mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@28255 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			3488 lines
		
	
	
		
			135 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3488 lines
		
	
	
		
			135 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements the SelectionDAGISel class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "isel"
 | |
| #include "llvm/CodeGen/SelectionDAGISel.h"
 | |
| #include "llvm/CodeGen/ScheduleDAG.h"
 | |
| #include "llvm/CallingConv.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/InlineAsm.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/CodeGen/IntrinsicLowering.h"
 | |
| #include "llvm/CodeGen/MachineDebugInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineJumpTableInfo.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/CodeGen/SSARegMap.h"
 | |
| #include "llvm/Target/MRegisterInfo.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetFrameInfo.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include <map>
 | |
| #include <set>
 | |
| #include <iostream>
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static cl::opt<bool>
 | |
| ViewISelDAGs("view-isel-dags", cl::Hidden,
 | |
|           cl::desc("Pop up a window to show isel dags as they are selected"));
 | |
| static cl::opt<bool>
 | |
| ViewSchedDAGs("view-sched-dags", cl::Hidden,
 | |
|           cl::desc("Pop up a window to show sched dags as they are processed"));
 | |
| #else
 | |
| static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0;
 | |
| #endif
 | |
| 
 | |
| namespace {
 | |
|   cl::opt<ScheduleDAG::SchedHeuristics>
 | |
|   ISHeuristic(
 | |
|     "sched",
 | |
|     cl::desc("Choose scheduling style"),
 | |
|     cl::init(ScheduleDAG::defaultScheduling),
 | |
|     cl::values(
 | |
|       clEnumValN(ScheduleDAG::defaultScheduling, "default",
 | |
|                  "Target preferred scheduling style"),
 | |
|       clEnumValN(ScheduleDAG::noScheduling, "none",
 | |
|                  "No scheduling: breadth first sequencing"),
 | |
|       clEnumValN(ScheduleDAG::simpleScheduling, "simple",
 | |
|                  "Simple two pass scheduling: minimize critical path "
 | |
|                  "and maximize processor utilization"),
 | |
|       clEnumValN(ScheduleDAG::simpleNoItinScheduling, "simple-noitin",
 | |
|                  "Simple two pass scheduling: Same as simple "
 | |
|                  "except using generic latency"),
 | |
|       clEnumValN(ScheduleDAG::listSchedulingBURR, "list-burr",
 | |
|                  "Bottom-up register reduction list scheduling"),
 | |
|       clEnumValN(ScheduleDAG::listSchedulingTDRR, "list-tdrr",
 | |
|                  "Top-down register reduction list scheduling"),
 | |
|       clEnumValN(ScheduleDAG::listSchedulingTD, "list-td",
 | |
|                  "Top-down list scheduler"),
 | |
|       clEnumValEnd));
 | |
| } // namespace
 | |
| 
 | |
| namespace {
 | |
|   /// RegsForValue - This struct represents the physical registers that a
 | |
|   /// particular value is assigned and the type information about the value.
 | |
|   /// This is needed because values can be promoted into larger registers and
 | |
|   /// expanded into multiple smaller registers than the value.
 | |
|   struct RegsForValue {
 | |
|     /// Regs - This list hold the register (for legal and promoted values)
 | |
|     /// or register set (for expanded values) that the value should be assigned
 | |
|     /// to.
 | |
|     std::vector<unsigned> Regs;
 | |
|     
 | |
|     /// RegVT - The value type of each register.
 | |
|     ///
 | |
|     MVT::ValueType RegVT;
 | |
|     
 | |
|     /// ValueVT - The value type of the LLVM value, which may be promoted from
 | |
|     /// RegVT or made from merging the two expanded parts.
 | |
|     MVT::ValueType ValueVT;
 | |
|     
 | |
|     RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
 | |
|     
 | |
|     RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
 | |
|       : RegVT(regvt), ValueVT(valuevt) {
 | |
|         Regs.push_back(Reg);
 | |
|     }
 | |
|     RegsForValue(const std::vector<unsigned> ®s, 
 | |
|                  MVT::ValueType regvt, MVT::ValueType valuevt)
 | |
|       : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
 | |
|     }
 | |
|     
 | |
|     /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
 | |
|     /// this value and returns the result as a ValueVT value.  This uses 
 | |
|     /// Chain/Flag as the input and updates them for the output Chain/Flag.
 | |
|     SDOperand getCopyFromRegs(SelectionDAG &DAG,
 | |
|                               SDOperand &Chain, SDOperand &Flag) const;
 | |
| 
 | |
|     /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
 | |
|     /// specified value into the registers specified by this object.  This uses 
 | |
|     /// Chain/Flag as the input and updates them for the output Chain/Flag.
