llvm-6502/lib/Target/PowerPC/PPCISelLowering.h
Hal Finkel 63c32a7a9f Cleanup PPC reciprocal-estimate functionality
Incorporating review feedback from Bill Schmidt on r178617. No functionality
change intended.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178672 91177308-0d34-0410-b5e6-96231b3b80d8
2013-04-03 17:44:56 +00:00

633 lines
28 KiB
C++

//===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that PPC uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
#define LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
#include "PPC.h"
#include "PPCRegisterInfo.h"
#include "PPCSubtarget.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/Target/TargetLowering.h"
namespace llvm {
namespace PPCISD {
enum NodeType {
// Start the numbering where the builtin ops and target ops leave off.
FIRST_NUMBER = ISD::BUILTIN_OP_END,
/// FSEL - Traditional three-operand fsel node.
///
FSEL,
/// FCFID - The FCFID instruction, taking an f64 operand and producing
/// and f64 value containing the FP representation of the integer that
/// was temporarily in the f64 operand.
FCFID,
/// Newer FCFID[US] integer-to-floating-point conversion instructions for
/// unsigned integers and single-precision outputs.
FCFIDU, FCFIDS, FCFIDUS,
/// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
/// operand, producing an f64 value containing the integer representation
/// of that FP value.
FCTIDZ, FCTIWZ,
/// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
/// unsigned integers.
FCTIDUZ, FCTIWUZ,
/// Reciprocal estimate instructions (unary FP ops).
FRE, FRSQRTE,
// VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
// three v4f32 operands and producing a v4f32 result.
VMADDFP, VNMSUBFP,
/// VPERM - The PPC VPERM Instruction.
///
VPERM,
/// Hi/Lo - These represent the high and low 16-bit parts of a global
/// address respectively. These nodes have two operands, the first of
/// which must be a TargetGlobalAddress, and the second of which must be a
/// Constant. Selected naively, these turn into 'lis G+C' and 'li G+C',
/// though these are usually folded into other nodes.
Hi, Lo,
TOC_ENTRY,
/// The following three target-specific nodes are used for calls through
/// function pointers in the 64-bit SVR4 ABI.
/// Restore the TOC from the TOC save area of the current stack frame.
/// This is basically a hard coded load instruction which additionally
/// takes/produces a flag.
TOC_RESTORE,
/// Like a regular LOAD but additionally taking/producing a flag.
LOAD,
/// LOAD into r2 (also taking/producing a flag). Like TOC_RESTORE, this is
/// a hard coded load instruction.
LOAD_TOC,
/// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
/// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
/// compute an allocation on the stack.
DYNALLOC,
/// GlobalBaseReg - On Darwin, this node represents the result of the mflr
/// at function entry, used for PIC code.
GlobalBaseReg,
/// These nodes represent the 32-bit PPC shifts that operate on 6-bit
/// shift amounts. These nodes are generated by the multi-precision shift
/// code.
SRL, SRA, SHL,
/// CALL - A direct function call.
/// CALL_NOP is a call with the special NOP which follows 64-bit
/// SVR4 calls.
CALL, CALL_NOP,
/// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
/// MTCTR instruction.
MTCTR,
/// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
/// BCTRL instruction.
BCTRL,
/// Return with a flag operand, matched by 'blr'
RET_FLAG,
/// R32 = MFCR(CRREG, INFLAG) - Represents the MFCRpseud/MFOCRF
/// instructions. This copies the bits corresponding to the specified
/// CRREG into the resultant GPR. Bits corresponding to other CR regs
/// are undefined.
MFCR,
// EH_SJLJ_SETJMP - SjLj exception handling setjmp.
EH_SJLJ_SETJMP,
// EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
EH_SJLJ_LONGJMP,
/// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
/// instructions. For lack of better number, we use the opcode number
/// encoding for the OPC field to identify the compare. For example, 838
/// is VCMPGTSH.
VCMP,
/// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
/// altivec VCMP*o instructions. For lack of better number, we use the
/// opcode number encoding for the OPC field to identify the compare. For
/// example, 838 is VCMPGTSH.
VCMPo,
/// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
/// corresponds to the COND_BRANCH pseudo instruction. CRRC is the
/// condition register to branch on, OPC is the branch opcode to use (e.g.
/// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
/// an optional input flag argument.
COND_BRANCH,
/// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
/// towards zero. Used only as part of the long double-to-int
/// conversion sequence.
