llvm-6502/lib/Target/R600/R600Instructions.td
Vincent Lejeune 08001a5a15 R600: Add support for native control flow
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178505 91177308-0d34-0410-b5e6-96231b3b80d8
2013-04-01 21:48:05 +00:00

2268 lines
67 KiB
TableGen

//===-- R600Instructions.td - R600 Instruction defs -------*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// R600 Tablegen instruction definitions
//
//===----------------------------------------------------------------------===//
include "R600Intrinsics.td"
class InstR600 <bits<11> inst, dag outs, dag ins, string asm, list<dag> pattern,
InstrItinClass itin>
: AMDGPUInst <outs, ins, asm, pattern> {
field bits<64> Inst;
bit Trig = 0;
bit Op3 = 0;
bit isVector = 0;
bits<2> FlagOperandIdx = 0;
bit Op1 = 0;
bit Op2 = 0;
bit HasNativeOperands = 0;
bits<11> op_code = inst;
//let Inst = inst;
let Namespace = "AMDGPU";
let OutOperandList = outs;
let InOperandList = ins;
let AsmString = asm;
let Pattern = pattern;
let Itinerary = itin;
let TSFlags{4} = Trig;
let TSFlags{5} = Op3;
// Vector instructions are instructions that must fill all slots in an
// instruction group
let TSFlags{6} = isVector;
let TSFlags{8-7} = FlagOperandIdx;
let TSFlags{9} = HasNativeOperands;
let TSFlags{10} = Op1;
let TSFlags{11} = Op2;
}
class InstR600ISA <dag outs, dag ins, string asm, list<dag> pattern> :
AMDGPUInst <outs, ins, asm, pattern> {
field bits<64> Inst;
let Namespace = "AMDGPU";
}
def MEMxi : Operand<iPTR> {
let MIOperandInfo = (ops R600_TReg32_X:$ptr, i32imm:$index);
let PrintMethod = "printMemOperand";
}
def MEMrr : Operand<iPTR> {
let MIOperandInfo = (ops R600_Reg32:$ptr, R600_Reg32:$index);
}
// Operands for non-registers
class InstFlag<string PM = "printOperand", int Default = 0>
: OperandWithDefaultOps <i32, (ops (i32 Default))> {
let PrintMethod = PM;
}
// src_sel for ALU src operands, see also ALU_CONST, ALU_PARAM registers
def SEL : OperandWithDefaultOps <i32, (ops (i32 -1))> {
let PrintMethod = "printSel";
}
def LITERAL : InstFlag<"printLiteral">;
def WRITE : InstFlag <"printWrite", 1>;
def OMOD : InstFlag <"printOMOD">;
def REL : InstFlag <"printRel">;
def CLAMP : InstFlag <"printClamp">;
def NEG : InstFlag <"printNeg">;
def ABS : InstFlag <"printAbs">;
def UEM : InstFlag <"printUpdateExecMask">;
def UP : InstFlag <"printUpdatePred">;
// XXX: The r600g finalizer in Mesa expects last to be one in most cases.
// Once we start using the packetizer in this backend we should have this
// default to 0.
def LAST : InstFlag<"printLast", 1>;
def FRAMEri : Operand<iPTR> {
let MIOperandInfo = (ops R600_Reg32:$ptr, i32imm:$index);
}
def ADDRParam : ComplexPattern<i32, 2, "SelectADDRParam", [], []>;
def ADDRDWord : ComplexPattern<i32, 1, "SelectADDRDWord", [], []>;
def ADDRVTX_READ : ComplexPattern<i32, 2, "SelectADDRVTX_READ", [], []>;
def ADDRGA_CONST_OFFSET : ComplexPattern<i32, 1, "SelectGlobalValueConstantOffset", [], []>;
def ADDRGA_VAR_OFFSET : ComplexPattern<i32, 2, "SelectGlobalValueVariableOffset", [], []>;
def ADDRIndirect : ComplexPattern<iPTR, 2, "SelectADDRIndirect", [], []>;
class R600ALU_Word0 {
field bits<32> Word0;
bits<11> src0;
bits<1> src0_neg;
bits<1> src0_rel;
bits<11> src1;
bits<1> src1_rel;
bits<1> src1_neg;
bits<3> index_mode = 0;
bits<2> pred_sel;
bits<1> last;
bits<9> src0_sel = src0{8-0};
bits<2> src0_chan = src0{10-9};
bits<9> src1_sel = src1{8-0};
bits<2> src1_chan = src1{10-9};
let Word0{8-0} = src0_sel;
let Word0{9} = src0_rel;
let Word0{11-10} = src0_chan;
let Word0{12} = src0_neg;
let Word0{21-13} = src1_sel;
let Word0{22} = src1_rel;
let Word0{24-23} = src1_chan;
let Word0{25} = src1_neg;
let Word0{28-26} = index_mode;
let Word0{30-29} = pred_sel;
let Word0{31} = last;
}
class R600ALU_Word1 {
field bits<32> Word1;
bits<11> dst;
bits<3> bank_swizzle = 0;
bits<1> dst_rel;
bits<1> clamp;
bits<7> dst_sel = dst{6-0};
bits<2> dst_chan = dst{10-9};
let Word1{20-18} = bank_swizzle;
let Word1{27-21} = dst_sel;
let Word1{28} = dst_rel;
let Word1{30-29} = dst_chan;
let Word1{31} = clamp;
}
class R600ALU_Word1_OP2 <bits<11> alu_inst> : R600ALU_Word1{
bits<1> src0_abs;
bits<1> src1_abs;
bits<1> update_exec_mask;
bits<1> update_pred;
bits<1> write;
bits<2> omod;
let Word1{0} = src0_abs;
let Word1{1} = src1_abs;
let Word1{2} = update_exec_mask;
let Word1{3} = update_pred;
let Word1{4} = write;
let Word1{6-5} = omod;
let Word1{17-7} = alu_inst;
}
class R600ALU_Word1_OP3 <bits<5> alu_inst> : R600ALU_Word1{
bits<11> src2;
bits<1> src2_rel;
bits<1> src2_neg;
bits<9> src2_sel = src2{8-0};
bits<2> src2_chan = src2{10-9};
let Word1{8-0} = src2_sel;
let Word1{9} = src2_rel;
let Word1{11-10} = src2_chan;
let Word1{12} = src2_neg;
let Word1{17-13} = alu_inst;
}
class VTX_WORD0 {
field bits<32> Word0;
bits<7> SRC_GPR;
bits<5> VC_INST;
bits<2> FETCH_TYPE;
bits<1> FETCH_WHOLE_QUAD;
bits<8> BUFFER_ID;
bits<1> SRC_REL;
bits<2> SRC_SEL_X;
bits<6> MEGA_FETCH_COUNT;
let Word0{4-0} = VC_INST;
let Word0{6-5} = FETCH_TYPE;
let Word0{7} = FETCH_WHOLE_QUAD;
let Word0{15-8} = BUFFER_ID;
let Word0{22-16} = SRC_GPR;
let Word0{23} = SRC_REL;
let Word0{25-24} = SRC_SEL_X;
let Word0{31-26} = MEGA_FETCH_COUNT;
}
class VTX_WORD1_GPR {
field bits<32> Word1;
bits<7> DST_GPR;
bits<1> DST_REL;
bits<3> DST_SEL_X;
bits<3> DST_SEL_Y;
bits<3> DST_SEL_Z;
bits<3> DST_SEL_W;
bits<1> USE_CONST_FIELDS;
bits<6> DATA_FORMAT;
bits<2> NUM_FORMAT_ALL;
bits<1> FORMAT_COMP_ALL;
bits<1> SRF_MODE_ALL;
let Word1{6-0} = DST_GPR;
let Word1{7} = DST_REL;
let Word1{8} = 0; // Reserved
let Word1{11-9} = DST_SEL_X;
let Word1{14-12} = DST_SEL_Y;
let Word1{17-15} = DST_SEL_Z;
let Word1{20-18} = DST_SEL_W;
let Word1{21} = USE_CONST_FIELDS;
let Word1{27-22} = DATA_FORMAT;
let Word1{29-28} = NUM_FORMAT_ALL;
let Word1{30} = FORMAT_COMP_ALL;
let Word1{31} = SRF_MODE_ALL;
}
class TEX_WORD0 {
field bits<32> Word0;
bits<5> TEX_INST;
bits<2> INST_MOD;
bits<1> FETCH_WHOLE_QUAD;
bits<8> RESOURCE_ID;
bits<7> SRC_GPR;
bits<1> SRC_REL;
bits<1> ALT_CONST;
bits<2> RESOURCE_INDEX_MODE;
bits<2> SAMPLER_INDEX_MODE;
let Word0{4-0} = TEX_INST;
let Word0{6-5} = INST_MOD;
let Word0{7} = FETCH_WHOLE_QUAD;
let Word0{15-8} = RESOURCE_ID;
let Word0{22-16} = SRC_GPR;
let Word0{23} = SRC_REL;
let Word0{24} = ALT_CONST;
let Word0{26-25} = RESOURCE_INDEX_MODE;
let Word0{28-27} = SAMPLER_INDEX_MODE;
}
class TEX_WORD1 {
field bits<32> Word1;
bits<7> DST_GPR;
bits<1> DST_REL;
bits<3> DST_SEL_X;
bits<3> DST_SEL_Y;
bits<3> DST_SEL_Z;
bits<3> DST_SEL_W;
bits<7> LOD_BIAS;
bits<1> COORD_TYPE_X;
bits<1> COORD_TYPE_Y;
bits<1> COORD_TYPE_Z;
bits<1> COORD_TYPE_W;
let Word1{6-0} = DST_GPR;
let Word1{7} = DST_REL;
let Word1{11-9} = DST_SEL_X;
let Word1{14-12} = DST_SEL_Y;
let Word1{17-15} = DST_SEL_Z;
let Word1{20-18} = DST_SEL_W;
let Word1{27-21} = LOD_BIAS;
let Word1{28} = COORD_TYPE_X;
let Word1{29} = COORD_TYPE_Y;
let Word1{30} = COORD_TYPE_Z;
let Word1{31} = COORD_TYPE_W;
}
class TEX_WORD2 {
field bits<32> Word2;
bits<5> OFFSET_X;
bits<5> OFFSET_Y;
bits<5> OFFSET_Z;
bits<5> SAMPLER_ID;
bits<3> SRC_SEL_X;
bits<3> SRC_SEL_Y;
bits<3> SRC_SEL_Z;
bits<3> SRC_SEL_W;
let Word2{4-0} = OFFSET_X;
let Word2{9-5} = OFFSET_Y;
let Word2{14-10} = OFFSET_Z;
let Word2{19-15} = SAMPLER_ID;
let Word2{22-20} = SRC_SEL_X;
let Word2{25-23} = SRC_SEL_Y;
let Word2{28-26} = SRC_SEL_Z;
let Word2{31-29} = SRC_SEL_W;
}
/*
XXX: R600 subtarget uses a slightly different encoding than the other
subtargets. We currently handle this in R600MCCodeEmitter, but we may
want to use these instruction classes in the future.
class R600ALU_Word1_OP2_r600 : R600ALU_Word1_OP2 {
bits<1> fog_merge;
bits<10> alu_inst;
let Inst{37} = fog_merge;
let Inst{39-38} = omod;
let Inst{49-40} = alu_inst;
}
class R600ALU_Word1_OP2_r700 : R600ALU_Word1_OP2 {
bits<11> alu_inst;
let Inst{38-37} = omod;
let Inst{49-39} = alu_inst;
}
*/
def R600_Pred : PredicateOperand<i32, (ops R600_Predicate),
(ops PRED_SEL_OFF)>;
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
// Class for instructions with only one source register.
