mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@8626 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1795 lines
		
	
	
		
			79 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			1795 lines
		
	
	
		
			79 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
 | |
| <html><head><title>LLVM Programmer's Manual</title></head>
 | |
| 
 | |
| <body bgcolor=white>
 | |
| 
 | |
| <table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td>  <font size=+3 color="#EEEEFF" face="Georgia,Palatino,Times,Roman"><b>LLVM Programmer's Manual</b></font></td>
 | |
| </tr></table>
 | |
|  
 | |
| <ol>
 | |
|   <li><a href="#introduction">Introduction</a>
 | |
|   <li><a href="#general">General Information</a>
 | |
|   <ul>
 | |
|     <li><a href="#stl">The C++ Standard Template Library</a>
 | |
| <!--
 | |
|     <li>The <tt>-time-passes</tt> option
 | |
|     <li>How to use the LLVM Makefile system
 | |
|     <li>How to write a regression test
 | |
| -->
 | |
|   </ul>
 | |
|   <li><a href="#apis">Important and useful LLVM APIs</a>
 | |
|   <ul>
 | |
|     <li><a href="#isa">The <tt>isa<></tt>, <tt>cast<></tt> and
 | |
|                        <tt>dyn_cast<></tt> templates</a>
 | |
|     <li><a href="#DEBUG">The <tt>DEBUG()</tt> macro &
 | |
|                        <tt>-debug</tt> option</a>
 | |
|     <ul>
 | |
|       <li><a href="#DEBUG_TYPE">Fine grained debug info with 
 | |
|           <tt>DEBUG_TYPE</tt> and the <tt>-debug-only</tt> option</a/>
 | |
|     </ul>
 | |
|     <li><a href="#Statistic">The <tt>Statistic</tt> template &
 | |
|                        <tt>-stats</tt> option</a>
 | |
| <!--
 | |
|     <li>The <tt>InstVisitor</tt> template
 | |
|     <li>The general graph API
 | |
| -->
 | |
|   </ul>
 | |
|   <li><a href="#common">Helpful Hints for Common Operations</a>
 | |
|   <ul>
 | |
|     <li><a href="#inspection">Basic Inspection and Traversal Routines</a>
 | |
|     <ul>
 | |
|       <li><a href="#iterate_function">Iterating over the <tt>BasicBlock</tt>s
 | |
|                                        in a <tt>Function</tt></a>
 | |
|       <li><a href="#iterate_basicblock">Iterating over the <tt>Instruction</tt>s
 | |
|                                        in a <tt>BasicBlock</tt></a>
 | |
|       <li><a href="#iterate_institer">Iterating over the <tt>Instruction</tt>s
 | |
|                                        in a <tt>Function</tt></a>
 | |
|       <li><a href="#iterate_convert">Turning an iterator into a class
 | |
|                                         pointer</a>
 | |
|       <li><a href="#iterate_complex">Finding call sites: a more complex
 | |
|                                         example</a>
 | |
|       <li><a href="#iterate_chains">Iterating over def-use & use-def
 | |
|                                     chains</a>
 | |
|     </ul>
 | |
|     <li><a href="#simplechanges">Making simple changes</a>
 | |
|     <ul>
 | |
|       <li><a href="#schanges_creating">Creating and inserting new
 | |
| 		  <tt>Instruction</tt>s</a>
 | |
|       <li><a href="#schanges_deleting">Deleting
 | |
| 		  <tt>Instruction</tt>s</a> 
 | |
|       <li><a href="#schanges_replacing">Replacing an
 | |
| 		  <tt>Instruction</tt> with another <tt>Value</tt></a>
 | |
|     </ul>
 | |
| <!--
 | |
|     <li>Working with the Control Flow Graph
 | |
|     <ul>
 | |
|       <li>Accessing predecessors and successors of a <tt>BasicBlock</tt>
 | |
|       <li>
 | |
|       <li>
 | |
|     </ul>
 | |
| -->
 | |
|   </ul>
 | |
|   <li><a href="#coreclasses">The Core LLVM Class Hierarchy Reference</a>
 | |
|   <ul>
 | |
|     <li><a href="#Value">The <tt>Value</tt> class</a>
 | |
|     <ul>
 | |
|       <li><a href="#User">The <tt>User</tt> class</a>
 | |
|       <ul>
 | |
|         <li><a href="#Instruction">The <tt>Instruction</tt> class</a>
 | |
|         <ul>
 | |
|         <li>
 | |
|         </ul>
 | |
|         <li><a href="#GlobalValue">The <tt>GlobalValue</tt> class</a>
 | |
|         <ul>
 | |
|           <li><a href="#BasicBlock">The <tt>BasicBlock</tt> class</a>
 | |
|           <li><a href="#Function">The <tt>Function</tt> class</a>
 | |
|           <li><a href="#GlobalVariable">The <tt>GlobalVariable</tt> class</a>
 | |
|         </ul>
 | |
|         <li><a href="#Module">The <tt>Module</tt> class</a>
 | |
|         <li><a href="#Constant">The <tt>Constant</tt> class</a>
 | |
|         <ul>
 | |
|         <li>
 | |
|         <li>
 | |
|         </ul>
 | |
|       </ul>
 | |
|       <li><a href="#Type">The <tt>Type</tt> class</a>
 | |
|       <li><a href="#Argument">The <tt>Argument</tt> class</a>
 | |
|     </ul>
 | |
|     <li>The <tt>SymbolTable</tt> class
 | |
|     <li>The <tt>ilist</tt> and <tt>iplist</tt> classes
 | |
|     <ul>
 | |
|       <li>Creating, inserting, moving and deleting from LLVM lists
 | |
|     </ul>
 | |
|     <li>Important iterator invalidation semantics to be aware of
 | |
|   </ul>
 | |
| 
 | |
|   <p><b>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>,
 | |
|         <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a>, and
 | |
|       <a href="mailto:jstanley@cs.uiuc.edu">Joel Stanley</a></b><p>
 | |
| </ol>
 | |
| 
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
 | |
| <a name="introduction">Introduction
 | |
| </b></font></td></tr></table><ul>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| This document is meant to highlight some of the important classes and interfaces
 | |
| available in the LLVM source-base.  This manual is not intended to explain what
 | |
| LLVM is, how it works, and what LLVM code looks like.  It assumes that you know
 | |
| the basics of LLVM and are interested in writing transformations or otherwise
 | |
| analyzing or manipulating the code.<p>
 | |
| 
 | |
| This document should get you oriented so that you can find your way in the
 | |
| continuously growing source code that makes up the LLVM infrastructure.  Note
 | |
| that this manual is not intended to serve as a replacement for reading the
 | |
| source code, so if you think there should be a method in one of these classes to
 | |
| do something, but it's not listed, check the source.  Links to the <a
 | |
| href="/doxygen/">doxygen</a> sources are provided to make this as easy as
 | |
| possible.<p>
 | |
| 
 | |
| The first section of this document describes general information that is useful
 | |
| to know when working in the LLVM infrastructure, and the second describes the
 | |
| Core LLVM classes.  In the future this manual will be extended with information
 | |
| describing how to use extension libraries, such as dominator information, CFG
 | |
| traversal routines, and useful utilities like the <tt><a
 | |
| href="/doxygen/InstVisitor_8h-source.html">InstVisitor</a></tt> template.<p>
 | |
| 
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| </ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
 | |
| <a name="general">General Information
 | |
| </b></font></td></tr></table><ul>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| This section contains general information that is useful if you are working in
 | |
| the LLVM source-base, but that isn't specific to any particular API.<p>
 | |
| 
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td> </td><td width="100%">  
 | |
| <font color="#EEEEFF" face="Georgia,Palatino"><b>
 | |
| <a name="stl">The C++ Standard Template Library</a>
 | |
| </b></font></td></tr></table><ul>
 | |
| 
 | |
| LLVM makes heavy use of the C++ Standard Template Library (STL), perhaps much
 | |
| more than you are used to, or have seen before.  Because of this, you might want
 | |
| to do a little background reading in the techniques used and capabilities of the
 | |
| library.  There are many good pages that discuss the STL, and several books on
 | |
| the subject that you can get, so it will not be discussed in this document.<p>
 | |
| 
 | |
| Here are some useful links:<p>
 | |
| <ol>
 | |
| <li><a href="http://www.dinkumware.com/refxcpp.html">Dinkumware C++
 | |
| Library reference</a> - an excellent reference for the STL and other parts of
 | |
| the standard C++ library.
 | |
| 
 | |
| <li><a href="http://www.tempest-sw.com/cpp/">C++ In a Nutshell</a> - This is an
 | |
| O'Reilly book in the making.  It has a decent <a
 | |
| href="http://www.tempest-sw.com/cpp/ch13-libref.html">Standard Library
 | |
| Reference</a> that rivals Dinkumware's, and is actually free until the book is
 | |
| published.
 | |
| 
 | |
| <li><a href="http://www.parashift.com/c++-faq-lite/">C++ Frequently Asked
 | |
| Questions</a>
 | |
| 
 | |
| <li><a href="http://www.sgi.com/tech/stl/">SGI's STL Programmer's Guide</a> -
 | |
| Contains a useful <a
 | |
| href="http://www.sgi.com/tech/stl/stl_introduction.html">Introduction to the
 | |
| STL</a>.
 | |
| 
 | |
| <li><a href="http://www.research.att.com/~bs/C++.html">Bjarne Stroustrup's C++
 | |
| Page</a>
 | |
| 
 | |
| </ol><p>
 | |
| 
 | |
| You are also encouraged to take a look at the <a
 | |
| href="CodingStandards.html">LLVM Coding Standards</a> guide which focuses on how
 | |
| to write maintainable code more than where to put your curly braces.<p>
 | |
| 
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| </ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
 | |
| <a name="apis">Important and useful LLVM APIs
 | |
| </b></font></td></tr></table><ul>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| Here we highlight some LLVM APIs that are generally useful and good to know
 | |
| about when writing transformations.<p>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td> </td><td width="100%">  
 | |
| <font color="#EEEEFF" face="Georgia,Palatino"><b>
 | |
| <a name="isa">The isa<>, cast<> and dyn_cast<> templates</a>
 | |
| </b></font></td></tr></table><ul>
 | |
| 
 | |
| The LLVM source-base makes extensive use of a custom form of RTTI.  These
 | |
| templates have many similarities to the C++ <tt>dynamic_cast<></tt>
 | |
| operator, but they don't have some drawbacks (primarily stemming from the fact
 | |
| that <tt>dynamic_cast<></tt> only works on classes that have a v-table).
 | |
| Because they are used so often, you must know what they do and how they work.
 | |
| All of these templates are defined in the <a
 | |
| href="/doxygen/Casting_8h-source.html"><tt>Support/Casting.h</tt></a> file (note
 | |
| that you very rarely have to include this file directly).<p>
 | |
| 
 | |
| <dl>
 | |
| 
 | |
| <dt><tt>isa<></tt>:
 | |
| 
 | |
| <dd>The <tt>isa<></tt> operator works exactly like the Java
 | |
| "<tt>instanceof</tt>" operator.  It returns true or false depending on whether a
 | |
| reference or pointer points to an instance of the specified class.  This can be
 | |
| very useful for constraint checking of various sorts (example below).<p>
 | |
| 
 | |
| 
 | |
| <dt><tt>cast<></tt>:
 | |
| 
 | |
| <dd>The <tt>cast<></tt> operator is a "checked cast" operation.  It
 | |
| converts a pointer or reference from a base class to a derived cast, causing an
 | |
| assertion failure if it is not really an instance of the right type.  This
 | |
| should be used in cases where you have some information that makes you believe
 | |
| that something is of the right type.  An example of the <tt>isa<></tt> and
 | |
| <tt>cast<></tt> template is:<p>
 | |
| 
 | |
| <pre>
 | |
| static bool isLoopInvariant(const <a href="#Value">Value</a> *V, const Loop *L) {
 | |
|   if (isa<<a href="#Constant">Constant</a>>(V) || isa<<a href="#Argument">Argument</a>>(V) || isa<<a href="#GlobalValue">GlobalValue</a>>(V))
 | |
|     return true;
 | |
| 
 | |
|   <i>// Otherwise, it must be an instruction...</i>
 | |
|   return !L->contains(cast<<a href="#Instruction">Instruction</a>>(V)->getParent());
 | |
| </pre><p>
 | |
| 
 | |
| Note that you should <b>not</b> use an <tt>isa<></tt> test followed by a
 | |
| <tt>cast<></tt>, for that use the <tt>dyn_cast<></tt> operator.<p>
 | |
| 
 | |
| 
 | |
| <dt><tt>dyn_cast<></tt>:
 | |
| 
 | |
| <dd>The <tt>dyn_cast<></tt> operator is a "checking cast" operation.  It
 | |
| checks to see if the operand is of the specified type, and if so, returns a
 | |
| pointer to it (this operator does not work with references).  If the operand is
 | |
| not of the correct type, a null pointer is returned.  Thus, this works very much
 | |
| like the <tt>dynamic_cast</tt> operator in C++, and should be used in the same
 | |
| circumstances.  Typically, the <tt>dyn_cast<></tt> operator is used in an
 | |
| <tt>if</tt> statement or some other flow control statement like this:<p>
 | |
| 
 | |
| <pre>
 | |
|   if (<a href="#AllocationInst">AllocationInst</a> *AI = dyn_cast<<a href="#AllocationInst">AllocationInst</a>>(Val)) {
 | |
|     ...
