mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215355 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			914 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			914 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements the ScheduleDAG class, which is a base class used by
 | |
| // scheduling implementation classes.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "ScheduleDAGSDNodes.h"
 | |
| #include "InstrEmitter.h"
 | |
| #include "SDNodeDbgValue.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/MC/MCInstrItineraries.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetSubtargetInfo.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "pre-RA-sched"
 | |
| 
 | |
| STATISTIC(LoadsClustered, "Number of loads clustered together");
 | |
| 
 | |
| // This allows latency based scheduler to notice high latency instructions
 | |
| // without a target itinerary. The choise if number here has more to do with
 | |
| // balancing scheduler heursitics than with the actual machine latency.
 | |
| static cl::opt<int> HighLatencyCycles(
 | |
|   "sched-high-latency-cycles", cl::Hidden, cl::init(10),
 | |
|   cl::desc("Roughly estimate the number of cycles that 'long latency'"
 | |
|            "instructions take for targets with no itinerary"));
 | |
| 
 | |
| ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
 | |
|     : ScheduleDAG(mf), BB(nullptr), DAG(nullptr),
 | |
|       InstrItins(mf.getSubtarget().getInstrItineraryData()) {}
 | |
| 
 | |
| /// Run - perform scheduling.
 | |
| ///
 | |
| void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb) {
 | |
|   BB = bb;
 | |
|   DAG = dag;
 | |
| 
 | |
|   // Clear the scheduler's SUnit DAG.
 | |
|   ScheduleDAG::clearDAG();
 | |
|   Sequence.clear();
 | |
| 
 | |
|   // Invoke the target's selection of scheduler.
 | |
|   Schedule();
 | |
| }
 | |
| 
 | |
| /// NewSUnit - Creates a new SUnit and return a ptr to it.
 | |
| ///
 | |
| SUnit *ScheduleDAGSDNodes::newSUnit(SDNode *N) {
 | |
| #ifndef NDEBUG
 | |
|   const SUnit *Addr = nullptr;
 | |
|   if (!SUnits.empty())
 | |
|     Addr = &SUnits[0];
 | |
| #endif
 | |
|   SUnits.push_back(SUnit(N, (unsigned)SUnits.size()));
 | |
|   assert((Addr == nullptr || Addr == &SUnits[0]) &&
 | |
|          "SUnits std::vector reallocated on the fly!");
 | |
|   SUnits.back().OrigNode = &SUnits.back();
 | |
|   SUnit *SU = &SUnits.back();
 | |
|   const TargetLowering &TLI = DAG->getTargetLoweringInfo();
 | |
|   if (!N ||
 | |
|       (N->isMachineOpcode() &&
 | |
|        N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF))
 | |
|     SU->SchedulingPref = Sched::None;
 | |
|   else
 | |
|     SU->SchedulingPref = TLI.getSchedulingPreference(N);
 | |
|   return SU;
 | |
| }
 | |
| 
 | |
| SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
 | |
|   SUnit *SU = newSUnit(Old->getNode());
 | |
|   SU->OrigNode = Old->OrigNode;
 | |
|   SU->Latency = Old->Latency;
 | |
|   SU->isVRegCycle = Old->isVRegCycle;
 | |
|   SU->isCall = Old->isCall;
 | |
|   SU->isCallOp = Old->isCallOp;
 | |
|   SU->isTwoAddress = Old->isTwoAddress;
 | |
|   SU->isCommutable = Old->isCommutable;
 | |
|   SU->hasPhysRegDefs = Old->hasPhysRegDefs;
 | |
|   SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
 | |
|   SU->isScheduleHigh = Old->isScheduleHigh;
 | |
|   SU->isScheduleLow = Old->isScheduleLow;
 | |
|   SU->SchedulingPref = Old->SchedulingPref;
 | |
|   Old->isCloned = true;
 | |
|   return SU;
 | |
| }
 | |
| 
 | |
| /// CheckForPhysRegDependency - Check if the dependency between def and use of
 | |
| /// a specified operand is a physical register dependency. If so, returns the
 | |
| /// register and the cost of copying the register.
 | |
| static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
 | |
|                                       const TargetRegisterInfo *TRI,
 | |
|                                       const TargetInstrInfo *TII,
 | |
|                                       unsigned &PhysReg, int &Cost) {
 | |
|   if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
 | |
|     return;
 | |
| 
 | |
|   unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
 | |
|   if (TargetRegisterInfo::isVirtualRegister(Reg))
 | |
|     return;
 | |
| 
 | |
|   unsigned ResNo = User->getOperand(2).getResNo();
 | |
|   if (Def->isMachineOpcode()) {
 | |
|     const MCInstrDesc &II = TII->get(Def->getMachineOpcode());
 | |
|     if (ResNo >= II.getNumDefs() &&
 | |
|         II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) {
 | |
|       PhysReg = Reg;
 | |
|       const TargetRegisterClass *RC =
 | |
|         TRI->getMinimalPhysRegClass(Reg, Def->getValueType(ResNo));
 | |
|       Cost = RC->getCopyCost();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Helper for AddGlue to clone node operands.