FADDRTZ,
/// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
MFFS,
/// LARX = This corresponds to PPC l{w|d}arx instrcution: load and
/// reserve indexed. This is used to implement atomic operations.
LARX,
/// STCX = This corresponds to PPC stcx. instrcution: store conditional
/// indexed. This is used to implement atomic operations.
STCX,
/// TC_RETURN - A tail call return.
/// operand #0 chain
/// operand #1 callee (register or absolute)
/// operand #2 stack adjustment
/// operand #3 optional in flag
TC_RETURN,
/// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
CR6SET,
CR6UNSET,
/// G8RC = ADDIS_GOT_TPREL_HA %X2, Symbol - Used by the initial-exec
/// TLS model, produces an ADDIS8 instruction that adds the GOT
/// base to sym@got@tprel@ha.
ADDIS_GOT_TPREL_HA,
/// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
/// TLS model, produces a LD instruction with base register G8RReg
/// and offset sym@got@tprel@l. This completes the addition that
/// finds the offset of "sym" relative to the thread pointer.
LD_GOT_TPREL_L,
/// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
/// model, produces an ADD instruction that adds the contents of
/// G8RReg to the thread pointer. Symbol contains a relocation
/// sym@tls which is to be replaced by the thread pointer and
/// identifies to the linker that the instruction is part of a
/// TLS sequence.
ADD_TLS,
/// G8RC = ADDIS_TLSGD_HA %X2, Symbol - For the general-dynamic TLS
/// model, produces an ADDIS8 instruction that adds the GOT base
/// register to sym@got@tlsgd@ha.
ADDIS_TLSGD_HA,
/// G8RC = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
/// model, produces an ADDI8 instruction that adds G8RReg to
/// sym@got@tlsgd@l.
ADDI_TLSGD_L,
/// G8RC = GET_TLS_ADDR %X3, Symbol - For the general-dynamic TLS
/// model, produces a call to __tls_get_addr(sym@tlsgd).
GET_TLS_ADDR,
/// G8RC = ADDIS_TLSLD_HA %X2, Symbol - For the local-dynamic TLS
/// model, produces an ADDIS8 instruction that adds the GOT base
/// register to sym@got@tlsld@ha.
ADDIS_TLSLD_HA,
/// G8RC = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
/// model, produces an ADDI8 instruction that adds G8RReg to
/// sym@got@tlsld@l.
ADDI_TLSLD_L,
/// G8RC = GET_TLSLD_ADDR %X3, Symbol - For the local-dynamic TLS
/// model, produces a call to __tls_get_addr(sym@tlsld).
GET_TLSLD_ADDR,
/// G8RC = ADDIS_DTPREL_HA %X3, Symbol, Chain - For the
/// local-dynamic TLS model, produces an ADDIS8 instruction
/// that adds X3 to sym@dtprel@ha. The Chain operand is needed
/// to tie this in place following a copy to %X3 from the result
/// of a GET_TLSLD_ADDR.
ADDIS_DTPREL_HA,
/// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
/// model, produces an ADDI8 instruction that adds G8RReg to
/// sym@got@dtprel@l.
ADDI_DTPREL_L,
/// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
/// during instruction selection to optimize a BUILD_VECTOR into
/// operations on splats. This is necessary to avoid losing these
/// optimizations due to constant folding.
VADD_SPLAT,
/// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
/// byte-swapping store instruction. It byte-swaps the low "Type" bits of
/// the GPRC input, then stores it through Ptr. Type can be either i16 or
/// i32.
STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE,
/// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
/// byte-swapping load instruction. It loads "Type" bits, byte swaps it,
/// then puts it in the bottom bits of the GPRC. TYPE can be either i16
/// or i32.
LBRX,
/// STFIWX - The STFIWX instruction. The first operand is an input token
/// chain, then an f64 value to store, then an address to store it to.
STFIWX,
/// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
/// load which sign-extends from a 32-bit integer value into the
/// destination 64-bit register.
LFIWAX,
/// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
/// load which zero-extends from a 32-bit integer value into the
/// destination 64-bit register.
LFIWZX,
/// G8RC = ADDIS_TOC_HA %X2, Symbol - For medium and large code model,
/// produces an ADDIS8 instruction that adds the TOC base register to
/// sym@toc@ha.
ADDIS_TOC_HA,
/// G8RC = LD_TOC_L Symbol, G8RReg - For medium and large code model,
/// produces a LD instruction with base register G8RReg and offset
/// sym@toc@l. Preceded by an ADDIS_TOC_HA to form a full 32-bit offset.
