependenceAnalysis* MD;
 | |
|       DominatorTree* DT;
 | |
|   
 | |
|       uint32_t nextValueNumber;
 | |
|     
 | |
|       Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
 | |
|       Expression::ExpressionOpcode getOpcode(CmpInst* C);
 | |
|       Expression::ExpressionOpcode getOpcode(CastInst* C);
 | |
|       Expression create_expression(BinaryOperator* BO);
 | |
|       Expression create_expression(CmpInst* C);
 | |
|       Expression create_expression(ShuffleVectorInst* V);
 | |
|       Expression create_expression(ExtractElementInst* C);
 | |
|       Expression create_expression(InsertElementInst* V);
 | |
|       Expression create_expression(SelectInst* V);
 | |
|       Expression create_expression(CastInst* C);
 | |
|       Expression create_expression(GetElementPtrInst* G);
 | |
|       Expression create_expression(CallInst* C);
 | |
|       Expression create_expression(Constant* C);
 | |
|     public:
 | |
|       ValueTable() : nextValueNumber(1) { }
 | |
|       uint32_t lookup_or_add(Value* V);
 | |
|       uint32_t lookup(Value* V) const;
 | |
|       void add(Value* V, uint32_t num);
 | |
|       void clear();
 | |
|       void erase(Value* v);
 | |
|       unsigned size();
 | |
|       void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
 | |
|       void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
 | |
|       void setDomTree(DominatorTree* D) { DT = D; }
 | |
|       uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
 | |
|   };
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
| template <> struct DenseMapInfo<Expression> {
 | |
|   static inline Expression getEmptyKey() {
 | |
|     return Expression(Expression::EMPTY);
 | |
|   }
 | |
|   
 | |
|   static inline Expression getTombstoneKey() {
 | |
|     return Expression(Expression::TOMBSTONE);
 | |
|   }
 | |
|   
 | |
|   static unsigned getHashValue(const Expression e) {
 | |
|     unsigned hash = e.opcode;
 | |
|     
 | |
|     hash = e.firstVN + hash * 37;
 | |
|     hash = e.secondVN + hash * 37;
 | |
|     hash = e.thirdVN + hash * 37;
 | |
|     
 | |
|     hash = ((unsigned)((uintptr_t)e.type >> 4) ^
 | |
|             (unsigned)((uintptr_t)e.type >> 9)) +
 | |
|            hash * 37;
 | |
|     
 | |
|     for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
 | |
|          E = e.varargs.end(); I != E; ++I)
 | |
|       hash = *I + hash * 37;
 | |
|     
 | |
|     hash = ((unsigned)((uintptr_t)e.function >> 4) ^
 | |
|             (unsigned)((uintptr_t)e.function >> 9)) +
 | |
|            hash * 37;
 | |
|     
 | |
|     return hash;
 | |
|   }
 | |
|   static bool isEqual(const Expression &LHS, const Expression &RHS) {
 | |
|     return LHS == RHS;
 | |
|   }
 | |
|   static bool isPod() { return true; }
 | |
| };
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                     ValueTable Internal Functions
 | |
| //===----------------------------------------------------------------------===//
 | |
| Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
 | |
|   switch(BO->getOpcode()) {
 | |
|   default: // THIS SHOULD NEVER HAPPEN
 | |
|     assert(0 && "Binary operator with unknown opcode?");
 | |
|   case Instruction::Add:  return Expression::ADD;
 | |
|   case Instruction::Sub:  return Expression::SUB;
 | |
|   case Instruction::Mul:  return Expression::MUL;
 | |
|   case Instruction::UDiv: return Expression::UDIV;
 | |
|   case Instruction::SDiv: return Expression::SDIV;
 | |
|   case Instruction::FDiv: return Expression::FDIV;
 | |
|   case Instruction::URem: return Expression::UREM;
 | |
|   case Instruction::SRem: return Expression::SREM;
 | |
|   case Instruction::FRem: return Expression::FREM;
 | |
|   case Instruction::Shl:  return Expression::SHL;
 | |
|   case Instruction::LShr: return Expression::LSHR;
 | |
|   case Instruction::AShr: return Expression::ASHR;
 | |
|   case Instruction::And:  return Expression::AND;
 | |
|   case Instruction::Or:   return Expression::OR;
 | |
|   case Instruction::Xor:  return Expression::XOR;
 | |
|   }
 | |
| }
 | |
| 
 | |
| Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
 | |
|   if (isa<ICmpInst>(C) || isa<VICmpInst>(C)) {
 | |
|     switch (C->getPredicate()) {
 | |
|     default:  // THIS SHOULD NEVER HAPPEN
 | |
|       assert(0 && "Comparison with unknown predicate?");
 | |
|     case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
 | |
|     case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
 | |
|     case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
 | |
|     case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
 | |
|     case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
 | |
|     case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
 | |
|     case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
 | |
|     case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
 | |
|     case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
 | |
|     case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
 | |
|     }
 | |
|   }
 | |
|   assert((isa<FCmpInst>(C) || isa<VFCmpInst>(C)) && "Unknown compare");
 | |
|   switch (C->getPredicate()) {
 | |
|   default: // THIS SHOULD NEVER HAPPEN
 | |
|     assert(0 && "Comparison with unknown predicate?");
 | |
|   case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
 | |
|   case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
 | |
|   case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
 | |
|   case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
 | |
|   case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
 | |
|   case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
 | |