 | |
| static void CloneNodeWithValues(SDNode *N, SelectionDAG *DAG,
 | |
|                                 SmallVectorImpl<EVT> &VTs,
 | |
|                                 SDValue ExtraOper = SDValue()) {
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
|   for (unsigned I = 0, E = N->getNumOperands(); I != E; ++I)
 | |
|     Ops.push_back(N->getOperand(I));
 | |
| 
 | |
|   if (ExtraOper.getNode())
 | |
|     Ops.push_back(ExtraOper);
 | |
| 
 | |
|   SDVTList VTList = DAG->getVTList(VTs);
 | |
|   MachineSDNode::mmo_iterator Begin = nullptr, End = nullptr;
 | |
|   MachineSDNode *MN = dyn_cast<MachineSDNode>(N);
 | |
| 
 | |
|   // Store memory references.
 | |
|   if (MN) {
 | |
|     Begin = MN->memoperands_begin();
 | |
|     End = MN->memoperands_end();
 | |
|   }
 | |
| 
 | |
|   DAG->MorphNodeTo(N, N->getOpcode(), VTList, Ops);
 | |
| 
 | |
|   // Reset the memory references
 | |
|   if (MN)
 | |
|     MN->setMemRefs(Begin, End);
 | |
| }
 | |
| 
 | |
| static bool AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) {
 | |
|   SmallVector<EVT, 4> VTs;
 | |
|   SDNode *GlueDestNode = Glue.getNode();
 | |
| 
 | |
|   // Don't add glue from a node to itself.
 | |
|   if (GlueDestNode == N) return false;
 | |
| 
 | |
|   // Don't add a glue operand to something that already uses glue.
 | |
|   if (GlueDestNode &&
 | |
|       N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
 | |
|     return false;
 | |
|   }
 | |
|   // Don't add glue to something that already has a glue value.
 | |
|   if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return false;
 | |
| 
 | |
|   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
 | |
|     VTs.push_back(N->getValueType(I));
 | |
| 
 | |
|   if (AddGlue)
 | |
|     VTs.push_back(MVT::Glue);
 | |
| 
 | |
|   CloneNodeWithValues(N, DAG, VTs, Glue);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Cleanup after unsuccessful AddGlue. Use the standard method of morphing the
 | |
| // node even though simply shrinking the value list is sufficient.
 | |
| static void RemoveUnusedGlue(SDNode *N, SelectionDAG *DAG) {
 | |
|   assert((N->getValueType(N->getNumValues() - 1) == MVT::Glue &&
 | |
|           !N->hasAnyUseOfValue(N->getNumValues() - 1)) &&
 | |
|          "expected an unused glue value");
 | |
| 
 | |
|   SmallVector<EVT, 4> VTs;
 | |
|   for (unsigned I = 0, E = N->getNumValues()-1; I != E; ++I)
 | |
|     VTs.push_back(N->getValueType(I));
 | |
| 
 | |
|   CloneNodeWithValues(N, DAG, VTs);
 | |
| }
 | |
| 
 | |
| /// ClusterNeighboringLoads - Force nearby loads together by "gluing" them.
 | |
| /// This function finds loads of the same base and different offsets. If the
 | |
| /// offsets are not far apart (target specific), it add MVT::Glue inputs and
 | |
| /// outputs to ensure they are scheduled together and in order. This
 | |
| /// optimization may benefit some targets by improving cache locality.
 | |
| void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
 | |
|   SDNode *Chain = nullptr;
 | |
|   unsigned NumOps = Node->getNumOperands();
 | |
|   if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
 | |
|     Chain = Node->getOperand(NumOps-1).getNode();
 | |
|   if (!Chain)
 | |
|     return;
 | |
| 
 | |
|   // Look for other loads of the same chain. Find loads that are loading from
 | |
|   // the same base pointer and different offsets.
 | |
|   SmallPtrSet<SDNode*, 16> Visited;
 | |
|   SmallVector<int64_t, 4> Offsets;
 | |
|   DenseMap<long long, SDNode*> O2SMap;  // Map from offset to SDNode.
 | |
|   bool Cluster = false;
 | |
|   SDNode *Base = Node;
 | |
|   // This algorithm requires a reasonably low use count before finding a match
 | |
|   // to avoid uselessly blowing up compile time in large blocks.
 | |
|   unsigned UseCount = 0;
 | |
|   for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
 | |
|        I != E && UseCount < 100; ++I, ++UseCount) {
 | |
|     SDNode *User = *I;
 | |
|     if (User == Node || !Visited.insert(User))
 | |
|       continue;
 | |
|     int64_t Offset1, Offset2;
 | |
|     if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
 | |
|         Offset1 == Offset2)
 | |
|       // FIXME: Should be ok if they addresses are identical. But earlier
 | |
|       // optimizations really should have eliminated one of the loads.
 | |
|       continue;
 | |
|     if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
 | |
|       Offsets.push_back(Offset1);
 | |
|     O2SMap.insert(std::make_pair(Offset2, User));
 | |
|     Offsets.push_back(Offset2);
 | |
|     if (Offset2 < Offset1)
 | |
|       Base = User;
 | |
|     Cluster = true;
 | |
|     // Reset UseCount to allow more matches.