// If you add new ins to this instruction, make sure they are listed before
// $literal, because the backend currently assumes that the last operand is
// a literal. Also be sure to update the enum R600Op1OperandIndex::ROI in
// R600Defines.h, R600InstrInfo::buildDefaultInstruction(),
// and R600InstrInfo::getOperandIdx().
class R600_1OP <bits<11> inst, string opName, list<dag> pattern,
InstrItinClass itin = AnyALU> :
InstR600 <0,
(outs R600_Reg32:$dst),
(ins WRITE:$write, OMOD:$omod, REL:$dst_rel, CLAMP:$clamp,
R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel, ABS:$src0_abs, SEL:$src0_sel,
LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal),
!strconcat(" ", opName,
"$clamp $dst$write$dst_rel$omod, "
"$src0_neg$src0_abs$src0$src0_abs$src0_rel, "
"$literal $pred_sel$last"),
pattern,
itin>,
R600ALU_Word0,
R600ALU_Word1_OP2 <inst> {
let src1 = 0;
let src1_rel = 0;
let src1_neg = 0;
let src1_abs = 0;
let update_exec_mask = 0;
let update_pred = 0;
let HasNativeOperands = 1;
let Op1 = 1;
let DisableEncoding = "$literal";
let Inst{31-0} = Word0;
let Inst{63-32} = Word1;
}
class R600_1OP_Helper <bits<11> inst, string opName, SDPatternOperator node,
InstrItinClass itin = AnyALU> :
R600_1OP <inst, opName,
[(set R600_Reg32:$dst, (node R600_Reg32:$src0))]
>;
// If you add our change the operands for R600_2OP instructions, you must
// also update the R600Op2OperandIndex::ROI enum in R600Defines.h,
// R600InstrInfo::buildDefaultInstruction(), and R600InstrInfo::getOperandIdx().
class R600_2OP <bits<11> inst, string opName, list<dag> pattern,
InstrItinClass itin = AnyALU> :
InstR600 <inst,
(outs R600_Reg32:$dst),
(ins UEM:$update_exec_mask, UP:$update_pred, WRITE:$write,
OMOD:$omod, REL:$dst_rel, CLAMP:$clamp,
R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel, ABS:$src0_abs, SEL:$src0_sel,
R600_Reg32:$src1, NEG:$src1_neg, REL:$src1_rel, ABS:$src1_abs, SEL:$src1_sel,
LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal),
!strconcat(" ", opName,
"$clamp $update_exec_mask$update_pred$dst$write$dst_rel$omod, "
"$src0_neg$src0_abs$src0$src0_abs$src0_rel, "
"$src1_neg$src1_abs$src1$src1_abs$src1_rel, "
"$literal $pred_sel$last"),
pattern,
itin>,
R600ALU_Word0,
R600ALU_Word1_OP2 <inst> {
let HasNativeOperands = 1;
let Op2 = 1;
let DisableEncoding = "$literal";
let Inst{31-0} = Word0;
let Inst{63-32} = Word1;
}
class R600_2OP_Helper <bits<11> inst, string opName, SDPatternOperator node,
InstrItinClass itim = AnyALU> :
R600_2OP <inst, opName,
[(set R600_Reg32:$dst, (node R600_Reg32:$src0,
R600_Reg32:$src1))]
>;
// If you add our change the operands for R600_3OP instructions, you must
// also update the R600Op3OperandIndex::ROI enum in R600Defines.h,
// R600InstrInfo::buildDefaultInstruction(), and
// R600InstrInfo::getOperandIdx().
class R600_3OP <bits<5> inst, string opName, list<dag> pattern,
InstrItinClass itin = AnyALU> :
InstR600 <0,
(outs R600_Reg32:$dst),
(ins REL:$dst_rel, CLAMP:$clamp,
R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel, SEL:$src0_sel,
R600_Reg32:$src1, NEG:$src1_neg, REL:$src1_rel, SEL:$src1_sel,
R600_Reg32:$src2, NEG:$src2_neg, REL:$src2_rel, SEL:$src2_sel,
LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal),
!strconcat(" ", opName, "$clamp $dst$dst_rel, "
"$src0_neg$src0$src0_rel, "
"$src1_neg$src1$src1_rel, "
"$src2_neg$src2$src2_rel, "
"$literal $pred_sel$last"),
pattern,
itin>,
R600ALU_Word0,
R600ALU_Word1_OP3<inst>{
let HasNativeOperands = 1;
let DisableEncoding = "$literal";
let Op3 = 1;
let Inst{31-0} = Word0;
let Inst{63-32} = Word1;
}
class R600_REDUCTION <bits<11> inst, dag ins, string asm, list<dag> pattern,
InstrItinClass itin = VecALU> :
InstR600 <inst,
(outs R600_Reg32:$dst),
ins,
asm,
pattern,
itin>;
class R600_TEX <bits<11> inst, string opName, list<dag> pattern,
InstrItinClass itin = AnyALU> :
InstR600 <inst,
(outs R600_Reg128:$DST_GPR),
(ins R600_Reg128:$SRC_GPR, i32imm:$RESOURCE_ID, i32imm:$SAMPLER_ID, i32imm:$textureTarget),
!strconcat(opName, "$DST_GPR, $SRC_GPR, $RESOURCE_ID, $SAMPLER_ID, $textureTarget"),
pattern,
itin>, TEX_WORD0, TEX_WORD1, TEX_WORD2 {
let Inst{31-0} = Word0;
let Inst{63-32} = Word1;
let TEX_INST = inst{4-0};
let SRC_REL = 0;
let DST_REL = 0;
let DST_SEL_X = 0;
let DST_SEL_Y = 1;
let DST_SEL_Z = 2;
let DST_SEL_W = 3;
let LOD_BIAS = 0;
let INST_MOD = 0;
let FETCH_WHOLE_QUAD = 0;
let ALT_CONST = 0;
let SAMPLER_INDEX_MODE = 0;
let COORD_TYPE_X = 0;
let COORD_TYPE_Y = 0;
let COORD_TYPE_Z = 0;
let COORD_TYPE_W = 0;
}
} // End mayLoad = 1, mayStore = 0, hasSideEffects = 0
def TEX_SHADOW : PatLeaf<
(imm),
[{uint32_t TType = (uint32_t)N->getZExtValue();
return (TType >= 6 && TType <= 8) || (TType >= 11 && TType <= 13);
}]
>;
def TEX_RECT : PatLeaf<
(imm),
[{uint32_t TType = (uint32_t)N->getZExtValue();
return TType == 5;
}]
>;
def TEX_ARRAY : PatLeaf<
(imm),
[{uint32_t TType = (uint32_t)N->getZExtValue();
return TType == 9 || TType == 10 || TType == 15 || TType == 16;
}]
>;
def TEX_SHADOW_ARRAY : PatLeaf<
(imm),
[{uint32_t TType = (uint32_t)N->getZExtValue();
return TType == 11 || TType == 12 || TType == 17;
}]
>;
class EG_CF_RAT <bits <8> cf_inst, bits <6> rat_inst, bits<4> rat_id, dag outs,
dag ins, string asm, list<dag> pattern> :
InstR600ISA <outs, ins, asm, pattern> {
bits<7> RW_GPR;
bits<7> INDEX_GPR;
bits<2> RIM;
bits<2> TYPE;
bits<1> RW_REL;
bits<2> ELEM_SIZE;
bits<12> ARRAY_SIZE;
bits<4> COMP_MASK;
bits<4> BURST_COUNT;
bits<1> VPM;
bits<1> eop;
bits<1> MARK;
bits<1> BARRIER;
// CF_ALLOC_EXPORT_WORD0_RAT
let Inst{3-0} = rat_id;
let Inst{9-4} = rat_inst;
let Inst{10} = 0; // Reserved
let Inst{12-11} = RIM;
let Inst{14-13} = TYPE;
let Inst{21-15} = RW_GPR;
let Inst{22} = RW_REL;
let Inst{29-23} = INDEX_GPR;
let Inst{31-30} = ELEM_SIZE;
// CF_ALLOC_EXPORT_WORD1_BUF
let Inst{43-32} = ARRAY_SIZE;
let Inst{47-44} = COMP_MASK;
let Inst{51-48} = BURST_COUNT;
let Inst{52} = VPM;
let Inst{53} = eop;
let Inst{61-54} = cf_inst;
let Inst{62} = MARK;
let Inst{63} = BARRIER;
}
class LoadParamFrag <PatFrag load_type> : PatFrag <
(ops node:$ptr), (load_type node:$ptr),
[{ return isParamLoad(dyn_cast<LoadSDNode>(N)); }]
>;
def load_param : LoadParamFrag<load>;
def load_param_zexti8 : LoadParamFrag<zextloadi8>;
def load_param_zexti16 : LoadParamFrag<zextloadi16>;
def isR600 : Predicate<"Subtarget.device()"
"->getGeneration() == AMDGPUDeviceInfo::HD4XXX">;
def isR700 : Predicate<"Subtarget.device()"
"->getGeneration() == AMDGPUDeviceInfo::HD4XXX &&"
"Subtarget.device()->getDeviceFlag()"
">= OCL_DEVICE_RV710">;
def isEG : Predicate<
"Subtarget.device()->getGeneration() >= AMDGPUDeviceInfo::HD5XXX && "
"Subtarget.device()->getGeneration() < AMDGPUDeviceInfo::HD7XXX && "
"Subtarget.device()->getDeviceFlag() != OCL_DEVICE_CAYMAN">;
def isCayman : Predicate<"Subtarget.device()"
"->getDeviceFlag() == OCL_DEVICE_CAYMAN">;
def isEGorCayman : Predicate<"Subtarget.device()"
"->getGeneration() == AMDGPUDeviceInfo::HD5XXX"
"|| Subtarget.device()->getGeneration() =="
"AMDGPUDeviceInfo::HD6XXX">;
def isR600toCayman : Predicate<
"Subtarget.device()->getGeneration() <= AMDGPUDeviceInfo::HD6XXX">;
//===----------------------------------------------------------------------===//
// R600 SDNodes
//===----------------------------------------------------------------------===//
def INTERP_PAIR_XY : AMDGPUShaderInst <
(outs R600_TReg32_X:$dst0, R600_TReg32_Y:$dst1),
(ins i32imm:$src0, R600_Reg32:$src1, R600_Reg32:$src2),
"INTERP_PAIR_XY $src0 $src1 $src2 : $dst0 dst1",
[]>;
def INTERP_PAIR_ZW : AMDGPUShaderInst <
(outs R600_TReg32_Z:$dst0, R600_TReg32_W:$dst1),
(ins i32imm:$src0, R600_Reg32:$src1, R600_Reg32:$src2),
"INTERP_PAIR_ZW $src0 $src1 $src2 : $dst0 dst1",
[]>;
def CONST_ADDRESS: SDNode<"AMDGPUISD::CONST_ADDRESS",
SDTypeProfile<1, -1, [SDTCisInt<0>, SDTCisPtrTy<1>]>,
[SDNPVariadic]
>;
//===----------------------------------------------------------------------===//
// Interpolation Instructions
//===----------------------------------------------------------------------===//
def INTERP_VEC_LOAD : AMDGPUShaderInst <
(outs R600_Reg128:$dst),
(ins i32imm:$src0),
"INTERP_LOAD $src0 : $dst",