 | |
|   }
 | |
| </pre><p>
 | |
| 
 | |
| This form of the <tt>if</tt> statement effectively combines together a call to
 | |
| <tt>isa<></tt> and a call to <tt>cast<></tt> into one statement,
 | |
| which is very convenient.<p>
 | |
| 
 | |
| Another common example is:<p>
 | |
| 
 | |
| <pre>
 | |
|   <i>// Loop over all of the phi nodes in a basic block</i>
 | |
|   BasicBlock::iterator BBI = BB->begin();
 | |
|   for (; <a href="#PhiNode">PHINode</a> *PN = dyn_cast<<a href="#PHINode">PHINode</a>>(BBI); ++BBI)
 | |
|     cerr << *PN;
 | |
| </pre><p>
 | |
| 
 | |
| Note that the <tt>dyn_cast<></tt> operator, like C++'s
 | |
| <tt>dynamic_cast</tt> or Java's <tt>instanceof</tt> operator, can be abused.  In
 | |
| particular you should not use big chained <tt>if/then/else</tt> blocks to check
 | |
| for lots of different variants of classes.  If you find yourself wanting to do
 | |
| this, it is much cleaner and more efficient to use the InstVisitor class to
 | |
| dispatch over the instruction type directly.<p>
 | |
| 
 | |
| 
 | |
| <dt><tt>cast_or_null<></tt>:
 | |
| 
 | |
| <dd>The <tt>cast_or_null<></tt> operator works just like the
 | |
| <tt>cast<></tt> operator, except that it allows for a null pointer as an
 | |
| argument (which it then propagates).  This can sometimes be useful, allowing you
 | |
| to combine several null checks into one.<p>
 | |
| 
 | |
| 
 | |
| <dt><tt>dyn_cast_or_null<></tt>:
 | |
| 
 | |
| <dd>The <tt>dyn_cast_or_null<></tt> operator works just like the
 | |
| <tt>dyn_cast<></tt> operator, except that it allows for a null pointer as
 | |
| an argument (which it then propagates).  This can sometimes be useful, allowing
 | |
| you to combine several null checks into one.<p>
 | |
| 
 | |
| </dl>
 | |
| 
 | |
| These five templates can be used with any classes, whether they have a v-table
 | |
| or not.  To add support for these templates, you simply need to add
 | |
| <tt>classof</tt> static methods to the class you are interested casting to.
 | |
| Describing this is currently outside the scope of this document, but there are
 | |
| lots of examples in the LLVM source base.<p>
 | |
| 
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td> </td><td width="100%">  
 | |
| <font color="#EEEEFF" face="Georgia,Palatino"><b>
 | |
| <a name="DEBUG">The <tt>DEBUG()</tt> macro & <tt>-debug</tt> option</a>
 | |
| </b></font></td></tr></table><ul>
 | |
| 
 | |
| Often when working on your pass you will put a bunch of debugging printouts and
 | |
| other code into your pass.  After you get it working, you want to remove
 | |
| it... but you may need it again in the future (to work out new bugs that you run
 | |
| across).<p>
 | |
| 
 | |
| Naturally, because of this, you don't want to delete the debug printouts, but
 | |
| you don't want them to always be noisy.  A standard compromise is to comment
 | |
| them out, allowing you to enable them if you need them in the future.<p>
 | |
| 
 | |
| The "<tt><a href="/doxygen/Debug_8h-source.html">Support/Debug.h</a></tt>" file
 | |
| provides a macro named <tt>DEBUG()</tt> that is a much nicer solution to this
 | |
| problem.  Basically, you can put arbitrary code into the argument of the
 | |
| <tt>DEBUG</tt> macro, and it is only executed if '<tt>opt</tt>' (or any other
 | |
| tool) is run with the '<tt>-debug</tt>' command line argument:
 | |
| 
 | |
| <pre>
 | |
|      ... 
 | |
|      DEBUG(std::cerr << "I am here!\n");
 | |
|      ...
 | |
| </pre><p>
 | |
| 
 | |
| Then you can run your pass like this:<p>
 | |
| 
 | |
| <pre>
 | |
|   $ opt < a.bc > /dev/null -mypass
 | |
|     <no output>
 | |
|   $ opt < a.bc > /dev/null -mypass -debug
 | |
|     I am here!
 | |
|   $
 | |
| </pre><p>
 | |
| 
 | |
| Using the <tt>DEBUG()</tt> macro instead of a home-brewed solution allows you to
 | |
| now have to create "yet another" command line option for the debug output for
 | |
| your pass.  Note that <tt>DEBUG()</tt> macros are disabled for optimized builds,
 | |
| so they do not cause a performance impact at all (for the same reason, they
 | |
| should also not contain side-effects!).<p>
 | |
| 
 | |
| One additional nice thing about the <tt>DEBUG()</tt> macro is that you can
 | |
| enable or disable it directly in gdb.  Just use "<tt>set DebugFlag=0</tt>" or
 | |
| "<tt>set DebugFlag=1</tt>" from the gdb if the program is running.  If the
 | |
| program hasn't been started yet, you can always just run it with
 | |
| <tt>-debug</tt>.<p>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><h4><a name="DEBUG_TYPE"><hr size=0>Fine grained debug info with 
 | |
|           <tt>DEBUG_TYPE()</tt> and the <tt>-debug-only</tt> option</a> </h4><ul>
 | |
| 
 | |
| Sometimes you may find yourself in a situation where enabling <tt>-debug</tt>
 | |
| just turns on <b>too much</b> information (such as when working on the code
 | |
| generator).  If you want to enable debug information with more fine-grained
 | |
| control, you define the <tt>DEBUG_TYPE</tt> macro and the <tt>-debug</tt> only
 | |
| option as follows:<p>
 | |
| 
 | |
| <pre>
 | |
|      ...
 | |
|      DEBUG(std::cerr << "No debug type\n");
 | |
|      #undef  DEBUG_TYPE
 | |
|      #define DEBUG_TYPE "foo"
 | |
|      DEBUG(std::cerr << "'foo' debug type\n");
 | |
|      #undef  DEBUG_TYPE
 | |
|      #define DEBUG_TYPE "bar"
 | |
|      DEBUG(std::cerr << "'bar' debug type\n");
 | |
|      #undef  DEBUG_TYPE
 | |
|      #define DEBUG_TYPE ""
 | |
|      DEBUG(std::cerr << "No debug type (2)\n");
 | |
|      ...
 | |
| </pre><p>
 | |
| 
 | |
| Then you can run your pass like this:<p>
 | |
| 
 | |
| <pre>
 | |
|   $ opt < a.bc > /dev/null -mypass
 | |
|     <no output>
 | |
|   $ opt < a.bc > /dev/null -mypass -debug
 | |
|     No debug type
 | |
|     'foo' debug type
 | |
|     'bar' debug type
 | |
|     No debug type (2)
 | |
|   $ opt < a.bc > /dev/null -mypass -debug-only=foo
 | |
|     'foo' debug type
 | |
|   $ opt < a.bc > /dev/null -mypass -debug-only=bar
 | |
|     'bar' debug type
 | |
|   $
 | |
| </pre><p>
 | |
| 
 | |
| Of course, in practice, you should only set <tt>DEBUG_TYPE</tt> at the top of a
 | |
| file, to specify the debug type for the entire module (if you do this before you
 | |
| <tt>#include "Support/Debug.h"</tt>, you don't have to insert the ugly
 | |
| <tt>#undef</tt>'s).  Also, you should use names more meaningful that "foo" and
 | |
| "bar", because there is no system in place to ensure that names do not conflict:
 | |
| if two different modules use the same string, they will all be turned on when
 | |
| the name is specified.  This allows all, say, instruction scheduling, debug
 | |
| information to be enabled with <tt>-debug-type=InstrSched</tt>, even if the
 | |
| source lives in multiple files.<p>
 | |
| 
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td> </td><td width="100%">  
 | |
| <font color="#EEEEFF" face="Georgia,Palatino"><b>
 | |
| <a name="Statistic">The <tt>Statistic</tt> template & <tt>-stats</tt>
 | |
| option</a>
 | |
| </b></font></td></tr></table><ul>
 | |
| 
 | |
| The "<tt><a
 | |
| href="/doxygen/Statistic_8h-source.html">Support/Statistic.h</a></tt>"
 | |
| file provides a template named <tt>Statistic</tt> that is used as a unified way
 | |
| to keeping track of what the LLVM compiler is doing and how effective various
 | |
| optimizations are.  It is useful to see what optimizations are contributing to
 | |
| making a particular program run faster.<p>
 | |
| 
 | |
| Often you may run your pass on some big program, and you're interested to see
 | |
| how many times it makes a certain transformation.  Although you can do this with
 | |
| hand inspection, or some ad-hoc method, this is a real pain and not very useful
 | |
| for big programs.  Using the <tt>Statistic</tt> template makes it very easy to
 | |
| keep track of this information, and the calculated information is presented in a
 | |
| uniform manner with the rest of the passes being executed.<p>
 | |
| 
 | |
| There are many examples of <tt>Statistic</tt> users, but this basics of using it
 | |
| are as follows:<p>
 | |
| 
 | |
| <ol>
 | |
| <li>Define your statistic like this:<p>
 | |
| 
 | |
| <pre>
 | |
| static Statistic<> NumXForms("mypassname", "The # of times I did stuff");
 | |
| </pre><p>
 | |
| 
 | |
| The <tt>Statistic</tt> template can emulate just about any data-type, but if you
 | |
| do not specify a template argument, it defaults to acting like an unsigned int
 | |
| counter (this is usually what you want).<p>
 | |
| 
 | |
| <li>Whenever you make a transformation, bump the counter:<p>
 | |
| 
 | |
| <pre>
 | |
|    ++NumXForms;   // I did stuff
 | |
| </pre><p>
 | |
| 
 | |
| </ol><p>
 | |
| 
 | |
| That's all you have to do.  To get '<tt>opt</tt>' to print out the statistics
 | |
| gathered, use the '<tt>-stats</tt>' option:<p>
 | |
| 
 | |
| <pre>
 | |
|    $ opt -stats -mypassname < program.bc > /dev/null
 | |
|     ... statistic output ...