 | |
|     UseCount = 0;
 | |
|   }
 | |
| 
 | |
|   if (!Cluster)
 | |
|     return;
 | |
| 
 | |
|   // Sort them in increasing order.
 | |
|   std::sort(Offsets.begin(), Offsets.end());
 | |
| 
 | |
|   // Check if the loads are close enough.
 | |
|   SmallVector<SDNode*, 4> Loads;
 | |
|   unsigned NumLoads = 0;
 | |
|   int64_t BaseOff = Offsets[0];
 | |
|   SDNode *BaseLoad = O2SMap[BaseOff];
 | |
|   Loads.push_back(BaseLoad);
 | |
|   for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
 | |
|     int64_t Offset = Offsets[i];
 | |
|     SDNode *Load = O2SMap[Offset];
 | |
|     if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads))
 | |
|       break; // Stop right here. Ignore loads that are further away.
 | |
|     Loads.push_back(Load);
 | |
|     ++NumLoads;
 | |
|   }
 | |
| 
 | |
|   if (NumLoads == 0)
 | |
|     return;
 | |
| 
 | |
|   // Cluster loads by adding MVT::Glue outputs and inputs. This also
 | |
|   // ensure they are scheduled in order of increasing addresses.
 | |
|   SDNode *Lead = Loads[0];
 | |
|   SDValue InGlue = SDValue(nullptr, 0);
 | |
|   if (AddGlue(Lead, InGlue, true, DAG))
 | |
|     InGlue = SDValue(Lead, Lead->getNumValues() - 1);
 | |
|   for (unsigned I = 1, E = Loads.size(); I != E; ++I) {
 | |
|     bool OutGlue = I < E - 1;
 | |
|     SDNode *Load = Loads[I];
 | |
| 
 | |
|     // If AddGlue fails, we could leave an unsused glue value. This should not
 | |
|     // cause any
 | |
|     if (AddGlue(Load, InGlue, OutGlue, DAG)) {
 | |
|       if (OutGlue)
 | |
|         InGlue = SDValue(Load, Load->getNumValues() - 1);
 | |
| 
 | |
|       ++LoadsClustered;
 | |
|     }
 | |
|     else if (!OutGlue && InGlue.getNode())
 | |
|       RemoveUnusedGlue(InGlue.getNode(), DAG);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ClusterNodes - Cluster certain nodes which should be scheduled together.
 | |
| ///
 | |
| void ScheduleDAGSDNodes::ClusterNodes() {
 | |
|   for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
 | |
|        E = DAG->allnodes_end(); NI != E; ++NI) {
 | |
|     SDNode *Node = &*NI;
 | |
|     if (!Node || !Node->isMachineOpcode())
 | |
|       continue;
 | |
| 
 | |
|     unsigned Opc = Node->getMachineOpcode();
 | |
|     const MCInstrDesc &MCID = TII->get(Opc);
 | |
|     if (MCID.mayLoad())
 | |
|       // Cluster loads from "near" addresses into combined SUnits.
 | |
|       ClusterNeighboringLoads(Node);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ScheduleDAGSDNodes::BuildSchedUnits() {
 | |
|   // During scheduling, the NodeId field of SDNode is used to map SDNodes
 | |
|   // to their associated SUnits by holding SUnits table indices. A value
 | |
|   // of -1 means the SDNode does not yet have an associated SUnit.
 | |
|   unsigned NumNodes = 0;
 | |
|   for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
 | |
|        E = DAG->allnodes_end(); NI != E; ++NI) {
 | |
|     NI->setNodeId(-1);
 | |
|     ++NumNodes;
 | |
|   }
 | |
| 
 | |
|   // Reserve entries in the vector for each of the SUnits we are creating.  This
 | |
|   // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
 | |
|   // invalidated.
 | |
|   // FIXME: Multiply by 2 because we may clone nodes during scheduling.
 | |
|   // This is a temporary workaround.
 | |
|   SUnits.reserve(NumNodes * 2);
 | |
| 
 | |
|   // Add all nodes in depth first order.
 | |
|   SmallVector<SDNode*, 64> Worklist;
 | |
|   SmallPtrSet<SDNode*, 64> Visited;
 | |
|   Worklist.push_back(DAG->getRoot().getNode());
 | |
|   Visited.insert(DAG->getRoot().getNode());
 | |
| 
 | |
|   SmallVector<SUnit*, 8> CallSUnits;
 | |
|   while (!Worklist.empty()) {
 | |
|     SDNode *NI = Worklist.pop_back_val();
 | |
| 
 | |
|     // Add all operands to the worklist unless they've already been added.
 | |
|     for (unsigned i = 0, e = NI->getNumOperands(); i != e; ++i)
 | |
|       if (Visited.insert(NI->getOperand(i).getNode()))
 | |
|         Worklist.push_back(NI->getOperand(i).getNode());
 | |
| 
 | |
|     if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate.