[]>;
def INTERP_XY : R600_2OP <0xD6, "INTERP_XY", []> {
let bank_swizzle = 5;
}
def INTERP_ZW : R600_2OP <0xD7, "INTERP_ZW", []> {
let bank_swizzle = 5;
}
def INTERP_LOAD_P0 : R600_1OP <0xE0, "INTERP_LOAD_P0", []>;
//===----------------------------------------------------------------------===//
// Export Instructions
//===----------------------------------------------------------------------===//
def ExportType : SDTypeProfile<0, 7, [SDTCisFP<0>, SDTCisInt<1>]>;
def EXPORT: SDNode<"AMDGPUISD::EXPORT", ExportType,
[SDNPHasChain, SDNPSideEffect]>;
class ExportWord0 {
field bits<32> Word0;
bits<13> arraybase;
bits<2> type;
bits<7> gpr;
bits<2> elem_size;
let Word0{12-0} = arraybase;
let Word0{14-13} = type;
let Word0{21-15} = gpr;
let Word0{22} = 0; // RW_REL
let Word0{29-23} = 0; // INDEX_GPR
let Word0{31-30} = elem_size;
}
class ExportSwzWord1 {
field bits<32> Word1;
bits<3> sw_x;
bits<3> sw_y;
bits<3> sw_z;
bits<3> sw_w;
bits<1> eop;
bits<8> inst;
let Word1{2-0} = sw_x;
let Word1{5-3} = sw_y;
let Word1{8-6} = sw_z;
let Word1{11-9} = sw_w;
}
class ExportBufWord1 {
field bits<32> Word1;
bits<12> arraySize;
bits<4> compMask;
bits<1> eop;
bits<8> inst;
let Word1{11-0} = arraySize;
let Word1{15-12} = compMask;
}
multiclass ExportPattern<Instruction ExportInst, bits<8> cf_inst> {
def : Pat<(int_R600_store_pixel_depth R600_Reg32:$reg),
(ExportInst
(INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), R600_Reg32:$reg, sub0),
0, 61, 0, 7, 7, 7, cf_inst, 0)
>;
def : Pat<(int_R600_store_pixel_stencil R600_Reg32:$reg),
(ExportInst
(INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), R600_Reg32:$reg, sub0),
0, 61, 7, 0, 7, 7, cf_inst, 0)
>;
def : Pat<(int_R600_store_dummy (i32 imm:$type)),
(ExportInst
(v4f32 (IMPLICIT_DEF)), imm:$type, 0, 7, 7, 7, 7, cf_inst, 0)
>;
def : Pat<(int_R600_store_dummy 1),
(ExportInst
(v4f32 (IMPLICIT_DEF)), 1, 60, 7, 7, 7, 7, cf_inst, 0)
>;
def : Pat<(EXPORT (v4f32 R600_Reg128:$src), (i32 imm:$base), (i32 imm:$type),
(i32 imm:$swz_x), (i32 imm:$swz_y), (i32 imm:$swz_z), (i32 imm:$swz_w)),
(ExportInst R600_Reg128:$src, imm:$type, imm:$base,
imm:$swz_x, imm:$swz_y, imm:$swz_z, imm:$swz_w, cf_inst, 0)
>;
}
multiclass SteamOutputExportPattern<Instruction ExportInst,
bits<8> buf0inst, bits<8> buf1inst, bits<8> buf2inst, bits<8> buf3inst> {
// Stream0
def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src),
(i32 imm:$arraybase), (i32 0), (i32 imm:$mask)),
(ExportInst R600_Reg128:$src, 0, imm:$arraybase,
4095, imm:$mask, buf0inst, 0)>;
// Stream1
def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src),
(i32 imm:$arraybase), (i32 1), (i32 imm:$mask)),
(ExportInst R600_Reg128:$src, 0, imm:$arraybase,
4095, imm:$mask, buf1inst, 0)>;
// Stream2
def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src),
(i32 imm:$arraybase), (i32 2), (i32 imm:$mask)),
(ExportInst R600_Reg128:$src, 0, imm:$arraybase,
4095, imm:$mask, buf2inst, 0)>;
// Stream3
def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src),
(i32 imm:$arraybase), (i32 3), (i32 imm:$mask)),
(ExportInst R600_Reg128:$src, 0, imm:$arraybase,
4095, imm:$mask, buf3inst, 0)>;
}
let usesCustomInserter = 1 in {
class ExportSwzInst : InstR600ISA<(
outs),
(ins R600_Reg128:$gpr, i32imm:$type, i32imm:$arraybase,
i32imm:$sw_x, i32imm:$sw_y, i32imm:$sw_z, i32imm:$sw_w, i32imm:$inst,
i32imm:$eop),
!strconcat("EXPORT", " $gpr"),
[]>, ExportWord0, ExportSwzWord1 {
let elem_size = 3;
let Inst{31-0} = Word0;
let Inst{63-32} = Word1;
}
} // End usesCustomInserter = 1
class ExportBufInst : InstR600ISA<(
outs),
(ins R600_Reg128:$gpr, i32imm:$type, i32imm:$arraybase,
i32imm:$arraySize, i32imm:$compMask, i32imm:$inst, i32imm:$eop),
!strconcat("EXPORT", " $gpr"),
[]>, ExportWord0, ExportBufWord1 {
let elem_size = 0;
let Inst{31-0} = Word0;
let Inst{63-32} = Word1;
}
//===----------------------------------------------------------------------===//
// Control Flow Instructions
//===----------------------------------------------------------------------===//
class CF_ALU_WORD0 {
field bits<32> Word0;
bits<22> ADDR;
bits<4> KCACHE_BANK0;
bits<4> KCACHE_BANK1;
bits<2> KCACHE_MODE0;
let Word0{21-0} = ADDR;
let Word0{25-22} = KCACHE_BANK0;
let Word0{29-26} = KCACHE_BANK1;
let Word0{31-30} = KCACHE_MODE0;
}
class CF_ALU_WORD1 {
field bits<32> Word1;
bits<2> KCACHE_MODE1;
bits<8> KCACHE_ADDR0;
bits<8> KCACHE_ADDR1;
bits<7> COUNT;
bits<1> ALT_CONST;
bits<4> CF_INST;
bits<1> WHOLE_QUAD_MODE;
bits<1> BARRIER;
let Word1{1-0} = KCACHE_MODE1;
let Word1{9-2} = KCACHE_ADDR0;
let Word1{17-10} = KCACHE_ADDR1;
let Word1{24-18} = COUNT;
let Word1{25} = ALT_CONST;
let Word1{29-26} = CF_INST;
let Word1{30} = WHOLE_QUAD_MODE;
let Word1{31} = BARRIER;
}
class ALU_CLAUSE<bits<4> inst, string OpName> : AMDGPUInst <(outs),
(ins i32imm:$ADDR, i32imm:$KCACHE_BANK0, i32imm:$KCACHE_BANK1, i32imm:$KCACHE_MODE0, i32imm:$KCACHE_MODE1,
i32imm:$KCACHE_ADDR0, i32imm:$KCACHE_ADDR1, i32imm:$COUNT),
!strconcat(OpName, " $COUNT, @$ADDR, "
"KC0[CB$KCACHE_BANK0:$KCACHE_ADDR0-$KCACHE_ADDR0+32]"
", KC1[CB$KCACHE_BANK1:$KCACHE_ADDR1-$KCACHE_ADDR1+32]"),
[] >, CF_ALU_WORD0, CF_ALU_WORD1 {
field bits<64> Inst;
let CF_INST = inst;
let ALT_CONST = 0;
let WHOLE_QUAD_MODE = 0;
let BARRIER = 1;
let Inst{31-0} = Word0;
let Inst{63-32} = Word1;
}
class CF_WORD0 {
field bits<32> Word0;
bits<24> ADDR;
bits<3> JUMPTABLE_SEL;
let Word0{23-0} = ADDR;
let Word0{26-24} = JUMPTABLE_SEL;
}
class CF_WORD1 {
field bits<32> Word1;
bits<3> POP_COUNT;
bits<5> CF_CONST;
bits<2> COND;
bits<6> COUNT;
bits<1> VALID_PIXEL_MODE;
bits<8> CF_INST;
bits<1> BARRIER;
let Word1{2-0} = POP_COUNT;
let Word1{7-3} = CF_CONST;
let Word1{9-8} = COND;
let Word1{15-10} = COUNT;
let Word1{20} = VALID_PIXEL_MODE;
let Word1{29-22} = CF_INST;
let Word1{31} = BARRIER;
}
class CF_CLAUSE <bits<8> inst, dag ins, string AsmPrint> : AMDGPUInst <(outs),
ins, AsmPrint, [] >, CF_WORD0, CF_WORD1 {
field bits<64> Inst;
let CF_INST = inst;
let BARRIER = 1;
let JUMPTABLE_SEL = 0;
let CF_CONST = 0;
let VALID_PIXEL_MODE = 0;
let COND = 0;
let Inst{31-0} = Word0;
let Inst{63-32} = Word1;
}
def CF_TC : CF_CLAUSE<1, (ins i32imm:$ADDR, i32imm:$COUNT),
"TEX $COUNT @$ADDR"> {
let POP_COUNT = 0;
}
def CF_VC : CF_CLAUSE<2, (ins i32imm:$ADDR, i32imm:$COUNT),
"VTX $COUNT @$ADDR"> {
let POP_COUNT = 0;
}
def WHILE_LOOP : CF_CLAUSE<6, (ins i32imm:$ADDR), "LOOP_START_DX10 @$ADDR"> {
let POP_COUNT = 0;
let COUNT = 0;
}
def END_LOOP : CF_CLAUSE<5, (ins i32imm:$ADDR), "END_LOOP @$ADDR"> {
let POP_COUNT = 0;
let COUNT = 0;
}
def LOOP_BREAK : CF_CLAUSE<9, (ins i32imm:$ADDR), "LOOP_BREAK @$ADDR"> {
let POP_COUNT = 0;
let COUNT = 0;
}
def CF_CONTINUE : CF_CLAUSE<8, (ins i32imm:$ADDR), "CONTINUE @$ADDR"> {
let POP_COUNT = 0;
let COUNT = 0;
}
def CF_JUMP : CF_CLAUSE<10, (ins i32imm:$ADDR, i32imm:$POP_COUNT), "JUMP @$ADDR POP:$POP_COUNT"> {
let COUNT = 0;
}
def CF_ELSE : CF_CLAUSE<13, (ins i32imm:$ADDR, i32imm:$POP_COUNT), "ELSE @$ADDR POP:$POP_COUNT"> {
let COUNT = 0;
}
def CF_CALL_FS : CF_CLAUSE<19, (ins), "CALL_FS"> {
let ADDR = 0;
let COUNT = 0;
let POP_COUNT = 0;
}
def POP : CF_CLAUSE<14, (ins i32imm:$ADDR, i32imm:$POP_COUNT), "POP @$ADDR POP:$POP_COUNT"> {
let COUNT = 0;
}
def CF_ALU : ALU_CLAUSE<8, "ALU">;
def CF_ALU_PUSH_BEFORE : ALU_CLAUSE<9, "ALU_PUSH_BEFORE">;
def STACK_SIZE : AMDGPUInst <(outs),
(ins i32imm:$num), "nstack $num", [] > {
field bits<8> Inst;
bits<8> num;
let Inst = num;
}
let Predicates = [isR600toCayman] in {
//===----------------------------------------------------------------------===//
// Common Instructions R600, R700, Evergreen, Cayman
//===----------------------------------------------------------------------===//
def ADD : R600_2OP_Helper <0x0, "ADD", fadd>;
// Non-IEEE MUL: 0 * anything = 0
def MUL : R600_2OP_Helper <0x1, "MUL NON-IEEE", int_AMDGPU_mul>;
def MUL_IEEE : R600_2OP_Helper <0x2, "MUL_IEEE", fmul>;
def MAX : R600_2OP_Helper <0x3, "MAX", AMDGPUfmax>;
def MIN : R600_2OP_Helper <0x4, "MIN", AMDGPUfmin>;
// For the SET* instructions there is a naming conflict in TargetSelectionDAG.td,
// so some of the instruction names don't match the asm string.