 | |
| </pre><p>
 | |
| 
 | |
| When running <tt>gccas</tt> on a C file from the SPEC benchmark suite, it gives
 | |
| a report that looks like this:<p>
 | |
| 
 | |
| <pre>
 | |
|    7646 bytecodewriter  - Number of normal instructions
 | |
|     725 bytecodewriter  - Number of oversized instructions
 | |
|  129996 bytecodewriter  - Number of bytecode bytes written
 | |
|    2817 raise           - Number of insts DCEd or constprop'd
 | |
|    3213 raise           - Number of cast-of-self removed
 | |
|    5046 raise           - Number of expression trees converted
 | |
|      75 raise           - Number of other getelementptr's formed
 | |
|     138 raise           - Number of load/store peepholes
 | |
|      42 deadtypeelim    - Number of unused typenames removed from symtab
 | |
|     392 funcresolve     - Number of varargs functions resolved
 | |
|      27 globaldce       - Number of global variables removed
 | |
|       2 adce            - Number of basic blocks removed
 | |
|     134 cee             - Number of branches revectored
 | |
|      49 cee             - Number of setcc instruction eliminated
 | |
|     532 gcse            - Number of loads removed
 | |
|    2919 gcse            - Number of instructions removed
 | |
|      86 indvars         - Number of canonical indvars added
 | |
|      87 indvars         - Number of aux indvars removed
 | |
|      25 instcombine     - Number of dead inst eliminate
 | |
|     434 instcombine     - Number of insts combined
 | |
|     248 licm            - Number of load insts hoisted
 | |
|    1298 licm            - Number of insts hoisted to a loop pre-header
 | |
|       3 licm            - Number of insts hoisted to multiple loop preds (bad, no loop pre-header)
 | |
|      75 mem2reg         - Number of alloca's promoted
 | |
|    1444 cfgsimplify     - Number of blocks simplified
 | |
| </pre><p>
 | |
| 
 | |
| Obviously, with so many optimizations, having a unified framework for this stuff
 | |
| is very nice.  Making your pass fit well into the framework makes it more
 | |
| maintainable and useful.<p>
 | |
| 
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| </ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
 | |
| <a name="common">Helpful Hints for Common Operations
 | |
| </b></font></td></tr></table><ul> <!--
 | |
| *********************************************************************** -->
 | |
| 
 | |
| This section describes how to perform some very simple transformations of LLVM
 | |
| code.  This is meant to give examples of common idioms used, showing the
 | |
| practical side of LLVM transformations.<p>
 | |
| 
 | |
| Because this is a "how-to" section, you should also read about the main classes
 | |
| that you will be working with.  The <a href="#coreclasses">Core LLVM Class
 | |
| Hierarchy Reference</a> contains details and descriptions of the main classes
 | |
| that you should know about.<p>
 | |
| 
 | |
| <!-- NOTE: this section should be heavy on example code -->
 | |
| 
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td> </td><td width="100%">  
 | |
| <font color="#EEEEFF" face="Georgia,Palatino"><b>
 | |
| <a name="inspection">Basic Inspection and Traversal Routines</a>
 | |
| </b></font></td></tr></table><ul>
 | |
| 
 | |
| The LLVM compiler infrastructure have many different data structures that may be
 | |
| traversed.  Following the example of the C++ standard template library, the
 | |
| techniques used to traverse these various data structures are all basically the
 | |
| same.  For a enumerable sequence of values, the <tt>XXXbegin()</tt> function (or
 | |
| method) returns an iterator to the start of the sequence, the <tt>XXXend()</tt>
 | |
| function returns an iterator pointing to one past the last valid element of the
 | |
| sequence, and there is some <tt>XXXiterator</tt> data type that is common
 | |
| between the two operations.<p>
 | |
| 
 | |
| Because the pattern for iteration is common across many different aspects of the
 | |
| program representation, the standard template library algorithms may be used on
 | |
| them, and it is easier to remember how to iterate.  First we show a few common
 | |
| examples of the data structures that need to be traversed.  Other data
 | |
| structures are traversed in very similar ways.<p>
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><h4><a name="iterate_function"><hr size=0>Iterating over the <a
 | |
| href="#BasicBlock"><tt>BasicBlock</tt></a>s in a <a
 | |
| href="#Function"><tt>Function</tt></a> </h4><ul>
 | |
| 
 | |
| It's quite common to have a <tt>Function</tt> instance that you'd like
 | |
| to transform in some way; in particular, you'd like to manipulate its
 | |
| <tt>BasicBlock</tt>s.  To facilitate this, you'll need to iterate over
 | |
| all of the <tt>BasicBlock</tt>s that constitute the <tt>Function</tt>.
 | |
| The following is an example that prints the name of a
 | |
| <tt>BasicBlock</tt> and the number of <tt>Instruction</tt>s it
 | |
| contains:
 | |
| 
 | |
| <pre>
 | |
|   // func is a pointer to a Function instance
 | |
|   for (Function::iterator i = func->begin(), e = func->end(); i != e; ++i) {
 | |
| 
 | |
|       // print out the name of the basic block if it has one, and then the
 | |
|       // number of instructions that it contains
 | |
| 
 | |
|       cerr << "Basic block (name=" << i->getName() << ") has " 
 | |
|            << i->size() << " instructions.\n";
 | |
|   }
 | |
| </pre>
 | |
| 
 | |
| Note that i can be used as if it were a pointer for the purposes of
 | |
| invoking member functions of the <tt>Instruction</tt> class.  This is
 | |
| because the indirection operator is overloaded for the iterator
 | |
| classes.  In the above code, the expression <tt>i->size()</tt> is
 | |
| exactly equivalent to <tt>(*i).size()</tt> just like you'd expect.
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><h4><a name="iterate_basicblock"><hr size=0>Iterating over the <a
 | |
| href="#Instruction"><tt>Instruction</tt></a>s in a <a
 | |
| href="#BasicBlock"><tt>BasicBlock</tt></a> </h4><ul>
 | |
| 
 | |
| Just like when dealing with <tt>BasicBlock</tt>s in
 | |
| <tt>Function</tt>s, it's easy to iterate over the individual
 | |
| instructions that make up <tt>BasicBlock</tt>s.  Here's a code snippet
 | |
| that prints out each instruction in a <tt>BasicBlock</tt>:
 | |
| 
 | |
| <pre>
 | |
|   // blk is a pointer to a BasicBlock instance
 | |
|   for (BasicBlock::iterator i = blk->begin(), e = blk->end(); i != e; ++i)
 | |
|      // the next statement works since operator<<(ostream&,...) 
 | |
|      // is overloaded for Instruction&
 | |
|      cerr << *i << "\n";
 | |
| </pre>
 | |
| 
 | |
| However, this isn't really the best way to print out the contents of a
 | |
| <tt>BasicBlock</tt>!  Since the ostream operators are overloaded for
 | |
| virtually anything you'll care about, you could have just invoked the
 | |
| print routine on the basic block itself: <tt>cerr << *blk <<
 | |
| "\n";</tt>.<p>
 | |
| 
 | |
| Note that currently operator<< is implemented for <tt>Value*</tt>, so it 
 | |
| will print out the contents of the pointer, instead of 
 | |
| the pointer value you might expect.  This is a deprecated interface that will
 | |
| be removed in the future, so it's best not to depend on it.  To print out the
 | |
| pointer value for now, you must cast to <tt>void*</tt>.<p>
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><h4><a name="iterate_institer"><hr size=0>Iterating over the <a
 | |
| href="#Instruction"><tt>Instruction</tt></a>s in a <a
 | |
| href="#Function"><tt>Function</tt></a></h4><ul>
 | |
| 
 | |
| If you're finding that you commonly iterate over a <tt>Function</tt>'s
 | |
| <tt>BasicBlock</tt>s and then that <tt>BasicBlock</tt>'s
 | |
| <tt>Instruction</tt>s, <tt>InstIterator</tt> should be used instead.
 | |
| You'll need to include <a href="/doxygen/InstIterator_8h-source.html"><tt>llvm/Support/InstIterator.h</tt></a>, and then
 | |
| instantiate <tt>InstIterator</tt>s explicitly in your code.  Here's a
 | |
| small example that shows how to dump all instructions in a function to
 | |
| stderr (<b>Note:</b> Dereferencing an <tt>InstIterator</tt> yields an
 | |
| <tt>Instruction*</tt>, <i>not</i> an <tt>Instruction&</tt>!):
 | |
| 
 | |
| <pre>
 | |
| #include "<a href="/doxygen/InstIterator_8h-source.html">llvm/Support/InstIterator.h</a>"
 | |
| ...
 | |
| // Suppose F is a ptr to a function
 | |
| for (inst_iterator i = inst_begin(F), e = inst_end(F); i != e; ++i)
 | |
|   cerr << **i << "\n";
 | |
| </pre>
 | |
| 
 | |
| Easy, isn't it?  You can also use <tt>InstIterator</tt>s to fill a
 | |
| worklist with its initial contents.  For example, if you wanted to
 | |
| initialize a worklist to contain all instructions in a
 | |
| <tt>Function</tt> F, all you would need to do is something like:
 | |
| 
 | |
| <pre>
 | |
| std::set<Instruction*> worklist;
 | |
| worklist.insert(inst_begin(F), inst_end(F));
 | |
| </pre>
 | |
| 
 | |
| The STL set <tt>worklist</tt> would now contain all instructions in
 | |
| the <tt>Function</tt> pointed to by F.
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><h4><a name="iterate_convert"><hr size=0>Turning an iterator into a class
 | |
| pointer (and vice-versa) </h4><ul>
 | |
| 
 | |
| Sometimes, it'll be useful to grab a reference (or pointer) to a class
 | |
| instance when all you've got at hand is an iterator.  Well, extracting
 | |
| a reference or a pointer from an iterator is very straightforward.
 | |
| Assuming that <tt>i</tt> is a <tt>BasicBlock::iterator</tt> and
 | |
| <tt>j</tt> is a <tt>BasicBlock::const_iterator</tt>:
 | |
| 
 | |
| <pre>
 | |
|     Instruction& inst = *i;   // grab reference to instruction reference
 | |
|     Instruction* pinst = &*i; // grab pointer to instruction reference
 | |
|     const Instruction& inst = *j;
 | |
| </pre>
 | |
| However, the iterators you'll be working with in the LLVM framework
 | |
| are special: they will automatically convert to a ptr-to-instance type
 | |
| whenever they need to.  Instead of dereferencing the iterator and then
 | |
| taking the address of the result, you can simply assign the iterator
 | |
| to the proper pointer type and you get the dereference and address-of
 | |
| operation as a result of the assignment (behind the scenes, this is a
 | |
| result of overloading casting mechanisms).  Thus the last line of the
 | |
| last example,
 | |
| 
 | |
| <pre>Instruction* pinst = &*i;</pre>
 | |
| 
 | |
| is semantically equivalent to
 | |
| 
 | |
| <pre>Instruction* pinst = i;</pre>
 | |
| 
 | |
| It's also possible to turn a class pointer into the corresponding
 | |
| iterator.  Usually, this conversion is quite inexpensive.  The
 | |
| following code snippet illustrates use of the conversion constructors
 | |
| provided by LLVM iterators.  By using these, you can explicitly grab
 | |
| the iterator of something without actually obtaining it via iteration
 | |
| over some structure:
 | |
| 
 | |
| <pre>
 | |
| void printNextInstruction(Instruction* inst) {
 | |
|     BasicBlock::iterator it(inst);
 | |
|     ++it; // after this line, it refers to the instruction after *inst.
 | |
|     if (it != inst->getParent()->end()) cerr << *it << "\n";
 | |
| }
 | |
| </pre>
 | |
| Of course, this example is strictly pedagogical, because it'd be much
 | |
| better to explicitly grab the next instruction directly from inst.