 | |
|     void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
 | |
|                        SDOperand &Chain, SDOperand &Flag) const;
 | |
|     
 | |
|     /// AddInlineAsmOperands - Add this value to the specified inlineasm node
 | |
|     /// operand list.  This adds the code marker and includes the number of 
 | |
|     /// values added into it.
 | |
|     void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
 | |
|                               std::vector<SDOperand> &Ops) const;
 | |
|   };
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   /// FunctionLoweringInfo - This contains information that is global to a
 | |
|   /// function that is used when lowering a region of the function.
 | |
|   class FunctionLoweringInfo {
 | |
|   public:
 | |
|     TargetLowering &TLI;
 | |
|     Function &Fn;
 | |
|     MachineFunction &MF;
 | |
|     SSARegMap *RegMap;
 | |
| 
 | |
|     FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
 | |
| 
 | |
|     /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
 | |
|     std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
 | |
| 
 | |
|     /// ValueMap - Since we emit code for the function a basic block at a time,
 | |
|     /// we must remember which virtual registers hold the values for
 | |
|     /// cross-basic-block values.
 | |
|     std::map<const Value*, unsigned> ValueMap;
 | |
| 
 | |
|     /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
 | |
|     /// the entry block.  This allows the allocas to be efficiently referenced
 | |
|     /// anywhere in the function.
 | |
|     std::map<const AllocaInst*, int> StaticAllocaMap;
 | |
| 
 | |
|     unsigned MakeReg(MVT::ValueType VT) {
 | |
|       return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
 | |
|     }
 | |
| 
 | |
|     unsigned CreateRegForValue(const Value *V);
 | |
|     
 | |
|     unsigned InitializeRegForValue(const Value *V) {
 | |
|       unsigned &R = ValueMap[V];
 | |
|       assert(R == 0 && "Already initialized this value register!");
 | |
|       return R = CreateRegForValue(V);
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
 | |
| /// PHI nodes or outside of the basic block that defines it, or used by a 
 | |
| /// switch instruction, which may expand to multiple basic blocks.
 | |
| static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
 | |
|   if (isa<PHINode>(I)) return true;
 | |
|   BasicBlock *BB = I->getParent();
 | |
|   for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
 | |
|     if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
 | |
|         isa<SwitchInst>(*UI))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
 | |
| /// entry block, return true.  This includes arguments used by switches, since
 | |
| /// the switch may expand into multiple basic blocks.
 | |
| static bool isOnlyUsedInEntryBlock(Argument *A) {
 | |
|   BasicBlock *Entry = A->getParent()->begin();
 | |
|   for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
 | |
|     if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
 | |
|       return false;  // Use not in entry block.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
 | |
|                                            Function &fn, MachineFunction &mf)
 | |
|     : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
 | |
| 
 | |
|   // Create a vreg for each argument register that is not dead and is used
 | |
|   // outside of the entry block for the function.
 | |
|   for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
 | |
|        AI != E; ++AI)
 | |
|     if (!isOnlyUsedInEntryBlock(AI))
 | |
|       InitializeRegForValue(AI);
 | |
| 
 | |
|   // Initialize the mapping of values to registers.  This is only set up for
 | |
|   // instruction values that are used outside of the block that defines
 | |
|   // them.
 | |
|   Function::iterator BB = Fn.begin(), EB = Fn.end();
 | |
|   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | |
|     if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
 | |
|       if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(AI->getArraySize())) {
 | |
|         const Type *Ty = AI->getAllocatedType();
 | |
|         uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
 | |
|         unsigned Align = 
 | |
|           std::max((unsigned)TLI.getTargetData()->getTypeAlignment(Ty),
 | |
|                    AI->getAlignment());
 | |
| 
 | |
|         // If the alignment of the value is smaller than the size of the value,
 | |
|         // and if the size of the value is particularly small (<= 8 bytes),
 | |
|         // round up to the size of the value for potentially better performance.
 | |
|         //
 | |
|         // FIXME: This could be made better with a preferred alignment hook in
 | |
|         // TargetData.  It serves primarily to 8-byte align doubles for X86.
 | |
|         if (Align < TySize && TySize <= 8) Align = TySize;
 | |
|         TySize *= CUI->getValue();   // Get total allocated size.
