300 lines
10 KiB
C++

/*===-- Lexer.l - Scanner for llvm assembly files --------------*- C++ -*--===//
//
// This file implements the flex scanner for LLVM assembly languages files.
//
//===----------------------------------------------------------------------===*/
%option prefix="llvmAsm"
%option yylineno
%option nostdinit
%option never-interactive
%option batch
%option noyywrap
%option nodefault
%option 8bit
%option outfile="Lexer.cpp"
%option ecs
%option noreject
%option noyymore
%{
#include "ParserInternals.h"
#include "llvm/Module.h"
#include <list>
#include "llvmAsmParser.h"
#include <cctype>
#include <cstdlib>
#define RET_TOK(type, Enum, sym) \
llvmAsmlval.type = Instruction::Enum; return sym
// TODO: All of the static identifiers are figured out by the lexer,
// these should be hashed to reduce the lexer size
// atoull - Convert an ascii string of decimal digits into the unsigned long
// long representation... this does not have to do input error checking,
// because we know that the input will be matched by a suitable regex...
//
static uint64_t atoull(const char *Buffer) {
uint64_t Result = 0;
for (; *Buffer; Buffer++) {
uint64_t OldRes = Result;
Result *= 10;
Result += *Buffer-'0';
if (Result < OldRes) // Uh, oh, overflow detected!!!
ThrowException("constant bigger than 64 bits detected!");
}
return Result;
}
static uint64_t HexIntToVal(const char *Buffer) {
uint64_t Result = 0;
for (; *Buffer; ++Buffer) {
uint64_t OldRes = Result;
Result *= 16;
char C = *Buffer;
if (C >= '0' && C <= '9')
Result += C-'0';
else if (C >= 'A' && C <= 'F')
Result += C-'A'+10;
else if (C >= 'a' && C <= 'f')
Result += C-'a'+10;
if (Result < OldRes) // Uh, oh, overflow detected!!!
ThrowException("constant bigger than 64 bits detected!");
}
return Result;
}
// HexToFP - Convert the ascii string in hexidecimal format to the floating
// point representation of it.
//
static double HexToFP(const char *Buffer) {
// Behave nicely in the face of C TBAA rules... see:
// http://www.nullstone.com/htmls/category/aliastyp.htm
union {
uint64_t UI;
double FP;
} UIntToFP;
UIntToFP.UI = HexIntToVal(Buffer);
assert(sizeof(double) == sizeof(uint64_t) &&
"Data sizes incompatible on this target!");
return UIntToFP.FP; // Cast Hex constant to double
}
// UnEscapeLexed - Run through the specified buffer and change \xx codes to the
// appropriate character. If AllowNull is set to false, a \00 value will cause
// an exception to be thrown.
//
// If AllowNull is set to true, the return value of the function points to the
// last character of the string in memory.
//
char *UnEscapeLexed(char *Buffer, bool AllowNull) {
char *BOut = Buffer;
for (char *BIn = Buffer; *BIn; ) {
if (BIn[0] == '\\' && isxdigit(BIn[1]) && isxdigit(BIn[2])) {
char Tmp = BIn[3]; BIn[3] = 0; // Terminate string
*BOut = strtol(BIn+1, 0, 16); // Convert to number
if (!AllowNull && !*BOut)
ThrowException("String literal cannot accept \\00 escape!");
BIn[3] = Tmp; // Restore character
BIn += 3; // Skip over handled chars
++BOut;
} else {
*BOut++ = *BIn++;
}
}
return BOut;
}
#define YY_NEVER_INTERACTIVE 1
%}
/* Comments start with a ; and go till end of line */
Comment ;.*
/* Variable(Value) identifiers start with a % sign */
VarID %[-a-zA-Z$._][-a-zA-Z$._0-9]*
/* Label identifiers end with a colon */
Label [-a-zA-Z$._0-9]+:
/* Quoted names can contain any character except " and \ */
StringConstant \"[^\"]*\"
/* [PN]Integer: match positive and negative literal integer values that
* are preceeded by a '%' character. These represent unnamed variable slots.
*/
EPInteger %[0-9]+
ENInteger %-[0-9]+
/* E[PN]Integer: match positive and negative literal integer values */
PInteger [0-9]+
NInteger -[0-9]+
/* FPConstant - A Floating point constant.
*/
FPConstant [-+]?[0-9]+[.][0-9]*([eE][-+]?[0-9]+)?
/* HexFPConstant - Floating point constant represented in IEEE format as a
* hexadecimal number for when exponential notation is not precise enough.
*/
HexFPConstant 0x[0-9A-Fa-f]+
/* HexIntConstant - Hexadecimal constant generated by the CFE to avoid forcing
* it to deal with 64 bit numbers.