 | |
| 
 | |
| 
 | |
| <!--_______________________________________________________________________-->
 | |
| </ul><h4><a name="iterate_complex"><hr size=0>Finding call sites: a slightly
 | |
| more complex example </h4><ul>
 | |
| 
 | |
| Say that you're writing a FunctionPass and would like to count all the
 | |
| locations in the entire module (that is, across every
 | |
| <tt>Function</tt>) where a certain function (i.e., some
 | |
| <tt>Function</tt>*) is already in scope.  As you'll learn later, you may
 | |
| want to use an <tt>InstVisitor</tt> to accomplish this in a much more
 | |
| straightforward manner, but this example will allow us to explore how
 | |
| you'd do it if you didn't have <tt>InstVisitor</tt> around.  In
 | |
| pseudocode, this is what we want to do:
 | |
| 
 | |
| <pre>
 | |
| initialize callCounter to zero
 | |
| for each Function f in the Module
 | |
|     for each BasicBlock b in f
 | |
|       for each Instruction i in b
 | |
|         if (i is a CallInst and calls the given function)
 | |
|           increment callCounter
 | |
| </pre>
 | |
| 
 | |
| And the actual code is (remember, since we're writing a
 | |
| <tt>FunctionPass</tt>, our <tt>FunctionPass</tt>-derived class simply
 | |
| has to override the <tt>runOnFunction</tt> method...):
 | |
| 
 | |
| <pre>
 | |
| Function* targetFunc = ...;
 | |
| 
 | |
| class OurFunctionPass : public FunctionPass {
 | |
|   public:
 | |
|     OurFunctionPass(): callCounter(0) { }
 | |
| 
 | |
|     virtual runOnFunction(Function& F) {
 | |
|  	for (Function::iterator b = F.begin(), be = F.end(); b != be; ++b) {
 | |
|  	    for (BasicBlock::iterator i = b->begin(); ie = b->end(); i != ie; ++i) {
 | |
|  		if (<a href="#CallInst">CallInst</a>* callInst = <a href="#isa">dyn_cast</a><<a href="#CallInst">CallInst</a>>(&*i)) {
 | |
|  		    // we know we've encountered a call instruction, so we
 | |
|  		    // need to determine if it's a call to the
 | |
| 	            // function pointed to by m_func or not.
 | |
|   
 | |
|  		    if (callInst->getCalledFunction() == targetFunc)
 | |
|  			++callCounter;
 | |
|  	    }
 | |
|  	}
 | |
|     }
 | |
|     
 | |
|   private:
 | |
|     unsigned  callCounter;
 | |
| };
 | |
| </pre>
 | |
| 
 | |
| <!--_______________________________________________________________________-->
 | |
| </ul><h4><a name="iterate_chains"><hr size=0>Iterating over def-use &
 | |
| use-def chains</h4><ul>
 | |
| 
 | |
| Frequently, we might have an instance of the <a
 | |
| href="/doxygen/classValue.html">Value Class</a> and we want to
 | |
| determine which <tt>User</tt>s use the <tt>Value</tt>.  The list of
 | |
| all <tt>User</tt>s of a particular <tt>Value</tt> is called a
 | |
| <i>def-use</i> chain.  For example, let's say we have a
 | |
| <tt>Function*</tt> named <tt>F</tt> to a particular function
 | |
| <tt>foo</tt>. Finding all of the instructions that <i>use</i>
 | |
| <tt>foo</tt> is as simple as iterating over the <i>def-use</i> chain of
 | |
| <tt>F</tt>:
 | |
| 
 | |
| <pre>
 | |
| Function* F = ...;
 | |
| 
 | |
| for (Value::use_iterator i = F->use_begin(), e = F->use_end(); i != e; ++i) {
 | |
|     if (Instruction *Inst = dyn_cast<Instruction>(*i)) {
 | |
|         cerr << "F is used in instruction:\n";
 | |
|         cerr << *Inst << "\n";
 | |
|     }
 | |
| }
 | |
| </pre>
 | |
| 
 | |
| Alternately, it's common to have an instance of the <a
 | |
| href="/doxygen/classUser.html">User Class</a> and need to know what
 | |
| <tt>Value</tt>s are used by it.  The list of all <tt>Value</tt>s used
 | |
| by a <tt>User</tt> is known as a <i>use-def</i> chain.  Instances of
 | |
| class <tt>Instruction</tt> are common <tt>User</tt>s, so we might want
 | |
| to iterate over all of the values that a particular instruction uses
 | |
| (that is, the operands of the particular <tt>Instruction</tt>):
 | |
| 
 | |
| <pre>
 | |
| Instruction* pi = ...;
 | |
| 
 | |
| for (User::op_iterator i = pi->op_begin(), e = pi->op_end(); i != e; ++i) {
 | |
|     Value* v = *i;
 | |
|     ...
 | |
| }
 | |
| </pre>
 | |
|     
 | |
| 
 | |
| <!--
 | |
|   def-use chains ("finding all users of"): Value::use_begin/use_end
 | |
|   use-def chains ("finding all values used"): User::op_begin/op_end [op=operand]
 | |
| -->
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td> </td><td width="100%">  
 | |
| <font color="#EEEEFF" face="Georgia,Palatino"><b>
 | |
| <a name="simplechanges">Making simple changes</a>
 | |
| </b></font></td></tr></table><ul>
 | |
| 
 | |
| There are some primitive transformation operations present in the LLVM
 | |
| infrastructure that are worth knowing about.  When performing
 | |
| transformations, it's fairly common to manipulate the contents of
 | |
| basic blocks.  This section describes some of the common methods for
 | |
| doing so and gives example code.
 | |
| 
 | |
| <!--_______________________________________________________________________-->
 | |
| </ul><h4><a name="schanges_creating"><hr size=0>Creating and inserting
 | |
|     new <tt>Instruction</tt>s</h4><ul> 
 | |
| 
 | |
| <i>Instantiating Instructions</i>
 | |
| 
 | |
| <p>Creation of <tt>Instruction</tt>s is straightforward: simply call the
 | |
| constructor for the kind of instruction to instantiate and provide the
 | |
| necessary parameters.  For example, an <tt>AllocaInst</tt> only
 | |
| <i>requires</i> a (const-ptr-to) <tt>Type</tt>.  Thus:
 | |
| 
 | |
| <pre>AllocaInst* ai = new AllocaInst(Type::IntTy);</pre> 
 | |
| 
 | |
| will create an <tt>AllocaInst</tt> instance that represents the
 | |
| allocation of one integer in the current stack frame, at runtime.
 | |
| Each <tt>Instruction</tt> subclass is likely to have varying default
 | |
| parameters which change the semantics of the instruction, so refer to
 | |
| the <a href="/doxygen/classInstruction.html">doxygen documentation for
 | |
| the subclass of Instruction</a> that you're interested in
 | |
| instantiating.</p>
 | |
| 
 | |
| <p><i>Naming values</i></p>
 | |
| 
 | |
| <p>
 | |
| It is very useful to name the values of instructions when you're able
 | |
| to, as this facilitates the debugging of your transformations.  If you
 | |
| end up looking at generated LLVM machine code, you definitely want to
 | |
| have logical names associated with the results of instructions!  By
 | |
| supplying a value for the <tt>Name</tt> (default) parameter of the
 | |
| <tt>Instruction</tt> constructor, you associate a logical name with
 | |
| the result of the instruction's execution at runtime.  For example,
 | |
| say that I'm writing a transformation that dynamically allocates space
 | |
| for an integer on the stack, and that integer is going to be used as
 | |
| some kind of index by some other code.  To accomplish this, I place an
 | |
| <tt>AllocaInst</tt> at the first point in the first
 | |
| <tt>BasicBlock</tt> of some <tt>Function</tt>, and I'm intending to
 | |
| use it within the same <tt>Function</tt>.  I might do:
 | |
| 
 | |
| <pre>AllocaInst* pa = new AllocaInst(Type::IntTy, 0, "indexLoc");</pre>
 | |
| 
 | |
| where <tt>indexLoc</tt> is now the logical name of the instruction's
 | |
| execution value, which is a pointer to an integer on the runtime
 | |
| stack.
 | |
| </p>
 | |
| 
 | |
| <p><i>Inserting instructions</i></p>
 | |
| 
 | |
| <p>
 | |
| There are essentially two ways to insert an <tt>Instruction</tt> into
 | |
| an existing sequence of instructions that form a <tt>BasicBlock</tt>:
 | |
| <ul>
 | |
| <li>Insertion into an explicit instruction list
 | |
| 
 | |
| <p>Given a <tt>BasicBlock* pb</tt>, an <tt>Instruction* pi</tt> within
 | |
| that <tt>BasicBlock</tt>, and a newly-created instruction
 | |
| we wish to insert before <tt>*pi</tt>, we do the following:
 | |
| 
 | |
| <pre>
 | |
|   BasicBlock *pb = ...;
 | |
|   Instruction *pi = ...;
 | |
|   Instruction *newInst = new Instruction(...);
 | |
|   pb->getInstList().insert(pi, newInst); // inserts newInst before pi in pb
 | |
| </pre>
 | |
| </p>
 | |
| 
 | |
| <li>Insertion into an implicit instruction list
 | |
| <p><tt>Instruction</tt> instances that are already in
 | |
| <tt>BasicBlock</tt>s are implicitly associated with an existing
 | |
| instruction list: the instruction list of the enclosing basic block.
 | |
| Thus, we could have accomplished the same thing as the above code
 | |
| without being given a <tt>BasicBlock</tt> by doing:
 | |
| <pre>
 | |
|   Instruction *pi = ...;
 | |
|   Instruction *newInst = new Instruction(...);
 | |
|   pi->getParent()->getInstList().insert(pi, newInst);
 | |
| </pre>
 | |
| In fact, this sequence of steps occurs so frequently that the
 | |
| <tt>Instruction</tt> class and <tt>Instruction</tt>-derived classes
 | |
| provide constructors which take (as a default parameter) a pointer to
 | |
| an <tt>Instruction</tt> which the newly-created <tt>Instruction</tt>
 | |
| should precede.  That is, <tt>Instruction</tt> constructors are
 | |
| capable of inserting the newly-created instance into the
 | |
| <tt>BasicBlock</tt> of a provided instruction, immediately before that
 | |
| instruction.  Using an <tt>Instruction</tt> constructor with a
 | |
| <tt>insertBefore</tt> (default) parameter, the above code becomes:
 | |
| <pre>
 | |
| Instruction* pi = ...;
 | |
| Instruction* newInst = new Instruction(..., pi);
 | |
| </pre>
 | |
| which is much cleaner, especially if you're creating a lot of
 | |
| instructions and adding them to <tt>BasicBlock</tt>s.
 | |
|  </p>
 | |
| </p>
 | |
| </ul>
 | |
| 
 | |
| <!--_______________________________________________________________________-->
 | |
| </ul><h4><a name="schanges_deleting"><hr size=0>Deleting
 | |
| <tt>Instruction</tt>s</h4><ul>
 | |
| 
 | |
| Deleting an instruction from an existing sequence of instructions that form a <a
 | |
| href="#BasicBlock"><tt>BasicBlock</tt></a> is very straightforward. First, you
 | |
| must have a pointer to the instruction that you wish to delete.  Second, you
 | |
| need to obtain the pointer to that instruction's basic block. You use the
 | |
| pointer to the basic block to get its list of instructions and then use the
 | |
| erase function to remove your instruction.<p>
 | |
| 
 | |
| For example:<p>
 | |
| 
 | |
| <pre>
 | |
|   <a href="#Instruction">Instruction</a> *I = .. ;
 | |
|   <a href="#BasicBlock">BasicBlock</a> *BB = I->getParent();
 | |
|   BB->getInstList().erase(I);
 | |
| </pre><p>
 | |
| 
 | |
| <!--_______________________________________________________________________-->
 | |
| </ul><h4><a name="schanges_replacing"><hr size=0>Replacing an
 | |
|     <tt>Instruction</tt> with another <tt>Value</tt></h4><ul>
 | |
| 
 | |
| <p><i>Replacing individual instructions</i></p>
 | |
| <p>
 | |
| Including "<a
 | |
| href="/doxygen/BasicBlockUtils_8h-source.html">llvm/Transforms/Utils/BasicBlockUtils.h</a>" permits use of two very useful replace functions:
 | |
| <tt>ReplaceInstWithValue</tt> and <tt>ReplaceInstWithInst</tt>.  
 | |
| 
 | |
| <ul>
 | |
| 
 | |
| <li><tt>ReplaceInstWithValue</tt>
 | |
| 
 | |
| <p>This function replaces all uses (within a basic block) of a given
 | |
| instruction with a value, and then removes the original instruction.