LD_TOC_L,
/// G8RC = ADDI_TOC_L G8RReg, Symbol - For medium code model, produces
/// an ADDI8 instruction that adds G8RReg to sym@toc@l.
/// Preceded by an ADDIS_TOC_HA to form a full 32-bit offset.
ADDI_TOC_L
};
}
/// Define some predicates that are used for node matching.
namespace PPC {
/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
/// VPKUHUM instruction.
bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary);
/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
/// VPKUWUM instruction.
bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary);
/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
bool isUnary);
/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
bool isUnary);
/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
/// amount, otherwise return -1.
int isVSLDOIShuffleMask(SDNode *N, bool isUnary);
/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a splat of a single element that is suitable for input to
/// VSPLTB/VSPLTH/VSPLTW.
bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
/// isAllNegativeZeroVector - Returns true if all elements of build_vector
/// are -0.0.
bool isAllNegativeZeroVector(SDNode *N);
/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize);
/// get_VSPLTI_elt - If this is a build_vector of constants which can be
/// formed by using a vspltis[bhw] instruction of the specified element
/// size, return the constant being splatted. The ByteSize field indicates
/// the number of bytes of each element [124] -> [bhw].
SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
}
class PPCTargetLowering : public TargetLowering {
const PPCSubtarget &PPCSubTarget;
const PPCRegisterInfo *PPCRegInfo;
public:
explicit PPCTargetLowering(PPCTargetMachine &TM);
/// getTargetNodeName() - This method returns the name of a target specific
/// DAG node.
virtual const char *getTargetNodeName(unsigned Opcode) const;
virtual MVT getScalarShiftAmountTy(EVT LHSTy) const { return MVT::i32; }
/// getSetCCResultType - Return the ISD::SETCC ValueType
virtual EVT getSetCCResultType(EVT VT) const;
/// getPreIndexedAddressParts - returns true by value, base pointer and
/// offset pointer and addressing mode by reference if the node's address
/// can be legally represented as pre-indexed load / store address.
virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
SDValue &Offset,
ISD::MemIndexedMode &AM,
SelectionDAG &DAG) const;
/// SelectAddressRegReg - Given the specified addressed, check to see if it
/// can be represented as an indexed [r+r] operation. Returns false if it
/// can be more efficiently represented with [r+imm].
bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
SelectionDAG &DAG) const;
/// SelectAddressRegImm - Returns true if the address N can be represented
/// by a base register plus a signed 16-bit displacement [r+imm], and if it
/// is not better represented as reg+reg.
bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
SelectionDAG &DAG) const;
/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
/// represented as an indexed [r+r] operation.
bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
SelectionDAG &DAG) const;
/// SelectAddressRegImmShift - Returns true if the address N can be
/// represented by a base register plus a signed 14-bit displacement
/// [r+imm*4]. Suitable for use by STD and friends.
bool SelectAddressRegImmShift(SDValue N, SDValue &Disp, SDValue &Base,
SelectionDAG &DAG) const;
Sched::Preference getSchedulingPreference(SDNode *N) const;
/// LowerOperation - Provide custom lowering hooks for some operations.
///
virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
/// ReplaceNodeResults - Replace the results of node with an illegal result
/// type with new values built out of custom code.
///
virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
SelectionDAG &DAG) const;
virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
virtual void computeMaskedBitsForTargetNode(const SDValue Op,
APInt &KnownZero,
APInt &KnownOne,
const SelectionDAG &DAG,
unsigned Depth = 0) const;
virtual MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *MBB) const;
MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI,
MachineBasicBlock *MBB, bool is64Bit,
unsigned BinOpcode) const;
MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr *MI,
MachineBasicBlock *MBB,
bool is8bit, unsigned Opcode) const;
MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr *MI,
MachineBasicBlock *MBB) const;
MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr *MI,
MachineBasicBlock *MBB) const;
ConstraintType getConstraintType(const std::string &Constraint) const;
/// Examine constraint string and operand type and determine a weight value.
/// The operand object must already have been set up with the operand type.