 | |
|       continue;
 | |
| 
 | |
|     // If this node has already been processed, stop now.
 | |
|     if (NI->getNodeId() != -1) continue;
 | |
| 
 | |
|     SUnit *NodeSUnit = newSUnit(NI);
 | |
| 
 | |
|     // See if anything is glued to this node, if so, add them to glued
 | |
|     // nodes.  Nodes can have at most one glue input and one glue output.  Glue
 | |
|     // is required to be the last operand and result of a node.
 | |
| 
 | |
|     // Scan up to find glued preds.
 | |
|     SDNode *N = NI;
 | |
|     while (N->getNumOperands() &&
 | |
|            N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
 | |
|       N = N->getOperand(N->getNumOperands()-1).getNode();
 | |
|       assert(N->getNodeId() == -1 && "Node already inserted!");
 | |
|       N->setNodeId(NodeSUnit->NodeNum);
 | |
|       if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
 | |
|         NodeSUnit->isCall = true;
 | |
|     }
 | |
| 
 | |
|     // Scan down to find any glued succs.
 | |
|     N = NI;
 | |
|     while (N->getValueType(N->getNumValues()-1) == MVT::Glue) {
 | |
|       SDValue GlueVal(N, N->getNumValues()-1);
 | |
| 
 | |
|       // There are either zero or one users of the Glue result.
 | |
|       bool HasGlueUse = false;
 | |
|       for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
 | |
|            UI != E; ++UI)
 | |
|         if (GlueVal.isOperandOf(*UI)) {
 | |
|           HasGlueUse = true;
 | |
|           assert(N->getNodeId() == -1 && "Node already inserted!");
 | |
|           N->setNodeId(NodeSUnit->NodeNum);
 | |
|           N = *UI;
 | |
|           if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
 | |
|             NodeSUnit->isCall = true;
 | |
|           break;
 | |
|         }
 | |
|       if (!HasGlueUse) break;
 | |
|     }
 | |
| 
 | |
|     if (NodeSUnit->isCall)
 | |
|       CallSUnits.push_back(NodeSUnit);
 | |
| 
 | |
|     // Schedule zero-latency TokenFactor below any nodes that may increase the
 | |
|     // schedule height. Otherwise, ancestors of the TokenFactor may appear to
 | |
|     // have false stalls.
 | |
|     if (NI->getOpcode() == ISD::TokenFactor)
 | |
|       NodeSUnit->isScheduleLow = true;
 | |
| 
 | |
|     // If there are glue operands involved, N is now the bottom-most node
 | |
|     // of the sequence of nodes that are glued together.
 | |
|     // Update the SUnit.
 | |
|     NodeSUnit->setNode(N);
 | |
|     assert(N->getNodeId() == -1 && "Node already inserted!");
 | |
|     N->setNodeId(NodeSUnit->NodeNum);
 | |
| 
 | |
|     // Compute NumRegDefsLeft. This must be done before AddSchedEdges.
 | |
|     InitNumRegDefsLeft(NodeSUnit);
 | |
| 
 | |
|     // Assign the Latency field of NodeSUnit using target-provided information.
 | |
|     computeLatency(NodeSUnit);
 | |
|   }
 | |
| 
 | |
|   // Find all call operands.
 | |
|   while (!CallSUnits.empty()) {
 | |
|     SUnit *SU = CallSUnits.pop_back_val();
 | |
|     for (const SDNode *SUNode = SU->getNode(); SUNode;
 | |
|          SUNode = SUNode->getGluedNode()) {
 | |
|       if (SUNode->getOpcode() != ISD::CopyToReg)
 | |
|         continue;
 | |
|       SDNode *SrcN = SUNode->getOperand(2).getNode();
 | |
|       if (isPassiveNode(SrcN)) continue;   // Not scheduled.
 | |
|       SUnit *SrcSU = &SUnits[SrcN->getNodeId()];
 | |
|       SrcSU->isCallOp = true;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ScheduleDAGSDNodes::AddSchedEdges() {
 | |
|   const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
 | |
| 
 | |
|   // Check to see if the scheduler cares about latencies.
 | |
|   bool UnitLatencies = forceUnitLatencies();
 | |
| 
 | |
|   // Pass 2: add the preds, succs, etc.
 | |
|   for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
 | |
|     SUnit *SU = &SUnits[su];
 | |
|     SDNode *MainNode = SU->getNode();
 | |
| 
 | |
|     if (MainNode->isMachineOpcode()) {
 | |
|       unsigned Opc = MainNode->getMachineOpcode();
 | |
|       const MCInstrDesc &MCID = TII->get(Opc);
 | |
|       for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
 | |
|         if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
 | |
|           SU->isTwoAddress = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if (MCID.isCommutable())
 | |
|         SU->isCommutable = true;
 | |
|     }
 | |
| 
 | |
|     // Find all predecessors and successors of the group.