// XXX: Use the defs in TargetSelectionDAG.td instead of intrinsics.
def SETE : R600_2OP <
0x08, "SETE",
[(set R600_Reg32:$dst,
(selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
COND_EQ))]
>;
def SGT : R600_2OP <
0x09, "SETGT",
[(set R600_Reg32:$dst,
(selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
COND_GT))]
>;
def SGE : R600_2OP <
0xA, "SETGE",
[(set R600_Reg32:$dst,
(selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
COND_GE))]
>;
def SNE : R600_2OP <
0xB, "SETNE",
[(set R600_Reg32:$dst,
(selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
COND_NE))]
>;
def SETE_DX10 : R600_2OP <
0xC, "SETE_DX10",
[(set R600_Reg32:$dst,
(selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, (i32 -1), (i32 0),
COND_EQ))]
>;
def SETGT_DX10 : R600_2OP <
0xD, "SETGT_DX10",
[(set R600_Reg32:$dst,
(selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, (i32 -1), (i32 0),
COND_GT))]
>;
def SETGE_DX10 : R600_2OP <
0xE, "SETGE_DX10",
[(set R600_Reg32:$dst,
(selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, (i32 -1), (i32 0),
COND_GE))]
>;
def SETNE_DX10 : R600_2OP <
0xF, "SETNE_DX10",
[(set R600_Reg32:$dst,
(selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, (i32 -1), (i32 0),
COND_NE))]
>;
def FRACT : R600_1OP_Helper <0x10, "FRACT", AMDGPUfract>;
def TRUNC : R600_1OP_Helper <0x11, "TRUNC", int_AMDGPU_trunc>;
def CEIL : R600_1OP_Helper <0x12, "CEIL", fceil>;
def RNDNE : R600_1OP_Helper <0x13, "RNDNE", frint>;
def FLOOR : R600_1OP_Helper <0x14, "FLOOR", ffloor>;
def MOV : R600_1OP <0x19, "MOV", []>;
let isPseudo = 1, isCodeGenOnly = 1, usesCustomInserter = 1 in {
class MOV_IMM <ValueType vt, Operand immType> : AMDGPUInst <
(outs R600_Reg32:$dst),
(ins immType:$imm),
"",
[]
>;
} // end let isPseudo = 1, isCodeGenOnly = 1, usesCustomInserter = 1
def MOV_IMM_I32 : MOV_IMM<i32, i32imm>;
def : Pat <
(imm:$val),
(MOV_IMM_I32 imm:$val)
>;
def MOV_IMM_F32 : MOV_IMM<f32, f32imm>;
def : Pat <
(fpimm:$val),
(MOV_IMM_F32 fpimm:$val)
>;
def PRED_SETE : R600_2OP <0x20, "PRED_SETE", []>;
def PRED_SETGT : R600_2OP <0x21, "PRED_SETGT", []>;
def PRED_SETGE : R600_2OP <0x22, "PRED_SETGE", []>;
def PRED_SETNE : R600_2OP <0x23, "PRED_SETNE", []>;
let hasSideEffects = 1 in {
def KILLGT : R600_2OP <0x2D, "KILLGT", []>;
} // end hasSideEffects
def AND_INT : R600_2OP_Helper <0x30, "AND_INT", and>;
def OR_INT : R600_2OP_Helper <0x31, "OR_INT", or>;
def XOR_INT : R600_2OP_Helper <0x32, "XOR_INT", xor>;
def NOT_INT : R600_1OP_Helper <0x33, "NOT_INT", not>;
def ADD_INT : R600_2OP_Helper <0x34, "ADD_INT", add>;
def SUB_INT : R600_2OP_Helper <0x35, "SUB_INT", sub>;
def MAX_INT : R600_2OP_Helper <0x36, "MAX_INT", AMDGPUsmax>;
def MIN_INT : R600_2OP_Helper <0x37, "MIN_INT", AMDGPUsmin>;
def MAX_UINT : R600_2OP_Helper <0x38, "MAX_UINT", AMDGPUumax>;
def MIN_UINT : R600_2OP_Helper <0x39, "MIN_UINT", AMDGPUumin>;
def SETE_INT : R600_2OP <
0x3A, "SETE_INT",
[(set (i32 R600_Reg32:$dst),
(selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETEQ))]
>;
def SETGT_INT : R600_2OP <
0x3B, "SETGT_INT",
[(set (i32 R600_Reg32:$dst),
(selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETGT))]
>;
def SETGE_INT : R600_2OP <
0x3C, "SETGE_INT",
[(set (i32 R600_Reg32:$dst),
(selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETGE))]
>;
def SETNE_INT : R600_2OP <
0x3D, "SETNE_INT",
[(set (i32 R600_Reg32:$dst),
(selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETNE))]
>;
def SETGT_UINT : R600_2OP <
0x3E, "SETGT_UINT",
[(set (i32 R600_Reg32:$dst),
(selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETUGT))]
>;
def SETGE_UINT : R600_2OP <
0x3F, "SETGE_UINT",
[(set (i32 R600_Reg32:$dst),
(selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETUGE))]
>;
def PRED_SETE_INT : R600_2OP <0x42, "PRED_SETE_INT", []>;
def PRED_SETGT_INT : R600_2OP <0x43, "PRED_SETGE_INT", []>;
def PRED_SETGE_INT : R600_2OP <0x44, "PRED_SETGE_INT", []>;
def PRED_SETNE_INT : R600_2OP <0x45, "PRED_SETNE_INT", []>;
def CNDE_INT : R600_3OP <
0x1C, "CNDE_INT",
[(set (i32 R600_Reg32:$dst),
(selectcc (i32 R600_Reg32:$src0), 0,
(i32 R600_Reg32:$src1), (i32 R600_Reg32:$src2),
COND_EQ))]
>;
def CNDGE_INT : R600_3OP <
0x1E, "CNDGE_INT",
[(set (i32 R600_Reg32:$dst),
(selectcc (i32 R600_Reg32:$src0), 0,
(i32 R600_Reg32:$src1), (i32 R600_Reg32:$src2),
COND_GE))]
>;
def CNDGT_INT : R600_3OP <
0x1D, "CNDGT_INT",
[(set (i32 R600_Reg32:$dst),
(selectcc (i32 R600_Reg32:$src0), 0,
(i32 R600_Reg32:$src1), (i32 R600_Reg32:$src2),
COND_GT))]
>;
//===----------------------------------------------------------------------===//
// Texture instructions
//===----------------------------------------------------------------------===//
def TEX_LD : R600_TEX <
0x03, "TEX_LD",
[(set R600_Reg128:$DST_GPR, (int_AMDGPU_txf R600_Reg128:$SRC_GPR,
imm:$OFFSET_X, imm:$OFFSET_Y, imm:$OFFSET_Z, imm:$RESOURCE_ID,
imm:$SAMPLER_ID, imm:$textureTarget))]
> {
let AsmString = "TEX_LD $DST_GPR, $SRC_GPR, $OFFSET_X, $OFFSET_Y, $OFFSET_Z,"
"$RESOURCE_ID, $SAMPLER_ID, $textureTarget";
let InOperandList = (ins R600_Reg128:$SRC_GPR, i32imm:$OFFSET_X,
i32imm:$OFFSET_Y, i32imm:$OFFSET_Z, i32imm:$RESOURCE_ID, i32imm:$SAMPLER_ID,
i32imm:$textureTarget);
}
def TEX_GET_TEXTURE_RESINFO : R600_TEX <
0x04, "TEX_GET_TEXTURE_RESINFO",
[(set R600_Reg128:$DST_GPR, (int_AMDGPU_txq R600_Reg128:$SRC_GPR,
imm:$RESOURCE_ID, imm:$SAMPLER_ID, imm:$textureTarget))]
>;
def TEX_GET_GRADIENTS_H : R600_TEX <
0x07, "TEX_GET_GRADIENTS_H",
[(set R600_Reg128:$DST_GPR, (int_AMDGPU_ddx R600_Reg128:$SRC_GPR,
imm:$RESOURCE_ID, imm:$SAMPLER_ID, imm:$textureTarget))]
>;
def TEX_GET_GRADIENTS_V : R600_TEX <
0x08, "TEX_GET_GRADIENTS_V",
[(set R600_Reg128:$DST_GPR, (int_AMDGPU_ddy R600_Reg128:$SRC_GPR,
imm:$RESOURCE_ID, imm:$SAMPLER_ID, imm:$textureTarget))]
>;
def TEX_SET_GRADIENTS_H : R600_TEX <
0x0B, "TEX_SET_GRADIENTS_H",
[]
>;
def TEX_SET_GRADIENTS_V : R600_TEX <
0x0C, "TEX_SET_GRADIENTS_V",
[]
>;
def TEX_SAMPLE : R600_TEX <
0x10, "TEX_SAMPLE",
[(set R600_Reg128:$DST_GPR, (int_AMDGPU_tex R600_Reg128:$SRC_GPR,
imm:$RESOURCE_ID, imm:$SAMPLER_ID, imm:$textureTarget))]
>;
def TEX_SAMPLE_C : R600_TEX <
0x18, "TEX_SAMPLE_C",
[(set R600_Reg128:$DST_GPR, (int_AMDGPU_tex R600_Reg128:$SRC_GPR,
imm:$RESOURCE_ID, imm:$SAMPLER_ID, TEX_SHADOW:$textureTarget))]
>;
def TEX_SAMPLE_L : R600_TEX <
0x11, "TEX_SAMPLE_L",
[(set R600_Reg128:$DST_GPR, (int_AMDGPU_txl R600_Reg128:$SRC_GPR,
imm:$RESOURCE_ID, imm:$SAMPLER_ID, imm:$textureTarget))]
>;
def TEX_SAMPLE_C_L : R600_TEX <
0x19, "TEX_SAMPLE_C_L",
[(set R600_Reg128:$DST_GPR, (int_AMDGPU_txl R600_Reg128:$SRC_GPR,
imm:$RESOURCE_ID, imm:$SAMPLER_ID, TEX_SHADOW:$textureTarget))]
>;
def TEX_SAMPLE_LB : R600_TEX <
0x12, "TEX_SAMPLE_LB",
[(set R600_Reg128:$DST_GPR, (int_AMDGPU_txb R600_Reg128:$SRC_GPR,
imm:$RESOURCE_ID, imm:$SAMPLER_ID, imm:$textureTarget))]
>;
def TEX_SAMPLE_C_LB : R600_TEX <
0x1A, "TEX_SAMPLE_C_LB",
[(set R600_Reg128:$DST_GPR, (int_AMDGPU_txb R600_Reg128:$SRC_GPR,