ConstraintWeight getSingleConstraintMatchWeight(
AsmOperandInfo &info, const char *constraint) const;
std::pair<unsigned, const TargetRegisterClass*>
getRegForInlineAsmConstraint(const std::string &Constraint,
EVT VT) const;
/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
/// function arguments in the caller parameter area. This is the actual
/// alignment, not its logarithm.
unsigned getByValTypeAlignment(Type *Ty) const;
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
/// vector. If it is invalid, don't add anything to Ops.
virtual void LowerAsmOperandForConstraint(SDValue Op,
std::string &Constraint,
std::vector<SDValue> &Ops,
SelectionDAG &DAG) const;
/// isLegalAddressingMode - Return true if the addressing mode represented
/// by AM is legal for this target, for a load/store of the specified type.
virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty)const;
/// isLegalAddressImmediate - Return true if the integer value can be used
/// as the offset of the target addressing mode for load / store of the
/// given type.
virtual bool isLegalAddressImmediate(int64_t V, Type *Ty) const;
/// isLegalAddressImmediate - Return true if the GlobalValue can be used as
/// the offset of the target addressing mode.
virtual bool isLegalAddressImmediate(GlobalValue *GV) const;
virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
/// getOptimalMemOpType - Returns the target specific optimal type for load
/// and store operations as a result of memset, memcpy, and memmove
/// lowering. If DstAlign is zero that means it's safe to destination
/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
/// means there isn't a need to check it against alignment requirement,
/// probably because the source does not need to be loaded. If 'IsMemset' is
/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
/// source is constant so it does not need to be loaded.
/// It returns EVT::Other if the type should be determined using generic
/// target-independent logic.
virtual EVT
getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
MachineFunction &MF) const;
/// Is unaligned memory access allowed for the given type, and is it fast
/// relative to software emulation.
virtual bool allowsUnalignedMemoryAccesses(EVT VT, bool *Fast = 0) const;
/// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
/// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
/// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
/// is expanded to mul + add.
virtual bool isFMAFasterThanMulAndAdd(EVT VT) const;
private:
SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
bool
IsEligibleForTailCallOptimization(SDValue Callee,
CallingConv::ID CalleeCC,
bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
SelectionDAG& DAG) const;
SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
int SPDiff,
SDValue Chain,
SDValue &LROpOut,
SDValue &FPOpOut,
bool isDarwinABI,
DebugLoc dl) const;
SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
const PPCSubtarget &Subtarget) const;
SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG,
const PPCSubtarget &Subtarget) const;
SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
const PPCSubtarget &Subtarget) const;
SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
const PPCSubtarget &Subtarget) const;
SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, DebugLoc dl) const;
SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const;
SDValue FinishCall(CallingConv::ID CallConv, DebugLoc dl, bool isTailCall,
bool isVarArg,
SelectionDAG &DAG,
SmallVector<std::pair<unsigned, SDValue>, 8>
&RegsToPass,
SDValue InFlag, SDValue Chain,
SDValue &Callee,
int SPDiff, unsigned NumBytes,
const SmallVectorImpl<ISD::InputArg> &Ins,
SmallVectorImpl<SDValue> &InVals) const;
virtual SDValue
LowerFormalArguments(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const;
virtual SDValue
LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const;
virtual bool
CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext &Context) const;
virtual SDValue
LowerReturn(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
DebugLoc dl, SelectionDAG &DAG) const;
SDValue
extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, SelectionDAG &DAG,
SDValue ArgVal, DebugLoc dl) const;
void
setMinReservedArea(MachineFunction &MF, SelectionDAG &DAG,
unsigned nAltivecParamsAtEnd,
unsigned MinReservedArea, bool isPPC64) const;
SDValue
LowerFormalArguments_Darwin(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const;
SDValue
LowerFormalArguments_64SVR4(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const;
SDValue
LowerFormalArguments_32SVR4(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const;
SDValue
createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
SelectionDAG &DAG, DebugLoc dl) const;
SDValue
LowerCall_Darwin(SDValue Chain, SDValue Callee,
CallingConv::ID CallConv,
bool isVarArg, bool isTailCall,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const;
SDValue
LowerCall_64SVR4(SDValue Chain, SDValue Callee,
CallingConv::ID CallConv,
bool isVarArg, bool isTailCall,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const;
SDValue
LowerCall_32SVR4(SDValue Chain, SDValue Callee, CallingConv::ID CallConv,
bool isVarArg, bool isTailCall,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const;
SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
SDValue DAGCombineFastRecip(SDValue Op, DAGCombinerInfo &DCI) const;
SDValue DAGCombineFastRecipFSQRT(SDValue Op, DAGCombinerInfo &DCI) const;
};
}
#endif // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H