 | |
|     for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) {
 | |
|       if (N->isMachineOpcode() &&
 | |
|           TII->get(N->getMachineOpcode()).getImplicitDefs()) {
 | |
|         SU->hasPhysRegClobbers = true;
 | |
|         unsigned NumUsed = InstrEmitter::CountResults(N);
 | |
|         while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
 | |
|           --NumUsed;    // Skip over unused values at the end.
 | |
|         if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
 | |
|           SU->hasPhysRegDefs = true;
 | |
|       }
 | |
| 
 | |
|       for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | |
|         SDNode *OpN = N->getOperand(i).getNode();
 | |
|         if (isPassiveNode(OpN)) continue;   // Not scheduled.
 | |
|         SUnit *OpSU = &SUnits[OpN->getNodeId()];
 | |
|         assert(OpSU && "Node has no SUnit!");
 | |
|         if (OpSU == SU) continue;           // In the same group.
 | |
| 
 | |
|         EVT OpVT = N->getOperand(i).getValueType();
 | |
|         assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!");
 | |
|         bool isChain = OpVT == MVT::Other;
 | |
| 
 | |
|         unsigned PhysReg = 0;
 | |
|         int Cost = 1;
 | |
|         // Determine if this is a physical register dependency.
 | |
|         CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
 | |
|         assert((PhysReg == 0 || !isChain) &&
 | |
|                "Chain dependence via physreg data?");
 | |
|         // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
 | |
|         // emits a copy from the physical register to a virtual register unless
 | |
|         // it requires a cross class copy (cost < 0). That means we are only
 | |
|         // treating "expensive to copy" register dependency as physical register
 | |
|         // dependency. This may change in the future though.
 | |
|         if (Cost >= 0 && !StressSched)
 | |
|           PhysReg = 0;
 | |
| 
 | |
|         // If this is a ctrl dep, latency is 1.
 | |
|         unsigned OpLatency = isChain ? 1 : OpSU->Latency;
 | |
|         // Special-case TokenFactor chains as zero-latency.
 | |
|         if(isChain && OpN->getOpcode() == ISD::TokenFactor)
 | |
|           OpLatency = 0;
 | |
| 
 | |
|         SDep Dep = isChain ? SDep(OpSU, SDep::Barrier)
 | |
|           : SDep(OpSU, SDep::Data, PhysReg);
 | |
|         Dep.setLatency(OpLatency);
 | |
|         if (!isChain && !UnitLatencies) {
 | |
|           computeOperandLatency(OpN, N, i, Dep);
 | |
|           ST.adjustSchedDependency(OpSU, SU, Dep);
 | |
|         }
 | |
| 
 | |
|         if (!SU->addPred(Dep) && !Dep.isCtrl() && OpSU->NumRegDefsLeft > 1) {
 | |
|           // Multiple register uses are combined in the same SUnit. For example,
 | |
|           // we could have a set of glued nodes with all their defs consumed by
 | |
|           // another set of glued nodes. Register pressure tracking sees this as
 | |
|           // a single use, so to keep pressure balanced we reduce the defs.
 | |
|           //
 | |
|           // We can't tell (without more book-keeping) if this results from
 | |
|           // glued nodes or duplicate operands. As long as we don't reduce
 | |
|           // NumRegDefsLeft to zero, we handle the common cases well.
 | |
|           --OpSU->NumRegDefsLeft;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// BuildSchedGraph - Build the SUnit graph from the selection dag that we
 | |
| /// are input.  This SUnit graph is similar to the SelectionDAG, but
 | |
| /// excludes nodes that aren't interesting to scheduling, and represents
 | |
| /// glued together nodes with a single SUnit.
 | |
| void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) {
 | |
|   // Cluster certain nodes which should be scheduled together.
 | |
|   ClusterNodes();
 | |
|   // Populate the SUnits array.
 | |
|   BuildSchedUnits();
 | |
|   // Compute all the scheduling dependencies between nodes.
 | |
|   AddSchedEdges();
 | |
| }
 | |
| 
 | |
| // Initialize NumNodeDefs for the current Node's opcode.
 | |
| void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() {
 | |
|   // Check for phys reg copy.
 | |
|   if (!Node)
 | |
|     return;
 | |
| 
 | |
|   if (!Node->isMachineOpcode()) {
 | |
|     if (Node->getOpcode() == ISD::CopyFromReg)
 | |
|       NodeNumDefs = 1;
 | |
|     else
 | |
|       NodeNumDefs = 0;
 | |
|     return;
 | |
|   }
 | |
|   unsigned POpc = Node->getMachineOpcode();
 | |
|   if (POpc == TargetOpcode::IMPLICIT_DEF) {
 | |
|     // No register need be allocated for this.
 | |
|     NodeNumDefs = 0;
 | |
|     return;
 | |
|   }
 | |
|   unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs();
 | |
|   // Some instructions define regs that are not represented in the selection DAG
 | |
|   // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues.
 | |
|   NodeNumDefs = std::min(Node->getNumValues(), NRegDefs);
 | |
|   DefIdx = 0;
 | |
| }
 | |
| 
 | |
| // Construct a RegDefIter for this SUnit and find the first valid value.
