mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-06 04:31:08 +00:00
f57b845547
- Rename runOnMethod to runOnFunction * Transform getAnalysisUsageInfo into getAnalysisUsage - Method is now const - It now takes one AnalysisUsage object to fill in instead of 3 vectors to fill in - Pass's now specify which other passes they _preserve_ not which ones they modify (be conservative!) - A pass can specify that it preserves all analyses (because it never modifies the underlying program) * s/Method/Function/g in other random places as well git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2333 91177308-0d34-0410-b5e6-96231b3b80d8
1737 lines
68 KiB
C++
1737 lines
68 KiB
C++
//===-- PoolAllocate.cpp - Pool Allocation Pass ---------------------------===//
|
|
//
|
|
// This transform changes programs so that disjoint data structures are
|
|
// allocated out of different pools of memory, increasing locality and shrinking
|
|
// pointer size.
|
|
//
|
|
// This pass requires a DCE & instcombine pass to be run after it for best
|
|
// results.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/IPO/PoolAllocate.h"
|
|
#include "llvm/Transforms/CloneFunction.h"
|
|
#include "llvm/Analysis/DataStructure.h"
|
|
#include "llvm/Analysis/DataStructureGraph.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/BasicBlock.h"
|
|
#include "llvm/iMemory.h"
|
|
#include "llvm/iTerminators.h"
|
|
#include "llvm/iPHINode.h"
|
|
#include "llvm/iOther.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/ConstantVals.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Support/InstVisitor.h"
|
|
#include "llvm/Argument.h"
|
|
#include "Support/DepthFirstIterator.h"
|
|
#include "Support/STLExtras.h"
|
|
#include <algorithm>
|
|
|
|
// DEBUG_CREATE_POOLS - Enable this to turn on debug output for the pool
|
|
// creation phase in the top level function of a transformed data structure.
|
|
//
|
|
//#define DEBUG_CREATE_POOLS 1
|
|
|
|
// DEBUG_TRANSFORM_PROGRESS - Enable this to get lots of debug output on what
|
|
// the transformation is doing.
|
|
//
|
|
//#define DEBUG_TRANSFORM_PROGRESS 1
|
|
|
|
// DEBUG_POOLBASE_LOAD_ELIMINATOR - Turn this on to get statistics about how
|
|
// many static loads were eliminated from a function...
|
|
//
|
|
#define DEBUG_POOLBASE_LOAD_ELIMINATOR 1
|
|
|
|
#include "Support/CommandLine.h"
|
|
enum PtrSize {
|
|
Ptr8bits, Ptr16bits, Ptr32bits
|
|
};
|
|
|
|
static cl::Enum<enum PtrSize> ReqPointerSize("ptrsize", 0,
|
|
"Set pointer size for -poolalloc pass",
|
|
clEnumValN(Ptr32bits, "32", "Use 32 bit indices for pointers"),
|
|
clEnumValN(Ptr16bits, "16", "Use 16 bit indices for pointers"),
|
|
clEnumValN(Ptr8bits , "8", "Use 8 bit indices for pointers"), 0);
|
|
|
|
static cl::Flag DisableRLE("no-pool-load-elim", "Disable pool load elimination after poolalloc pass", cl::Hidden);
|
|
|
|
const Type *POINTERTYPE;
|
|
|
|
// FIXME: This is dependant on the sparc backend layout conventions!!
|
|
static TargetData TargetData("test");
|
|
|
|
static const Type *getPointerTransformedType(const Type *Ty) {
|
|
if (PointerType *PT = dyn_cast<PointerType>(Ty)) {
|
|
return POINTERTYPE;
|
|
} else if (StructType *STy = dyn_cast<StructType>(Ty)) {
|
|
vector<const Type *> NewElTypes;
|
|
NewElTypes.reserve(STy->getElementTypes().size());
|
|
for (StructType::ElementTypes::const_iterator
|
|
I = STy->getElementTypes().begin(),
|
|
E = STy->getElementTypes().end(); I != E; ++I)
|
|
NewElTypes.push_back(getPointerTransformedType(*I));
|
|
return StructType::get(NewElTypes);
|
|
} else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
|
|
return ArrayType::get(getPointerTransformedType(ATy->getElementType()),
|
|
ATy->getNumElements());
|
|
} else {
|
|
assert(Ty->isPrimitiveType() && "Unknown derived type!");
|
|
return Ty;
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
struct PoolInfo {
|
|
DSNode *Node; // The node this pool allocation represents
|
|
Value *Handle; // LLVM value of the pool in the current context
|
|
const Type *NewType; // The transformed type of the memory objects
|
|
const Type *PoolType; // The type of the pool
|
|
|
|
const Type *getOldType() const { return Node->getType(); }
|
|
|
|
PoolInfo() { // Define a default ctor for map::operator[]
|
|
cerr << "Map subscript used to get element that doesn't exist!\n";
|
|
abort(); // Invalid
|
|
}
|
|
|
|
PoolInfo(DSNode *N, Value *H, const Type *NT, const Type *PT)
|
|
: Node(N), Handle(H), NewType(NT), PoolType(PT) {
|
|
// Handle can be null...
|
|
assert(N && NT && PT && "Pool info null!");
|
|
}
|
|
|
|
PoolInfo(DSNode *N) : Node(N), Handle(0), NewType(0), PoolType(0) {
|
|
assert(N && "Invalid pool info!");
|
|
|
|
// The new type of the memory object is the same as the old type, except
|
|
// that all of the pointer values are replaced with POINTERTYPE values.
|
|
NewType = getPointerTransformedType(getOldType());
|
|
}
|
|
};
|
|
|
|
// ScalarInfo - Information about an LLVM value that we know points to some
|
|
// datastructure we are processing.
|
|
//
|
|
struct ScalarInfo {
|
|
Value *Val; // Scalar value in Current Function
|
|
PoolInfo Pool; // The pool the scalar points into
|
|
|
|
ScalarInfo(Value *V, const PoolInfo &PI) : Val(V), Pool(PI) {
|
|
assert(V && "Null value passed to ScalarInfo ctor!");
|
|
}
|
|
};
|
|
|
|
// CallArgInfo - Information on one operand for a call that got expanded.
|
|
struct CallArgInfo {
|
|
int ArgNo; // Call argument number this corresponds to
|
|
DSNode *Node; // The graph node for the pool
|
|
Value *PoolHandle; // The LLVM value that is the pool pointer
|
|
|
|
CallArgInfo(int Arg, DSNode *N, Value *PH)
|
|
: ArgNo(Arg), Node(N), PoolHandle(PH) {
|
|
assert(Arg >= -1 && N && PH && "Illegal values to CallArgInfo ctor!");
|
|
}
|
|
|
|
// operator< when sorting, sort by argument number.
|
|
bool operator<(const CallArgInfo &CAI) const {
|
|
return ArgNo < CAI.ArgNo;
|
|
}
|
|
};
|
|
|
|
// TransformFunctionInfo - Information about how a function eeds to be
|
|
// transformed.
|
|
//
|
|
struct TransformFunctionInfo {
|
|
// ArgInfo - Maintain information about the arguments that need to be
|
|
// processed. Each CallArgInfo corresponds to an argument that needs to
|
|
// have a pool pointer passed into the transformed function with it.
|
|
//
|
|
// As a special case, "argument" number -1 corresponds to the return value.
|
|
//
|
|
vector<CallArgInfo> ArgInfo;
|
|
|
|
// Func - The function to be transformed...
|
|
Function *Func;
|
|
|
|
// The call instruction that is used to map CallArgInfo PoolHandle values
|
|
// into the new function values.
|
|
CallInst *Call;
|
|
|
|
// default ctor...
|
|
TransformFunctionInfo() : Func(0), Call(0) {}
|
|
|
|
bool operator<(const TransformFunctionInfo &TFI) const {
|
|
if (Func < TFI.Func) return true;
|
|
if (Func > TFI.Func) return false;
|
|
if (ArgInfo.size() < TFI.ArgInfo.size()) return true;
|
|
if (ArgInfo.size() > TFI.ArgInfo.size()) return false;
|
|
return ArgInfo < TFI.ArgInfo;
|
|
}
|
|
|
|
void finalizeConstruction() {
|
|
// Sort the vector so that the return value is first, followed by the
|
|
// argument records, in order. Note that this must be a stable sort so
|
|
// that the entries with the same sorting criteria (ie they are multiple
|
|
// pool entries for the same argument) are kept in depth first order.
|
|
stable_sort(ArgInfo.begin(), ArgInfo.end());
|
|
}
|
|
|
|
// addCallInfo - For a specified function call CI, figure out which pool
|
|
// descriptors need to be passed in as arguments, and which arguments need
|
|
// to be transformed into indices. If Arg != -1, the specified call
|
|
// argument is passed in as a pointer to a data structure.
|
|
//
|
|
void addCallInfo(DataStructure *DS, CallInst *CI, int Arg,
|
|
DSNode *GraphNode, map<DSNode*, PoolInfo> &PoolDescs);
|
|
|
|
// Make sure that all dependant arguments are added to this transformation
|
|
// info. For example, if we call foo(null, P) and foo treats it's first and
|
|
// second arguments as belonging to the same data structure, the we MUST add
|
|
// entries to know that the null needs to be transformed into an index as
|
|
// well.
|
|
//
|
|
void ensureDependantArgumentsIncluded(DataStructure *DS,
|
|
map<DSNode*, PoolInfo> &PoolDescs);
|
|
};
|
|
|
|
|
|
// Define the pass class that we implement...
|
|
struct PoolAllocate : public Pass {
|
|
PoolAllocate() {
|
|
switch (ReqPointerSize) {
|
|
case Ptr32bits: POINTERTYPE = Type::UIntTy; break;
|
|
case Ptr16bits: POINTERTYPE = Type::UShortTy; break;
|
|
case Ptr8bits: POINTERTYPE = Type::UByteTy; break;
|
|
}
|
|
|
|
CurModule = 0; DS = 0;
|
|
PoolInit = PoolDestroy = PoolAlloc = PoolFree = 0;
|
|
}
|
|
|
|
// getPoolType - Get the type used by the backend for a pool of a particular
|
|
// type. This pool record is used to allocate nodes of type NodeType.