|   case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
 | |
|   case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
 | |
|   case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
 | |
|   case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
 | |
|   case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
 | |
|   case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
 | |
|   case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
 | |
|   case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
 | |
|   }
 | |
| }
 | |
| 
 | |
| Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
 | |
|   switch(C->getOpcode()) {
 | |
|   default: // THIS SHOULD NEVER HAPPEN
 | |
|     assert(0 && "Cast operator with unknown opcode?");
 | |
|   case Instruction::Trunc:    return Expression::TRUNC;
 | |
|   case Instruction::ZExt:     return Expression::ZEXT;
 | |
|   case Instruction::SExt:     return Expression::SEXT;
 | |
|   case Instruction::FPToUI:   return Expression::FPTOUI;
 | |
|   case Instruction::FPToSI:   return Expression::FPTOSI;
 | |
|   case Instruction::UIToFP:   return Expression::UITOFP;
 | |
|   case Instruction::SIToFP:   return Expression::SITOFP;
 | |
|   case Instruction::FPTrunc:  return Expression::FPTRUNC;
 | |
|   case Instruction::FPExt:    return Expression::FPEXT;
 | |
|   case Instruction::PtrToInt: return Expression::PTRTOINT;
 | |
|   case Instruction::IntToPtr: return Expression::INTTOPTR;
 | |
|   case Instruction::BitCast:  return Expression::BITCAST;
 | |
|   }
 | |
| }
 | |
| 
 | |
| Expression ValueTable::create_expression(CallInst* C) {
 | |
|   Expression e;
 | |
|   
 | |
|   e.type = C->getType();
 | |
|   e.firstVN = 0;
 | |
|   e.secondVN = 0;
 | |
|   e.thirdVN = 0;
 | |
|   e.function = C->getCalledFunction();
 | |
|   e.opcode = Expression::CALL;
 | |
|   
 | |
|   for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
 | |
|        I != E; ++I)
 | |
|     e.varargs.push_back(lookup_or_add(*I));
 | |
|   
 | |
|   return e;
 | |
| }
 | |
| 
 | |
| Expression ValueTable::create_expression(BinaryOperator* BO) {
 | |
|   Expression e;
 | |
|     
 | |
|   e.firstVN = lookup_or_add(BO->getOperand(0));
 | |
|   e.secondVN = lookup_or_add(BO->getOperand(1));
 | |
|   e.thirdVN = 0;
 | |
|   e.function = 0;
 | |
|   e.type = BO->getType();
 | |
|   e.opcode = getOpcode(BO);
 | |
|   
 | |
|   return e;
 | |
| }
 | |
| 
 | |
| Expression ValueTable::create_expression(CmpInst* C) {
 | |
|   Expression e;
 | |
|     
 | |
|   e.firstVN = lookup_or_add(C->getOperand(0));
 | |
|   e.secondVN = lookup_or_add(C->getOperand(1));
 | |
|   e.thirdVN = 0;
 | |
|   e.function = 0;
 | |
|   e.type = C->getType();
 | |
|   e.opcode = getOpcode(C);
 | |
|   
 | |
|   return e;
 | |
| }
 | |
| 
 | |
| Expression ValueTable::create_expression(CastInst* C) {
 | |
|   Expression e;
 | |
|     
 | |
|   e.firstVN = lookup_or_add(C->getOperand(0));
 | |
|   e.secondVN = 0;
 | |
|   e.thirdVN = 0;
 | |
|   e.function = 0;
 | |
|   e.type = C->getType();
 | |
|   e.opcode = getOpcode(C);
 | |
|   
 | |
|   return e;
 | |
| }
 | |
| 
 | |
| Expression ValueTable::create_expression(ShuffleVectorInst* S) {
 | |
|   Expression e;
 | |
|     
 | |
|   e.firstVN = lookup_or_add(S->getOperand(0));
 | |
|   e.secondVN = lookup_or_add(S->getOperand(1));
 | |
|   e.thirdVN = lookup_or_add(S->getOperand(2));
 | |
|   e.function = 0;
 | |
|   e.type = S->getType();
 | |
|   e.opcode = Expression::SHUFFLE;
 | |
|   
 | |
|   return e;
 | |
| }
 | |
| 
 | |
| Expression ValueTable::create_expression(ExtractElementInst* E) {
 | |
|   Expression e;
 | |
|     
 | |
|   e.firstVN = lookup_or_add(E->getOperand(0));
 | |
|   e.secondVN = lookup_or_add(E->getOperand(1));
 | |
|   e.thirdVN = 0;
 | |
|   e.function = 0;
 | |
|   e.type = E->getType();
 | |
|   e.opcode = Expression::EXTRACT;
 | |
|   
 | |
|   return e;
 | |
| }
 | |
| 
 | |
| Expression ValueTable::create_expression(InsertElementInst* I) {
 | |
|   Expression e;
 | |
|     
 | |
|   e.firstVN = lookup_or_add(I->getOperand(0));
 | |
|   e.secondVN = lookup_or_add(I->getOperand(1));
 | |
|   e.thirdVN = lookup_or_add(I->getOperand(2));
 | |
|   e.function = 0;
 | |
|   e.type = I->getType();
 | |
|   e.opcode = Expression::INSERT;
 | |
|   
 | |
|   return e;
 | |
| }
 | |
| 
 | |
| Expression ValueTable::create_expression(SelectInst* I) {
 | |
|   Expression e;
 | |
|     
 | |
|   e.firstVN = lookup_or_add(I->getCondition());
 | |
|   e.secondVN = lookup_or_add(I->getTrueValue());
 | |
|   e.thirdVN = lookup_or_add(I->getFalseValue());
 | |
|   e.function = 0;
 | |
|   e.type = I->getType();
 | |
|   e.opcode = Expression::SELECT;
 | |
|   
 | |
|   return e;
 | |
| }
 | |
| 
 | |
| Expression ValueTable::create_expression(GetElementPtrInst* G) {
 | |
|   Expression e;
 | |
|   
 | |
|   e.firstVN = lookup_or_add(G->getPointerOperand());
 | |
|   e.secondVN = 0;
 | |
|   e.thirdVN = 0;
 | |
|   e.function = 0;
 | |
|   e.type = G->getType();
 | |
|   e.opcode = Expression::GEP;
 | |
|   
 | |
|   for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
 | |
|        I != E; ++I)
 | |
|     e.varargs.push_back(lookup_or_add(*I));
 | |
|   
 | |
|   return e;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                     ValueTable External Functions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// add - Insert a value into the table with a specified value number.
 | |
| void ValueTable::add(Value* V, uint32_t num) {
 | |
|   valueNumbering.insert(std::make_pair(V, num));
 | |
| }
 | |
| 
 | |
| /// lookup_or_add - Returns the value number for the specified value, assigning
 | |
| /// it a new number if it did not have one before.