 | |
| ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU,
 | |
|                                            const ScheduleDAGSDNodes *SD)
 | |
|   : SchedDAG(SD), Node(SU->getNode()), DefIdx(0), NodeNumDefs(0) {
 | |
|   InitNodeNumDefs();
 | |
|   Advance();
 | |
| }
 | |
| 
 | |
| // Advance to the next valid value defined by the SUnit.
 | |
| void ScheduleDAGSDNodes::RegDefIter::Advance() {
 | |
|   for (;Node;) { // Visit all glued nodes.
 | |
|     for (;DefIdx < NodeNumDefs; ++DefIdx) {
 | |
|       if (!Node->hasAnyUseOfValue(DefIdx))
 | |
|         continue;
 | |
|       ValueType = Node->getSimpleValueType(DefIdx);
 | |
|       ++DefIdx;
 | |
|       return; // Found a normal regdef.
 | |
|     }
 | |
|     Node = Node->getGluedNode();
 | |
|     if (!Node) {
 | |
|       return; // No values left to visit.
 | |
|     }
 | |
|     InitNodeNumDefs();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) {
 | |
|   assert(SU->NumRegDefsLeft == 0 && "expect a new node");
 | |
|   for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) {
 | |
|     assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected");
 | |
|     ++SU->NumRegDefsLeft;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ScheduleDAGSDNodes::computeLatency(SUnit *SU) {
 | |
|   SDNode *N = SU->getNode();
 | |
| 
 | |
|   // TokenFactor operands are considered zero latency, and some schedulers
 | |
|   // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero
 | |
|   // whenever node latency is nonzero.
 | |
|   if (N && N->getOpcode() == ISD::TokenFactor) {
 | |
|     SU->Latency = 0;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Check to see if the scheduler cares about latencies.
 | |
|   if (forceUnitLatencies()) {
 | |
|     SU->Latency = 1;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (!InstrItins || InstrItins->isEmpty()) {
 | |
|     if (N && N->isMachineOpcode() &&
 | |
|         TII->isHighLatencyDef(N->getMachineOpcode()))
 | |
|       SU->Latency = HighLatencyCycles;
 | |
|     else
 | |
|       SU->Latency = 1;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Compute the latency for the node.  We use the sum of the latencies for
 | |
|   // all nodes glued together into this SUnit.
 | |
|   SU->Latency = 0;
 | |
|   for (SDNode *N = SU->getNode(); N; N = N->getGluedNode())
 | |
|     if (N->isMachineOpcode())
 | |
|       SU->Latency += TII->getInstrLatency(InstrItins, N);
 | |
| }
 | |
| 
 | |
| void ScheduleDAGSDNodes::computeOperandLatency(SDNode *Def, SDNode *Use,
 | |
|                                                unsigned OpIdx, SDep& dep) const{
 | |
|   // Check to see if the scheduler cares about latencies.
 | |
|   if (forceUnitLatencies())
 | |
|     return;
 | |
| 
 | |
|   if (dep.getKind() != SDep::Data)
 | |
|     return;
 | |
| 
 | |
|   unsigned DefIdx = Use->getOperand(OpIdx).getResNo();
 | |
|   if (Use->isMachineOpcode())
 | |
|     // Adjust the use operand index by num of defs.
 | |
|     OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs();
 | |
|   int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx);
 | |
|   if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg &&
 | |
|       !BB->succ_empty()) {
 | |
|     unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
 | |
|     if (TargetRegisterInfo::isVirtualRegister(Reg))
 | |
|       // This copy is a liveout value. It is likely coalesced, so reduce the
 | |
|       // latency so not to penalize the def.
 | |
|       // FIXME: need target specific adjustment here?
 | |
|       Latency = (Latency > 1) ? Latency - 1 : 1;
 | |
|   }
 | |
|   if (Latency >= 0)
 | |
|     dep.setLatency(Latency);
 | |
| }
 | |
| 
 | |
| void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const {
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
|   if (!SU->getNode()) {
 | |
|     dbgs() << "PHYS REG COPY\n";
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   SU->getNode()->dump(DAG);
 | |
|   dbgs() << "\n";
 | |
|   SmallVector<SDNode *, 4> GluedNodes;
 | |
|   for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
 | |
|     GluedNodes.push_back(N);
 | |
|   while (!GluedNodes.empty()) {
 | |
|     dbgs() << "    ";
 | |
|     GluedNodes.back()->dump(DAG);
 | |
|     dbgs() << "\n";
 | |
|     GluedNodes.pop_back();
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| void ScheduleDAGSDNodes::dumpSchedule() const {
 | |
|   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
 | |
|     if (SUnit *SU = Sequence[i])
 | |
|       SU->dump(this);
 | |
|     else
 | |
|       dbgs() << "**** NOOP ****\n";
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| /// VerifyScheduledSequence - Verify that all SUnits were scheduled and that
 | |
| /// their state is consistent with the nodes listed in Sequence.