|
|
//
|
|
// Here, PoolTy = { NodeType*, sbyte*, uint }*
|
|
//
|
|
const StructType *getPoolType(const Type *NodeType) {
|
|
vector<const Type*> PoolElements;
|
|
PoolElements.push_back(PointerType::get(NodeType));
|
|
PoolElements.push_back(PointerType::get(Type::SByteTy));
|
|
PoolElements.push_back(Type::UIntTy);
|
|
StructType *Result = StructType::get(PoolElements);
|
|
|
|
// Add a name to the symbol table to correspond to the backend
|
|
// representation of this pool...
|
|
assert(CurModule && "No current module!?");
|
|
string Name = CurModule->getTypeName(NodeType);
|
|
if (Name.empty()) Name = CurModule->getTypeName(PoolElements[0]);
|
|
CurModule->addTypeName(Name+"oolbe", Result);
|
|
|
|
return Result;
|
|
}
|
|
|
|
bool run(Module *M);
|
|
|
|
// getAnalysisUsage - This function requires data structure information
|
|
// to be able to see what is pool allocatable.
|
|
//
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired(DataStructure::ID);
|
|
}
|
|
|
|
public:
|
|
// CurModule - The module being processed.
|
|
Module *CurModule;
|
|
|
|
// DS - The data structure graph for the module being processed.
|
|
DataStructure *DS;
|
|
|
|
// Prototypes that we add to support pool allocation...
|
|
Function *PoolInit, *PoolDestroy, *PoolAlloc, *PoolAllocArray, *PoolFree;
|
|
|
|
// The map of already transformed functions... note that the keys of this
|
|
// map do not have meaningful values for 'Call' or the 'PoolHandle' elements
|
|
// of the ArgInfo elements.
|
|
//
|
|
map<TransformFunctionInfo, Function*> TransformedFunctions;
|
|
|
|
// getTransformedFunction - Get a transformed function, or return null if
|
|
// the function specified hasn't been transformed yet.
|
|
//
|
|
Function *getTransformedFunction(TransformFunctionInfo &TFI) const {
|
|
map<TransformFunctionInfo, Function*>::const_iterator I =
|
|
TransformedFunctions.find(TFI);
|
|
if (I != TransformedFunctions.end()) return I->second;
|
|
return 0;
|
|
}
|
|
|
|
|
|
// addPoolPrototypes - Add prototypes for the pool functions to the
|
|
// specified module and update the Pool* instance variables to point to
|
|
// them.
|
|
//
|
|
void addPoolPrototypes(Module *M);
|
|
|
|
|
|
// CreatePools - Insert instructions into the function we are processing to
|
|
// create all of the memory pool objects themselves. This also inserts
|
|
// destruction code. Add an alloca for each pool that is allocated to the
|
|
// PoolDescs map.
|
|
//
|
|
void CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
|
|
map<DSNode*, PoolInfo> &PoolDescs);
|
|
|
|
// processFunction - Convert a function to use pool allocation where
|
|
// available.
|
|
//
|
|
bool processFunction(Function *F);
|
|
|
|
// transformFunctionBody - This transforms the instruction in 'F' to use the
|
|
// pools specified in PoolDescs when modifying data structure nodes
|
|
// specified in the PoolDescs map. IPFGraph is the closed data structure
|
|
// graph for F, of which the PoolDescriptor nodes come from.
|
|
//
|
|
void transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph,
|
|
map<DSNode*, PoolInfo> &PoolDescs);
|
|
|
|
// transformFunction - Transform the specified function the specified way.
|
|
// It we have already transformed that function that way, don't do anything.
|
|
// The nodes in the TransformFunctionInfo come out of callers data structure
|
|
// graph, and the PoolDescs passed in are the caller's.
|
|
//
|
|
void transformFunction(TransformFunctionInfo &TFI,
|
|
FunctionDSGraph &CallerIPGraph,
|
|
map<DSNode*, PoolInfo> &PoolDescs);
|
|
|
|
};
|
|
}
|
|
|
|
// isNotPoolableAlloc - This is a predicate that returns true if the specified
|
|
// allocation node in a data structure graph is eligable for pool allocation.
|
|
//
|
|
static bool isNotPoolableAlloc(const AllocDSNode *DS) {
|
|
if (DS->isAllocaNode()) return true; // Do not pool allocate alloca's.
|
|
return false;
|
|
}
|
|
|
|
// processFunction - Convert a function to use pool allocation where
|
|
// available.
|
|
//
|
|
bool PoolAllocate::processFunction(Function *F) {
|
|
// Get the closed datastructure graph for the current function... if there are
|
|
// any allocations in this graph that are not escaping, we need to pool
|
|
// allocate them here!
|
|
//
|
|
FunctionDSGraph &IPGraph = DS->getClosedDSGraph(F);
|
|
|
|
// Get all of the allocations that do not escape the current function. Since
|
|
// they are still live (they exist in the graph at all), this means we must
|
|
// have scalar references to these nodes, but the scalars are never returned.
|
|
//
|
|
vector<AllocDSNode*> Allocs;
|
|
IPGraph.getNonEscapingAllocations(Allocs);
|
|
|
|
// Filter out allocations that we cannot handle. Currently, this includes
|
|
// variable sized array allocations and alloca's (which we do not want to
|
|
// pool allocate)
|
|
//
|
|
Allocs.erase(remove_if(Allocs.begin(), Allocs.end(), isNotPoolableAlloc),
|
|
Allocs.end());
|
|
|
|
|
|
if (Allocs.empty()) return false; // Nothing to do.
|
|
|
|
#ifdef DEBUG_TRANSFORM_PROGRESS
|
|
cerr << "Transforming Function: " << F->getName() << "\n";
|
|
#endif
|
|
|
|
// Insert instructions into the function we are processing to create all of
|
|
// the memory pool objects themselves. This also inserts destruction code.
|
|
// This fills in the PoolDescs map to associate the alloc node with the
|
|
// allocation of the memory pool corresponding to it.
|
|
//
|
|
map<DSNode*, PoolInfo> PoolDescs;
|
|
CreatePools(F, Allocs, PoolDescs);
|
|
|
|
#ifdef DEBUG_TRANSFORM_PROGRESS
|
|
cerr << "Transformed Entry Function: \n" << F;
|
|
#endif
|
|
|
|
// Now we need to figure out what called functions we need to transform, and
|
|
// how. To do this, we look at all of the scalars, seeing which functions are
|
|
// either used as a scalar value (so they return a data structure), or are
|
|
// passed one of our scalar values.
|
|
//
|
|
transformFunctionBody(F, IPGraph, PoolDescs);
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// NewInstructionCreator - This class is used to traverse the function being
|
|
// modified, changing each instruction visit'ed to use and provide pointer
|
|
// indexes instead of real pointers. This is what changes the body of a
|
|
// function to use pool allocation.
|
|
//
|
|
class NewInstructionCreator : public InstVisitor<NewInstructionCreator> {
|
|
PoolAllocate &PoolAllocator;
|
|
vector<ScalarInfo> &Scalars;
|
|
map<CallInst*, TransformFunctionInfo> &CallMap;
|
|
map<Value*, Value*> &XFormMap; // Map old pointers to new indexes
|
|
|
|
struct RefToUpdate {
|
|
Instruction *I; // Instruction to update
|
|
unsigned OpNum; // Operand number to update
|
|
Value *OldVal; // The old value it had
|
|
|
|
RefToUpdate(Instruction *i, unsigned o, Value *ov)
|
|
: I(i), OpNum(o), OldVal(ov) {}
|
|
};
|
|
vector<RefToUpdate> ReferencesToUpdate;
|
|
|
|
const ScalarInfo &getScalarRef(const Value *V) {
|
|
for (unsigned i = 0, e = Scalars.size(); i != e; ++i)
|
|
if (Scalars[i].Val == V) return Scalars[i];
|
|
|
|
cerr << "Could not find scalar " << V << " in scalar map!\n";
|
|
assert(0 && "Scalar not found in getScalar!");
|
|
abort();
|
|
return Scalars[0];
|
|
}
|
|
|
|
const ScalarInfo *getScalar(const Value *V) {
|
|
for (unsigned i = 0, e = Scalars.size(); i != e; ++i)
|
|
if (Scalars[i].Val == V) return &Scalars[i];
|
|
return 0;
|
|
}
|
|
|
|
BasicBlock::iterator ReplaceInstWith(Instruction *I, Instruction *New) {
|
|
BasicBlock *BB = I->getParent();
|
|
BasicBlock::iterator RI = find(BB->begin(), BB->end(), I);
|
|
BB->getInstList().replaceWith(RI, New);
|
|
XFormMap[I] = New;
|
|
return RI;
|
|
}
|
|
|
|
LoadInst *createPoolBaseInstruction(Value *PtrVal) {
|
|
const ScalarInfo &SC = getScalarRef(PtrVal);
|
|
vector<Value*> Args(3);
|
|
Args[0] = ConstantUInt::get(Type::UIntTy, 0); // No pointer offset
|
|
Args[1] = ConstantUInt::get(Type::UByteTy, 0); // Field #0 of pool descriptr
|
|
Args[2] = ConstantUInt::get(Type::UByteTy, 0); // Field #0 of poolalloc val
|
|
return new LoadInst(SC.Pool.Handle, Args, PtrVal->getName()+".poolbase");
|
|
}
|
|
|
|
|
|
public:
|
|
NewInstructionCreator(PoolAllocate &PA, vector<ScalarInfo> &S,
|
|
map<CallInst*, TransformFunctionInfo> &C,
|
|
map<Value*, Value*> &X)
|
|
: PoolAllocator(PA), Scalars(S), CallMap(C), XFormMap(X) {}
|
|
|
|
|
|
// updateReferences - The NewInstructionCreator is responsible for creating
|
|
// new instructions to replace the old ones in the function, and then link up
|
|
// references to values to their new values. For it to do this, however, it
|
|
// keeps track of information about the value mapping of old values to new
|
|
// values that need to be patched up. Given this value map and a set of
|
|
// instruction operands to patch, updateReferences performs the updates.
|
|
//
|
|
void updateReferences() {
|
|
for (unsigned i = 0, e = ReferencesToUpdate.size(); i != e; ++i) {
|
|
RefToUpdate &Ref = ReferencesToUpdate[i];
|
|
Value *NewVal = XFormMap[Ref.OldVal];
|
|
|
|
if (NewVal == 0) {
|
|
if (isa<Constant>(Ref.OldVal) && // Refering to a null ptr?
|
|
cast<Constant>(Ref.OldVal)->isNullValue()) {
|
|
// Transform the null pointer into a null index... caching in XFormMap
|
|
XFormMap[Ref.OldVal] = NewVal = Constant::getNullValue(POINTERTYPE);
|
|
//} else if (isa<Argument>(Ref.OldVal)) {
|
|
} else {
|
|
cerr << "Unknown reference to: " << Ref.OldVal << "\n";
|
|
assert(XFormMap[Ref.OldVal] &&
|
|
"Reference to value that was not updated found!");
|
|
}
|
|
}
|
|
|
|
Ref.I->setOperand(Ref.OpNum, NewVal);
|
|
}
|
|
ReferencesToUpdate.clear();
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Transformation methods:
|
|
// These methods specify how each type of instruction is transformed by the
|
|
// NewInstructionCreator instance...