 | |
| uint32_t ValueTable::lookup_or_add(Value* V) {
 | |
|   DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
 | |
|   if (VI != valueNumbering.end())
 | |
|     return VI->second;
 | |
|   
 | |
|   if (CallInst* C = dyn_cast<CallInst>(V)) {
 | |
|     if (AA->doesNotAccessMemory(C)) {
 | |
|       Expression e = create_expression(C);
 | |
|     
 | |
|       DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
 | |
|       if (EI != expressionNumbering.end()) {
 | |
|         valueNumbering.insert(std::make_pair(V, EI->second));
 | |
|         return EI->second;
 | |
|       } else {
 | |
|         expressionNumbering.insert(std::make_pair(e, nextValueNumber));
 | |
|         valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | |
|       
 | |
|         return nextValueNumber++;
 | |
|       }
 | |
|     } else if (AA->onlyReadsMemory(C)) {
 | |
|       Expression e = create_expression(C);
 | |
|       
 | |
|       if (expressionNumbering.find(e) == expressionNumbering.end()) {
 | |
|         expressionNumbering.insert(std::make_pair(e, nextValueNumber));
 | |
|         valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | |
|         return nextValueNumber++;
 | |
|       }
 | |
|       
 | |
|       Instruction* local_dep = MD->getDependency(C);
 | |
|       
 | |
|       if (local_dep == MemoryDependenceAnalysis::None) {
 | |
|         valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | |
|         return nextValueNumber++;
 | |
|       } else if (local_dep != MemoryDependenceAnalysis::NonLocal) {
 | |
|         if (!isa<CallInst>(local_dep)) {
 | |
|           valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | |
|           return nextValueNumber++;
 | |
|         }
 | |
|         
 | |
|         CallInst* local_cdep = cast<CallInst>(local_dep);
 | |
|         
 | |
|         if (local_cdep->getCalledFunction() != C->getCalledFunction() ||
 | |
|             local_cdep->getNumOperands() != C->getNumOperands()) {
 | |
|           valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | |
|           return nextValueNumber++;
 | |
|         } else if (!C->getCalledFunction()) { 
 | |
|           valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | |
|           return nextValueNumber++;
 | |
|         } else {
 | |
|           for (unsigned i = 1; i < C->getNumOperands(); ++i) {
 | |
|             uint32_t c_vn = lookup_or_add(C->getOperand(i));
 | |
|             uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
 | |
|             if (c_vn != cd_vn) {
 | |
|               valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | |
|               return nextValueNumber++;
 | |
|             }
 | |
|           }
 | |
|         
 | |
|           uint32_t v = lookup_or_add(local_cdep);
 | |
|           valueNumbering.insert(std::make_pair(V, v));
 | |
|           return v;
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       
 | |
|       DenseMap<BasicBlock*, Value*> deps;
 | |
|       MD->getNonLocalDependency(C, deps);
 | |
|       CallInst* cdep = 0;
 | |
|       
 | |
|       for (DenseMap<BasicBlock*, Value*>::iterator I = deps.begin(),
 | |
|            E = deps.end(); I != E; ++I) {
 | |
|         if (I->second == MemoryDependenceAnalysis::None) {
 | |
|           valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | |
| 
 | |
|           return nextValueNumber++;
 | |
|         } else if (I->second != MemoryDependenceAnalysis::NonLocal) {
 | |
|           if (DT->properlyDominates(I->first, C->getParent())) {
 | |
|             if (CallInst* CD = dyn_cast<CallInst>(I->second))
 | |
|               cdep = CD;
 | |
|             else {
 | |
|               valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | |
|               return nextValueNumber++;
 | |
|             }
 | |
|           } else {
 | |
|             valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | |
|             return nextValueNumber++;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       if (!cdep) {
 | |
|         valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | |
|         return nextValueNumber++;
 | |
|       }
 | |
|       
 | |
|       if (cdep->getCalledFunction() != C->getCalledFunction() ||
 | |
|           cdep->getNumOperands() != C->getNumOperands()) {
 | |
|         valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | |
|         return nextValueNumber++;
 | |
|       } else if (!C->getCalledFunction()) { 
 | |
|         valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | |
|         return nextValueNumber++;
 | |
|       } else {
 | |
|         for (unsigned i = 1; i < C->getNumOperands(); ++i) {
 | |
|           uint32_t c_vn = lookup_or_add(C->getOperand(i));
 | |
|           uint32_t cd_vn = lookup_or_add(cdep->getOperand(i));
 | |
|           if (c_vn != cd_vn) {
 | |
|             valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | |
|             return nextValueNumber++;
 | |
|           }
 | |
|         }
 | |
|         
 | |
|         uint32_t v = lookup_or_add(cdep);
 | |
|         valueNumbering.insert(std::make_pair(V, v));
 | |
|         return v;
 | |
|       }
 | |
|       
 | |
|     } else {
 | |
|       valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | |
|       return nextValueNumber++;
 | |
|     }
 | |
|   } else if (BinaryOperator* BO = dyn_cast<BinaryOperator>(V)) {
 | |
|     Expression e = create_expression(BO);
 | |
|     
 | |
|     DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
 | |
|     if (EI != expressionNumbering.end()) {
 | |
|       valueNumbering.insert(std::make_pair(V, EI->second));
 | |
|       return EI->second;
 | |
|     } else {
 | |
|       expressionNumbering.insert(std::make_pair(e, nextValueNumber));
 | |
|       valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | |
|       
 | |
|       return nextValueNumber++;
 | |
|     }
 | |
|   } else if (CmpInst* C = dyn_cast<CmpInst>(V)) {
 | |
|     Expression e = create_expression(C);
 | |
|     
 | |
|     DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
 | |
|     if (EI != expressionNumbering.end()) {
 | |
|       valueNumbering.insert(std::make_pair(V, EI->second));
 | |
|       return EI->second;
 | |
|     } else {
 | |
|       expressionNumbering.insert(std::make_pair(e, nextValueNumber));
 | |
|       valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | |
|       
 | |
|       return nextValueNumber++;
 | |
|     }
 | |
|   } else if (ShuffleVectorInst* U = dyn_cast<ShuffleVectorInst>(V)) {
 | |
|     Expression e = create_expression(U);
 | |
|     
 | |
|     DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
 | |
|     if (EI != expressionNumbering.end()) {