 | |
| The following example illustrates the replacement of the result of a
 | |
| particular <tt>AllocaInst</tt> that allocates memory for a single
 | |
| integer with an null pointer to an integer.</p>
 | |
| 
 | |
| <pre>
 | |
| AllocaInst* instToReplace = ...;
 | |
| BasicBlock::iterator ii(instToReplace);
 | |
| ReplaceInstWithValue(instToReplace->getParent()->getInstList(), ii,
 | |
|                      Constant::getNullValue(PointerType::get(Type::IntTy)));
 | |
| </pre>
 | |
| 
 | |
| <li><tt>ReplaceInstWithInst</tt>
 | |
| 
 | |
| <p>This function replaces a particular instruction with another
 | |
| instruction.  The following example illustrates the replacement of one
 | |
| <tt>AllocaInst</tt> with another.<p>
 | |
| 
 | |
| <pre>
 | |
| AllocaInst* instToReplace = ...;
 | |
| BasicBlock::iterator ii(instToReplace);
 | |
| ReplaceInstWithInst(instToReplace->getParent()->getInstList(), ii,
 | |
|                     new AllocaInst(Type::IntTy, 0, "ptrToReplacedInt"));
 | |
| </pre>
 | |
| 
 | |
| </ul>
 | |
| <p><i>Replacing multiple uses of <tt>User</tt>s and
 | |
| 		    <tt>Value</tt>s</i></p>
 | |
|   
 | |
| You can use <tt>Value::replaceAllUsesWith</tt> and
 | |
| <tt>User::replaceUsesOfWith</tt> to change more than one use at a
 | |
| time.  See the doxygen documentation for the <a
 | |
| href="/doxygen/classValue.html">Value Class</a> and <a
 | |
| href="/doxygen/classUser.html">User Class</a>, respectively, for more
 | |
| information.
 | |
| 
 | |
| <!-- Value::replaceAllUsesWith User::replaceUsesOfWith Point out:
 | |
| include/llvm/Transforms/Utils/ especially BasicBlockUtils.h with:
 | |
| ReplaceInstWithValue, ReplaceInstWithInst
 | |
| -->
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| </ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
 | |
| <a name="coreclasses">The Core LLVM Class Hierarchy Reference
 | |
| </b></font></td></tr></table><ul>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| The Core LLVM classes are the primary means of representing the program being
 | |
| inspected or transformed.  The core LLVM classes are defined in header files in
 | |
| the <tt>include/llvm/</tt> directory, and implemented in the <tt>lib/VMCore</tt>
 | |
| directory.<p>
 | |
| 
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td> </td><td width="100%">  
 | |
| <font color="#EEEEFF" face="Georgia,Palatino"><b>
 | |
| <a name="Value">The <tt>Value</tt> class</a>
 | |
| </b></font></td></tr></table><ul>
 | |
| 
 | |
| <tt>#include "<a href="/doxygen/Value_8h-source.html">llvm/Value.h</a>"</tt></b><br>
 | |
| doxygen info: <a href="/doxygen/classValue.html">Value Class</a><p>
 | |
| 
 | |
| 
 | |
| The <tt>Value</tt> class is the most important class in LLVM Source base.  It
 | |
| represents a typed value that may be used (among other things) as an operand to
 | |
| an instruction.  There are many different types of <tt>Value</tt>s, such as <a
 | |
| href="#Constant"><tt>Constant</tt></a>s, <a
 | |
| href="#Argument"><tt>Argument</tt></a>s, and even <a
 | |
| href="#Instruction"><tt>Instruction</tt></a>s and <a
 | |
| href="#Function"><tt>Function</tt></a>s are <tt>Value</tt>s.<p>
 | |
| 
 | |
| A particular <tt>Value</tt> may be used many times in the LLVM representation
 | |
| for a program.  For example, an incoming argument to a function (represented
 | |
| with an instance of the <a href="#Argument">Argument</a> class) is "used" by
 | |
| every instruction in the function that references the argument.  To keep track
 | |
| of this relationship, the <tt>Value</tt> class keeps a list of all of the <a
 | |
| href="#User"><tt>User</tt></a>s that is using it (the <a
 | |
| href="#User"><tt>User</tt></a> class is a base class for all nodes in the LLVM
 | |
| graph that can refer to <tt>Value</tt>s).  This use list is how LLVM represents
 | |
| def-use information in the program, and is accessible through the <tt>use_</tt>*
 | |
| methods, shown below.<p>
 | |
| 
 | |
| Because LLVM is a typed representation, every LLVM <tt>Value</tt> is typed, and
 | |
| this <a href="#Type">Type</a> is available through the <tt>getType()</tt>
 | |
| method.  <a name="#nameWarning">In addition, all LLVM values can be named.  The
 | |
| "name" of the <tt>Value</tt> is symbolic string printed in the LLVM code:<p>
 | |
| 
 | |
| <pre>
 | |
|    %<b>foo</b> = add int 1, 2
 | |
| </pre>
 | |
| 
 | |
| The name of this instruction is "foo".  <b>NOTE</b> that the name of any value
 | |
| may be missing (an empty string), so names should <b>ONLY</b> be used for
 | |
| debugging (making the source code easier to read, debugging printouts), they
 | |
| should not be used to keep track of values or map between them.  For this
 | |
| purpose, use a <tt>std::map</tt> of pointers to the <tt>Value</tt> itself
 | |
| instead.<p>
 | |
| 
 | |
| One important aspect of LLVM is that there is no distinction between an SSA
 | |
| variable and the operation that produces it.  Because of this, any reference to
 | |
| the value produced by an instruction (or the value available as an incoming
 | |
| argument, for example) is represented as a direct pointer to the class that
 | |
| represents this value.  Although this may take some getting used to, it
 | |
| simplifies the representation and makes it easier to manipulate.<p>
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><h4><a name="m_Value"><hr size=0>Important Public Members of
 | |
| the <tt>Value</tt> class</h4><ul>
 | |
| 
 | |
| <li><tt>Value::use_iterator</tt> - Typedef for iterator over the use-list<br>
 | |
|     <tt>Value::use_const_iterator</tt>
 | |
|                  - Typedef for const_iterator over the use-list<br>
 | |
|     <tt>unsigned use_size()</tt> - Returns the number of users of the value.<br>
 | |
|     <tt>bool use_empty()</tt> - Returns true if there are no users.<br>
 | |
|     <tt>use_iterator use_begin()</tt>
 | |
|                  - Get an iterator to the start of the use-list.<br>
 | |
|     <tt>use_iterator use_end()</tt>
 | |
|                  - Get an iterator to the end of the use-list.<br>
 | |
|     <tt><a href="#User">User</a> *use_back()</tt>
 | |
|                  - Returns the last element in the list.<p>
 | |
| 
 | |
| These methods are the interface to access the def-use information in LLVM.  As with all other iterators in LLVM, the naming conventions follow the conventions defined by the <a href="#stl">STL</a>.<p>
 | |
| 
 | |
| <li><tt><a href="#Type">Type</a> *getType() const</tt><p>
 | |
| This method returns the Type of the Value.
 | |
| 
 | |
| <li><tt>bool hasName() const</tt><br>
 | |
|     <tt>std::string getName() const</tt><br>
 | |
|     <tt>void setName(const std::string &Name)</tt><p>
 | |
| 
 | |
| This family of methods is used to access and assign a name to a <tt>Value</tt>,
 | |
| be aware of the <a href="#nameWarning">precaution above</a>.<p>
 | |
| 
 | |
| 
 | |
| <li><tt>void replaceAllUsesWith(Value *V)</tt><p>
 | |
| 
 | |
| This method traverses the use list of a <tt>Value</tt> changing all <a
 | |
| href="#User"><tt>User</tt>s</a> of the current value to refer to "<tt>V</tt>"
 | |
| instead.  For example, if you detect that an instruction always produces a
 | |
| constant value (for example through constant folding), you can replace all uses
 | |
| of the instruction with the constant like this:<p>
 | |
| 
 | |
| <pre>
 | |
|   Inst->replaceAllUsesWith(ConstVal);
 | |
| </pre><p>
 | |
| 
 | |
| 
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td> </td><td width="100%">  
 | |
| <font color="#EEEEFF" face="Georgia,Palatino"><b>
 | |
| <a name="User">The <tt>User</tt> class</a>
 | |
| </b></font></td></tr></table><ul>
 | |
| 
 | |
| <tt>#include "<a href="/doxygen/User_8h-source.html">llvm/User.h</a>"</tt></b><br>
 | |
| doxygen info: <a href="/doxygen/classUser.html">User Class</a><br>
 | |
| Superclass: <a href="#Value"><tt>Value</tt></a><p>
 | |
| 
 | |
| 
 | |
| The <tt>User</tt> class is the common base class of all LLVM nodes that may
 | |
| refer to <a href="#Value"><tt>Value</tt></a>s.  It exposes a list of "Operands"
 | |
| that are all of the <a href="#Value"><tt>Value</tt></a>s that the User is
 | |
| referring to.  The <tt>User</tt> class itself is a subclass of
 | |
| <tt>Value</tt>.<p>
 | |
| 
 | |
| The operands of a <tt>User</tt> point directly to the LLVM <a
 | |
| href="#Value"><tt>Value</tt></a> that it refers to.  Because LLVM uses Static
 | |
| Single Assignment (SSA) form, there can only be one definition referred to,
 | |
| allowing this direct connection.  This connection provides the use-def
 | |
| information in LLVM.<p>
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><h4><a name="m_User"><hr size=0>Important Public Members of
 | |
| the <tt>User</tt> class</h4><ul>
 | |
| 
 | |
| The <tt>User</tt> class exposes the operand list in two ways: through an index
 | |
| access interface and through an iterator based interface.<p>
 | |
| 
 | |
| <li><tt>Value *getOperand(unsigned i)</tt><br>
 | |
|     <tt>unsigned getNumOperands()</tt><p>
 | |
| 
 | |
| These two methods expose the operands of the <tt>User</tt> in a convenient form
 | |
| for direct access.<p>
 | |
| 
 | |
| <li><tt>User::op_iterator</tt> - Typedef for iterator over the operand list<br>
 | |
|     <tt>User::op_const_iterator</tt>
 | |
|     <tt>use_iterator op_begin()</tt>
 | |
|                  - Get an iterator to the start of the operand list.<br>
 | |
|     <tt>use_iterator op_end()</tt>
 | |
|                  - Get an iterator to the end of the operand list.<p>
 | |
| 
 | |
| Together, these methods make up the iterator based interface to the operands of
 | |
| a <tt>User</tt>.<p>
 | |
| 
 | |
| 
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td> </td><td width="100%">  
 | |
| <font color="#EEEEFF" face="Georgia,Palatino"><b>
 | |
| <a name="Instruction">The <tt>Instruction</tt> class</a>
 | |
| </b></font></td></tr></table><ul>
 | |
| 
 | |
| <tt>#include "<a
 | |
| href="/doxygen/Instruction_8h-source.html">llvm/Instruction.h</a>"</tt></b><br>
 | |
| doxygen info: <a href="/doxygen/classInstruction.html">Instruction Class</a><br>
 | |
| Superclasses: <a href="#User"><tt>User</tt></a>, <a
 | |
| href="#Value"><tt>Value</tt></a><p>
 | |
| 
 | |
| The <tt>Instruction</tt> class is the common base class for all LLVM
 | |
| instructions.  It provides only a few methods, but is a very commonly used
 | |
| class.  The primary data tracked by the <tt>Instruction</tt> class itself is the
 | |
| opcode (instruction type) and the parent <a
 | |
| href="#BasicBlock"><tt>BasicBlock</tt></a> the <tt>Instruction</tt> is embedded
 | |
| into.  To represent a specific type of instruction, one of many subclasses of
 | |
| <tt>Instruction</tt> are used.<p>
 | |
| 
 | |
| Because the <tt>Instruction</tt> class subclasses the <a
 | |
| href="#User"><tt>User</tt></a> class, its operands can be accessed in the same
 | |
| way as for other <a href="#User"><tt>User</tt></a>s (with the
 | |
| <tt>getOperand()</tt>/<tt>getNumOperands()</tt> and
 | |
| <tt>op_begin()</tt>/<tt>op_end()</tt> methods).<p>
 | |
| 
 | |
| An important file for the <tt>Instruction</tt> class is the
 | |
| <tt>llvm/Instruction.def</tt> file.  This file contains some meta-data about the
 | |
| various different types of instructions in LLVM.  It describes the enum values
 | |
| that are used as opcodes (for example <tt>Instruction::Add</tt> and
 | |
| <tt>Instruction::SetLE</tt>), as well as the concrete sub-classes of
 | |
| <tt>Instruction</tt> that implement the instruction (for example <tt><a
 | |
| href="#BinaryOperator">BinaryOperator</a></tt> and <tt><a
 | |
| href="#SetCondInst">SetCondInst</a></tt>).  Unfortunately, the use of macros in
 | |
| this file confused doxygen, so these enum values don't show up correctly in the
 | |
| <a href="/doxygen/classInstruction.html">doxygen output</a>.<p>
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><h4><a name="m_Instruction"><hr size=0>Important Public Members of
 | |
| the <tt>Instruction</tt> class</h4><ul>
 | |
| 
 | |
| <li><tt><a href="#BasicBlock">BasicBlock</a> *getParent()</tt><p>
 | |
| 
 | |
| Returns the <a href="#BasicBlock"><tt>BasicBlock</tt></a> that this
 | |
| <tt>Instruction</tt> is embedded into.<p>
 | |
| 
 | |
| <li><tt>bool mayWriteToMemory()</tt><p>
 | |
| 
 | |
| Returns true if the instruction writes to memory, i.e. it is a <tt>call</tt>,
 | |
| <tt>free</tt>, <tt>invoke</tt>, or <tt>store</tt>.<p>
 | |
| 
 | |
| <li><tt>unsigned getOpcode()</tt><p>
 | |
| 
 | |
| Returns the opcode for the <tt>Instruction</tt>.<p>
 | |
| 
 | |
| <li><tt><a href="#Instruction">Instruction</a> *clone() const</tt><p>
 | |
| 
 | |
| Returns another instance of the specified instruction, identical in all ways to
 | |
| the original except that the instruction has no parent (ie it's not embedded
 | |
| into a <a href="#BasicBlock"><tt>BasicBlock</tt></a>), and it has no name.<p>
 | |
| 
 | |
| 
 | |
| 
 | |
| <!--
 | |
| 
 | |
| \subsection{Subclasses of Instruction :} 
 | |
| \begin{itemize}
 | |
| <li>BinaryOperator : This subclass of Instruction defines a general interface to the all the instructions involvong  binary operators in LLVM.