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
void visitGetElementPtrInst(GetElementPtrInst *I) {
|
|
assert(0 && "Cannot transform get element ptr instructions yet!");
|
|
}
|
|
|
|
// Replace the load instruction with a new one.
|
|
void visitLoadInst(LoadInst *I) {
|
|
Instruction *PoolBase = createPoolBaseInstruction(I->getOperand(0));
|
|
|
|
// Cast our index to be a UIntTy so we can use it to index into the pool...
|
|
CastInst *Index = new CastInst(Constant::getNullValue(POINTERTYPE),
|
|
Type::UIntTy, I->getOperand(0)->getName());
|
|
|
|
ReferencesToUpdate.push_back(RefToUpdate(Index, 0, I->getOperand(0)));
|
|
|
|
vector<Value*> Indices(I->idx_begin(), I->idx_end());
|
|
Instruction *IdxInst =
|
|
BinaryOperator::create(Instruction::Add, Indices[0], Index,
|
|
I->getName()+".idx");
|
|
Indices[0] = IdxInst;
|
|
Instruction *NewLoad = new LoadInst(PoolBase, Indices, I->getName());
|
|
|
|
// Replace the load instruction with the new load instruction...
|
|
BasicBlock::iterator II = ReplaceInstWith(I, NewLoad);
|
|
|
|
// Add the pool base calculator instruction before the load...
|
|
II = NewLoad->getParent()->getInstList().insert(II, PoolBase) + 1;
|
|
|
|
// Add the idx calculator instruction before the load...
|
|
II = NewLoad->getParent()->getInstList().insert(II, Index) + 1;
|
|
|
|
// Add the cast before the load instruction...
|
|
NewLoad->getParent()->getInstList().insert(II, IdxInst);
|
|
|
|
// If not yielding a pool allocated pointer, use the new load value as the
|
|
// value in the program instead of the old load value...
|
|
//
|
|
if (!getScalar(I))
|
|
I->replaceAllUsesWith(NewLoad);
|
|
}
|
|
|
|
// Replace the store instruction with a new one. In the store instruction,
|
|
// the value stored could be a pointer type, meaning that the new store may
|
|
// have to change one or both of it's operands.
|
|
//
|
|
void visitStoreInst(StoreInst *I) {
|
|
assert(getScalar(I->getOperand(1)) &&
|
|
"Store inst found only storing pool allocated pointer. "
|
|
"Not imp yet!");
|
|
|
|
Value *Val = I->getOperand(0); // The value to store...
|
|
// Check to see if the value we are storing is a data structure pointer...
|
|
//if (const ScalarInfo *ValScalar = getScalar(I->getOperand(0)))
|
|
if (isa<PointerType>(I->getOperand(0)->getType()))
|
|
Val = Constant::getNullValue(POINTERTYPE); // Yes, store a dummy
|
|
|
|
Instruction *PoolBase = createPoolBaseInstruction(I->getOperand(1));
|
|
|
|
// Cast our index to be a UIntTy so we can use it to index into the pool...
|
|
CastInst *Index = new CastInst(Constant::getNullValue(POINTERTYPE),
|
|
Type::UIntTy, I->getOperand(1)->getName());
|
|
ReferencesToUpdate.push_back(RefToUpdate(Index, 0, I->getOperand(1)));
|
|
|
|
vector<Value*> Indices(I->idx_begin(), I->idx_end());
|
|
Instruction *IdxInst =
|
|
BinaryOperator::create(Instruction::Add, Indices[0], Index, "idx");
|
|
Indices[0] = IdxInst;
|
|
|
|
Instruction *NewStore = new StoreInst(Val, PoolBase, Indices);
|
|
|
|
if (Val != I->getOperand(0)) // Value stored was a pointer?
|
|
ReferencesToUpdate.push_back(RefToUpdate(NewStore, 0, I->getOperand(0)));
|
|
|
|
|
|
// Replace the store instruction with the cast instruction...
|
|
BasicBlock::iterator II = ReplaceInstWith(I, Index);
|
|
|
|
// Add the pool base calculator instruction before the index...
|
|
II = Index->getParent()->getInstList().insert(II, PoolBase) + 2;
|
|
|
|
// Add the indexing instruction...
|
|
II = Index->getParent()->getInstList().insert(II, IdxInst) + 1;
|
|
|
|
// Add the store after the cast instruction...
|
|
Index->getParent()->getInstList().insert(II, NewStore);
|
|
}
|
|
|
|
|
|
// Create call to poolalloc for every malloc instruction
|
|
void visitMallocInst(MallocInst *I) {
|
|
const ScalarInfo &SCI = getScalarRef(I);
|
|
vector<Value*> Args;
|
|
|
|
CallInst *Call;
|
|
if (!I->isArrayAllocation()) {
|
|
Args.push_back(SCI.Pool.Handle);
|
|
Call = new CallInst(PoolAllocator.PoolAlloc, Args, I->getName());
|
|
} else {
|
|
Args.push_back(I->getArraySize());
|
|
Args.push_back(SCI.Pool.Handle);
|
|
Call = new CallInst(PoolAllocator.PoolAllocArray, Args, I->getName());
|
|
}
|
|
|
|
ReplaceInstWith(I, Call);
|
|
}
|
|
|
|
// Convert a call to poolfree for every free instruction...
|
|
void visitFreeInst(FreeInst *I) {
|
|
// Create a new call to poolfree before the free instruction
|
|
vector<Value*> Args;
|
|
Args.push_back(Constant::getNullValue(POINTERTYPE));
|
|
Args.push_back(getScalarRef(I->getOperand(0)).Pool.Handle);
|
|
Instruction *NewCall = new CallInst(PoolAllocator.PoolFree, Args);
|
|
ReplaceInstWith(I, NewCall);
|
|
ReferencesToUpdate.push_back(RefToUpdate(NewCall, 1, I->getOperand(0)));
|
|
}
|
|
|
|
// visitCallInst - Create a new call instruction with the extra arguments for
|
|
// all of the memory pools that the call needs.
|
|
//
|
|
void visitCallInst(CallInst *I) {
|
|
TransformFunctionInfo &TI = CallMap[I];
|
|
|
|
// Start with all of the old arguments...
|
|
vector<Value*> Args(I->op_begin()+1, I->op_end());
|
|
|
|
for (unsigned i = 0, e = TI.ArgInfo.size(); i != e; ++i) {
|
|
// Replace all of the pointer arguments with our new pointer typed values.
|
|
if (TI.ArgInfo[i].ArgNo != -1)
|
|
Args[TI.ArgInfo[i].ArgNo] = Constant::getNullValue(POINTERTYPE);
|
|
|
|
// Add all of the pool arguments...
|
|
Args.push_back(TI.ArgInfo[i].PoolHandle);
|
|
}
|
|
|
|
Function *NF = PoolAllocator.getTransformedFunction(TI);
|
|
Instruction *NewCall = new CallInst(NF, Args, I->getName());
|
|
ReplaceInstWith(I, NewCall);
|
|
|
|
// Keep track of the mapping of operands so that we can resolve them to real
|
|
// values later.
|
|
Value *RetVal = NewCall;
|
|
for (unsigned i = 0, e = TI.ArgInfo.size(); i != e; ++i)
|
|
if (TI.ArgInfo[i].ArgNo != -1)
|
|
ReferencesToUpdate.push_back(RefToUpdate(NewCall, TI.ArgInfo[i].ArgNo+1,
|
|
I->getOperand(TI.ArgInfo[i].ArgNo+1)));
|
|
else
|
|
RetVal = 0; // If returning a pointer, don't change retval...
|
|
|
|
// If not returning a pointer, use the new call as the value in the program
|
|
// instead of the old call...
|
|
//
|
|
if (RetVal)
|
|
I->replaceAllUsesWith(RetVal);
|
|
}
|
|
|
|
// visitPHINode - Create a new PHI node of POINTERTYPE for all of the old Phi
|
|
// nodes...
|
|
//
|
|
void visitPHINode(PHINode *PN) {
|
|
Value *DummyVal = Constant::getNullValue(POINTERTYPE);
|
|
PHINode *NewPhi = new PHINode(POINTERTYPE, PN->getName());
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
NewPhi->addIncoming(DummyVal, PN->getIncomingBlock(i));
|
|
ReferencesToUpdate.push_back(RefToUpdate(NewPhi, i*2,
|
|
PN->getIncomingValue(i)));
|
|
}
|
|
|
|
ReplaceInstWith(PN, NewPhi);
|
|
}
|
|
|
|
// visitReturnInst - Replace ret instruction with a new return...
|
|
void visitReturnInst(ReturnInst *I) {
|
|
Instruction *Ret = new ReturnInst(Constant::getNullValue(POINTERTYPE));
|
|
ReplaceInstWith(I, Ret);
|
|
ReferencesToUpdate.push_back(RefToUpdate(Ret, 0, I->getOperand(0)));
|
|
}
|
|
|
|
// visitSetCondInst - Replace a conditional test instruction with a new one
|
|
void visitSetCondInst(SetCondInst *SCI) {
|
|
BinaryOperator *I = (BinaryOperator*)SCI;
|
|
Value *DummyVal = Constant::getNullValue(POINTERTYPE);
|
|
BinaryOperator *New = BinaryOperator::create(I->getOpcode(), DummyVal,
|
|
DummyVal, I->getName());
|
|
ReplaceInstWith(I, New);
|
|
|
|
ReferencesToUpdate.push_back(RefToUpdate(New, 0, I->getOperand(0)));
|
|
ReferencesToUpdate.push_back(RefToUpdate(New, 1, I->getOperand(1)));
|
|
|
|
// Make sure branches refer to the new condition...