 | |
|       valueNumbering.insert(std::make_pair(V, EI->second));
 | |
|       return EI->second;
 | |
|     } else {
 | |
|       expressionNumbering.insert(std::make_pair(e, nextValueNumber));
 | |
|       valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | |
|       
 | |
|       return nextValueNumber++;
 | |
|     }
 | |
|   } else if (ExtractElementInst* U = dyn_cast<ExtractElementInst>(V)) {
 | |
|     Expression e = create_expression(U);
 | |
|     
 | |
|     DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
 | |
|     if (EI != expressionNumbering.end()) {
 | |
|       valueNumbering.insert(std::make_pair(V, EI->second));
 | |
|       return EI->second;
 | |
|     } else {
 | |
|       expressionNumbering.insert(std::make_pair(e, nextValueNumber));
 | |
|       valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | |
|       
 | |
|       return nextValueNumber++;
 | |
|     }
 | |
|   } else if (InsertElementInst* U = dyn_cast<InsertElementInst>(V)) {
 | |
|     Expression e = create_expression(U);
 | |
|     
 | |
|     DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
 | |
|     if (EI != expressionNumbering.end()) {
 | |
|       valueNumbering.insert(std::make_pair(V, EI->second));
 | |
|       return EI->second;
 | |
|     } else {
 | |
|       expressionNumbering.insert(std::make_pair(e, nextValueNumber));
 | |
|       valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | |
|       
 | |
|       return nextValueNumber++;
 | |
|     }
 | |
|   } else if (SelectInst* U = dyn_cast<SelectInst>(V)) {
 | |
|     Expression e = create_expression(U);
 | |
|     
 | |
|     DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
 | |
|     if (EI != expressionNumbering.end()) {
 | |
|       valueNumbering.insert(std::make_pair(V, EI->second));
 | |
|       return EI->second;
 | |
|     } else {
 | |
|       expressionNumbering.insert(std::make_pair(e, nextValueNumber));
 | |
|       valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | |
|       
 | |
|       return nextValueNumber++;
 | |
|     }
 | |
|   } else if (CastInst* U = dyn_cast<CastInst>(V)) {
 | |
|     Expression e = create_expression(U);
 | |
|     
 | |
|     DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
 | |
|     if (EI != expressionNumbering.end()) {
 | |
|       valueNumbering.insert(std::make_pair(V, EI->second));
 | |
|       return EI->second;
 | |
|     } else {
 | |
|       expressionNumbering.insert(std::make_pair(e, nextValueNumber));
 | |
|       valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | |
|       
 | |
|       return nextValueNumber++;
 | |
|     }
 | |
|   } else if (GetElementPtrInst* U = dyn_cast<GetElementPtrInst>(V)) {
 | |
|     Expression e = create_expression(U);
 | |
|     
 | |
|     DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
 | |
|     if (EI != expressionNumbering.end()) {
 | |
|       valueNumbering.insert(std::make_pair(V, EI->second));
 | |
|       return EI->second;
 | |
|     } else {
 | |
|       expressionNumbering.insert(std::make_pair(e, nextValueNumber));
 | |
|       valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | |
|       
 | |
|       return nextValueNumber++;
 | |
|     }
 | |
|   } else {
 | |
|     valueNumbering.insert(std::make_pair(V, nextValueNumber));
 | |
|     return nextValueNumber++;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// lookup - Returns the value number of the specified value. Fails if
 | |
| /// the value has not yet been numbered.
 | |
| uint32_t ValueTable::lookup(Value* V) const {
 | |
|   DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
 | |
|   assert(VI != valueNumbering.end() && "Value not numbered?");
 | |
|   return VI->second;
 | |
| }
 | |
| 
 | |
| /// clear - Remove all entries from the ValueTable
 | |
| void ValueTable::clear() {
 | |
|   valueNumbering.clear();
 | |
|   expressionNumbering.clear();
 | |
|   nextValueNumber = 1;
 | |
| }
 | |
| 
 | |
| /// erase - Remove a value from the value numbering
 | |
| void ValueTable::erase(Value* V) {
 | |
|   valueNumbering.erase(V);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         GVN Pass
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
|   struct VISIBILITY_HIDDEN ValueNumberScope {
 | |
|     ValueNumberScope* parent;
 | |
|     DenseMap<uint32_t, Value*> table;
 | |
|     
 | |
|     ValueNumberScope(ValueNumberScope* p) : parent(p) { }
 | |
|   };
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
|   class VISIBILITY_HIDDEN GVN : public FunctionPass {
 | |
|     bool runOnFunction(Function &F);
 | |
|   public:
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     GVN() : FunctionPass(&ID) { }
 | |
| 
 | |
|   private:
 | |
|     ValueTable VN;
 | |
|     DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
 | |
|     
 | |
|     typedef DenseMap<Value*, SmallPtrSet<Instruction*, 4> > PhiMapType;
 | |
|     PhiMapType phiMap;
 | |
|     
 | |
|     
 | |
|     // This transformation requires dominator postdominator info
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addRequired<DominatorTree>();
 | |
|       AU.addRequired<MemoryDependenceAnalysis>();
 | |
|       AU.addRequired<AliasAnalysis>();
 | |
|       
 | |
|       AU.addPreserved<DominatorTree>();
 | |
|       AU.addPreserved<AliasAnalysis>();
 | |
|     }
 | |
|   
 | |
|     // Helper fuctions
 | |
|     // FIXME: eliminate or document these better
 | |
|     bool processLoad(LoadInst* L,
 | |
|                      DenseMap<Value*, LoadInst*> &lastLoad,
 | |
|                      SmallVectorImpl<Instruction*> &toErase);
 | |
|     bool processInstruction(Instruction* I,
 | |
|                             DenseMap<Value*, LoadInst*>& lastSeenLoad,
 | |
|                             SmallVectorImpl<Instruction*> &toErase);
 | |
|     bool processNonLocalLoad(LoadInst* L,
 | |
|                              SmallVectorImpl<Instruction*> &toErase);
 | |
|     bool processBlock(DomTreeNode* DTN);
 | |
|     Value *GetValueForBlock(BasicBlock *BB, LoadInst* orig,
 | |
|                             DenseMap<BasicBlock*, Value*> &Phis,
 | |
|                             bool top_level = false);
 | |
|     void dump(DenseMap<uint32_t, Value*>& d);
 | |
|     bool iterateOnFunction(Function &F);
 | |
|     Value* CollapsePhi(PHINode* p);
 | |
|     bool isSafeReplacement(PHINode* p, Instruction* inst);
 | |
|     bool performPRE(Function& F);
 | |
|     Value* lookupNumber(BasicBlock* BB, uint32_t num);
 | |
|     bool mergeBlockIntoPredecessor(BasicBlock* BB);
 | |
|   };
 | |
|   
 | |
|   char GVN::ID = 0;
 | |
| }
 | |
| 
 | |
| // createGVNPass - The public interface to this file...