 | |
| ///
 | |
| void ScheduleDAGSDNodes::VerifyScheduledSequence(bool isBottomUp) {
 | |
|   unsigned ScheduledNodes = ScheduleDAG::VerifyScheduledDAG(isBottomUp);
 | |
|   unsigned Noops = 0;
 | |
|   for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
 | |
|     if (!Sequence[i])
 | |
|       ++Noops;
 | |
|   assert(Sequence.size() - Noops == ScheduledNodes &&
 | |
|          "The number of nodes scheduled doesn't match the expected number!");
 | |
| }
 | |
| #endif // NDEBUG
 | |
| 
 | |
| /// ProcessSDDbgValues - Process SDDbgValues associated with this node.
 | |
| static void
 | |
| ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
 | |
|                    SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders,
 | |
|                    DenseMap<SDValue, unsigned> &VRBaseMap, unsigned Order) {
 | |
|   if (!N->getHasDebugValue())
 | |
|     return;
 | |
| 
 | |
|   // Opportunistically insert immediate dbg_value uses, i.e. those with source
 | |
|   // order number right after the N.
 | |
|   MachineBasicBlock *BB = Emitter.getBlock();
 | |
|   MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
 | |
|   ArrayRef<SDDbgValue*> DVs = DAG->GetDbgValues(N);
 | |
|   for (unsigned i = 0, e = DVs.size(); i != e; ++i) {
 | |
|     if (DVs[i]->isInvalidated())
 | |
|       continue;
 | |
|     unsigned DVOrder = DVs[i]->getOrder();
 | |
|     if (!Order || DVOrder == ++Order) {
 | |
|       MachineInstr *DbgMI = Emitter.EmitDbgValue(DVs[i], VRBaseMap);
 | |
|       if (DbgMI) {
 | |
|         Orders.push_back(std::make_pair(DVOrder, DbgMI));
 | |
|         BB->insert(InsertPos, DbgMI);
 | |
|       }
 | |
|       DVs[i]->setIsInvalidated();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // ProcessSourceNode - Process nodes with source order numbers. These are added
 | |
| // to a vector which EmitSchedule uses to determine how to insert dbg_value
 | |
| // instructions in the right order.
 | |
| static void
 | |
| ProcessSourceNode(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
 | |
|                   DenseMap<SDValue, unsigned> &VRBaseMap,
 | |
|                   SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders,
 | |
|                   SmallSet<unsigned, 8> &Seen) {
 | |
|   unsigned Order = N->getIROrder();
 | |
|   if (!Order || !Seen.insert(Order)) {
 | |
|     // Process any valid SDDbgValues even if node does not have any order
 | |
|     // assigned.
 | |
|     ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   MachineBasicBlock *BB = Emitter.getBlock();
 | |
|   if (Emitter.getInsertPos() == BB->begin() || BB->back().isPHI() ||
 | |
|       // Fast-isel may have inserted some instructions, in which case the
 | |
|       // BB->back().isPHI() test will not fire when we want it to.
 | |
|       std::prev(Emitter.getInsertPos())->isPHI()) {
 | |
|     // Did not insert any instruction.
 | |
|     Orders.push_back(std::make_pair(Order, (MachineInstr*)nullptr));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Orders.push_back(std::make_pair(Order, std::prev(Emitter.getInsertPos())));
 | |
|   ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order);
 | |
| }
 | |
| 
 | |
| void ScheduleDAGSDNodes::
 | |
| EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, unsigned> &VRBaseMap,
 | |
|                 MachineBasicBlock::iterator InsertPos) {
 | |
|   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isCtrl()) continue;  // ignore chain preds
 | |
|     if (I->getSUnit()->CopyDstRC) {
 | |
|       // Copy to physical register.
 | |
|       DenseMap<SUnit*, unsigned>::iterator VRI = VRBaseMap.find(I->getSUnit());
 | |
|       assert(VRI != VRBaseMap.end() && "Node emitted out of order - late");
 | |
|       // Find the destination physical register.
 | |
|       unsigned Reg = 0;
 | |
|       for (SUnit::const_succ_iterator II = SU->Succs.begin(),
 | |
|              EE = SU->Succs.end(); II != EE; ++II) {
 | |
|         if (II->isCtrl()) continue;  // ignore chain preds
 | |
|         if (II->getReg()) {
 | |
|           Reg = II->getReg();
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), Reg)
 | |
|         .addReg(VRI->second);
 | |
|     } else {
 | |
|       // Copy from physical register.
 | |
|       assert(I->getReg() && "Unknown physical register!");
 | |
|       unsigned VRBase = MRI.createVirtualRegister(SU->CopyDstRC);
 | |
|       bool isNew = VRBaseMap.insert(std::make_pair(SU, VRBase)).second;
 | |
|       (void)isNew; // Silence compiler warning.
 | |
|       assert(isNew && "Node emitted out of order - early");
 | |
|       BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), VRBase)
 | |
|         .addReg(I->getReg());
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// EmitSchedule - Emit the machine code in scheduled order. Return the new
 | |
| /// InsertPos and MachineBasicBlock that contains this insertion
 | |
| /// point. ScheduleDAGSDNodes holds a BB pointer for convenience, but this does
 | |
| /// not necessarily refer to returned BB. The emitter may split blocks.