|
|
I->replaceAllUsesWith(New);
|
|
}
|
|
|
|
void visitInstruction(Instruction *I) {
|
|
cerr << "Unknown instruction to FunctionBodyTransformer:\n" << I;
|
|
}
|
|
};
|
|
|
|
|
|
// PoolBaseLoadEliminator - Every load and store through a pool allocated
|
|
// pointer causes a load of the real pool base out of the pool descriptor.
|
|
// Iterate through the function, doing a local elimination pass of duplicate
|
|
// loads. This attempts to turn the all too common:
|
|
//
|
|
// %reg109.poolbase22 = load %root.pool* %root.pool, uint 0, ubyte 0, ubyte 0
|
|
// %reg207 = load %root.p* %reg109.poolbase22, uint %reg109, ubyte 0, ubyte 0
|
|
// %reg109.poolbase23 = load %root.pool* %root.pool, uint 0, ubyte 0, ubyte 0
|
|
// store double %reg207, %root.p* %reg109.poolbase23, uint %reg109, ...
|
|
//
|
|
// into:
|
|
// %reg109.poolbase22 = load %root.pool* %root.pool, uint 0, ubyte 0, ubyte 0
|
|
// %reg207 = load %root.p* %reg109.poolbase22, uint %reg109, ubyte 0, ubyte 0
|
|
// store double %reg207, %root.p* %reg109.poolbase22, uint %reg109, ...
|
|
//
|
|
//
|
|
class PoolBaseLoadEliminator : public InstVisitor<PoolBaseLoadEliminator> {
|
|
// PoolDescValues - Keep track of the values in the current function that are
|
|
// pool descriptors (loads from which we want to eliminate).
|
|
//
|
|
vector<Value*> PoolDescValues;
|
|
|
|
// PoolDescMap - As we are analyzing a BB, keep track of which load to use
|
|
// when referencing a pool descriptor.
|
|
//
|
|
map<Value*, LoadInst*> PoolDescMap;
|
|
|
|
// These two fields keep track of statistics of how effective we are, if
|
|
// debugging is enabled.
|
|
//
|
|
unsigned Eliminated, Remaining;
|
|
public:
|
|
// Compact the pool descriptor map into a list of the pool descriptors in the
|
|
// current context that we should know about...
|
|
//
|
|
PoolBaseLoadEliminator(const map<DSNode*, PoolInfo> &PoolDescs) {
|
|
Eliminated = Remaining = 0;
|
|
for (map<DSNode*, PoolInfo>::const_iterator I = PoolDescs.begin(),
|
|
E = PoolDescs.end(); I != E; ++I)
|
|
PoolDescValues.push_back(I->second.Handle);
|
|
|
|
// Remove duplicates from the list of pool values
|
|
sort(PoolDescValues.begin(), PoolDescValues.end());
|
|
PoolDescValues.erase(unique(PoolDescValues.begin(), PoolDescValues.end()),
|
|
PoolDescValues.end());
|
|
}
|
|
|
|
#ifdef DEBUG_POOLBASE_LOAD_ELIMINATOR
|
|
void visitFunction(Function *F) {
|
|
cerr << "Pool Load Elim '" << F->getName() << "'\t";
|
|
}
|
|
~PoolBaseLoadEliminator() {
|
|
unsigned Total = Eliminated+Remaining;
|
|
if (Total)
|
|
cerr << "removed " << Eliminated << "["
|
|
<< Eliminated*100/Total << "%] loads, leaving "
|
|
<< Remaining << ".\n";
|
|
}
|
|
#endif
|
|
|
|
// Loop over the function, looking for loads to eliminate. Because we are a
|
|
// local transformation, we reset all of our state when we enter a new basic
|
|
// block.
|
|
//
|
|
void visitBasicBlock(BasicBlock *) {
|
|
PoolDescMap.clear(); // Forget state.
|
|
}
|
|
|
|
// Starting with an empty basic block, we scan it looking for loads of the
|
|
// pool descriptor. When we find a load, we add it to the PoolDescMap,
|
|
// indicating that we have a value available to recycle next time we see the
|
|
// poolbase of this instruction being loaded.
|
|
//
|
|
void visitLoadInst(LoadInst *LI) {
|
|
Value *LoadAddr = LI->getPointerOperand();
|
|
map<Value*, LoadInst*>::iterator VIt = PoolDescMap.find(LoadAddr);
|
|
if (VIt != PoolDescMap.end()) { // We already have a value for this load?
|
|
LI->replaceAllUsesWith(VIt->second); // Make the current load dead
|
|
++Eliminated;
|
|
} else {
|
|
// This load might not be a load of a pool pointer, check to see if it is
|
|
if (LI->getNumOperands() == 4 && // load pool, uint 0, ubyte 0, ubyte 0
|
|
find(PoolDescValues.begin(), PoolDescValues.end(), LoadAddr) !=
|
|
PoolDescValues.end()) {
|
|
|
|
assert("Make sure it's a load of the pool base, not a chaining field" &&
|
|
LI->getOperand(1) == Constant::getNullValue(Type::UIntTy) &&
|
|
LI->getOperand(2) == Constant::getNullValue(Type::UByteTy) &&
|
|
LI->getOperand(3) == Constant::getNullValue(Type::UByteTy));
|
|
|
|
// If it is a load of a pool base, keep track of it for future reference
|
|
PoolDescMap.insert(make_pair(LoadAddr, LI));
|
|
++Remaining;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we run across a function call, forget all state... Calls to
|
|
// poolalloc/poolfree can invalidate the pool base pointer, so it should be
|
|
// reloaded the next time it is used. Furthermore, a call to a random
|
|
// function might call one of these functions, so be conservative. Through
|
|
// more analysis, this could be improved in the future.
|
|
//
|
|
void visitCallInst(CallInst *) {
|
|
PoolDescMap.clear();
|
|
}
|
|
};
|
|
|
|
static void addNodeMapping(DSNode *SrcNode, const PointerValSet &PVS,
|
|
map<DSNode*, PointerValSet> &NodeMapping) {
|
|
for (unsigned i = 0, e = PVS.size(); i != e; ++i)
|
|
if (NodeMapping[SrcNode].add(PVS[i])) { // Not in map yet?
|
|
assert(PVS[i].Index == 0 && "Node indexing not supported yet!");
|
|
DSNode *DestNode = PVS[i].Node;
|
|
|
|
// Loop over all of the outgoing links in the mapped graph
|
|
for (unsigned l = 0, le = DestNode->getNumOutgoingLinks(); l != le; ++l) {
|
|
PointerValSet &SrcSet = SrcNode->getOutgoingLink(l);
|
|
const PointerValSet &DestSet = DestNode->getOutgoingLink(l);
|
|
|
|
// Add all of the node mappings now!
|
|
for (unsigned si = 0, se = SrcSet.size(); si != se; ++si) {
|
|
assert(SrcSet[si].Index == 0 && "Can't handle node offset!");
|
|
addNodeMapping(SrcSet[si].Node, DestSet, NodeMapping);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// CalculateNodeMapping - There is a partial isomorphism between the graph
|
|
// passed in and the graph that is actually used by the function. We need to
|
|
// figure out what this mapping is so that we can transformFunctionBody the
|
|
// instructions in the function itself. Note that every node in the graph that
|
|
// we are interested in must be both in the local graph of the called function,
|
|
// and in the local graph of the calling function. Because of this, we only
|
|
// define the mapping for these nodes [conveniently these are the only nodes we
|
|
// CAN define a mapping for...]
|
|
//
|
|
// The roots of the graph that we are transforming is rooted in the arguments
|
|
// passed into the function from the caller. This is where we start our
|
|
// mapping calculation.
|
|
//
|
|
// The NodeMapping calculated maps from the callers graph to the called graph.
|
|
//
|
|
static void CalculateNodeMapping(Function *F, TransformFunctionInfo &TFI,
|
|
FunctionDSGraph &CallerGraph,
|
|
FunctionDSGraph &CalledGraph,
|
|
map<DSNode*, PointerValSet> &NodeMapping) {
|
|
int LastArgNo = -2;
|
|
for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i) {
|
|
// Figure out what nodes in the called graph the TFI.ArgInfo[i].Node node
|
|
// corresponds to...
|
|
//
|
|
// Only consider first node of sequence. Extra nodes may may be added
|
|
// to the TFI if the data structure requires more nodes than just the
|
|
// one the argument points to. We are only interested in the one the
|
|
// argument points to though.
|
|
//
|
|
if (TFI.ArgInfo[i].ArgNo != LastArgNo) {
|
|
if (TFI.ArgInfo[i].ArgNo == -1) {
|
|
addNodeMapping(TFI.ArgInfo[i].Node, CalledGraph.getRetNodes(),
|
|
NodeMapping);
|
|
} else {
|
|
// Figure out which node argument # ArgNo points to in the called graph.
|
|
Value *Arg = F->getArgumentList()[TFI.ArgInfo[i].ArgNo];
|
|
addNodeMapping(TFI.ArgInfo[i].Node, CalledGraph.getValueMap()[Arg],
|
|
NodeMapping);
|
|
}
|
|
LastArgNo = TFI.ArgInfo[i].ArgNo;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
// addCallInfo - For a specified function call CI, figure out which pool
|
|
// descriptors need to be passed in as arguments, and which arguments need to be
|
|
// transformed into indices. If Arg != -1, the specified call argument is
|
|
// passed in as a pointer to a data structure.
|
|
//
|
|
void TransformFunctionInfo::addCallInfo(DataStructure *DS, CallInst *CI,
|
|
int Arg, DSNode *GraphNode,
|
|
map<DSNode*, PoolInfo> &PoolDescs) {
|
|
assert(CI->getCalledFunction() && "Cannot handle indirect calls yet!");
|
|
assert(Func == 0 || Func == CI->getCalledFunction() &&
|
|
"Function call record should always call the same function!");
|
|
assert(Call == 0 || Call == CI &&
|
|
"Call element already filled in with different value!");
|
|
Func = CI->getCalledFunction();
|
|
Call = CI;
|
|
//FunctionDSGraph &CalledGraph = DS->getClosedDSGraph(Func);
|
|
|
|
// For now, add the entire graph that is pointed to by the call argument.
|
|
// This graph can and should be pruned to only what the function itself will
|
|
// use, because often this will be a dramatically smaller subset of what we
|
|
// are providing.
|
|
//
|
|
// FIXME: This should use pool links instead of extra arguments!