 | |
| FunctionPass *llvm::createGVNPass() { return new GVN(); }
 | |
| 
 | |
| static RegisterPass<GVN> X("gvn",
 | |
|                            "Global Value Numbering");
 | |
| 
 | |
| void GVN::dump(DenseMap<uint32_t, Value*>& d) {
 | |
|   printf("{\n");
 | |
|   for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
 | |
|        E = d.end(); I != E; ++I) {
 | |
|       printf("%d\n", I->first);
 | |
|       I->second->dump();
 | |
|   }
 | |
|   printf("}\n");
 | |
| }
 | |
| 
 | |
| Value* GVN::CollapsePhi(PHINode* p) {
 | |
|   DominatorTree &DT = getAnalysis<DominatorTree>();
 | |
|   Value* constVal = p->hasConstantValue();
 | |
|   
 | |
|   if (!constVal) return 0;
 | |
|   
 | |
|   Instruction* inst = dyn_cast<Instruction>(constVal);
 | |
|   if (!inst)
 | |
|     return constVal;
 | |
|     
 | |
|   if (DT.dominates(inst, p))
 | |
|     if (isSafeReplacement(p, inst))
 | |
|       return inst;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| bool GVN::isSafeReplacement(PHINode* p, Instruction* inst) {
 | |
|   if (!isa<PHINode>(inst))
 | |
|     return true;
 | |
|   
 | |
|   for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
 | |
|        UI != E; ++UI)
 | |
|     if (PHINode* use_phi = dyn_cast<PHINode>(UI))
 | |
|       if (use_phi->getParent() == inst->getParent())
 | |
|         return false;
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// GetValueForBlock - Get the value to use within the specified basic block.
 | |
| /// available values are in Phis.
 | |
| Value *GVN::GetValueForBlock(BasicBlock *BB, LoadInst* orig,
 | |
|                              DenseMap<BasicBlock*, Value*> &Phis,
 | |
|                              bool top_level) { 
 | |
|                                  
 | |
|   // If we have already computed this value, return the previously computed val.
 | |
|   DenseMap<BasicBlock*, Value*>::iterator V = Phis.find(BB);
 | |
|   if (V != Phis.end() && !top_level) return V->second;
 | |
|   
 | |
|   // If the block is unreachable, just return undef, since this path
 | |
|   // can't actually occur at runtime.
 | |
|   if (!getAnalysis<DominatorTree>().isReachableFromEntry(BB))
 | |
|     return Phis[BB] = UndefValue::get(orig->getType());
 | |
|   
 | |
|   BasicBlock* singlePred = BB->getSinglePredecessor();
 | |
|   if (singlePred) {
 | |
|     Value *ret = GetValueForBlock(singlePred, orig, Phis);
 | |
|     Phis[BB] = ret;
 | |
|     return ret;
 | |
|   }
 | |
|   
 | |
|   // Otherwise, the idom is the loop, so we need to insert a PHI node.  Do so
 | |
|   // now, then get values to fill in the incoming values for the PHI.
 | |
|   PHINode *PN = PHINode::Create(orig->getType(), orig->getName()+".rle",
 | |
|                                 BB->begin());
 | |
|   PN->reserveOperandSpace(std::distance(pred_begin(BB), pred_end(BB)));
 | |
|   
 | |
|   if (Phis.count(BB) == 0)
 | |
|     Phis.insert(std::make_pair(BB, PN));
 | |
|   
 | |
|   // Fill in the incoming values for the block.
 | |
|   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
 | |
|     Value* val = GetValueForBlock(*PI, orig, Phis);
 | |
|     PN->addIncoming(val, *PI);
 | |
|   }
 | |
|   
 | |
|   AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
 | |
|   AA.copyValue(orig, PN);
 | |
|   
 | |
|   // Attempt to collapse PHI nodes that are trivially redundant
 | |
|   Value* v = CollapsePhi(PN);
 | |
|   if (!v) {
 | |
|     // Cache our phi construction results
 | |
|     phiMap[orig->getPointerOperand()].insert(PN);
 | |
|     return PN;
 | |
|   }
 | |
|     
 | |
|   MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
 | |
| 
 | |
|   MD.removeInstruction(PN);
 | |
|   PN->replaceAllUsesWith(v);
 | |
| 
 | |
|   for (DenseMap<BasicBlock*, Value*>::iterator I = Phis.begin(),
 | |
|        E = Phis.end(); I != E; ++I)
 | |
|     if (I->second == PN)
 | |
|       I->second = v;
 | |
| 
 | |
|   PN->eraseFromParent();
 | |
| 
 | |
|   Phis[BB] = v;
 | |
|   return v;
 | |
| }
 | |
| 
 | |
| /// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
 | |
| /// non-local by performing PHI construction.
 | |
| bool GVN::processNonLocalLoad(LoadInst* L,
 | |
|                               SmallVectorImpl<Instruction*> &toErase) {
 | |
|   MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
 | |
|   
 | |
|   // Find the non-local dependencies of the load
 | |
|   DenseMap<BasicBlock*, Value*> deps;
 | |
|   MD.getNonLocalDependency(L, deps);
 | |
|   
 | |
|   // If we had to process more than one hundred blocks to find the
 | |
|   // dependencies, this load isn't worth worrying about.  Optimizing
 | |
|   // it will be too expensive.