imm:$RESOURCE_ID, imm:$SAMPLER_ID, TEX_SHADOW:$textureTarget))]
>;
def TEX_SAMPLE_G : R600_TEX <
0x14, "TEX_SAMPLE_G",
[]
>;
def TEX_SAMPLE_C_G : R600_TEX <
0x1C, "TEX_SAMPLE_C_G",
[]
>;
//===----------------------------------------------------------------------===//
// Helper classes for common instructions
//===----------------------------------------------------------------------===//
class MUL_LIT_Common <bits<5> inst> : R600_3OP <
inst, "MUL_LIT",
[]
>;
class MULADD_Common <bits<5> inst> : R600_3OP <
inst, "MULADD",
[]
>;
class MULADD_IEEE_Common <bits<5> inst> : R600_3OP <
inst, "MULADD_IEEE",
[(set (f32 R600_Reg32:$dst),
(fadd (fmul R600_Reg32:$src0, R600_Reg32:$src1), R600_Reg32:$src2))]
>;
class CNDE_Common <bits<5> inst> : R600_3OP <
inst, "CNDE",
[(set R600_Reg32:$dst,
(selectcc (f32 R600_Reg32:$src0), FP_ZERO,
(f32 R600_Reg32:$src1), (f32 R600_Reg32:$src2),
COND_EQ))]
>;
class CNDGT_Common <bits<5> inst> : R600_3OP <
inst, "CNDGT",
[(set R600_Reg32:$dst,
(selectcc (f32 R600_Reg32:$src0), FP_ZERO,
(f32 R600_Reg32:$src1), (f32 R600_Reg32:$src2),
COND_GT))]
>;
class CNDGE_Common <bits<5> inst> : R600_3OP <
inst, "CNDGE",
[(set R600_Reg32:$dst,
(selectcc (f32 R600_Reg32:$src0), FP_ZERO,
(f32 R600_Reg32:$src1), (f32 R600_Reg32:$src2),
COND_GE))]
>;
multiclass DOT4_Common <bits<11> inst> {
def _pseudo : R600_REDUCTION <inst,
(ins R600_Reg128:$src0, R600_Reg128:$src1),
"DOT4 $dst $src0, $src1",
[(set R600_Reg32:$dst, (int_AMDGPU_dp4 R600_Reg128:$src0, R600_Reg128:$src1))]
>;
def _real : R600_2OP <inst, "DOT4", []>;
}
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
multiclass CUBE_Common <bits<11> inst> {
def _pseudo : InstR600 <
inst,
(outs R600_Reg128:$dst),
(ins R600_Reg128:$src),
"CUBE $dst $src",
[(set R600_Reg128:$dst, (int_AMDGPU_cube R600_Reg128:$src))],
VecALU
> {
let isPseudo = 1;
}
def _real : R600_2OP <inst, "CUBE", []>;
}
} // End mayLoad = 0, mayStore = 0, hasSideEffects = 0
class EXP_IEEE_Common <bits<11> inst> : R600_1OP_Helper <
inst, "EXP_IEEE", fexp2
>;
class FLT_TO_INT_Common <bits<11> inst> : R600_1OP_Helper <
inst, "FLT_TO_INT", fp_to_sint
>;
class INT_TO_FLT_Common <bits<11> inst> : R600_1OP_Helper <
inst, "INT_TO_FLT", sint_to_fp
>;
class FLT_TO_UINT_Common <bits<11> inst> : R600_1OP_Helper <
inst, "FLT_TO_UINT", fp_to_uint
>;
class UINT_TO_FLT_Common <bits<11> inst> : R600_1OP_Helper <
inst, "UINT_TO_FLT", uint_to_fp
>;
class LOG_CLAMPED_Common <bits<11> inst> : R600_1OP <
inst, "LOG_CLAMPED", []
>;
class LOG_IEEE_Common <bits<11> inst> : R600_1OP_Helper <
inst, "LOG_IEEE", flog2
>;
class LSHL_Common <bits<11> inst> : R600_2OP_Helper <inst, "LSHL", shl>;
class LSHR_Common <bits<11> inst> : R600_2OP_Helper <inst, "LSHR", srl>;
class ASHR_Common <bits<11> inst> : R600_2OP_Helper <inst, "ASHR", sra>;
class MULHI_INT_Common <bits<11> inst> : R600_2OP_Helper <
inst, "MULHI_INT", mulhs
>;
class MULHI_UINT_Common <bits<11> inst> : R600_2OP_Helper <
inst, "MULHI", mulhu
>;
class MULLO_INT_Common <bits<11> inst> : R600_2OP_Helper <
inst, "MULLO_INT", mul
>;
class MULLO_UINT_Common <bits<11> inst> : R600_2OP <inst, "MULLO_UINT", []>;
class RECIP_CLAMPED_Common <bits<11> inst> : R600_1OP <
inst, "RECIP_CLAMPED", []
>;
class RECIP_IEEE_Common <bits<11> inst> : R600_1OP <
inst, "RECIP_IEEE", [(set R600_Reg32:$dst, (fdiv FP_ONE, R600_Reg32:$src0))]
>;
class RECIP_UINT_Common <bits<11> inst> : R600_1OP_Helper <
inst, "RECIP_UINT", AMDGPUurecip
>;
class RECIPSQRT_CLAMPED_Common <bits<11> inst> : R600_1OP_Helper <
inst, "RECIPSQRT_CLAMPED", int_AMDGPU_rsq
>;
class RECIPSQRT_IEEE_Common <bits<11> inst> : R600_1OP <
inst, "RECIPSQRT_IEEE", []
>;
class SIN_Common <bits<11> inst> : R600_1OP <
inst, "SIN", []>{
let Trig = 1;
}
class COS_Common <bits<11> inst> : R600_1OP <
inst, "COS", []> {
let Trig = 1;
}
//===----------------------------------------------------------------------===//
// Helper patterns for complex intrinsics
//===----------------------------------------------------------------------===//
multiclass DIV_Common <InstR600 recip_ieee> {
def : Pat<
(int_AMDGPU_div R600_Reg32:$src0, R600_Reg32:$src1),
(MUL_IEEE R600_Reg32:$src0, (recip_ieee R600_Reg32:$src1))
>;
def : Pat<
(fdiv R600_Reg32:$src0, R600_Reg32:$src1),
(MUL_IEEE R600_Reg32:$src0, (recip_ieee R600_Reg32:$src1))
>;
}
class TGSI_LIT_Z_Common <InstR600 mul_lit, InstR600 log_clamped, InstR600 exp_ieee> : Pat <
(int_TGSI_lit_z R600_Reg32:$src_x, R600_Reg32:$src_y, R600_Reg32:$src_w),
(exp_ieee (mul_lit (log_clamped (MAX R600_Reg32:$src_y, (f32 ZERO))), R600_Reg32:$src_w, R600_Reg32:$src_x))
>;
//===----------------------------------------------------------------------===//
// R600 / R700 Instructions
//===----------------------------------------------------------------------===//
let Predicates = [isR600] in {
def MUL_LIT_r600 : MUL_LIT_Common<0x0C>;
def MULADD_r600 : MULADD_Common<0x10>;
def MULADD_IEEE_r600 : MULADD_IEEE_Common<0x14>;
def CNDE_r600 : CNDE_Common<0x18>;
def CNDGT_r600 : CNDGT_Common<0x19>;
def CNDGE_r600 : CNDGE_Common<0x1A>;
defm DOT4_r600 : DOT4_Common<0x50>;
defm CUBE_r600 : CUBE_Common<0x52>;
def EXP_IEEE_r600 : EXP_IEEE_Common<0x61>;
def LOG_CLAMPED_r600 : LOG_CLAMPED_Common<0x62>;
def LOG_IEEE_r600 : LOG_IEEE_Common<0x63>;
def RECIP_CLAMPED_r600 : RECIP_CLAMPED_Common<0x64>;
def RECIP_IEEE_r600 : RECIP_IEEE_Common<0x66>;
def RECIPSQRT_CLAMPED_r600 : RECIPSQRT_CLAMPED_Common<0x67>;
def RECIPSQRT_IEEE_r600 : RECIPSQRT_IEEE_Common<0x69>;
def FLT_TO_INT_r600 : FLT_TO_INT_Common<0x6b>;
def INT_TO_FLT_r600 : INT_TO_FLT_Common<0x6c>;
def FLT_TO_UINT_r600 : FLT_TO_UINT_Common<0x79>;
def UINT_TO_FLT_r600 : UINT_TO_FLT_Common<0x6d>;
def SIN_r600 : SIN_Common<0x6E>;
def COS_r600 : COS_Common<0x6F>;
def ASHR_r600 : ASHR_Common<0x70>;
def LSHR_r600 : LSHR_Common<0x71>;
def LSHL_r600 : LSHL_Common<0x72>;
def MULLO_INT_r600 : MULLO_INT_Common<0x73>;
def MULHI_INT_r600 : MULHI_INT_Common<0x74>;
def MULLO_UINT_r600 : MULLO_UINT_Common<0x75>;
def MULHI_UINT_r600 : MULHI_UINT_Common<0x76>;
def RECIP_UINT_r600 : RECIP_UINT_Common <0x78>;
defm DIV_r600 : DIV_Common<RECIP_IEEE_r600>;
def : POW_Common <LOG_IEEE_r600, EXP_IEEE_r600, MUL, R600_Reg32>;
def TGSI_LIT_Z_r600 : TGSI_LIT_Z_Common<MUL_LIT_r600, LOG_CLAMPED_r600, EXP_IEEE_r600>;
def : Pat<(fsqrt R600_Reg32:$src),
(MUL R600_Reg32:$src, (RECIPSQRT_CLAMPED_r600 R600_Reg32:$src))>;
def R600_ExportSwz : ExportSwzInst {
let Word1{20-17} = 1; // BURST_COUNT
let Word1{21} = eop;
let Word1{22} = 1; // VALID_PIXEL_MODE
let Word1{30-23} = inst;
let Word1{31} = 1; // BARRIER
}
defm : ExportPattern<R600_ExportSwz, 39>;
def R600_ExportBuf : ExportBufInst {
let Word1{20-17} = 1; // BURST_COUNT
let Word1{21} = eop;
let Word1{22} = 1; // VALID_PIXEL_MODE
let Word1{30-23} = inst;
let Word1{31} = 1; // BARRIER
}
defm : SteamOutputExportPattern<R600_ExportBuf, 0x20, 0x21, 0x22, 0x23>;
}
// Helper pattern for normalizing inputs to triginomic instructions for R700+
// cards.