|
|
//
|
|
for (df_iterator<DSNode*> I = df_begin(GraphNode), E = df_end(GraphNode);
|
|
I != E; ++I)
|
|
ArgInfo.push_back(CallArgInfo(Arg, *I, PoolDescs[*I].Handle));
|
|
}
|
|
|
|
static void markReachableNodes(const PointerValSet &Vals,
|
|
set<DSNode*> &ReachableNodes) {
|
|
for (unsigned n = 0, ne = Vals.size(); n != ne; ++n) {
|
|
DSNode *N = Vals[n].Node;
|
|
if (ReachableNodes.count(N) == 0) // Haven't already processed node?
|
|
ReachableNodes.insert(df_begin(N), df_end(N)); // Insert all
|
|
}
|
|
}
|
|
|
|
// Make sure that all dependant arguments are added to this transformation info.
|
|
// For example, if we call foo(null, P) and foo treats it's first and second
|
|
// arguments as belonging to the same data structure, the we MUST add entries to
|
|
// know that the null needs to be transformed into an index as well.
|
|
//
|
|
void TransformFunctionInfo::ensureDependantArgumentsIncluded(DataStructure *DS,
|
|
map<DSNode*, PoolInfo> &PoolDescs) {
|
|
// FIXME: This does not work for indirect function calls!!!
|
|
if (Func == 0) return; // FIXME!
|
|
|
|
// Make sure argument entries are sorted.
|
|
finalizeConstruction();
|
|
|
|
// Loop over the function signature, checking to see if there are any pointer
|
|
// arguments that we do not convert... if there is something we haven't
|
|
// converted, set done to false.
|
|
//
|
|
unsigned PtrNo = 0;
|
|
bool Done = true;
|
|
if (isa<PointerType>(Func->getReturnType())) // Make sure we convert retval
|
|
if (PtrNo < ArgInfo.size() && ArgInfo[PtrNo++].ArgNo == -1) {
|
|
// We DO transform the ret val... skip all possible entries for retval
|
|
while (PtrNo < ArgInfo.size() && ArgInfo[PtrNo].ArgNo == -1)
|
|
PtrNo++;
|
|
} else {
|
|
Done = false;
|
|
}
|
|
|
|
for (unsigned i = 0, e = Func->getArgumentList().size(); i != e; ++i) {
|
|
Argument *Arg = Func->getArgumentList()[i];
|
|
if (isa<PointerType>(Arg->getType())) {
|
|
if (PtrNo < ArgInfo.size() && ArgInfo[PtrNo++].ArgNo == (int)i) {
|
|
// We DO transform this arg... skip all possible entries for argument
|
|
while (PtrNo < ArgInfo.size() && ArgInfo[PtrNo].ArgNo == (int)i)
|
|
PtrNo++;
|
|
} else {
|
|
Done = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we already have entries for all pointer arguments and retvals, there
|
|
// certainly is no work to do. Bail out early to avoid building relatively
|
|
// expensive data structures.
|
|
//
|
|
if (Done) return;
|
|
|
|
#ifdef DEBUG_TRANSFORM_PROGRESS
|
|
cerr << "Must ensure dependant arguments for: " << Func->getName() << "\n";
|
|
#endif
|
|
|
|
// Otherwise, we MIGHT have to add the arguments/retval if they are part of
|
|
// the same datastructure graph as some other argument or retval that we ARE
|
|
// processing.
|
|
//
|
|
// Get the data structure graph for the called function.
|
|
//
|
|
FunctionDSGraph &CalledDS = DS->getClosedDSGraph(Func);
|
|
|
|
// Build a mapping between the nodes in our current graph and the nodes in the
|
|
// called function's graph. We build it based on our _incomplete_
|
|
// transformation information, because it contains all of the info that we
|
|
// should need.
|
|
//
|
|
map<DSNode*, PointerValSet> NodeMapping;
|
|
CalculateNodeMapping(Func, *this,
|
|
DS->getClosedDSGraph(Call->getParent()->getParent()),
|
|
CalledDS, NodeMapping);
|
|
|
|
// Build the inverted version of the node mapping, that maps from a node in
|
|
// the called functions graph to a single node in the caller graph.
|
|
//
|
|
map<DSNode*, DSNode*> InverseNodeMap;
|
|
for (map<DSNode*, PointerValSet>::iterator I = NodeMapping.begin(),
|
|
E = NodeMapping.end(); I != E; ++I) {
|
|
PointerValSet &CalledNodes = I->second;
|
|
for (unsigned i = 0, e = CalledNodes.size(); i != e; ++i)
|
|
InverseNodeMap[CalledNodes[i].Node] = I->first;
|
|
}
|
|
NodeMapping.clear(); // Done with information, free memory
|
|
|
|
// Build a set of reachable nodes from the arguments/retval that we ARE
|
|
// passing in...
|
|
set<DSNode*> ReachableNodes;
|
|
|
|
// Loop through all of the arguments, marking all of the reachable data
|
|
// structure nodes reachable if they are from this pointer...
|
|
//
|
|
for (unsigned i = 0, e = ArgInfo.size(); i != e; ++i) {
|
|
if (ArgInfo[i].ArgNo == -1) {
|
|
if (i == 0) // Only process retvals once (performance opt)
|
|
markReachableNodes(CalledDS.getRetNodes(), ReachableNodes);
|
|
} else { // If it's an argument value...
|
|
Argument *Arg = Func->getArgumentList()[ArgInfo[i].ArgNo];
|
|
if (isa<PointerType>(Arg->getType()))
|
|
markReachableNodes(CalledDS.getValueMap()[Arg], ReachableNodes);
|
|
}
|
|
}
|
|
|
|
// Now that we know which nodes are already reachable, see if any of the
|
|
// arguments that we are not passing values in for can reach one of the
|
|
// existing nodes...
|
|
//
|
|
|
|
// <FIXME> IN THEORY, we should allow arbitrary paths from the argument to
|
|
// nodes we know about. The problem is that if we do this, then I don't know
|
|
// how to get pool pointers for this head list. Since we are completely
|
|
// deadline driven, I'll just allow direct accesses to the graph. </FIXME>
|
|
//
|
|
|
|
PtrNo = 0;
|
|
if (isa<PointerType>(Func->getReturnType())) // Make sure we convert retval
|
|
if (PtrNo < ArgInfo.size() && ArgInfo[PtrNo++].ArgNo == -1) {
|
|
// We DO transform the ret val... skip all possible entries for retval
|
|
while (PtrNo < ArgInfo.size() && ArgInfo[PtrNo].ArgNo == -1)
|
|
PtrNo++;
|
|
} else {
|
|
// See what the return value points to...
|
|
|
|
// FIXME: This should generalize to any number of nodes, just see if any
|
|
// are reachable.
|
|
assert(CalledDS.getRetNodes().size() == 1 &&
|
|
"Assumes only one node is returned");
|
|
DSNode *N = CalledDS.getRetNodes()[0].Node;
|
|
|
|
// If the return value is not marked as being passed in, but it NEEDS to
|
|
// be transformed, then make it known now.
|
|
//
|
|
if (ReachableNodes.count(N)) {
|
|
#ifdef DEBUG_TRANSFORM_PROGRESS
|
|
cerr << "ensure dependant arguments adds return value entry!\n";
|
|
#endif
|
|
addCallInfo(DS, Call, -1, InverseNodeMap[N], PoolDescs);
|
|
|
|
// Keep sorted!
|
|
finalizeConstruction();
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 0, e = Func->getArgumentList().size(); i != e; ++i) {
|
|
Argument *Arg = Func->getArgumentList()[i];
|
|
if (isa<PointerType>(Arg->getType())) {
|
|
if (PtrNo < ArgInfo.size() && ArgInfo[PtrNo++].ArgNo == (int)i) {
|
|
// We DO transform this arg... skip all possible entries for argument
|
|
while (PtrNo < ArgInfo.size() && ArgInfo[PtrNo].ArgNo == (int)i)
|
|
PtrNo++;
|
|
} else {
|
|
// This should generalize to any number of nodes, just see if any are
|
|
// reachable.
|
|
assert(CalledDS.getValueMap()[Arg].size() == 1 &&
|
|
"Only handle case where pointing to one node so far!");
|
|
|
|
// If the arg is not marked as being passed in, but it NEEDS to
|
|
// be transformed, then make it known now.
|
|
//
|
|
DSNode *N = CalledDS.getValueMap()[Arg][0].Node;
|
|
if (ReachableNodes.count(N)) {
|
|
#ifdef DEBUG_TRANSFORM_PROGRESS
|
|
cerr << "ensure dependant arguments adds for arg #" << i << "\n";
|
|
#endif
|
|
addCallInfo(DS, Call, i, InverseNodeMap[N], PoolDescs);
|
|
|
|
// Keep sorted!
|
|
finalizeConstruction();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// transformFunctionBody - This transforms the instruction in 'F' to use the
|
|
// pools specified in PoolDescs when modifying data structure nodes specified in
|
|
// the PoolDescs map. Specifically, scalar values specified in the Scalars
|
|
// vector must be remapped. IPFGraph is the closed data structure graph for F,
|
|
// of which the PoolDescriptor nodes come from.
|
|
//
|
|
void PoolAllocate::transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph,
|
|
map<DSNode*, PoolInfo> &PoolDescs) {
|
|
|
|
// Loop through the value map looking for scalars that refer to nonescaping
|
|
// allocations. Add them to the Scalars vector. Note that we may have
|
|
// multiple entries in the Scalars vector for each value if it points to more
|
|
// than one object.
|
|
//
|
|
map<Value*, PointerValSet> &ValMap = IPFGraph.getValueMap();
|
|
vector<ScalarInfo> Scalars;
|
|
|
|
#ifdef DEBUG_TRANSFORM_PROGRESS
|
|
cerr << "Building scalar map for fn '" << F->getName() << "' body:\n";
|
|
#endif
|
|
|
|
for (map<Value*, PointerValSet>::iterator I = ValMap.begin(),
|
|
E = ValMap.end(); I != E; ++I) {
|
|
const PointerValSet &PVS = I->second; // Set of things pointed to by scalar
|
|
|
|
// Check to see if the scalar points to a data structure node...
|
|
for (unsigned i = 0, e = PVS.size(); i != e; ++i) {
|
|
if (PVS[i].Index) { cerr << "Problem in " << F->getName() << " for " << I->first << "\n"; }
|
|
assert(PVS[i].Index == 0 && "Nonzero not handled yet!");
|
|
|
|
// If the allocation is in the nonescaping set...