 | |
|   if (deps.size() > 100)
 | |
|     return false;
 | |
|   
 | |
|   DenseMap<BasicBlock*, Value*> repl;
 | |
|   
 | |
|   // Filter out useless results (non-locals, etc)
 | |
|   for (DenseMap<BasicBlock*, Value*>::iterator I = deps.begin(), E = deps.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->second == MemoryDependenceAnalysis::None)
 | |
|       return false;
 | |
|   
 | |
|     if (I->second == MemoryDependenceAnalysis::NonLocal)
 | |
|       continue;
 | |
|   
 | |
|     if (StoreInst* S = dyn_cast<StoreInst>(I->second)) {
 | |
|       if (S->getPointerOperand() != L->getPointerOperand())
 | |
|         return false;
 | |
|       repl[I->first] = S->getOperand(0);
 | |
|     } else if (LoadInst* LD = dyn_cast<LoadInst>(I->second)) {
 | |
|       if (LD->getPointerOperand() != L->getPointerOperand())
 | |
|         return false;
 | |
|       repl[I->first] = LD;
 | |
|     } else {
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Use cached PHI construction information from previous runs
 | |
|   SmallPtrSet<Instruction*, 4>& p = phiMap[L->getPointerOperand()];
 | |
|   for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
 | |
|        I != E; ++I) {
 | |
|     if ((*I)->getParent() == L->getParent()) {
 | |
|       MD.removeInstruction(L);
 | |
|       L->replaceAllUsesWith(*I);
 | |
|       toErase.push_back(L);
 | |
|       NumGVNLoad++;
 | |
|       return true;
 | |
|     }
 | |
|     
 | |
|     repl.insert(std::make_pair((*I)->getParent(), *I));
 | |
|   }
 | |
|   
 | |
|   // Perform PHI construction
 | |
|   SmallPtrSet<BasicBlock*, 4> visited;
 | |
|   Value* v = GetValueForBlock(L->getParent(), L, repl, true);
 | |
|   
 | |
|   MD.removeInstruction(L);
 | |
|   L->replaceAllUsesWith(v);
 | |
|   toErase.push_back(L);
 | |
|   NumGVNLoad++;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// processLoad - Attempt to eliminate a load, first by eliminating it
 | |
| /// locally, and then attempting non-local elimination if that fails.
 | |
| bool GVN::processLoad(LoadInst *L, DenseMap<Value*, LoadInst*> &lastLoad,
 | |
|                       SmallVectorImpl<Instruction*> &toErase) {
 | |
|   if (L->isVolatile()) {
 | |
|     lastLoad[L->getPointerOperand()] = L;
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   Value* pointer = L->getPointerOperand();
 | |
|   LoadInst*& last = lastLoad[pointer];
 | |
|   
 | |
|   // ... to a pointer that has been loaded from before...
 | |
|   MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
 | |
|   bool removedNonLocal = false;
 | |
|   Instruction* dep = MD.getDependency(L);
 | |
|   if (dep == MemoryDependenceAnalysis::NonLocal &&
 | |
|       L->getParent() != &L->getParent()->getParent()->getEntryBlock()) {
 | |
|     removedNonLocal = processNonLocalLoad(L, toErase);
 | |
|     
 | |
|     if (!removedNonLocal)
 | |
|       last = L;
 | |
|     
 | |
|     return removedNonLocal;
 | |
|   }
 | |
|   
 | |
|   
 | |
|   bool deletedLoad = false;
 | |
|   
 | |
|   // Walk up the dependency chain until we either find
 | |
|   // a dependency we can use, or we can't walk any further
 | |
|   while (dep != MemoryDependenceAnalysis::None &&
 | |
|          dep != MemoryDependenceAnalysis::NonLocal &&
 | |
|          (isa<LoadInst>(dep) || isa<StoreInst>(dep))) {
 | |
|     // ... that depends on a store ...
 | |
|     if (StoreInst* S = dyn_cast<StoreInst>(dep)) {
 | |
|       if (S->getPointerOperand() == pointer) {
 | |
|         // Remove it!
 | |
|         MD.removeInstruction(L);
 | |
|         
 | |
|         L->replaceAllUsesWith(S->getOperand(0));
 | |
|         toErase.push_back(L);
 | |
|         deletedLoad = true;
 | |
|         NumGVNLoad++;
 | |
|       }
 | |
|       
 | |
|       // Whether we removed it or not, we can't
 | |
|       // go any further
 | |
|       break;
 | |
|     } else if (!last) {
 | |
|       // If we don't depend on a store, and we haven't
 | |
|       // been loaded before, bail.
 | |
|       break;
 | |
|     } else if (dep == last) {
 | |
|       // Remove it!
 | |
|       MD.removeInstruction(L);
 | |
|       
 | |
|       L->replaceAllUsesWith(last);
 | |
|       toErase.push_back(L);
 | |
|       deletedLoad = true;
 | |
|       NumGVNLoad++;
 | |
|         
 | |
|       break;
 | |
|     } else {
 | |
|       dep = MD.getDependency(L, dep);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (dep != MemoryDependenceAnalysis::None &&
 | |
|       dep != MemoryDependenceAnalysis::NonLocal &&
 | |
|       isa<AllocationInst>(dep)) {
 | |
|     // Check that this load is actually from the
 | |
|     // allocation we found
 | |
|     Value* v = L->getOperand(0);
 | |
|     while (true) {
 | |
|       if (BitCastInst *BC = dyn_cast<BitCastInst>(v))
 | |
|         v = BC->getOperand(0);
 | |
|       else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(v))
 | |
|         v = GEP->getOperand(0);
 | |
|       else
 | |
|         break;
 | |
|     }
 | |
|     if (v == dep) {
 | |
|       // If this load depends directly on an allocation, there isn't
 | |
|       // anything stored there; therefore, we can optimize this load
 | |
|       // to undef.
 | |
|       MD.removeInstruction(L);
 | |
| 
 | |
|       L->replaceAllUsesWith(UndefValue::get(L->getType()));
 | |
|       toErase.push_back(L);
 | |
|       deletedLoad = true;
 | |
|       NumGVNLoad++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!deletedLoad)
 | |
|     last = L;
 | |
|   
 | |
|   return deletedLoad;
 | |
| }
 | |
| 
 | |
| Value* GVN::lookupNumber(BasicBlock* BB, uint32_t num) {
 | |
|   DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
 | |
|   if (I == localAvail.end())
 | |
|     return 0;
 | |
|   
 | |
|   ValueNumberScope* locals = I->second;
 | |
|   
 | |
|   while (locals) {
 | |
|     DenseMap<uint32_t, Value*>::iterator I = locals->table.find(num);
 | |
|     if (I != locals->table.end())
 | |
|       return I->second;
 | |
|     else
 | |
|       locals = locals->parent;
 | |
|   }
 | |
|   
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// processInstruction - When calculating availability, handle an instruction
 | |
| /// by inserting it into the appropriate sets
 | |
| bool GVN::processInstruction(Instruction *I,
 | |
|                              DenseMap<Value*, LoadInst*> &lastSeenLoad,
 | |
|                              SmallVectorImpl<Instruction*> &toErase) {
 | |
|   if (LoadInst* L = dyn_cast<LoadInst>(I)) {
 | |
|     bool changed = processLoad(L, lastSeenLoad, toErase);
 | |
|     
 | |
|     if (!changed) {
 | |
|       unsigned num = VN.lookup_or_add(L);
 | |
|       localAvail[I->getParent()]->table.insert(std::make_pair(num, L));
 | |
|     }
 | |
|     
 | |
|     return changed;
 | |
|   }
 | |
|   
 | |
|   uint32_t nextNum = VN.getNextUnusedValueNumber();
 | |
|   unsigned num = VN.lookup_or_add(I);
 | |
|   
 | |
|   // Allocations are always uniquely numbered, so we can save time and memory
 | |
|   // by fast failing them.