class COS_PAT <InstR600 trig> : Pat<
(fcos R600_Reg32:$src),
(trig (MUL_IEEE (MOV_IMM_I32 CONST.TWO_PI_INV), R600_Reg32:$src))
>;
class SIN_PAT <InstR600 trig> : Pat<
(fsin R600_Reg32:$src),
(trig (MUL_IEEE (MOV_IMM_I32 CONST.TWO_PI_INV), R600_Reg32:$src))
>;
//===----------------------------------------------------------------------===//
// R700 Only instructions
//===----------------------------------------------------------------------===//
let Predicates = [isR700] in {
def SIN_r700 : SIN_Common<0x6E>;
def COS_r700 : COS_Common<0x6F>;
// R700 normalizes inputs to SIN/COS the same as EG
def : SIN_PAT <SIN_r700>;
def : COS_PAT <COS_r700>;
}
//===----------------------------------------------------------------------===//
// Evergreen Only instructions
//===----------------------------------------------------------------------===//
let Predicates = [isEG] in {
def RECIP_IEEE_eg : RECIP_IEEE_Common<0x86>;
defm DIV_eg : DIV_Common<RECIP_IEEE_eg>;
def MULLO_INT_eg : MULLO_INT_Common<0x8F>;
def MULHI_INT_eg : MULHI_INT_Common<0x90>;
def MULLO_UINT_eg : MULLO_UINT_Common<0x91>;
def MULHI_UINT_eg : MULHI_UINT_Common<0x92>;
def RECIP_UINT_eg : RECIP_UINT_Common<0x94>;
def RECIPSQRT_CLAMPED_eg : RECIPSQRT_CLAMPED_Common<0x87>;
def EXP_IEEE_eg : EXP_IEEE_Common<0x81>;
def LOG_IEEE_eg : LOG_IEEE_Common<0x83>;
def RECIP_CLAMPED_eg : RECIP_CLAMPED_Common<0x84>;
def RECIPSQRT_IEEE_eg : RECIPSQRT_IEEE_Common<0x89>;
def SIN_eg : SIN_Common<0x8D>;
def COS_eg : COS_Common<0x8E>;
def : POW_Common <LOG_IEEE_eg, EXP_IEEE_eg, MUL, R600_Reg32>;
def : SIN_PAT <SIN_eg>;
def : COS_PAT <COS_eg>;
def : Pat<(fsqrt R600_Reg32:$src),
(MUL R600_Reg32:$src, (RECIPSQRT_CLAMPED_eg R600_Reg32:$src))>;
} // End Predicates = [isEG]
//===----------------------------------------------------------------------===//
// Evergreen / Cayman Instructions
//===----------------------------------------------------------------------===//
let Predicates = [isEGorCayman] in {
// BFE_UINT - bit_extract, an optimization for mask and shift
// Src0 = Input
// Src1 = Offset
// Src2 = Width
//
// bit_extract = (Input << (32 - Offset - Width)) >> (32 - Width)
//
// Example Usage:
// (Offset, Width)
//
// (0, 8) = (Input << 24) >> 24 = (Input & 0xff) >> 0
// (8, 8) = (Input << 16) >> 24 = (Input & 0xffff) >> 8
// (16,8) = (Input << 8) >> 24 = (Input & 0xffffff) >> 16
// (24,8) = (Input << 0) >> 24 = (Input & 0xffffffff) >> 24
def BFE_UINT_eg : R600_3OP <0x4, "BFE_UINT",
[(set R600_Reg32:$dst, (int_AMDIL_bit_extract_u32 R600_Reg32:$src0,
R600_Reg32:$src1,
R600_Reg32:$src2))],
VecALU
>;
def BIT_ALIGN_INT_eg : R600_3OP <0xC, "BIT_ALIGN_INT",
[(set R600_Reg32:$dst, (AMDGPUbitalign R600_Reg32:$src0, R600_Reg32:$src1,
R600_Reg32:$src2))],
VecALU
>;
def MULADD_eg : MULADD_Common<0x14>;
def MULADD_IEEE_eg : MULADD_IEEE_Common<0x18>;
def ASHR_eg : ASHR_Common<0x15>;
def LSHR_eg : LSHR_Common<0x16>;
def LSHL_eg : LSHL_Common<0x17>;
def CNDE_eg : CNDE_Common<0x19>;
def CNDGT_eg : CNDGT_Common<0x1A>;
def CNDGE_eg : CNDGE_Common<0x1B>;
def MUL_LIT_eg : MUL_LIT_Common<0x1F>;
def LOG_CLAMPED_eg : LOG_CLAMPED_Common<0x82>;
defm DOT4_eg : DOT4_Common<0xBE>;
defm CUBE_eg : CUBE_Common<0xC0>;
let hasSideEffects = 1 in {
def MOVA_INT_eg : R600_1OP <0xCC, "MOVA_INT", []>;
}
def TGSI_LIT_Z_eg : TGSI_LIT_Z_Common<MUL_LIT_eg, LOG_CLAMPED_eg, EXP_IEEE_eg>;
def FLT_TO_INT_eg : FLT_TO_INT_Common<0x50> {
let Pattern = [];
}
def INT_TO_FLT_eg : INT_TO_FLT_Common<0x9B>;
def FLT_TO_UINT_eg : FLT_TO_UINT_Common<0x9A> {
let Pattern = [];
}
def UINT_TO_FLT_eg : UINT_TO_FLT_Common<0x9C>;
// TRUNC is used for the FLT_TO_INT instructions to work around a
// perceived problem where the rounding modes are applied differently
// depending on the instruction and the slot they are in.
// See:
// https://bugs.freedesktop.org/show_bug.cgi?id=50232
// Mesa commit: a1a0974401c467cb86ef818f22df67c21774a38c
//
// XXX: Lowering SELECT_CC will sometimes generate fp_to_[su]int nodes,
// which do not need to be truncated since the fp values are 0.0f or 1.0f.
// We should look into handling these cases separately.
def : Pat<(fp_to_sint R600_Reg32:$src0),
(FLT_TO_INT_eg (TRUNC R600_Reg32:$src0))>;
def : Pat<(fp_to_uint R600_Reg32:$src0),
(FLT_TO_UINT_eg (TRUNC R600_Reg32:$src0))>;
def EG_ExportSwz : ExportSwzInst {
let Word1{19-16} = 1; // BURST_COUNT
let Word1{20} = 1; // VALID_PIXEL_MODE
let Word1{21} = eop;
let Word1{29-22} = inst;
let Word1{30} = 0; // MARK
let Word1{31} = 1; // BARRIER
}
defm : ExportPattern<EG_ExportSwz, 83>;
def EG_ExportBuf : ExportBufInst {
let Word1{19-16} = 1; // BURST_COUNT
let Word1{20} = 1; // VALID_PIXEL_MODE
let Word1{21} = eop;
let Word1{29-22} = inst;
let Word1{30} = 0; // MARK
let Word1{31} = 1; // BARRIER
}
defm : SteamOutputExportPattern<EG_ExportBuf, 0x40, 0x41, 0x42, 0x43>;
//===----------------------------------------------------------------------===//
// Memory read/write instructions
//===----------------------------------------------------------------------===//
let usesCustomInserter = 1 in {
class RAT_WRITE_CACHELESS_eg <dag ins, bits<4> comp_mask, string name,
list<dag> pattern>
: EG_CF_RAT <0x57, 0x2, 0, (outs), ins,
!strconcat(name, " $rw_gpr, $index_gpr, $eop"), pattern> {
let RIM = 0;
// XXX: Have a separate instruction for non-indexed writes.
let TYPE = 1;
let RW_REL = 0;
let ELEM_SIZE = 0;
let ARRAY_SIZE = 0;
let COMP_MASK = comp_mask;
let BURST_COUNT = 0;
let VPM = 0;
let MARK = 0;
let BARRIER = 1;
}
} // End usesCustomInserter = 1
// 32-bit store
def RAT_WRITE_CACHELESS_32_eg : RAT_WRITE_CACHELESS_eg <
(ins R600_TReg32_X:$rw_gpr, R600_TReg32_X:$index_gpr, InstFlag:$eop),
0x1, "RAT_WRITE_CACHELESS_32_eg",
[(global_store (i32 R600_TReg32_X:$rw_gpr), R600_TReg32_X:$index_gpr)]
>;
//128-bit store
def RAT_WRITE_CACHELESS_128_eg : RAT_WRITE_CACHELESS_eg <
(ins R600_Reg128:$rw_gpr, R600_TReg32_X:$index_gpr, InstFlag:$eop),
0xf, "RAT_WRITE_CACHELESS_128",
[(global_store (v4i32 R600_Reg128:$rw_gpr), R600_TReg32_X:$index_gpr)]
>;
class VTX_READ_eg <string name, bits<8> buffer_id, dag outs, list<dag> pattern>
: InstR600ISA <outs, (ins MEMxi:$ptr), name#" $dst, $ptr", pattern>,
VTX_WORD1_GPR, VTX_WORD0 {
// Static fields
let VC_INST = 0;
let FETCH_TYPE = 2;
let FETCH_WHOLE_QUAD = 0;
let BUFFER_ID = buffer_id;
let SRC_REL = 0;
// XXX: We can infer this field based on the SRC_GPR. This would allow us
// to store vertex addresses in any channel, not just X.
let SRC_SEL_X = 0;
let DST_REL = 0;
// The docs say that if this bit is set, then DATA_FORMAT, NUM_FORMAT_ALL,
// FORMAT_COMP_ALL, SRF_MODE_ALL, and ENDIAN_SWAP fields will be ignored,
// however, based on my testing if USE_CONST_FIELDS is set, then all
// these fields need to be set to 0.
let USE_CONST_FIELDS = 0;
let NUM_FORMAT_ALL = 1;
let FORMAT_COMP_ALL = 0;
let SRF_MODE_ALL = 0;
let Inst{31-0} = Word0;
let Inst{63-32} = Word1;
// LLVM can only encode 64-bit instructions, so these fields are manually
// encoded in R600CodeEmitter
//
// bits<16> OFFSET;
// bits<2> ENDIAN_SWAP = 0;
// bits<1> CONST_BUF_NO_STRIDE = 0;
// bits<1> MEGA_FETCH = 0;
// bits<1> ALT_CONST = 0;
// bits<2> BUFFER_INDEX_MODE = 0;
// VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding
// is done in R600CodeEmitter
//
// Inst{79-64} = OFFSET;
// Inst{81-80} = ENDIAN_SWAP;
// Inst{82} = CONST_BUF_NO_STRIDE;
// Inst{83} = MEGA_FETCH;
// Inst{84} = ALT_CONST;
// Inst{86-85} = BUFFER_INDEX_MODE;
// Inst{95-86} = 0; Reserved
// VTX_WORD3 (Padding)
//
// Inst{127-96} = 0;
}
class VTX_READ_8_eg <bits<8> buffer_id, list<dag> pattern>
: VTX_READ_eg <"VTX_READ_8", buffer_id, (outs R600_TReg32_X:$dst),
pattern> {
let MEGA_FETCH_COUNT = 1;
let DST_SEL_X = 0;
let DST_SEL_Y = 7; // Masked
let DST_SEL_Z = 7; // Masked
let DST_SEL_W = 7; // Masked
let DATA_FORMAT = 1; // FMT_8
}
class VTX_READ_16_eg <bits<8> buffer_id, list<dag> pattern>
: VTX_READ_eg <"VTX_READ_16", buffer_id, (outs R600_TReg32_X:$dst),
pattern> {
let MEGA_FETCH_COUNT = 2;
let DST_SEL_X = 0;
let DST_SEL_Y = 7; // Masked
let DST_SEL_Z = 7; // Masked
let DST_SEL_W = 7; // Masked
let DATA_FORMAT = 5; // FMT_16
}
class VTX_READ_32_eg <bits<8> buffer_id, list<dag> pattern>
: VTX_READ_eg <"VTX_READ_32", buffer_id, (outs R600_TReg32_X:$dst),
pattern> {
let MEGA_FETCH_COUNT = 4;
let DST_SEL_X = 0;
let DST_SEL_Y = 7; // Masked
let DST_SEL_Z = 7; // Masked
let DST_SEL_W = 7; // Masked
let DATA_FORMAT = 0xD; // COLOR_32
// This is not really necessary, but there were some GPU hangs that appeared
// to be caused by ALU instructions in the next instruction group that wrote
// to the $ptr registers of the VTX_READ.