|
|
map<DSNode*, PoolInfo>::iterator AI = PoolDescs.find(PVS[i].Node);
|
|
if (AI != PoolDescs.end()) { // Add it to the list of scalars
|
|
Scalars.push_back(ScalarInfo(I->first, AI->second));
|
|
#ifdef DEBUG_TRANSFORM_PROGRESS
|
|
cerr << "\nScalar Mapping from:" << I->first
|
|
<< "Scalar Mapping to: "; PVS.print(cerr);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG_TRANSFORM_PROGRESS
|
|
cerr << "\nIn '" << F->getName()
|
|
<< "': Found the following values that point to poolable nodes:\n";
|
|
|
|
for (unsigned i = 0, e = Scalars.size(); i != e; ++i)
|
|
cerr << Scalars[i].Val;
|
|
cerr << "\n";
|
|
#endif
|
|
|
|
// CallMap - Contain an entry for every call instruction that needs to be
|
|
// transformed. Each entry in the map contains information about what we need
|
|
// to do to each call site to change it to work.
|
|
//
|
|
map<CallInst*, TransformFunctionInfo> CallMap;
|
|
|
|
// Now we need to figure out what called functions we need to transform, and
|
|
// how. To do this, we look at all of the scalars, seeing which functions are
|
|
// either used as a scalar value (so they return a data structure), or are
|
|
// passed one of our scalar values.
|
|
//
|
|
for (unsigned i = 0, e = Scalars.size(); i != e; ++i) {
|
|
Value *ScalarVal = Scalars[i].Val;
|
|
|
|
// Check to see if the scalar _IS_ a call...
|
|
if (CallInst *CI = dyn_cast<CallInst>(ScalarVal))
|
|
// If so, add information about the pool it will be returning...
|
|
CallMap[CI].addCallInfo(DS, CI, -1, Scalars[i].Pool.Node, PoolDescs);
|
|
|
|
// Check to see if the scalar is an operand to a call...
|
|
for (Value::use_iterator UI = ScalarVal->use_begin(),
|
|
UE = ScalarVal->use_end(); UI != UE; ++UI) {
|
|
if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
|
|
// Find out which operand this is to the call instruction...
|
|
User::op_iterator OI = find(CI->op_begin(), CI->op_end(), ScalarVal);
|
|
assert(OI != CI->op_end() && "Call on use list but not an operand!?");
|
|
assert(OI != CI->op_begin() && "Pointer operand is call destination?");
|
|
|
|
// FIXME: This is broken if the same pointer is passed to a call more
|
|
// than once! It will get multiple entries for the first pointer.
|
|
|
|
// Add the operand number and pool handle to the call table...
|
|
CallMap[CI].addCallInfo(DS, CI, OI-CI->op_begin()-1,
|
|
Scalars[i].Pool.Node, PoolDescs);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Make sure that all dependant arguments are added as well. For example, if
|
|
// we call foo(null, P) and foo treats it's first and second arguments as
|
|
// belonging to the same data structure, the we MUST set up the CallMap to
|
|
// know that the null needs to be transformed into an index as well.
|
|
//
|
|
for (map<CallInst*, TransformFunctionInfo>::iterator I = CallMap.begin();
|
|
I != CallMap.end(); ++I)
|
|
I->second.ensureDependantArgumentsIncluded(DS, PoolDescs);
|
|
|
|
#ifdef DEBUG_TRANSFORM_PROGRESS
|
|
// Print out call map...
|
|
for (map<CallInst*, TransformFunctionInfo>::iterator I = CallMap.begin();
|
|
I != CallMap.end(); ++I) {
|
|
cerr << "For call: " << I->first;
|
|
cerr << I->second.Func->getName() << " must pass pool pointer for args #";
|
|
for (unsigned i = 0; i < I->second.ArgInfo.size(); ++i)
|
|
cerr << I->second.ArgInfo[i].ArgNo << ", ";
|
|
cerr << "\n\n";
|
|
}
|
|
#endif
|
|
|
|
// Loop through all of the call nodes, recursively creating the new functions
|
|
// that we want to call... This uses a map to prevent infinite recursion and
|
|
// to avoid duplicating functions unneccesarily.
|
|
//
|
|
for (map<CallInst*, TransformFunctionInfo>::iterator I = CallMap.begin(),
|
|
E = CallMap.end(); I != E; ++I) {
|
|
// Transform all of the functions we need, or at least ensure there is a
|
|
// cached version available.
|
|
transformFunction(I->second, IPFGraph, PoolDescs);
|
|
}
|
|
|
|
// Now that all of the functions that we want to call are available, transform
|
|
// the local function so that it uses the pools locally and passes them to the
|
|
// functions that we just hacked up.
|
|
//
|
|
|
|
// First step, find the instructions to be modified.
|
|
vector<Instruction*> InstToFix;
|
|
for (unsigned i = 0, e = Scalars.size(); i != e; ++i) {
|
|
Value *ScalarVal = Scalars[i].Val;
|
|
|
|
// Check to see if the scalar _IS_ an instruction. If so, it is involved.
|
|
if (Instruction *Inst = dyn_cast<Instruction>(ScalarVal))
|
|
InstToFix.push_back(Inst);
|
|
|
|
// All all of the instructions that use the scalar as an operand...
|
|
for (Value::use_iterator UI = ScalarVal->use_begin(),
|
|
UE = ScalarVal->use_end(); UI != UE; ++UI)
|
|
InstToFix.push_back(cast<Instruction>(*UI));
|
|
}
|
|
|
|
// Make sure that we get return instructions that return a null value from the
|
|
// function...
|
|
//
|
|
if (!IPFGraph.getRetNodes().empty()) {
|
|
assert(IPFGraph.getRetNodes().size() == 1 && "Can only return one node?");
|
|
PointerVal RetNode = IPFGraph.getRetNodes()[0];
|
|
assert(RetNode.Index == 0 && "Subindexing not implemented yet!");
|
|
|
|
// Only process return instructions if the return value of this function is
|
|
// part of one of the data structures we are transforming...
|
|
//
|
|
if (PoolDescs.count(RetNode.Node)) {
|
|
// Loop over all of the basic blocks, adding return instructions...
|
|
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
|
|
if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator()))
|
|
InstToFix.push_back(RI);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Eliminate duplicates by sorting, then removing equal neighbors.
|
|
sort(InstToFix.begin(), InstToFix.end());
|
|
InstToFix.erase(unique(InstToFix.begin(), InstToFix.end()), InstToFix.end());
|
|
|
|
// Loop over all of the instructions to transform, creating the new
|
|
// replacement instructions for them. This also unlinks them from the
|
|
// function so they can be safely deleted later.
|
|
//
|
|
map<Value*, Value*> XFormMap;
|
|
NewInstructionCreator NIC(*this, Scalars, CallMap, XFormMap);
|
|
|
|
// Visit all instructions... creating the new instructions that we need and
|
|
// unlinking the old instructions from the function...
|
|
//
|
|
#ifdef DEBUG_TRANSFORM_PROGRESS
|
|
for (unsigned i = 0, e = InstToFix.size(); i != e; ++i) {
|
|
cerr << "Fixing: " << InstToFix[i];
|
|
NIC.visit(InstToFix[i]);
|
|
}
|
|
#else
|
|
NIC.visit(InstToFix.begin(), InstToFix.end());
|
|
#endif
|
|
|
|
// Make all instructions we will delete "let go" of their operands... so that
|
|
// we can safely delete Arguments whose types have changed...
|
|
//
|
|
for_each(InstToFix.begin(), InstToFix.end(),
|
|
mem_fun(&Instruction::dropAllReferences));
|
|
|
|
// Loop through all of the pointer arguments coming into the function,
|
|
// replacing them with arguments of POINTERTYPE to match the function type of
|
|
// the function.
|
|
//
|
|
FunctionType::ParamTypes::const_iterator TI =
|
|
F->getFunctionType()->getParamTypes().begin();
|
|
for (Function::ArgumentListType::iterator I = F->getArgumentList().begin(),
|
|
E = F->getArgumentList().end(); I != E; ++I, ++TI) {
|
|
Argument *Arg = *I;
|
|
if (Arg->getType() != *TI) {
|
|
assert(isa<PointerType>(Arg->getType()) && *TI == POINTERTYPE);
|
|
Argument *NewArg = new Argument(*TI, Arg->getName());
|
|
XFormMap[Arg] = NewArg; // Map old arg into new arg...
|
|
|
|
// Replace the old argument and then delete it...
|
|
delete F->getArgumentList().replaceWith(I, NewArg);
|
|
}
|
|
}
|
|
|
|
// Now that all of the new instructions have been created, we can update all
|
|
// of the references to dummy values to be references to the actual values
|
|
// that are computed.
|
|
//
|
|
NIC.updateReferences();
|
|
|
|
#ifdef DEBUG_TRANSFORM_PROGRESS
|
|
cerr << "TRANSFORMED FUNCTION:\n" << F;
|
|
#endif
|
|
|
|
// Delete all of the "instructions to fix"
|
|
for_each(InstToFix.begin(), InstToFix.end(), deleter<Instruction>);
|
|
|
|
// Eliminate pool base loads that we can easily prove are redundant
|
|
if (!DisableRLE)
|
|
PoolBaseLoadEliminator(PoolDescs).visit(F);
|
|
|
|
// Since we have liberally hacked the function to pieces, we want to inform
|
|
// the datastructure pass that its internal representation is out of date.
|
|
//
|
|
DS->invalidateFunction(F);
|
|
}
|
|
|
|
|
|
|
|
// transformFunction - Transform the specified function the specified way. It
|
|
// we have already transformed that function that way, don't do anything. The
|
|
// nodes in the TransformFunctionInfo come out of callers data structure graph.
|
|
//
|
|
void PoolAllocate::transformFunction(TransformFunctionInfo &TFI,
|
|
FunctionDSGraph &CallerIPGraph,
|
|
map<DSNode*, PoolInfo> &CallerPoolDesc) {
|
|
if (getTransformedFunction(TFI)) return; // Function xformation already done?