*/
HexIntConstant [us]0x[0-9A-Fa-f]+
%%
{Comment} { /* Ignore comments for now */ }
begin { return BEGINTOK; }
end { return ENDTOK; }
true { return TRUE; }
false { return FALSE; }
declare { return DECLARE; }
global { return GLOBAL; }
constant { return CONSTANT; }
const { return CONST; }
internal { return INTERNAL; }
linkonce { return LINKONCE; }
weak { return WEAK; }
appending { return APPENDING; }
uninitialized { return EXTERNAL; } /* Deprecated, turn into external */
external { return EXTERNAL; }
implementation { return IMPLEMENTATION; }
zeroinitializer { return ZEROINITIALIZER; }
\.\.\. { return DOTDOTDOT; }
null { return NULL_TOK; }
to { return TO; }
except { return EXCEPT; }
not { return NOT; } /* Deprecated, turned into XOR */
target { return TARGET; }
endian { return ENDIAN; }
pointersize { return POINTERSIZE; }
little { return LITTLE; }
big { return BIG; }
volatile { return VOLATILE; }
void { llvmAsmlval.PrimType = Type::VoidTy ; return VOID; }
bool { llvmAsmlval.PrimType = Type::BoolTy ; return BOOL; }
sbyte { llvmAsmlval.PrimType = Type::SByteTy ; return SBYTE; }
ubyte { llvmAsmlval.PrimType = Type::UByteTy ; return UBYTE; }
short { llvmAsmlval.PrimType = Type::ShortTy ; return SHORT; }
ushort { llvmAsmlval.PrimType = Type::UShortTy; return USHORT; }
int { llvmAsmlval.PrimType = Type::IntTy ; return INT; }
uint { llvmAsmlval.PrimType = Type::UIntTy ; return UINT; }
long { llvmAsmlval.PrimType = Type::LongTy ; return LONG; }
ulong { llvmAsmlval.PrimType = Type::ULongTy ; return ULONG; }
float { llvmAsmlval.PrimType = Type::FloatTy ; return FLOAT; }
double { llvmAsmlval.PrimType = Type::DoubleTy; return DOUBLE; }
type { llvmAsmlval.PrimType = Type::TypeTy ; return TYPE; }
label { llvmAsmlval.PrimType = Type::LabelTy ; return LABEL; }
opaque { return OPAQUE; }
add { RET_TOK(BinaryOpVal, Add, ADD); }
sub { RET_TOK(BinaryOpVal, Sub, SUB); }
mul { RET_TOK(BinaryOpVal, Mul, MUL); }
div { RET_TOK(BinaryOpVal, Div, DIV); }
rem { RET_TOK(BinaryOpVal, Rem, REM); }
and { RET_TOK(BinaryOpVal, And, AND); }
or { RET_TOK(BinaryOpVal, Or , OR ); }
xor { RET_TOK(BinaryOpVal, Xor, XOR); }
setne { RET_TOK(BinaryOpVal, SetNE, SETNE); }
seteq { RET_TOK(BinaryOpVal, SetEQ, SETEQ); }
setlt { RET_TOK(BinaryOpVal, SetLT, SETLT); }
setgt { RET_TOK(BinaryOpVal, SetGT, SETGT); }
setle { RET_TOK(BinaryOpVal, SetLE, SETLE); }
setge { RET_TOK(BinaryOpVal, SetGE, SETGE); }
phi { RET_TOK(OtherOpVal, PHI, PHI_TOK); }
call { RET_TOK(OtherOpVal, Call, CALL); }
cast { RET_TOK(OtherOpVal, Cast, CAST); }
shl { RET_TOK(OtherOpVal, Shl, SHL); }
shr { RET_TOK(OtherOpVal, Shr, SHR); }
va_arg { return VA_ARG; /* FIXME: OBSOLETE */}
vanext { RET_TOK(OtherOpVal, VANext, VANEXT); }
vaarg { RET_TOK(OtherOpVal, VAArg , VAARG); }
ret { RET_TOK(TermOpVal, Ret, RET); }
br { RET_TOK(TermOpVal, Br, BR); }
switch { RET_TOK(TermOpVal, Switch, SWITCH); }
invoke { RET_TOK(TermOpVal, Invoke, INVOKE); }
unwind { RET_TOK(TermOpVal, Unwind, UNWIND); }
malloc { RET_TOK(MemOpVal, Malloc, MALLOC); }
alloca { RET_TOK(MemOpVal, Alloca, ALLOCA); }
free { RET_TOK(MemOpVal, Free, FREE); }
load { RET_TOK(MemOpVal, Load, LOAD); }
store { RET_TOK(MemOpVal, Store, STORE); }
getelementptr { RET_TOK(MemOpVal, GetElementPtr, GETELEMENTPTR); }
{VarID} {
UnEscapeLexed(yytext+1);
llvmAsmlval.StrVal = strdup(yytext+1); // Skip %
return VAR_ID;
}
{Label} {
yytext[strlen(yytext)-1] = 0; // nuke colon
UnEscapeLexed(yytext);
llvmAsmlval.StrVal = strdup(yytext);
return LABELSTR;
}
{StringConstant} { // Note that we cannot unescape a string constant here! The
// string constant might contain a \00 which would not be
// understood by the string stuff. It is valid to make a
// [sbyte] c"Hello World\00" constant, for example.
//
yytext[strlen(yytext)-1] = 0; // nuke end quote
llvmAsmlval.StrVal = strdup(yytext+1); // Nuke start quote
return STRINGCONSTANT;
}
{PInteger} { llvmAsmlval.UInt64Val = atoull(yytext); return EUINT64VAL; }
{NInteger} {
uint64_t Val = atoull(yytext+1);
// +1: we have bigger negative range
if (Val > (uint64_t)INT64_MAX+1)
ThrowException("Constant too large for signed 64 bits!");
llvmAsmlval.SInt64Val = -Val;
return ESINT64VAL;
}
{HexIntConstant} {
llvmAsmlval.UInt64Val = HexIntToVal(yytext+3);
return yytext[0] == 's' ? ESINT64VAL : EUINT64VAL;
}
{EPInteger} { llvmAsmlval.UIntVal = atoull(yytext+1); return UINTVAL; }
{ENInteger} {
uint64_t Val = atoull(yytext+2);
// +1: we have bigger negative range
if (Val > (uint64_t)INT32_MAX+1)
ThrowException("Constant too large for signed 32 bits!");
llvmAsmlval.SIntVal = -Val;
return SINTVAL;
}
{FPConstant} { llvmAsmlval.FPVal = atof(yytext); return FPVAL; }
{HexFPConstant} { llvmAsmlval.FPVal = HexToFP(yytext); return FPVAL; }
[ \t\n] { /* Ignore whitespace */ }
. { return yytext[0]; }
%%