// e.g.
// %T3_X<def> = VTX_READ_PARAM_32_eg %T2_X<kill>, 24
// %T2_X<def> = MOV %ZERO
//Adding this constraint prevents this from happening.
let Constraints = "$ptr.ptr = $dst";
}
class VTX_READ_128_eg <bits<8> buffer_id, list<dag> pattern>
: VTX_READ_eg <"VTX_READ_128", buffer_id, (outs R600_Reg128:$dst),
pattern> {
let MEGA_FETCH_COUNT = 16;
let DST_SEL_X = 0;
let DST_SEL_Y = 1;
let DST_SEL_Z = 2;
let DST_SEL_W = 3;
let DATA_FORMAT = 0x22; // COLOR_32_32_32_32
// XXX: Need to force VTX_READ_128 instructions to write to the same register
// that holds its buffer address to avoid potential hangs. We can't use
// the same constraint as VTX_READ_32_eg, because the $ptr.ptr and $dst
// registers are different sizes.
}
//===----------------------------------------------------------------------===//
// VTX Read from parameter memory space
//===----------------------------------------------------------------------===//
def VTX_READ_PARAM_8_eg : VTX_READ_8_eg <0,
[(set (i32 R600_TReg32_X:$dst), (load_param_zexti8 ADDRVTX_READ:$ptr))]
>;
def VTX_READ_PARAM_16_eg : VTX_READ_16_eg <0,
[(set (i32 R600_TReg32_X:$dst), (load_param_zexti16 ADDRVTX_READ:$ptr))]
>;
def VTX_READ_PARAM_32_eg : VTX_READ_32_eg <0,
[(set (i32 R600_TReg32_X:$dst), (load_param ADDRVTX_READ:$ptr))]
>;
def VTX_READ_PARAM_128_eg : VTX_READ_128_eg <0,
[(set (v4i32 R600_Reg128:$dst), (load_param ADDRVTX_READ:$ptr))]
>;
//===----------------------------------------------------------------------===//
// VTX Read from global memory space
//===----------------------------------------------------------------------===//
// 8-bit reads
def VTX_READ_GLOBAL_8_eg : VTX_READ_8_eg <1,
[(set (i32 R600_TReg32_X:$dst), (zextloadi8_global ADDRVTX_READ:$ptr))]
>;
// 32-bit reads
def VTX_READ_GLOBAL_32_eg : VTX_READ_32_eg <1,
[(set (i32 R600_TReg32_X:$dst), (global_load ADDRVTX_READ:$ptr))]
>;
// 128-bit reads
def VTX_READ_GLOBAL_128_eg : VTX_READ_128_eg <1,
[(set (v4i32 R600_Reg128:$dst), (global_load ADDRVTX_READ:$ptr))]
>;
//===----------------------------------------------------------------------===//
// Constant Loads
// XXX: We are currently storing all constants in the global address space.
//===----------------------------------------------------------------------===//
def CONSTANT_LOAD_eg : VTX_READ_32_eg <1,
[(set (i32 R600_TReg32_X:$dst), (constant_load ADDRVTX_READ:$ptr))]
>;
}
//===----------------------------------------------------------------------===//
// Regist loads and stores - for indirect addressing
//===----------------------------------------------------------------------===//
defm R600_ : RegisterLoadStore <R600_Reg32, FRAMEri, ADDRIndirect>;
let Predicates = [isCayman] in {
let isVector = 1 in {
def RECIP_IEEE_cm : RECIP_IEEE_Common<0x86>;
def MULLO_INT_cm : MULLO_INT_Common<0x8F>;
def MULHI_INT_cm : MULHI_INT_Common<0x90>;
def MULLO_UINT_cm : MULLO_UINT_Common<0x91>;
def MULHI_UINT_cm : MULHI_UINT_Common<0x92>;
def RECIPSQRT_CLAMPED_cm : RECIPSQRT_CLAMPED_Common<0x87>;
def EXP_IEEE_cm : EXP_IEEE_Common<0x81>;
def LOG_IEEE_cm : LOG_IEEE_Common<0x83>;
def RECIP_CLAMPED_cm : RECIP_CLAMPED_Common<0x84>;
def RECIPSQRT_IEEE_cm : RECIPSQRT_IEEE_Common<0x89>;
def SIN_cm : SIN_Common<0x8D>;
def COS_cm : COS_Common<0x8E>;
} // End isVector = 1
def : POW_Common <LOG_IEEE_cm, EXP_IEEE_cm, MUL, R600_Reg32>;
def : SIN_PAT <SIN_cm>;
def : COS_PAT <COS_cm>;
defm DIV_cm : DIV_Common<RECIP_IEEE_cm>;
// RECIP_UINT emulation for Cayman
def : Pat <
(AMDGPUurecip R600_Reg32:$src0),
(FLT_TO_UINT_eg (MUL_IEEE (RECIP_IEEE_cm (UINT_TO_FLT_eg R600_Reg32:$src0)),
(MOV_IMM_I32 0x4f800000)))
>;
def : Pat<(fsqrt R600_Reg32:$src),
(MUL R600_Reg32:$src, (RECIPSQRT_CLAMPED_cm R600_Reg32:$src))>;
} // End isCayman
//===----------------------------------------------------------------------===//
// Branch Instructions
//===----------------------------------------------------------------------===//
def IF_PREDICATE_SET : ILFormat<(outs), (ins GPRI32:$src),
"IF_PREDICATE_SET $src", []>;
def PREDICATED_BREAK : ILFormat<(outs), (ins GPRI32:$src),
"PREDICATED_BREAK $src", []>;
//===----------------------------------------------------------------------===//
// Pseudo instructions
//===----------------------------------------------------------------------===//
let isPseudo = 1 in {
def PRED_X : InstR600 <
0, (outs R600_Predicate_Bit:$dst),
(ins R600_Reg32:$src0, i32imm:$src1, i32imm:$flags),
"", [], NullALU> {
let FlagOperandIdx = 3;
}
let isTerminator = 1, isBranch = 1 in {
def JUMP_COND : InstR600 <0x10,
(outs),
(ins brtarget:$target, R600_Predicate_Bit:$p),
"JUMP $target ($p)",
[], AnyALU
>;
def JUMP : InstR600 <0x10,
(outs),
(ins brtarget:$target),
"JUMP $target",
[], AnyALU
>
{
let isPredicable = 1;
let isBarrier = 1;
}
} // End isTerminator = 1, isBranch = 1
let usesCustomInserter = 1 in {
let mayLoad = 0, mayStore = 0, hasSideEffects = 1 in {
def MASK_WRITE : AMDGPUShaderInst <
(outs),
(ins R600_Reg32:$src),
"MASK_WRITE $src",
[]
>;
} // End mayLoad = 0, mayStore = 0, hasSideEffects = 1
def TXD: AMDGPUShaderInst <
(outs R600_Reg128:$dst),
(ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, i32imm:$resourceId, i32imm:$samplerId, i32imm:$textureTarget),
"TXD $dst, $src0, $src1, $src2, $resourceId, $samplerId, $textureTarget",
[(set R600_Reg128:$dst, (int_AMDGPU_txd R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, imm:$resourceId, imm:$samplerId, imm:$textureTarget))]
>;
def TXD_SHADOW: AMDGPUShaderInst <
(outs R600_Reg128:$dst),
(ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, i32imm:$resourceId, i32imm:$samplerId, i32imm:$textureTarget),
"TXD_SHADOW $dst, $src0, $src1, $src2, $resourceId, $samplerId, $textureTarget",
[(set R600_Reg128:$dst, (int_AMDGPU_txd R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, imm:$resourceId, imm:$samplerId, TEX_SHADOW:$textureTarget))]
>;
} // End isPseudo = 1
} // End usesCustomInserter = 1
def CLAMP_R600 : CLAMP <R600_Reg32>;
def FABS_R600 : FABS<R600_Reg32>;
def FNEG_R600 : FNEG<R600_Reg32>;
//===---------------------------------------------------------------------===//
// Return instruction
//===---------------------------------------------------------------------===//
let isTerminator = 1, isReturn = 1, hasCtrlDep = 1,
usesCustomInserter = 1 in {
def RETURN : ILFormat<(outs), (ins variable_ops),
"RETURN", [(IL_retflag)]>;
}
//===----------------------------------------------------------------------===//
// Constant Buffer Addressing Support
//===----------------------------------------------------------------------===//
let usesCustomInserter = 1, isCodeGenOnly = 1, isPseudo = 1, Namespace = "AMDGPU" in {
def CONST_COPY : Instruction {
let OutOperandList = (outs R600_Reg32:$dst);
let InOperandList = (ins i32imm:$src);
let Pattern =
[(set R600_Reg32:$dst, (CONST_ADDRESS ADDRGA_CONST_OFFSET:$src))];
let AsmString = "CONST_COPY";
let neverHasSideEffects = 1;
let isAsCheapAsAMove = 1;
let Itinerary = NullALU;
}
} // end usesCustomInserter = 1, isCodeGenOnly = 1, isPseudo = 1, Namespace = "AMDGPU"
def TEX_VTX_CONSTBUF :
InstR600ISA <(outs R600_Reg128:$dst), (ins MEMxi:$ptr, i32imm:$BUFFER_ID), "VTX_READ_eg $dst, $ptr",
[(set R600_Reg128:$dst, (CONST_ADDRESS ADDRGA_VAR_OFFSET:$ptr, (i32 imm:$BUFFER_ID)))]>,
VTX_WORD1_GPR, VTX_WORD0 {
let VC_INST = 0;
let FETCH_TYPE = 2;
let FETCH_WHOLE_QUAD = 0;
let SRC_REL = 0;
let SRC_SEL_X = 0;
let DST_REL = 0;
let USE_CONST_FIELDS = 0;
let NUM_FORMAT_ALL = 2;
let FORMAT_COMP_ALL = 1;
let SRF_MODE_ALL = 1;
let MEGA_FETCH_COUNT = 16;
let DST_SEL_X = 0;
let DST_SEL_Y = 1;
let DST_SEL_Z = 2;
let DST_SEL_W = 3;
let DATA_FORMAT = 35;
let Inst{31-0} = Word0;
let Inst{63-32} = Word1;
// LLVM can only encode 64-bit instructions, so these fields are manually
// encoded in R600CodeEmitter
//
// bits<16> OFFSET;
// bits<2> ENDIAN_SWAP = 0;
// bits<1> CONST_BUF_NO_STRIDE = 0;
// bits<1> MEGA_FETCH = 0;
// bits<1> ALT_CONST = 0;
// bits<2> BUFFER_INDEX_MODE = 0;
// VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding
// is done in R600CodeEmitter
//
// Inst{79-64} = OFFSET;
// Inst{81-80} = ENDIAN_SWAP;
// Inst{82} = CONST_BUF_NO_STRIDE;
// Inst{83} = MEGA_FETCH;
// Inst{84} = ALT_CONST;
// Inst{86-85} = BUFFER_INDEX_MODE;
// Inst{95-86} = 0; Reserved
// VTX_WORD3 (Padding)
//
// Inst{127-96} = 0;
}
def TEX_VTX_TEXBUF:
InstR600ISA <(outs R600_Reg128:$dst), (ins MEMxi:$ptr, i32imm:$BUFFER_ID), "TEX_VTX_EXPLICIT_READ $dst, $ptr",