|
|
|
|
#ifdef DEBUG_TRANSFORM_PROGRESS
|
|
cerr << "********** Entering transformFunction for "
|
|
<< TFI.Func->getName() << ":\n";
|
|
for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i)
|
|
cerr << " ArgInfo[" << i << "] = " << TFI.ArgInfo[i].ArgNo << "\n";
|
|
cerr << "\n";
|
|
#endif
|
|
|
|
const FunctionType *OldFuncType = TFI.Func->getFunctionType();
|
|
|
|
assert(!OldFuncType->isVarArg() && "Vararg functions not handled yet!");
|
|
|
|
// Build the type for the new function that we are transforming
|
|
vector<const Type*> ArgTys;
|
|
ArgTys.reserve(OldFuncType->getNumParams()+TFI.ArgInfo.size());
|
|
for (unsigned i = 0, e = OldFuncType->getNumParams(); i != e; ++i)
|
|
ArgTys.push_back(OldFuncType->getParamType(i));
|
|
|
|
const Type *RetType = OldFuncType->getReturnType();
|
|
|
|
// Add one pool pointer for every argument that needs to be supplemented.
|
|
for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i) {
|
|
if (TFI.ArgInfo[i].ArgNo == -1)
|
|
RetType = POINTERTYPE; // Return a pointer
|
|
else
|
|
ArgTys[TFI.ArgInfo[i].ArgNo] = POINTERTYPE; // Pass a pointer
|
|
ArgTys.push_back(PointerType::get(CallerPoolDesc.find(TFI.ArgInfo[i].Node)
|
|
->second.PoolType));
|
|
}
|
|
|
|
// Build the new function type...
|
|
const FunctionType *NewFuncType = FunctionType::get(RetType, ArgTys,
|
|
OldFuncType->isVarArg());
|
|
|
|
// The new function is internal, because we know that only we can call it.
|
|
// This also helps subsequent IP transformations to eliminate duplicated pool
|
|
// pointers (which look like the same value is always passed into a parameter,
|
|
// allowing it to be easily eliminated).
|
|
//
|
|
Function *NewFunc = new Function(NewFuncType, true,
|
|
TFI.Func->getName()+".poolxform");
|
|
CurModule->getFunctionList().push_back(NewFunc);
|
|
|
|
|
|
#ifdef DEBUG_TRANSFORM_PROGRESS
|
|
cerr << "Created function prototype: " << NewFunc << "\n";
|
|
#endif
|
|
|
|
// Add the newly formed function to the TransformedFunctions table so that
|
|
// infinite recursion does not occur!
|
|
//
|
|
TransformedFunctions[TFI] = NewFunc;
|
|
|
|
// Add arguments to the function... starting with all of the old arguments
|
|
vector<Value*> ArgMap;
|
|
for (unsigned i = 0, e = TFI.Func->getArgumentList().size(); i != e; ++i) {
|
|
const Argument *OFA = TFI.Func->getArgumentList()[i];
|
|
Argument *NFA = new Argument(OFA->getType(), OFA->getName());
|
|
NewFunc->getArgumentList().push_back(NFA);
|
|
ArgMap.push_back(NFA); // Keep track of the arguments
|
|
}
|
|
|
|
// Now add all of the arguments corresponding to pools passed in...
|
|
for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i) {
|
|
CallArgInfo &AI = TFI.ArgInfo[i];
|
|
string Name;
|
|
if (AI.ArgNo == -1)
|
|
Name = "ret";
|
|
else
|
|
Name = ArgMap[AI.ArgNo]->getName(); // Get the arg name
|
|
const Type *Ty = PointerType::get(CallerPoolDesc[AI.Node].PoolType);
|
|
Argument *NFA = new Argument(Ty, Name+".pool");
|
|
NewFunc->getArgumentList().push_back(NFA);
|
|
}
|
|
|
|
// Now clone the body of the old function into the new function...
|
|
CloneFunctionInto(NewFunc, TFI.Func, ArgMap);
|
|
|
|
// Okay, now we have a function that is identical to the old one, except that
|
|
// it has extra arguments for the pools coming in. Now we have to get the
|
|
// data structure graph for the function we are replacing, and figure out how
|
|
// our graph nodes map to the graph nodes in the dest function.
|
|
//
|
|
FunctionDSGraph &DSGraph = DS->getClosedDSGraph(NewFunc);
|
|
|
|
// NodeMapping - Multimap from callers graph to called graph. We are
|
|
// guaranteed that the called function graph has more nodes than the caller,
|
|
// or exactly the same number of nodes. This is because the called function
|
|
// might not know that two nodes are merged when considering the callers
|
|
// context, but the caller obviously does. Because of this, a single node in
|
|
// the calling function's data structure graph can map to multiple nodes in
|
|
// the called functions graph.
|
|
//
|
|
map<DSNode*, PointerValSet> NodeMapping;
|
|
|
|
CalculateNodeMapping(NewFunc, TFI, CallerIPGraph, DSGraph,
|
|
NodeMapping);
|
|
|
|
// Print out the node mapping...
|
|
#ifdef DEBUG_TRANSFORM_PROGRESS
|
|
cerr << "\nNode mapping for call of " << NewFunc->getName() << "\n";
|
|
for (map<DSNode*, PointerValSet>::iterator I = NodeMapping.begin();
|
|
I != NodeMapping.end(); ++I) {
|
|
cerr << "Map: "; I->first->print(cerr);
|
|
cerr << "To: "; I->second.print(cerr);
|
|
cerr << "\n";
|
|
}
|
|
#endif
|
|
|
|
// Fill in the PoolDescriptor information for the transformed function so that
|
|
// it can determine which value holds the pool descriptor for each data
|
|
// structure node that it accesses.
|
|
//
|
|
map<DSNode*, PoolInfo> PoolDescs;
|
|
|
|
#ifdef DEBUG_TRANSFORM_PROGRESS
|
|
cerr << "\nCalculating the pool descriptor map:\n";
|
|
#endif
|
|
|
|
// Calculate as much of the pool descriptor map as possible. Since we have
|
|
// the node mapping between the caller and callee functions, and we have the
|
|
// pool descriptor information of the caller, we can calculate a partical pool
|
|
// descriptor map for the called function.
|
|
//
|
|
// The nodes that we do not have complete information for are the ones that
|
|
// are accessed by loading pointers derived from arguments passed in, but that
|
|
// are not passed in directly. In this case, we have all of the information
|
|
// except a pool value. If the called function refers to this pool, the pool
|
|
// value will be loaded from the pool graph and added to the map as neccesary.
|
|
//
|
|
for (map<DSNode*, PointerValSet>::iterator I = NodeMapping.begin();
|
|
I != NodeMapping.end(); ++I) {
|
|
DSNode *CallerNode = I->first;
|
|
PoolInfo &CallerPI = CallerPoolDesc[CallerNode];
|
|
|
|
// Check to see if we have a node pointer passed in for this value...
|
|
Value *CalleeValue = 0;
|
|
for (unsigned a = 0, ae = TFI.ArgInfo.size(); a != ae; ++a)
|
|
if (TFI.ArgInfo[a].Node == CallerNode) {
|
|
// Calculate the argument number that the pool is to the function
|
|
// call... The call instruction should not have the pool operands added
|
|
// yet.
|
|
unsigned ArgNo = TFI.Call->getNumOperands()-1+a;
|
|
#ifdef DEBUG_TRANSFORM_PROGRESS
|
|
cerr << "Should be argument #: " << ArgNo << "[i = " << a << "]\n";
|
|
#endif
|
|
assert(ArgNo < NewFunc->getArgumentList().size() &&
|
|
"Call already has pool arguments added??");
|
|
|
|
// Map the pool argument into the called function...
|
|
CalleeValue = NewFunc->getArgumentList()[ArgNo];
|
|
break; // Found value, quit loop
|
|
}
|
|
|
|
// Loop over all of the data structure nodes that this incoming node maps to
|
|
// Creating a PoolInfo structure for them.
|
|
for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
|
|
assert(I->second[i].Index == 0 && "Doesn't handle subindexing yet!");
|
|
DSNode *CalleeNode = I->second[i].Node;
|
|
|
|
// Add the descriptor. We already know everything about it by now, much
|
|
// of it is the same as the caller info.
|
|
//
|
|
PoolDescs.insert(make_pair(CalleeNode,
|
|
PoolInfo(CalleeNode, CalleeValue,
|
|
CallerPI.NewType,
|
|
CallerPI.PoolType)));
|
|
}
|
|
}
|
|
|
|
// We must destroy the node mapping so that we don't have latent references
|
|
// into the data structure graph for the new function. Otherwise we get
|
|
// assertion failures when transformFunctionBody tries to invalidate the
|
|
// graph.
|
|
//
|
|
NodeMapping.clear();
|
|
|
|
// Now that we know everything we need about the function, transform the body
|
|
// now!
|
|
//
|
|
transformFunctionBody(NewFunc, DSGraph, PoolDescs);
|
|
|
|
#ifdef DEBUG_TRANSFORM_PROGRESS
|
|
cerr << "Function after transformation:\n" << NewFunc;
|
|
#endif
|
|
}
|
|
|
|
static unsigned countPointerTypes(const Type *Ty) {
|
|
if (isa<PointerType>(Ty)) {
|
|
return 1;
|
|
} else if (StructType *STy = dyn_cast<StructType>(Ty)) {
|
|
unsigned Num = 0;
|
|
for (unsigned i = 0, e = STy->getElementTypes().size(); i != e; ++i)
|
|
Num += countPointerTypes(STy->getElementTypes()[i]);
|
|
return Num;
|
|
} else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
|
|
return countPointerTypes(ATy->getElementType());
|
|
} else {
|
|
assert(Ty->isPrimitiveType() && "Unknown derived type!");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// CreatePools - Insert instructions into the function we are processing to
|
|
// create all of the memory pool objects themselves. This also inserts
|
|
// destruction code. Add an alloca for each pool that is allocated to the
|
|
// PoolDescs vector.
|
|
//
|
|
void PoolAllocate::CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
|
|
map<DSNode*, PoolInfo> &PoolDescs) {
|
|
// Find all of the return nodes in the function...
|
|
vector<BasicBlock*> ReturnNodes;
|
|
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
|
|
if (isa<ReturnInst>((*I)->getTerminator()))
|
|
ReturnNodes.push_back(*I);
|
|
|
|
#ifdef DEBUG_CREATE_POOLS
|
|
cerr << "Allocs that we are pool allocating:\n";
|
|
for (unsigned i = 0, e = Allocs.size(); i != e; ++i)
|
|
Allocs[i]->dump();
|
|
#endif
|
|
|
|
map<DSNode*, PATypeHolder> AbsPoolTyMap;
|
|
|
|
// First pass over the allocations to process...
|
|
for (unsigned i = 0, e = Allocs.size(); i != e; ++i) {
|
|
// Create the pooldescriptor mapping... with null entries for everything
|
|
// except the node & NewType fields.