 | |
| 	\begin{itemize}
 | |
| 	<li><tt>bool swapOperands()</tt>: Exchange the two operands to this instruction. If the instruction cannot be reversed (i.e. if it's a Div), it returns true. 
 | |
| 	\end{itemize}
 | |
| <li>TerminatorInst : This subclass of Instructions defines an interface for all instructions that can terminate a BasicBlock.
 | |
| 	\begin{itemize}
 | |
| 	 <li> <tt>unsigned getNumSuccessors()</tt>: Returns the number of successors for this terminator instruction.
 | |
| 	<li><tt>BasicBlock *getSuccessor(unsigned i)</tt>: As the name suggests returns the ith successor BasicBlock.
 | |
| 	<li><tt>void setSuccessor(unsigned i, BasicBlock *B)</tt>: sets BasicBlock B as the ith succesor to this terminator instruction.
 | |
| 	\end{itemize}
 | |
| 
 | |
| <li>PHINode : This represents the PHI instructions in the SSA form. 
 | |
| 	\begin{itemize}
 | |
| 	<li><tt> unsigned getNumIncomingValues()</tt>: Returns the number of incoming edges to this PHI node.
 | |
| 	<li><tt> Value *getIncomingValue(unsigned i)</tt>: Returns the ith incoming Value.
 | |
| 	<li><tt>void setIncomingValue(unsigned i, Value *V)</tt>: Sets the ith incoming Value as V 
 | |
| 	<li><tt>BasicBlock *getIncomingBlock(unsigned i)</tt>: Returns the Basic Block corresponding to the ith incoming Value.
 | |
| 	<li><tt> void addIncoming(Value *D, BasicBlock *BB)</tt>: 
 | |
| 	Add an incoming value to the end of the PHI list
 | |
| 	<li><tt> int getBasicBlockIndex(const BasicBlock *BB) const</tt>: 
 | |
| 	Returns the first index of the specified basic block in the value list for this PHI.  Returns -1 if no instance.
 | |
| 	\end{itemize}
 | |
| <li>CastInst : In LLVM all casts have to be done through explicit cast instructions. CastInst defines the interface to the cast instructions.
 | |
| <li>CallInst : This defines an interface to the call instruction in LLVM. ARguments to the function are nothing but operands of the instruction.
 | |
| 	\begin{itemize}
 | |
| 	<li>: <tt>Function *getCalledFunction()</tt>: Returns a handle to the function that is being called by this Function. 
 | |
| 	\end{itemize}
 | |
| <li>LoadInst, StoreInst, GetElemPtrInst : These subclasses represent load, store and getelementptr instructions in LLVM.
 | |
| 	\begin{itemize}
 | |
| 	<li><tt>Value * getPointerOperand()</tt>: Returns the Pointer Operand which is typically the 0th operand.
 | |
| 	\end{itemize}
 | |
| <li>BranchInst : This is a subclass of TerminatorInst and defines the interface for conditional and unconditional branches in LLVM.
 | |
| 	\begin{itemize}
 | |
| 	<li><tt>bool isConditional()</tt>: Returns true if the branch is a conditional branch else returns false
 | |
| 	<li> <tt>Value *getCondition()</tt>: Returns the condition if it is a conditional branch else returns null.
 | |
| 	<li> <tt>void setUnconditionalDest(BasicBlock *Dest)</tt>: Changes the current branch to an unconditional one targetting the specified block.
 | |
| 	\end{itemize}
 | |
| 
 | |
| \end{itemize}
 | |
| 
 | |
| -->
 | |
| 
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td> </td><td width="100%">  
 | |
| <font color="#EEEEFF" face="Georgia,Palatino"><b>
 | |
| <a name="BasicBlock">The <tt>BasicBlock</tt> class</a>
 | |
| </b></font></td></tr></table><ul>
 | |
| 
 | |
| <tt>#include "<a
 | |
| href="/doxygen/BasicBlock_8h-source.html">llvm/BasicBlock.h</a>"</tt></b><br>
 | |
| doxygen info: <a href="/doxygen/classBasicBlock.html">BasicBlock Class</a><br>
 | |
| Superclass: <a href="#Value"><tt>Value</tt></a><p>
 | |
| 
 | |
| 
 | |
| This class represents a single entry multiple exit section of the code, commonly
 | |
| known as a basic block by the compiler community.  The <tt>BasicBlock</tt> class
 | |
| maintains a list of <a href="#Instruction"><tt>Instruction</tt></a>s, which form
 | |
| the body of the block.  Matching the language definition, the last element of
 | |
| this list of instructions is always a terminator instruction (a subclass of the
 | |
| <a href="#TerminatorInst"><tt>TerminatorInst</tt></a> class).<p>
 | |
| 
 | |
| In addition to tracking the list of instructions that make up the block, the
 | |
| <tt>BasicBlock</tt> class also keeps track of the <a
 | |
| href="#Function"><tt>Function</tt></a> that it is embedded into.<p>
 | |
| 
 | |
| Note that <tt>BasicBlock</tt>s themselves are <a
 | |
| href="#Value"><tt>Value</tt></a>s, because they are referenced by instructions
 | |
| like branches and can go in the switch tables.  <tt>BasicBlock</tt>s have type
 | |
| <tt>label</tt>.<p>
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><h4><a name="m_BasicBlock"><hr size=0>Important Public Members of
 | |
| the <tt>BasicBlock</tt> class</h4><ul>
 | |
| 
 | |
| <li><tt>BasicBlock(const std::string &Name = "", <a 
 | |
| href="#Function">Function</a> *Parent = 0)</tt><p>
 | |
| 
 | |
| The <tt>BasicBlock</tt> constructor is used to create new basic blocks for
 | |
| insertion into a function.  The constructor simply takes a name for the new
 | |
| block, and optionally a <a href="#Function"><tt>Function</tt></a> to insert it
 | |
| into.  If the <tt>Parent</tt> parameter is specified, the new
 | |
| <tt>BasicBlock</tt> is automatically inserted at the end of the specified <a
 | |
| href="#Function"><tt>Function</tt></a>, if not specified, the BasicBlock must be
 | |
| manually inserted into the <a href="#Function"><tt>Function</tt></a>.<p>
 | |
| 
 | |
| <li><tt>BasicBlock::iterator</tt> - Typedef for instruction list iterator<br>
 | |
|     <tt>BasicBlock::const_iterator</tt> - Typedef for const_iterator.<br>
 | |
|     <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
 | |
|     <tt>size()</tt>, <tt>empty()</tt>, <tt>rbegin()</tt>, <tt>rend()</tt><p>
 | |
| 
 | |
| These methods and typedefs are forwarding functions that have the same semantics
 | |
| as the standard library methods of the same names.  These methods expose the
 | |
| underlying instruction list of a basic block in a way that is easy to
 | |
| manipulate.  To get the full complement of container operations (including
 | |
| operations to update the list), you must use the <tt>getInstList()</tt>
 | |
| method.<p>
 | |
| 
 | |
| <li><tt>BasicBlock::InstListType &getInstList()</tt><p>
 | |
| 
 | |
| This method is used to get access to the underlying container that actually
 | |
| holds the Instructions.  This method must be used when there isn't a forwarding
 | |
| function in the <tt>BasicBlock</tt> class for the operation that you would like
 | |
| to perform.  Because there are no forwarding functions for "updating"
 | |
| operations, you need to use this if you want to update the contents of a
 | |
| <tt>BasicBlock</tt>.<p>
 | |
| 
 | |
| <li><tt><A href="#Function">Function</a> *getParent()</tt><p>
 | |
| 
 | |
| Returns a pointer to <a href="#Function"><tt>Function</tt></a> the block is
 | |
| embedded into, or a null pointer if it is homeless.<p>
 | |
| 
 | |
| <li><tt><a href="#TerminatorInst">TerminatorInst</a> *getTerminator()</tt><p>
 | |
| 
 | |
| Returns a pointer to the terminator instruction that appears at the end of the
 | |
| <tt>BasicBlock</tt>.  If there is no terminator instruction, or if the last
 | |
| instruction in the block is not a terminator, then a null pointer is
 | |
| returned.<p>
 | |
| 
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td> </td><td width="100%">  
 | |
| <font color="#EEEEFF" face="Georgia,Palatino"><b>
 | |
| <a name="GlobalValue">The <tt>GlobalValue</tt> class</a>
 | |
| </b></font></td></tr></table><ul>
 | |
| 
 | |
| <tt>#include "<a
 | |
| href="/doxygen/GlobalValue_8h-source.html">llvm/GlobalValue.h</a>"</tt></b><br>
 | |
| doxygen info: <a href="/doxygen/classGlobalValue.html">GlobalValue Class</a><br>
 | |
| Superclasses: <a href="#User"><tt>User</tt></a>, <a
 | |
| href="#Value"><tt>Value</tt></a><p>
 | |
| 
 | |
| Global values (<A href="#GlobalVariable"><tt>GlobalVariable</tt></a>s or <a
 | |
| href="#Function"><tt>Function</tt></a>s) are the only LLVM values that are
 | |
| visible in the bodies of all <a href="#Function"><tt>Function</tt></a>s.