 | |
|   if (isa<AllocationInst>(I) || isa<TerminatorInst>(I)) {
 | |
|     localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   // Collapse PHI nodes
 | |
|   if (PHINode* p = dyn_cast<PHINode>(I)) {
 | |
|     Value* constVal = CollapsePhi(p);
 | |
|     
 | |
|     if (constVal) {
 | |
|       for (PhiMapType::iterator PI = phiMap.begin(), PE = phiMap.end();
 | |
|            PI != PE; ++PI)
 | |
|         if (PI->second.count(p))
 | |
|           PI->second.erase(p);
 | |
|         
 | |
|       p->replaceAllUsesWith(constVal);
 | |
|       toErase.push_back(p);
 | |
|     } else {
 | |
|       localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
 | |
|     }
 | |
|   
 | |
|   // If the number we were assigned was a brand new VN, then we don't
 | |
|   // need to do a lookup to see if the number already exists
 | |
|   // somewhere in the domtree: it can't!
 | |
|   } else if (num == nextNum) {
 | |
|     localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
 | |
|     
 | |
|   // Perform value-number based elimination
 | |
|   } else if (Value* repl = lookupNumber(I->getParent(), num)) {
 | |
|     // Remove it!
 | |
|     MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
 | |
|     MD.removeInstruction(I);
 | |
|     
 | |
|     VN.erase(I);
 | |
|     I->replaceAllUsesWith(repl);
 | |
|     toErase.push_back(I);
 | |
|     return true;
 | |
|   } else {
 | |
|     localAvail[I->getParent()]->table.insert(std::make_pair(num, I));
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // GVN::runOnFunction - This is the main transformation entry point for a
 | |
| // function.
 | |
| //
 | |
| bool GVN::runOnFunction(Function& F) {
 | |
|   VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
 | |
|   VN.setMemDep(&getAnalysis<MemoryDependenceAnalysis>());
 | |
|   VN.setDomTree(&getAnalysis<DominatorTree>());
 | |
|   
 | |
|   bool changed = false;
 | |
|   bool shouldContinue = true;
 | |
|   
 | |
|   // Merge unconditional branches, allowing PRE to catch more
 | |
|   // optimization opportunities.
 | |
|   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
 | |
|     BasicBlock* BB = FI;
 | |
|     ++FI;
 | |
|     bool removedBlock = MergeBlockIntoPredecessor(BB, this);
 | |
|     if (removedBlock) NumGVNBlocks++;
 | |
|     
 | |
|     changed |= removedBlock;
 | |
|   }
 | |
|   
 | |
|   while (shouldContinue) {
 | |
|     shouldContinue = iterateOnFunction(F);
 | |
|     changed |= shouldContinue;
 | |
|   }
 | |
|   
 | |
|   if (EnablePRE) {
 | |
|     bool PREChanged = true;
 | |
|     while (PREChanged) {
 | |
|       PREChanged = performPRE(F);
 | |
|       changed |= PREChanged;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return changed;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool GVN::processBlock(DomTreeNode* DTN) {
 | |
|   BasicBlock* BB = DTN->getBlock();
 | |
| 
 | |
|   SmallVector<Instruction*, 8> toErase;
 | |
|   DenseMap<Value*, LoadInst*> lastSeenLoad;
 | |
|   bool changed_function = false;
 | |
|   
 | |
|   if (DTN->getIDom())
 | |
|     localAvail[BB] =
 | |
|                   new ValueNumberScope(localAvail[DTN->getIDom()->getBlock()]);
 | |
|   else
 | |
|     localAvail[BB] = new ValueNumberScope(0);
 | |
|   
 | |
|   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
 | |
|        BI != BE;) {
 | |
|     changed_function |= processInstruction(BI, lastSeenLoad, toErase);
 | |
|     if (toErase.empty()) {
 | |
|       ++BI;
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // If we need some instructions deleted, do it now.
 | |
|     NumGVNInstr += toErase.size();
 | |
|     
 | |
|     // Avoid iterator invalidation.
 | |
|     bool AtStart = BI == BB->begin();
 | |
|     if (!AtStart)
 | |
|       --BI;
 | |
| 
 | |
|     for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
 | |
|          E = toErase.end(); I != E; ++I)
 | |
|       (*I)->eraseFromParent();
 | |
| 
 | |
|     if (AtStart)
 | |
|       BI = BB->begin();
 | |
|     else
 | |
|       ++BI;
 | |
|     
 | |
|     toErase.clear();
 | |
|   }
 | |
|   
 | |
|   return changed_function;
 | |
| }
 | |
| 
 | |
| /// performPRE - Perform a purely local form of PRE that looks for diamond
 | |
| /// control flow patterns and attempts to perform simple PRE at the join point.
 | |
| bool GVN::performPRE(Function& F) {
 | |
|   bool changed = false;
 | |
|   SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
 | |
|   for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
 | |
|        DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
 | |
|     BasicBlock* CurrentBlock = *DI;
 | |
|     
 | |
|     // Nothing to PRE in the entry block.
 | |
|     if (CurrentBlock == &F.getEntryBlock()) continue;
 | |
|     
 | |
|     for (BasicBlock::iterator BI = CurrentBlock->begin(),
 | |
|          BE = CurrentBlock->end(); BI != BE; ) {
 | |
|       if (isa<AllocationInst>(BI) || isa<TerminatorInst>(BI) ||
 | |
|           isa<PHINode>(BI) || BI->mayReadFromMemory() ||
 | |
|           BI->mayWriteToMemory()) {
 | |
|         BI++;
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       uint32_t valno = VN.lookup(BI);
 | |
|       
 | |
|       // Look for the predecessors for PRE opportunities.  We're
 | |
|       // only trying to solve the basic diamond case, where
 | |
|       // a value is computed in the successor and one predecessor,
 | |
|       // but not the other.  We also explicitly disallow cases
 | |
|       // where the successor is its own predecessor, because they're
 | |
|       // more complicated to get right.