[(set R600_Reg128:$dst, (int_R600_load_texbuf ADDRGA_VAR_OFFSET:$ptr, imm:$BUFFER_ID))]>,
VTX_WORD1_GPR, VTX_WORD0 {
let VC_INST = 0;
let FETCH_TYPE = 2;
let FETCH_WHOLE_QUAD = 0;
let SRC_REL = 0;
let SRC_SEL_X = 0;
let DST_REL = 0;
let USE_CONST_FIELDS = 1;
let NUM_FORMAT_ALL = 0;
let FORMAT_COMP_ALL = 0;
let SRF_MODE_ALL = 1;
let MEGA_FETCH_COUNT = 16;
let DST_SEL_X = 0;
let DST_SEL_Y = 1;
let DST_SEL_Z = 2;
let DST_SEL_W = 3;
let DATA_FORMAT = 0;
let Inst{31-0} = Word0;
let Inst{63-32} = Word1;
// LLVM can only encode 64-bit instructions, so these fields are manually
// encoded in R600CodeEmitter
//
// bits<16> OFFSET;
// bits<2> ENDIAN_SWAP = 0;
// bits<1> CONST_BUF_NO_STRIDE = 0;
// bits<1> MEGA_FETCH = 0;
// bits<1> ALT_CONST = 0;
// bits<2> BUFFER_INDEX_MODE = 0;
// VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding
// is done in R600CodeEmitter
//
// Inst{79-64} = OFFSET;
// Inst{81-80} = ENDIAN_SWAP;
// Inst{82} = CONST_BUF_NO_STRIDE;
// Inst{83} = MEGA_FETCH;
// Inst{84} = ALT_CONST;
// Inst{86-85} = BUFFER_INDEX_MODE;
// Inst{95-86} = 0; Reserved
// VTX_WORD3 (Padding)
//
// Inst{127-96} = 0;
}
//===--------------------------------------------------------------------===//
// Instructions support
//===--------------------------------------------------------------------===//
//===---------------------------------------------------------------------===//
// Custom Inserter for Branches and returns, this eventually will be a
// seperate pass
//===---------------------------------------------------------------------===//
let isTerminator = 1, usesCustomInserter = 1, isBranch = 1, isBarrier = 1 in {
def BRANCH : ILFormat<(outs), (ins brtarget:$target),
"; Pseudo unconditional branch instruction",
[(br bb:$target)]>;
defm BRANCH_COND : BranchConditional<IL_brcond>;
}
//===---------------------------------------------------------------------===//
// Flow and Program control Instructions
//===---------------------------------------------------------------------===//
let isTerminator=1 in {
def SWITCH : ILFormat< (outs), (ins GPRI32:$src),
!strconcat("SWITCH", " $src"), []>;
def CASE : ILFormat< (outs), (ins GPRI32:$src),
!strconcat("CASE", " $src"), []>;
def BREAK : ILFormat< (outs), (ins),
"BREAK", []>;
def CONTINUE : ILFormat< (outs), (ins),
"CONTINUE", []>;
def DEFAULT : ILFormat< (outs), (ins),
"DEFAULT", []>;
def ELSE : ILFormat< (outs), (ins),
"ELSE", []>;
def ENDSWITCH : ILFormat< (outs), (ins),
"ENDSWITCH", []>;
def ENDMAIN : ILFormat< (outs), (ins),
"ENDMAIN", []>;
def END : ILFormat< (outs), (ins),
"END", []>;
def ENDFUNC : ILFormat< (outs), (ins),
"ENDFUNC", []>;
def ENDIF : ILFormat< (outs), (ins),
"ENDIF", []>;
def WHILELOOP : ILFormat< (outs), (ins),
"WHILE", []>;
def ENDLOOP : ILFormat< (outs), (ins),
"ENDLOOP", []>;
def FUNC : ILFormat< (outs), (ins),
"FUNC", []>;
def RETDYN : ILFormat< (outs), (ins),
"RET_DYN", []>;
// This opcode has custom swizzle pattern encoded in Swizzle Encoder
defm IF_LOGICALNZ : BranchInstr<"IF_LOGICALNZ">;
// This opcode has custom swizzle pattern encoded in Swizzle Encoder
defm IF_LOGICALZ : BranchInstr<"IF_LOGICALZ">;
// This opcode has custom swizzle pattern encoded in Swizzle Encoder
defm BREAK_LOGICALNZ : BranchInstr<"BREAK_LOGICALNZ">;
// This opcode has custom swizzle pattern encoded in Swizzle Encoder
defm BREAK_LOGICALZ : BranchInstr<"BREAK_LOGICALZ">;
// This opcode has custom swizzle pattern encoded in Swizzle Encoder
defm CONTINUE_LOGICALNZ : BranchInstr<"CONTINUE_LOGICALNZ">;
// This opcode has custom swizzle pattern encoded in Swizzle Encoder
defm CONTINUE_LOGICALZ : BranchInstr<"CONTINUE_LOGICALZ">;
defm IFC : BranchInstr2<"IFC">;
defm BREAKC : BranchInstr2<"BREAKC">;
defm CONTINUEC : BranchInstr2<"CONTINUEC">;
}
//===----------------------------------------------------------------------===//
// ISel Patterns
//===----------------------------------------------------------------------===//
// CND*_INT Pattterns for f32 True / False values
class CND_INT_f32 <InstR600 cnd, CondCode cc> : Pat <
(selectcc (i32 R600_Reg32:$src0), 0, (f32 R600_Reg32:$src1),
R600_Reg32:$src2, cc),
(cnd R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2)
>;
def : CND_INT_f32 <CNDE_INT, SETEQ>;
def : CND_INT_f32 <CNDGT_INT, SETGT>;
def : CND_INT_f32 <CNDGE_INT, SETGE>;
//CNDGE_INT extra pattern
def : Pat <
(selectcc (i32 R600_Reg32:$src0), -1, (i32 R600_Reg32:$src1),
(i32 R600_Reg32:$src2), COND_GT),
(CNDGE_INT R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2)
>;
// KIL Patterns
def KILP : Pat <
(int_AMDGPU_kilp),
(MASK_WRITE (KILLGT (f32 ONE), (f32 ZERO)))
>;
def KIL : Pat <
(int_AMDGPU_kill R600_Reg32:$src0),
(MASK_WRITE (KILLGT (f32 ZERO), (f32 R600_Reg32:$src0)))
>;
// SGT Reverse args
def : Pat <
(selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, COND_LT),
(SGT R600_Reg32:$src1, R600_Reg32:$src0)
>;
// SGE Reverse args
def : Pat <
(selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, COND_LE),
(SGE R600_Reg32:$src1, R600_Reg32:$src0)
>;
// SETGT_DX10 reverse args
def : Pat <
(selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, COND_LT),
(SETGT_DX10 R600_Reg32:$src1, R600_Reg32:$src0)
>;
// SETGE_DX10 reverse args
def : Pat <
(selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, COND_LE),
(SETGE_DX10 R600_Reg32:$src1, R600_Reg32:$src0)
>;
// SETGT_INT reverse args
def : Pat <
(selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETLT),
(SETGT_INT R600_Reg32:$src1, R600_Reg32:$src0)
>;
// SETGE_INT reverse args
def : Pat <
(selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETLE),
(SETGE_INT R600_Reg32:$src1, R600_Reg32:$src0)
>;
// SETGT_UINT reverse args
def : Pat <
(selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETULT),
(SETGT_UINT R600_Reg32:$src1, R600_Reg32:$src0)
>;
// SETGE_UINT reverse args
def : Pat <
(selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETULE),
(SETGE_UINT R600_Reg32:$src1, R600_Reg32:$src0)
>;
// The next two patterns are special cases for handling 'true if ordered' and
// 'true if unordered' conditionals. The assumption here is that the behavior of
// SETE and SNE conforms to the Direct3D 10 rules for floating point values
// described here:
// http://msdn.microsoft.com/en-us/library/windows/desktop/cc308050.aspx#alpha_32_bit
// We assume that SETE returns false when one of the operands is NAN and
// SNE returns true when on of the operands is NAN
//SETE - 'true if ordered'
def : Pat <
(selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, SETO),
(SETE R600_Reg32:$src0, R600_Reg32:$src1)
>;
//SETE_DX10 - 'true if ordered'
def : Pat <
(selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETO),
(SETE_DX10 R600_Reg32:$src0, R600_Reg32:$src1)
>;
//SNE - 'true if unordered'
def : Pat <
(selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, SETUO),
(SNE R600_Reg32:$src0, R600_Reg32:$src1)
>;
//SETNE_DX10 - 'true if ordered'
def : Pat <
(selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETUO),
(SETNE_DX10 R600_Reg32:$src0, R600_Reg32:$src1)
>;
def : Extract_Element <f32, v4f32, R600_Reg128, 0, sub0>;
def : Extract_Element <f32, v4f32, R600_Reg128, 1, sub1>;
def : Extract_Element <f32, v4f32, R600_Reg128, 2, sub2>;
def : Extract_Element <f32, v4f32, R600_Reg128, 3, sub3>;
def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 0, sub0>;
def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 1, sub1>;
def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 2, sub2>;
def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 3, sub3>;
def : Extract_Element <i32, v4i32, R600_Reg128, 0, sub0>;
def : Extract_Element <i32, v4i32, R600_Reg128, 1, sub1>;
def : Extract_Element <i32, v4i32, R600_Reg128, 2, sub2>;
def : Extract_Element <i32, v4i32, R600_Reg128, 3, sub3>;
def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 0, sub0>;
def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 1, sub1>;
def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 2, sub2>;
def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 3, sub3>;
def : Vector4_Build <v4f32, R600_Reg128, f32, R600_Reg32>;
def : Vector4_Build <v4i32, R600_Reg128, i32, R600_Reg32>;
// bitconvert patterns
def : BitConvert <i32, f32, R600_Reg32>;
def : BitConvert <f32, i32, R600_Reg32>;
def : BitConvert <v4f32, v4i32, R600_Reg128>;
def : BitConvert <v4i32, v4f32, R600_Reg128>;
// DWORDADDR pattern
def : DwordAddrPat <i32, R600_Reg32>;
} // End isR600toCayman Predicate