 | |
| Because they are visible at global scope, they are also subject to linking with
 | |
| other globals defined in different translation units.  To control the linking
 | |
| process, <tt>GlobalValue</tt>s know their linkage rules.  Specifically,
 | |
| <tt>GlobalValue</tt>s know whether they have internal or external linkage.<p>
 | |
| 
 | |
| If a <tt>GlobalValue</tt> has internal linkage (equivalent to being
 | |
| <tt>static</tt> in C), it is not visible to code outside the current translation
 | |
| unit, and does not participate in linking.  If it has external linkage, it is
 | |
| visible to external code, and does participate in linking.  In addition to
 | |
| linkage information, <tt>GlobalValue</tt>s keep track of which <a
 | |
| href="#Module"><tt>Module</tt></a> they are currently part of.<p>
 | |
| 
 | |
| Because <tt>GlobalValue</tt>s are memory objects, they are always referred to by
 | |
| their address.  As such, the <a href="#Type"><tt>Type</tt></a> of a global is
 | |
| always a pointer to its contents.  This is explained in the LLVM Language
 | |
| Reference Manual.<p>
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><h4><a name="m_GlobalValue"><hr size=0>Important Public Members of
 | |
| the <tt>GlobalValue</tt> class</h4><ul>
 | |
| 
 | |
| <li><tt>bool hasInternalLinkage() const</tt><br>
 | |
|     <tt>bool hasExternalLinkage() const</tt><br>
 | |
|     <tt>void setInternalLinkage(bool HasInternalLinkage)</tt><p>
 | |
| 
 | |
| These methods manipulate the linkage characteristics of the
 | |
| <tt>GlobalValue</tt>.<p>
 | |
| 
 | |
| <li><tt><a href="#Module">Module</a> *getParent()</tt><p>
 | |
| 
 | |
| This returns the <a href="#Module"><tt>Module</tt></a> that the GlobalValue is
 | |
| currently embedded into.<p>
 | |
| 
 | |
| 
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td> </td><td width="100%">  
 | |
| <font color="#EEEEFF" face="Georgia,Palatino"><b>
 | |
| <a name="Function">The <tt>Function</tt> class</a>
 | |
| </b></font></td></tr></table><ul>
 | |
| 
 | |
| <tt>#include "<a
 | |
| href="/doxygen/Function_8h-source.html">llvm/Function.h</a>"</tt></b><br>
 | |
| doxygen info: <a href="/doxygen/classFunction.html">Function Class</a><br>
 | |
| Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, <a
 | |
| href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a><p>
 | |
| 
 | |
| The <tt>Function</tt> class represents a single procedure in LLVM.  It is
 | |
| actually one of the more complex classes in the LLVM heirarchy because it must
 | |
| keep track of a large amount of data.  The <tt>Function</tt> class keeps track
 | |
| of a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, a list of formal <a
 | |
| href="#Argument"><tt>Argument</tt></a>s, and a <a
 | |
| href="#SymbolTable"><tt>SymbolTable</tt></a>.<p>
 | |
| 
 | |
| The list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s is the most commonly
 | |
| used part of <tt>Function</tt> objects.  The list imposes an implicit ordering
 | |
| of the blocks in the function, which indicate how the code will be layed out by
 | |
| the backend.  Additionally, the first <a
 | |
| href="#BasicBlock"><tt>BasicBlock</tt></a> is the implicit entry node for the
 | |
| <tt>Function</tt>.  It is not legal in LLVM explicitly branch to this initial
 | |
| block.  There are no implicit exit nodes, and in fact there may be multiple exit
 | |
| nodes from a single <tt>Function</tt>.  If the <a
 | |
| href="#BasicBlock"><tt>BasicBlock</tt></a> list is empty, this indicates that
 | |
| the <tt>Function</tt> is actually a function declaration: the actual body of the
 | |
| function hasn't been linked in yet.<p>
 | |
| 
 | |
| In addition to a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, the
 | |
| <tt>Function</tt> class also keeps track of the list of formal <a
 | |
| href="#Argument"><tt>Argument</tt></a>s that the function receives.  This
 | |
| container manages the lifetime of the <a href="#Argument"><tt>Argument</tt></a>
 | |
| nodes, just like the <a href="#BasicBlock"><tt>BasicBlock</tt></a> list does for
 | |
| the <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.<p>
 | |
| 
 | |
| The <a href="#SymbolTable"><tt>SymbolTable</tt></a> is a very rarely used LLVM
 | |
| feature that is only used when you have to look up a value by name.  Aside from
 | |
| that, the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is used internally to
 | |
| make sure that there are not conflicts between the names of <a
 | |
| href="#Instruction"><tt>Instruction</tt></a>s, <a
 | |
| href="#BasicBlock"><tt>BasicBlock</tt></a>s, or <a
 | |
| href="#Argument"><tt>Argument</tt></a>s in the function body.<p>
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><h4><a name="m_Function"><hr size=0>Important Public Members of
 | |
| the <tt>Function</tt> class</h4><ul>
 | |
| 
 | |
| <li><tt>Function(const <a href="#FunctionType">FunctionType</a> *Ty, bool isInternal, const std::string &N = "")</tt><p>
 | |
| 
 | |
| Constructor used when you need to create new <tt>Function</tt>s to add the the
 | |
| program.  The constructor must specify the type of the function to create and
 | |
| whether or not it should start out with internal or external linkage.<p>
 | |
| 
 | |
| <li><tt>bool isExternal()</tt><p>
 | |
| 
 | |
| Return whether or not the <tt>Function</tt> has a body defined.  If the function
 | |
| is "external", it does not have a body, and thus must be resolved by linking
 | |
| with a function defined in a different translation unit.<p>
 | |
| 
 | |
| 
 | |
| <li><tt>Function::iterator</tt> - Typedef for basic block list iterator<br>
 | |
|     <tt>Function::const_iterator</tt> - Typedef for const_iterator.<br>
 | |
|     <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
 | |
|     <tt>size()</tt>, <tt>empty()</tt>, <tt>rbegin()</tt>, <tt>rend()</tt><p>
 | |
| 
 | |
| These are forwarding methods that make it easy to access the contents of a
 | |
| <tt>Function</tt> object's <a href="#BasicBlock"><tt>BasicBlock</tt></a>
 | |
| list.<p>
 | |
| 
 | |
| <li><tt>Function::BasicBlockListType &getBasicBlockList()</tt><p>
 | |
| 
 | |
| Returns the list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.  This is
 | |
| necessary to use when you need to update the list or perform a complex action
 | |
| that doesn't have a forwarding method.<p>
 | |
| 
 | |
| 
 | |
| <li><tt>Function::aiterator</tt> - Typedef for the argument list iterator<br>
 | |
|     <tt>Function::const_aiterator</tt> - Typedef for const_iterator.<br>
 | |
|     <tt>abegin()</tt>, <tt>aend()</tt>, <tt>afront()</tt>, <tt>aback()</tt>,
 | |
|     <tt>asize()</tt>, <tt>aempty()</tt>, <tt>arbegin()</tt>, <tt>arend()</tt><p>
 | |
| 
 | |
| These are forwarding methods that make it easy to access the contents of a
 | |
| <tt>Function</tt> object's <a href="#Argument"><tt>Argument</tt></a> list.<p>
 | |
| 
 | |
| <li><tt>Function::ArgumentListType &getArgumentList()</tt><p>
 | |
| 
 | |
| Returns the list of <a href="#Argument"><tt>Argument</tt></a>s.  This is
 | |
| necessary to use when you need to update the list or perform a complex action
 | |
| that doesn't have a forwarding method.<p>
 | |
| 
 | |
| 
 | |
| 
 | |
| <li><tt><a href="#BasicBlock">BasicBlock</a> &getEntryBlock()</tt><p>
 | |
| 
 | |
| Returns the entry <a href="#BasicBlock"><tt>BasicBlock</tt></a> for the
 | |
| function.  Because the entry block for the function is always the first block,
 | |
| this returns the first block of the <tt>Function</tt>.<p>
 | |
| 
 | |
| <li><tt><a href="#Type">Type</a> *getReturnType()</tt><br>
 | |
|     <tt><a href="#FunctionType">FunctionType</a> *getFunctionType()</tt><p>
 | |
| 
 | |
| This traverses the <a href="#Type"><tt>Type</tt></a> of the <tt>Function</tt>
 | |
| and returns the return type of the function, or the <a
 | |
| href="#FunctionType"><tt>FunctionType</tt></a> of the actual function.<p>
 | |
| 
 | |
| <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt><p>
 | |
| 
 | |
| Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a> for this
 | |
| <tt>Function</tt>.<p>
 | |
| 
 | |
| 
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td> </td><td width="100%">  
 | |
| <font color="#EEEEFF" face="Georgia,Palatino"><b>
 | |
| <a name="GlobalVariable">The <tt>GlobalVariable</tt> class</a>
 | |
| </b></font></td></tr></table><ul>
 | |
| 
 | |
| <tt>#include "<a
 | |
| href="/doxygen/GlobalVariable_8h-source.html">llvm/GlobalVariable.h</a>"</tt></b><br>
 | |
| doxygen info: <a href="/doxygen/classGlobalVariable.html">GlobalVariable Class</a><br>
 | |
| Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, <a
 | |
| href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a><p>
 | |
| 
 | |
| Global variables are represented with the (suprise suprise)
 | |
| <tt>GlobalVariable</tt> class.  Like functions, <tt>GlobalVariable</tt>s are
 | |
| also subclasses of <a href="#GlobalValue"><tt>GlobalValue</tt></a>, and as such
 | |
| are always referenced by their address (global values must live in memory, so
 | |
| their "name" refers to their address).  Global variables may have an initial
 | |
| value (which must be a <a href="#Constant"><tt>Constant</tt></a>), and if they
 | |
| have an initializer, they may be marked as "constant" themselves (indicating
 | |
| that their contents never change at runtime).<p>
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><h4><a name="m_GlobalVariable"><hr size=0>Important Public Members of the
 | |
| <tt>GlobalVariable</tt> class</h4><ul>
 | |
| 
 | |
| <li><tt>GlobalVariable(const <a href="#Type">Type</a> *Ty, bool isConstant, bool
 | |
| isInternal, <a href="#Constant">Constant</a> *Initializer = 0, const std::string
 | |
| &Name = "")</tt><p>
 | |
| 
 | |
| Create a new global variable of the specified type.  If <tt>isConstant</tt> is
 | |
| true then the global variable will be marked as unchanging for the program, and
 | |
| if <tt>isInternal</tt> is true the resultant global variable will have internal
 | |
| linkage.  Optionally an initializer and name may be specified for the global variable as well.<p>
 | |
| 
 | |
| 
 | |
| <li><tt>bool isConstant() const</tt><p>
 | |
| 
 | |
| Returns true if this is a global variable is known not to be modified at
 | |
| runtime.<p>
 | |
| 
 | |
| 
 | |
| <li><tt>bool hasInitializer()</tt><p>
 | |
| 
 | |
| Returns true if this <tt>GlobalVariable</tt> has an intializer.<p>
 | |
| 
 | |
| 
 | |
| <li><tt><a href="#Constant">Constant</a> *getInitializer()</tt><p>
 | |
| 
 | |
| Returns the intial value for a <tt>GlobalVariable</tt>.  It is not legal to call
 | |
| this method if there is no initializer.<p>
 | |
| 
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td> </td><td width="100%">  
 | |
| <font color="#EEEEFF" face="Georgia,Palatino"><b>
 | |
| <a name="Module">The <tt>Module</tt> class</a>
 | |
| </b></font></td></tr></table><ul>
 | |
| 
 | |
| <tt>#include "<a
 | |
| href="/doxygen/Module_8h-source.html">llvm/Module.h</a>"</tt></b><br>
 | |
| doxygen info: <a href="/doxygen/classModule.html">Module Class</a><p>
 | |
| 
 | |
| The <tt>Module</tt> class represents the top level structure present in LLVM
 | |
| programs.  An LLVM module is effectively either a translation unit of the
 | |
| original program or a combination of several translation units merged by the
 | |
| linker.  The <tt>Module</tt> class keeps track of a list of <a
 | |
| href="#Function"><tt>Function</tt></a>s, a list of <a
 | |
| href="#GlobalVariable"><tt>GlobalVariable</tt></a>s, and a <a
 | |
| href="#SymbolTable"><tt>SymbolTable</tt></a>.  Additionally, it contains a few
 | |
| helpful member functions that try to make common operations easy.<p>
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><h4><a name="m_Module"><hr size=0>Important Public Members of the
 | |
| <tt>Module</tt> class</h4><ul>
 | |
| 
 | |
| <li><tt>Module::iterator</tt> - Typedef for function list iterator<br>
 | |
|     <tt>Module::const_iterator</tt> - Typedef for const_iterator.<br>
 | |
|     <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
 | |
|     <tt>size()</tt>, <tt>empty()</tt>, <tt>rbegin()</tt>, <tt>rend()</tt><p>
 | |
| 
 | |
| These are forwarding methods that make it easy to access the contents of a
 | |
| <tt>Module</tt> object's <a href="#Function"><tt>Function</tt></a>
 | |
| list.<p>
 | |
| 
 | |
| <li><tt>Module::FunctionListType &getFunctionList()</tt><p>
 | |
| 
 | |
| Returns the list of <a href="#Function"><tt>Function</tt></a>s.  This is
 | |
| necessary to use when you need to update the list or perform a complex action
 | |
| that doesn't have a forwarding method.<p>
 | |
| 
 | |
| <!--  Global Variable -->
 | |
| <hr size=0>
 | |
| 
 | |
| <li><tt>Module::giterator</tt> - Typedef for global variable list iterator<br>
 | |
|     <tt>Module::const_giterator</tt> - Typedef for const_iterator.<br>
 | |
|     <tt>gbegin()</tt>, <tt>gend()</tt>, <tt>gfront()</tt>, <tt>gback()</tt>,
 | |
|     <tt>gsize()</tt>, <tt>gempty()</tt>, <tt>grbegin()</tt>, <tt>grend()</tt><p>
 | |
| 
 | |
| These are forwarding methods that make it easy to access the contents of a
 | |
| <tt>Module</tt> object's <a href="#GlobalVariable"><tt>GlobalVariable</tt></a>
 | |
| list.<p>
 | |
| 
 | |
| <li><tt>Module::GlobalListType &getGlobalList()</tt><p>
 | |
| 
 | |
| Returns the list of <a href="#GlobalVariable"><tt>GlobalVariable</tt></a>s.