 | |
|       unsigned numWith = 0;
 | |
|       unsigned numWithout = 0;
 | |
|       BasicBlock* PREPred = 0;
 | |
|       DenseMap<BasicBlock*, Value*> predMap;
 | |
|       for (pred_iterator PI = pred_begin(CurrentBlock),
 | |
|            PE = pred_end(CurrentBlock); PI != PE; ++PI) {
 | |
|         // We're not interested in PRE where the block is its
 | |
|         // own predecessor, on in blocks with predecessors
 | |
|         // that are not reachable.
 | |
|         if (*PI == CurrentBlock) {
 | |
|           numWithout = 2;
 | |
|           break;
 | |
|         } else if (!localAvail.count(*PI))  {
 | |
|           numWithout = 2;
 | |
|           break;
 | |
|         }
 | |
|         
 | |
|         DenseMap<uint32_t, Value*>::iterator predV = 
 | |
|                                             localAvail[*PI]->table.find(valno);
 | |
|         if (predV == localAvail[*PI]->table.end()) {
 | |
|           PREPred = *PI;
 | |
|           numWithout++;
 | |
|         } else if (predV->second == BI) {
 | |
|           numWithout = 2;
 | |
|         } else {
 | |
|           predMap[*PI] = predV->second;
 | |
|           numWith++;
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       // Don't do PRE when it might increase code size, i.e. when
 | |
|       // we would need to insert instructions in more than one pred.
 | |
|       if (numWithout != 1 || numWith == 0) {
 | |
|         BI++;
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       // We can't do PRE safely on a critical edge, so instead we schedule
 | |
|       // the edge to be split and perform the PRE the next time we iterate
 | |
|       // on the function.
 | |
|       unsigned succNum = 0;
 | |
|       for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors();
 | |
|            i != e; ++i)
 | |
|         if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) {
 | |
|           succNum = i;
 | |
|           break;
 | |
|         }
 | |
|         
 | |
|       if (isCriticalEdge(PREPred->getTerminator(), succNum)) {
 | |
|         toSplit.push_back(std::make_pair(PREPred->getTerminator(), succNum));
 | |
|         changed = true;
 | |
|         BI++;
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       // Instantiate the expression the in predecessor that lacked it.
 | |
|       // Because we are going top-down through the block, all value numbers
 | |
|       // will be available in the predecessor by the time we need them.  Any
 | |
|       // that weren't original present will have been instantiated earlier
 | |
|       // in this loop.
 | |
|       Instruction* PREInstr = BI->clone();
 | |
|       bool success = true;
 | |
|       for (unsigned i = 0; i < BI->getNumOperands(); ++i) {
 | |
|         Value* op = BI->getOperand(i);
 | |
|         if (isa<Argument>(op) || isa<Constant>(op) || isa<GlobalValue>(op))
 | |
|           PREInstr->setOperand(i, op);
 | |
|         else {
 | |
|           Value* V = lookupNumber(PREPred, VN.lookup(op));
 | |
|           if (!V) {
 | |
|             success = false;
 | |
|             break;
 | |
|           } else
 | |
|             PREInstr->setOperand(i, V);
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       // Fail out if we encounter an operand that is not available in
 | |
|       // the PRE predecessor.  This is typically because of loads which 
 | |
|       // are not value numbered precisely.
 | |
|       if (!success) {
 | |
|         delete PREInstr;
 | |
|         BI++;
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       PREInstr->insertBefore(PREPred->getTerminator());
 | |
|       PREInstr->setName(BI->getName() + ".pre");
 | |
|       predMap[PREPred] = PREInstr;
 | |
|       VN.add(PREInstr, valno);
 | |
|       NumGVNPRE++;
 | |
|       
 | |
|       // Update the availability map to include the new instruction.
 | |
|       localAvail[PREPred]->table.insert(std::make_pair(valno, PREInstr));
 | |
|       
 | |
|       // Create a PHI to make the value available in this block.
 | |
|       PHINode* Phi = PHINode::Create(BI->getType(),
 | |
|                                      BI->getName() + ".pre-phi",
 | |
|                                      CurrentBlock->begin());
 | |
|       for (pred_iterator PI = pred_begin(CurrentBlock),
 | |
|            PE = pred_end(CurrentBlock); PI != PE; ++PI)
 | |
|         Phi->addIncoming(predMap[*PI], *PI);
 | |
|       
 | |
|       VN.add(Phi, valno);
 | |
|       localAvail[CurrentBlock]->table[valno] = Phi;
 | |
|       
 | |
|       BI->replaceAllUsesWith(Phi);
 | |
|       VN.erase(BI);
 | |
|       
 | |
|       Instruction* erase = BI;
 | |
|       BI++;
 | |
|       erase->eraseFromParent();
 | |
|       
 | |
|       changed = true;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   for (SmallVector<std::pair<TerminatorInst*, unsigned>, 4>::iterator
 | |
|        I = toSplit.begin(), E = toSplit.end(); I != E; ++I)
 | |
|     SplitCriticalEdge(I->first, I->second, this);
 | |
|   
 | |
|   return changed || toSplit.size();
 | |
| }
 | |
| 
 | |
| // iterateOnFunction - Executes one iteration of GVN
 | |
| bool GVN::iterateOnFunction(Function &F) {
 | |
|   // Clean out global sets from any previous functions
 | |
|   VN.clear();
 | |
|   phiMap.clear();
 | |
|   
 | |
|   for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
 | |
|        I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
 | |
|     delete I->second;
 | |
|   localAvail.clear();
 | |
|   
 | |
|   DominatorTree &DT = getAnalysis<DominatorTree>();   
 | |
| 
 | |
|   // Top-down walk of the dominator tree
 | |
|   bool changed = false;
 | |
|   for (df_iterator<DomTreeNode*> DI = df_begin(DT.getRootNode()),
 | |
|        DE = df_end(DT.getRootNode()); DI != DE; ++DI)
 | |
|     changed |= processBlock(*DI);
 | |
|   
 | |
|   return changed;
 | |
| }
 |