 | |
| MachineBasicBlock *ScheduleDAGSDNodes::
 | |
| EmitSchedule(MachineBasicBlock::iterator &InsertPos) {
 | |
|   InstrEmitter Emitter(BB, InsertPos);
 | |
|   DenseMap<SDValue, unsigned> VRBaseMap;
 | |
|   DenseMap<SUnit*, unsigned> CopyVRBaseMap;
 | |
|   SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
 | |
|   SmallSet<unsigned, 8> Seen;
 | |
|   bool HasDbg = DAG->hasDebugValues();
 | |
| 
 | |
|   // If this is the first BB, emit byval parameter dbg_value's.
 | |
|   if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) {
 | |
|     SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin();
 | |
|     SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd();
 | |
|     for (; PDI != PDE; ++PDI) {
 | |
|       MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
 | |
|       if (DbgMI)
 | |
|         BB->insert(InsertPos, DbgMI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
 | |
|     SUnit *SU = Sequence[i];
 | |
|     if (!SU) {
 | |
|       // Null SUnit* is a noop.
 | |
|       TII->insertNoop(*Emitter.getBlock(), InsertPos);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // For pre-regalloc scheduling, create instructions corresponding to the
 | |
|     // SDNode and any glued SDNodes and append them to the block.
 | |
|     if (!SU->getNode()) {
 | |
|       // Emit a copy.
 | |
|       EmitPhysRegCopy(SU, CopyVRBaseMap, InsertPos);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     SmallVector<SDNode *, 4> GluedNodes;
 | |
|     for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
 | |
|       GluedNodes.push_back(N);
 | |
|     while (!GluedNodes.empty()) {
 | |
|       SDNode *N = GluedNodes.back();
 | |
|       Emitter.EmitNode(GluedNodes.back(), SU->OrigNode != SU, SU->isCloned,
 | |
|                        VRBaseMap);
 | |
|       // Remember the source order of the inserted instruction.
 | |
|       if (HasDbg)
 | |
|         ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen);
 | |
|       GluedNodes.pop_back();
 | |
|     }
 | |
|     Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned,
 | |
|                      VRBaseMap);
 | |
|     // Remember the source order of the inserted instruction.
 | |
|     if (HasDbg)
 | |
|       ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders,
 | |
|                         Seen);
 | |
|   }
 | |
| 
 | |
|   // Insert all the dbg_values which have not already been inserted in source
 | |
|   // order sequence.
 | |
|   if (HasDbg) {
 | |
|     MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI();
 | |
| 
 | |
|     // Sort the source order instructions and use the order to insert debug
 | |
|     // values.
 | |
|     std::sort(Orders.begin(), Orders.end(), less_first());
 | |
| 
 | |
|     SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
 | |
|     SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
 | |
|     // Now emit the rest according to source order.
 | |
|     unsigned LastOrder = 0;
 | |
|     for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
 | |
|       unsigned Order = Orders[i].first;
 | |
|       MachineInstr *MI = Orders[i].second;
 | |
|       // Insert all SDDbgValue's whose order(s) are before "Order".
 | |
|       if (!MI)
 | |
|         continue;
 | |
|       for (; DI != DE &&
 | |
|              (*DI)->getOrder() >= LastOrder && (*DI)->getOrder() < Order; ++DI) {
 | |
|         if ((*DI)->isInvalidated())
 | |
|           continue;
 | |
|         MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap);
 | |
|         if (DbgMI) {
 | |
|           if (!LastOrder)
 | |
|             // Insert to start of the BB (after PHIs).
 | |
|             BB->insert(BBBegin, DbgMI);
 | |
|           else {
 | |
|             // Insert at the instruction, which may be in a different
 | |
|             // block, if the block was split by a custom inserter.
 | |
|             MachineBasicBlock::iterator Pos = MI;
 | |
|             MI->getParent()->insert(Pos, DbgMI);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       LastOrder = Order;
 | |
|     }
 | |
|     // Add trailing DbgValue's before the terminator. FIXME: May want to add
 | |
|     // some of them before one or more conditional branches?
 | |
|     SmallVector<MachineInstr*, 8> DbgMIs;
 | |
|     while (DI != DE) {
 | |
|       if (!(*DI)->isInvalidated())
 | |
|         if (MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap))
 | |
|           DbgMIs.push_back(DbgMI);
 | |
|       ++DI;
 | |
|     }
 | |
| 
 | |
|     MachineBasicBlock *InsertBB = Emitter.getBlock();
 | |
|     MachineBasicBlock::iterator Pos = InsertBB->getFirstTerminator();
 | |
|     InsertBB->insert(Pos, DbgMIs.begin(), DbgMIs.end());
 | |
|   }
 | |
| 
 | |
|   InsertPos = Emitter.getInsertPos();
 | |
|   return Emitter.getBlock();
 | |
| }
 | |
| 
 | |
| /// Return the basic block label.
 | |
| std::string ScheduleDAGSDNodes::getDAGName() const {
 | |
|   return "sunit-dag." + BB->getFullName();
 | |
| }
 |