 | |
| This is necessary to use when you need to update the list or perform a complex
 | |
| action that doesn't have a forwarding method.<p>
 | |
| 
 | |
| 
 | |
| <!--  Symbol table stuff -->
 | |
| <hr size=0>
 | |
| 
 | |
| <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt><p>
 | |
| 
 | |
| Return a reference to the <a href="#SymbolTable"><tt>SymbolTable</tt></a> for
 | |
| this <tt>Module</tt>.<p>
 | |
| 
 | |
| 
 | |
| <!--  Convenience methods -->
 | |
| <hr size=0>
 | |
| 
 | |
| <li><tt><a href="#Function">Function</a> *getFunction(const std::string &Name, const <a href="#FunctionType">FunctionType</a> *Ty)</tt><p>
 | |
| 
 | |
| Look up the specified function in the <tt>Module</tt> <a
 | |
| href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, return
 | |
| <tt>null</tt>.<p>
 | |
| 
 | |
| 
 | |
| <li><tt><a href="#Function">Function</a> *getOrInsertFunction(const std::string
 | |
|          &Name, const <a href="#FunctionType">FunctionType</a> *T)</tt><p>
 | |
| 
 | |
| Look up the specified function in the <tt>Module</tt> <a
 | |
| href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, add an
 | |
| external declaration for the function and return it.<p>
 | |
| 
 | |
| 
 | |
| <li><tt>std::string getTypeName(const <a href="#Type">Type</a> *Ty)</tt><p>
 | |
| 
 | |
| If there is at least one entry in the <a
 | |
| href="#SymbolTable"><tt>SymbolTable</tt></a> for the specified <a
 | |
| href="#Type"><tt>Type</tt></a>, return it.  Otherwise return the empty
 | |
| string.<p>
 | |
| 
 | |
| 
 | |
| <li><tt>bool addTypeName(const std::string &Name, const <a href="#Type">Type</a>
 | |
| *Ty)</tt><p>
 | |
| 
 | |
| Insert an entry in the <a href="#SymbolTable"><tt>SymbolTable</tt></a> mapping
 | |
| <tt>Name</tt> to <tt>Ty</tt>. If there is already an entry for this name, true
 | |
| is returned and the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is not
 | |
| modified.<p>
 | |
| 
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td> </td><td width="100%">  
 | |
| <font color="#EEEEFF" face="Georgia,Palatino"><b>
 | |
| <a name="Constant">The <tt>Constant</tt> class and subclasses</a>
 | |
| </b></font></td></tr></table><ul>
 | |
| 
 | |
| Constant represents a base class for different types of constants. It is
 | |
| subclassed by ConstantBool, ConstantInt, ConstantSInt, ConstantUInt,
 | |
| ConstantArray etc for representing the various types of Constants.<p>
 | |
| 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><h4><a name="m_Value"><hr size=0>Important Public Methods</h4><ul>
 | |
| 
 | |
| <li><tt>bool isConstantExpr()</tt>: Returns true if it is a ConstantExpr
 | |
| 
 | |
| 
 | |
| <hr>
 | |
| Important Subclasses of Constant<p>
 | |
| 
 | |
| <ul>
 | |
| <li>ConstantSInt : This subclass of Constant represents a signed integer constant.
 | |
| <ul>
 | |
| 	<li><tt>int64_t getValue() const</tt>: Returns the underlying value of this constant.
 | |
| </ul>
 | |
| <li>ConstantUInt : This class represents an unsigned integer.
 | |
| <ul>
 | |
| 	<li><tt>uint64_t getValue() const</tt>: Returns the underlying value of this constant.
 | |
| </ul>
 | |
| <li>ConstantFP : This class represents a floating point constant.
 | |
| <ul>
 | |
| 	<li><tt>double getValue() const</tt>: Returns the underlying value of this constant.
 | |
| </ul>
 | |
| <li>ConstantBool : This represents a boolean constant.
 | |
| <ul>
 | |
| 	<li><tt>bool getValue() const</tt>: Returns the underlying value of this constant.
 | |
| </ul>
 | |
| <li>ConstantArray : This represents a constant array.
 | |
| <ul>
 | |
| 	<li><tt>const std::vector<Use> &getValues() const</tt>: Returns a Vecotr of component constants that makeup this array.
 | |
| </ul>
 | |
| <li>ConstantStruct : This represents a constant struct.
 | |
| <ul>
 | |
| 	<li><tt>const std::vector<Use> &getValues() const</tt>: Returns a Vecotr of component constants that makeup this array.
 | |
| </ul>
 | |
| <li>ConstantPointerRef : This represents a constant pointer value that is initialized to point to a global value, which lies at a constant fixed address.
 | |
| <ul>
 | |
| <li><tt>GlobalValue *getValue()</tt>: Returns the global value to which this pointer is pointing to.
 | |
| </ul>
 | |
| </ul>
 | |
| 
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td> </td><td width="100%">  
 | |
| <font color="#EEEEFF" face="Georgia,Palatino"><b>
 | |
| <a name="Type">The <tt>Type</tt> class and Derived Types</a>
 | |
| </b></font></td></tr></table><ul>
 | |
| 
 | |
| Type as noted earlier is also a subclass of a Value class.  Any primitive
 | |
| type (like int, short etc) in LLVM is an instance of Type Class.  All
 | |
| other types are instances of subclasses of type like FunctionType,
 | |
| ArrayType etc. DerivedType is the interface for all such dervied types
 | |
| including FunctionType, ArrayType, PointerType, StructType. Types can have
 | |
| names. They can be recursive (StructType). There exists exactly one instance 
 | |
| of any type structure at a time. This allows using pointer equality of Type *s for comparing types. 
 | |
| 
 | |
| <!-- _______________________________________________________________________ -->
 | |
| </ul><h4><a name="m_Value"><hr size=0>Important Public Methods</h4><ul>
 | |
| 
 | |
| <li><tt>PrimitiveID getPrimitiveID() const</tt>: Returns the base type of the type.
 | |
| <li><tt> bool isSigned() const</tt>: Returns whether an integral numeric type is signed. This is true for SByteTy, ShortTy, IntTy, LongTy. Note that this is not true for Float and Double.
 | |
| <li><tt>bool isUnsigned() const</tt>: Returns whether a numeric type is unsigned. This is not quite the complement of isSigned... nonnumeric types return false as they do with isSigned. This returns true for UByteTy, UShortTy, UIntTy, and ULongTy. 
 | |
| <li><tt> bool isInteger() const</tt>: Equilivent to isSigned() || isUnsigned(), but with only a single virtual function invocation. 
 | |
| <li><tt>bool isIntegral() const</tt>: Returns true if this is an integral type, which is either Bool type or one of the Integer types.
 | |
| 
 | |
| <li><tt>bool isFloatingPoint()</tt>: Return true if this is one of the two floating point types.
 | |
| <li><tt>bool isRecursive() const</tt>: Returns rue if the type graph contains a cycle.
 | |
| <li><tt>isLosslesslyConvertableTo (const Type *Ty) const</tt>: Return true if this type can be converted to 'Ty' without any reinterpretation of bits. For example, uint to int.
 | |
| <li><tt>bool isPrimitiveType() const</tt>: Returns true if it is a primitive type.
 | |
| <li><tt>bool isDerivedType() const</tt>: Returns true if it is a derived type.
 | |
| <li><tt>const Type * getContainedType (unsigned i) const</tt>: 
 | |
| This method is used to implement the type iterator. For derived types, this returns the types 'contained' in the derived type, returning 0 when 'i' becomes invalid. This allows the user to iterate over the types in a struct, for example, really easily.
 | |
| <li><tt>unsigned getNumContainedTypes() const</tt>: Return the number of types in the derived type. 
 | |
| 
 | |
| <p>
 | |
| 
 | |
| <hr>
 | |
| Derived Types<p>
 | |
| 
 | |
| <ul>
 | |
| <li>SequentialType : This is subclassed by ArrayType and PointerType 
 | |
| <ul>
 | |
| 	<li><tt>const Type * getElementType() const</tt>: Returns the type of each of the elements in the sequential type.
 | |
| </ul>
 | |
| <li>ArrayType : This is a subclass of SequentialType and defines interface for array types.
 | |
| <ul>
 | |
| 	<li><tt>unsigned getNumElements() const</tt>: Returns the number of elements in the array.
 | |
| </ul>
 | |
| <li>PointerType : Subclass of SequentialType for  pointer types.
 | |
| <li>StructType : subclass of DerivedTypes for struct types
 | |
| <li>FunctionType : subclass of DerivedTypes for function types.
 | |
| 
 | |
| <ul>
 | |
| 	
 | |
| 	<li><tt>bool isVarArg() const</tt>: Returns true if its a vararg function
 | |
| 	<li><tt> const Type * getReturnType() const</tt>: Returns the return type of the function.
 | |
| 	<li><tt> const ParamTypes &getParamTypes() const</tt>: Returns a vector of parameter types.
 | |
| 	<li><tt>const Type * getParamType (unsigned i)</tt>: Returns the type of the ith parameter.
 | |
| 	<li><tt> const unsigned getNumParams() const</tt>: Returns the number of formal parameters.
 | |
| </ul>
 | |
| </ul>
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| </ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
 | |
| <tr><td> </td><td width="100%">  
 | |
| <font color="#EEEEFF" face="Georgia,Palatino"><b>
 | |
| <a name="Argument">The <tt>Argument</tt> class</a>
 | |
| </b></font></td></tr></table><ul>
 | |
| 
 | |
| This subclass of Value defines the interface for incoming formal arguments to a
 | |
| function. A Function maitanis a list of its formal arguments. An argument has a
 | |
| pointer to the parent Function.
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| </ul>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <hr><font size-1>
 | |
| <address>By: <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a> and
 | |
| <a href="mailto:sabre@nondot.org">Chris Lattner</a></address>
 | |
| <!-- Created: Tue Aug  6 15:00:33 CDT 2002 -->
 | |
| <!-- hhmts start -->
 | |
| Last modified: Sat Sep 20 09:25:11 CDT 2003
 | |
| <!-- hhmts end -->
 | |
| </font></body></html>
 |