|
|
//
|
|
map<DSNode*, PoolInfo>::iterator PI =
|
|
PoolDescs.insert(make_pair(Allocs[i], PoolInfo(Allocs[i]))).first;
|
|
|
|
// Add a symbol table entry for the new type if there was one for the old
|
|
// type...
|
|
string OldName = CurModule->getTypeName(Allocs[i]->getType());
|
|
if (OldName.empty()) OldName = "node";
|
|
CurModule->addTypeName(OldName+".p", PI->second.NewType);
|
|
|
|
// Create the abstract pool types that will need to be resolved in a second
|
|
// pass once an abstract type is created for each pool.
|
|
//
|
|
// Can only handle limited shapes for now...
|
|
const Type *OldNodeTy = Allocs[i]->getType();
|
|
vector<const Type*> PoolTypes;
|
|
|
|
// Pool type is the first element of the pool descriptor type...
|
|
PoolTypes.push_back(getPoolType(PoolDescs[Allocs[i]].NewType));
|
|
|
|
unsigned NumPointers = countPointerTypes(OldNodeTy);
|
|
while (NumPointers--) // Add a different opaque type for each pointer
|
|
PoolTypes.push_back(OpaqueType::get());
|
|
|
|
assert(Allocs[i]->getNumLinks() == PoolTypes.size()-1 &&
|
|
"Node should have same number of pointers as pool!");
|
|
|
|
StructType *PoolType = StructType::get(PoolTypes);
|
|
|
|
// Add a symbol table entry for the pooltype if possible...
|
|
CurModule->addTypeName(OldName+".pool", PoolType);
|
|
|
|
// Create the pool type, with opaque values for pointers...
|
|
AbsPoolTyMap.insert(make_pair(Allocs[i], PoolType));
|
|
#ifdef DEBUG_CREATE_POOLS
|
|
cerr << "POOL TY: " << AbsPoolTyMap.find(Allocs[i])->second.get() << "\n";
|
|
#endif
|
|
}
|
|
|
|
// Now that we have types for all of the pool types, link them all together.
|
|
for (unsigned i = 0, e = Allocs.size(); i != e; ++i) {
|
|
PATypeHolder &PoolTyH = AbsPoolTyMap.find(Allocs[i])->second;
|
|
|
|
// Resolve all of the outgoing pointer types of this pool node...
|
|
for (unsigned p = 0, pe = Allocs[i]->getNumLinks(); p != pe; ++p) {
|
|
PointerValSet &PVS = Allocs[i]->getLink(p);
|
|
assert(!PVS.empty() && "Outgoing edge is empty, field unused, can"
|
|
" probably just leave the type opaque or something dumb.");
|
|
unsigned Out;
|
|
for (Out = 0; AbsPoolTyMap.count(PVS[Out].Node) == 0; ++Out)
|
|
assert(Out != PVS.size() && "No edge to an outgoing allocation node!?");
|
|
|
|
assert(PVS[Out].Index == 0 && "Subindexing not implemented yet!");
|
|
|
|
// The actual struct type could change each time through the loop, so it's
|
|
// NOT loop invariant.
|
|
StructType *PoolTy = cast<StructType>(PoolTyH.get());
|
|
|
|
// Get the opaque type...
|
|
DerivedType *ElTy =
|
|
cast<DerivedType>(PoolTy->getElementTypes()[p+1].get());
|
|
|
|
#ifdef DEBUG_CREATE_POOLS
|
|
cerr << "Refining " << ElTy << " of " << PoolTy << " to "
|
|
<< AbsPoolTyMap.find(PVS[Out].Node)->second.get() << "\n";
|
|
#endif
|
|
|
|
const Type *RefPoolTy = AbsPoolTyMap.find(PVS[Out].Node)->second.get();
|
|
ElTy->refineAbstractTypeTo(PointerType::get(RefPoolTy));
|
|
|
|
#ifdef DEBUG_CREATE_POOLS
|
|
cerr << "Result pool type is: " << PoolTyH.get() << "\n";
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// Create the code that goes in the entry and exit nodes for the function...
|
|
vector<Instruction*> EntryNodeInsts;
|
|
for (unsigned i = 0, e = Allocs.size(); i != e; ++i) {
|
|
PoolInfo &PI = PoolDescs[Allocs[i]];
|
|
|
|
// Fill in the pool type for this pool...
|
|
PI.PoolType = AbsPoolTyMap.find(Allocs[i])->second.get();
|
|
assert(!PI.PoolType->isAbstract() &&
|
|
"Pool type should not be abstract anymore!");
|
|
|
|
// Add an allocation and a free for each pool...
|
|
AllocaInst *PoolAlloc
|
|
= new AllocaInst(PointerType::get(PI.PoolType), 0,
|
|
CurModule->getTypeName(PI.PoolType));
|
|
PI.Handle = PoolAlloc;
|
|
EntryNodeInsts.push_back(PoolAlloc);
|
|
AllocationInst *AI = Allocs[i]->getAllocation();
|
|
|
|
// Initialize the pool. We need to know how big each allocation is. For
|
|
// our purposes here, we assume we are allocating a scalar, or array of
|
|
// constant size.
|
|
//
|
|
unsigned ElSize = TargetData.getTypeSize(PI.NewType);
|
|
|
|
vector<Value*> Args;
|
|
Args.push_back(ConstantUInt::get(Type::UIntTy, ElSize));
|
|
Args.push_back(PoolAlloc); // Pool to initialize
|
|
EntryNodeInsts.push_back(new CallInst(PoolInit, Args));
|
|
|
|
// Add code to destroy the pool in all of the exit nodes of the function...
|
|
Args.clear();
|
|
Args.push_back(PoolAlloc); // Pool to initialize
|
|
|
|
for (unsigned EN = 0, ENE = ReturnNodes.size(); EN != ENE; ++EN) {
|
|
Instruction *Destroy = new CallInst(PoolDestroy, Args);
|
|
|
|
// Insert it before the return instruction...
|
|
BasicBlock *RetNode = ReturnNodes[EN];
|
|
RetNode->getInstList().insert(RetNode->end()-1, Destroy);
|
|
}
|
|
}
|
|
|
|
// Now that all of the pool descriptors have been created, link them together
|
|
// so that called functions can get links as neccesary...
|
|
//
|
|
for (unsigned i = 0, e = Allocs.size(); i != e; ++i) {
|
|
PoolInfo &PI = PoolDescs[Allocs[i]];
|
|
|
|
// For every pointer in the data structure, initialize a link that
|
|
// indicates which pool to access...
|
|
//
|
|
vector<Value*> Indices(2);
|
|
Indices[0] = ConstantUInt::get(Type::UIntTy, 0);
|
|
for (unsigned l = 0, le = PI.Node->getNumLinks(); l != le; ++l)
|
|
// Only store an entry for the field if the field is used!
|
|
if (!PI.Node->getLink(l).empty()) {
|
|
assert(PI.Node->getLink(l).size() == 1 && "Should have only one link!");
|
|
PointerVal PV = PI.Node->getLink(l)[0];
|
|
assert(PV.Index == 0 && "Subindexing not supported yet!");
|
|
PoolInfo &LinkedPool = PoolDescs[PV.Node];
|
|
Indices[1] = ConstantUInt::get(Type::UByteTy, 1+l);
|
|
|
|
EntryNodeInsts.push_back(new StoreInst(LinkedPool.Handle, PI.Handle,
|
|
Indices));
|
|
}
|
|
}
|
|
|
|
// Insert the entry node code into the entry block...
|
|
F->getEntryNode()->getInstList().insert(F->getEntryNode()->begin()+1,
|
|
EntryNodeInsts.begin(),
|
|
EntryNodeInsts.end());
|
|
}
|
|
|
|
|
|
// addPoolPrototypes - Add prototypes for the pool functions to the specified
|
|
// module and update the Pool* instance variables to point to them.
|
|
//
|
|
void PoolAllocate::addPoolPrototypes(Module *M) {
|
|
// Get poolinit function...
|
|
vector<const Type*> Args;
|
|
Args.push_back(Type::UIntTy); // Num bytes per element
|
|
FunctionType *PoolInitTy = FunctionType::get(Type::VoidTy, Args, true);
|
|
PoolInit = M->getOrInsertFunction("poolinit", PoolInitTy);
|
|
|
|
// Get pooldestroy function...
|
|
Args.pop_back(); // Only takes a pool...
|
|
FunctionType *PoolDestroyTy = FunctionType::get(Type::VoidTy, Args, true);
|
|
PoolDestroy = M->getOrInsertFunction("pooldestroy", PoolDestroyTy);
|
|
|
|
// Get the poolalloc function...
|
|
FunctionType *PoolAllocTy = FunctionType::get(POINTERTYPE, Args, true);
|
|
PoolAlloc = M->getOrInsertFunction("poolalloc", PoolAllocTy);
|
|
|
|
// Get the poolfree function...
|
|
Args.push_back(POINTERTYPE); // Pointer to free
|
|
FunctionType *PoolFreeTy = FunctionType::get(Type::VoidTy, Args, true);
|
|
PoolFree = M->getOrInsertFunction("poolfree", PoolFreeTy);
|
|
|
|
Args[0] = Type::UIntTy; // Number of slots to allocate
|
|
FunctionType *PoolAllocArrayTy = FunctionType::get(POINTERTYPE, Args, true);
|
|
PoolAllocArray = M->getOrInsertFunction("poolallocarray", PoolAllocArrayTy);
|
|
}
|
|
|
|
|
|
bool PoolAllocate::run(Module *M) {
|
|
addPoolPrototypes(M);
|
|
CurModule = M;
|
|
|
|
DS = &getAnalysis<DataStructure>();
|
|
bool Changed = false;
|
|
|
|
// We cannot use an iterator here because it will get invalidated when we add
|
|
// functions to the module later...
|
|
for (unsigned i = 0; i != M->size(); ++i)
|
|
if (!M->getFunctionList()[i]->isExternal()) {
|
|
Changed |= processFunction(M->getFunctionList()[i]);
|
|
if (Changed) {
|
|
cerr << "Only processing one function\n";
|
|
break;
|
|
}
|
|
}
|
|
|
|
CurModule = 0;
|
|
DS = 0;
|
|
return false;
|
|
}
|
|
|
|
|
|
// createPoolAllocatePass - Global function to access the functionality of this
|
|
// pass...
|
|
//
|
|
Pass *createPoolAllocatePass() { return new PoolAllocate(); }
|