 | |
|         if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
 | |
|         StaticAllocaMap[AI] =
 | |
|           MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
 | |
|       }
 | |
| 
 | |
|   for (; BB != EB; ++BB)
 | |
|     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | |
|       if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
 | |
|         if (!isa<AllocaInst>(I) ||
 | |
|             !StaticAllocaMap.count(cast<AllocaInst>(I)))
 | |
|           InitializeRegForValue(I);
 | |
| 
 | |
|   // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
 | |
|   // also creates the initial PHI MachineInstrs, though none of the input
 | |
|   // operands are populated.
 | |
|   for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
 | |
|     MachineBasicBlock *MBB = new MachineBasicBlock(BB);
 | |
|     MBBMap[BB] = MBB;
 | |
|     MF.getBasicBlockList().push_back(MBB);
 | |
| 
 | |
|     // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
 | |
|     // appropriate.
 | |
|     PHINode *PN;
 | |
|     for (BasicBlock::iterator I = BB->begin();
 | |
|          (PN = dyn_cast<PHINode>(I)); ++I)
 | |
|       if (!PN->use_empty()) {
 | |
|         MVT::ValueType VT = TLI.getValueType(PN->getType());
 | |
|         unsigned NumElements;
 | |
|         if (VT != MVT::Vector)
 | |
|           NumElements = TLI.getNumElements(VT);
 | |
|         else {
 | |
|           MVT::ValueType VT1,VT2;
 | |
|           NumElements = 
 | |
|             TLI.getPackedTypeBreakdown(cast<PackedType>(PN->getType()),
 | |
|                                        VT1, VT2);
 | |
|         }
 | |
|         unsigned PHIReg = ValueMap[PN];
 | |
|         assert(PHIReg &&"PHI node does not have an assigned virtual register!");
 | |
|         for (unsigned i = 0; i != NumElements; ++i)
 | |
|           BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i);
 | |
|       }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CreateRegForValue - Allocate the appropriate number of virtual registers of
 | |
| /// the correctly promoted or expanded types.  Assign these registers
 | |
| /// consecutive vreg numbers and return the first assigned number.
 | |
| unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
 | |
|   MVT::ValueType VT = TLI.getValueType(V->getType());
 | |
|   
 | |
|   // The number of multiples of registers that we need, to, e.g., split up
 | |
|   // a <2 x int64> -> 4 x i32 registers.
 | |
|   unsigned NumVectorRegs = 1;
 | |
|   
 | |
|   // If this is a packed type, figure out what type it will decompose into
 | |
|   // and how many of the elements it will use.
 | |
|   if (VT == MVT::Vector) {
 | |
|     const PackedType *PTy = cast<PackedType>(V->getType());
 | |
|     unsigned NumElts = PTy->getNumElements();
 | |
|     MVT::ValueType EltTy = TLI.getValueType(PTy->getElementType());
 | |
|     
 | |
|     // Divide the input until we get to a supported size.  This will always
 | |
|     // end with a scalar if the target doesn't support vectors.
 | |
|     while (NumElts > 1 && !TLI.isTypeLegal(getVectorType(EltTy, NumElts))) {
 | |
|       NumElts >>= 1;
 | |
|       NumVectorRegs <<= 1;
 | |
|     }
 | |
|     if (NumElts == 1)
 | |
|       VT = EltTy;
 | |
|     else
 | |
|       VT = getVectorType(EltTy, NumElts);
 | |
|   }
 | |
|   
 | |
|   // The common case is that we will only create one register for this
 | |
|   // value.  If we have that case, create and return the virtual register.
 | |
|   unsigned NV = TLI.getNumElements(VT);
 | |
|   if (NV == 1) {
 | |
|     // If we are promoting this value, pick the next largest supported type.
 | |
|     MVT::ValueType PromotedType = TLI.getTypeToTransformTo(VT);
 | |
|     unsigned Reg = MakeReg(PromotedType);
 | |
|     // If this is a vector of supported or promoted types (e.g. 4 x i16),
 | |
|     // create all of the registers.
 | |
|     for (unsigned i = 1; i != NumVectorRegs; ++i)
 | |
|       MakeReg(PromotedType);
 | |
|     return Reg;
 | |
|   }
 | |
|   
 | |
|   // If this value is represented with multiple target registers, make sure
 | |
|   // to create enough consecutive registers of the right (smaller) type.
 | |
|   unsigned NT = VT-1;  // Find the type to use.
 | |
|   while (TLI.getNumElements((MVT::ValueType)NT) != 1)
 | |
|     --NT;
 | |
|   
 | |
|   unsigned R = MakeReg((MVT::ValueType)NT);
 | |
|   for (unsigned i = 1; i != NV*NumVectorRegs; ++i)
 | |
|     MakeReg((MVT::ValueType)NT);
 | |
|   return R;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// SelectionDAGLowering - This is the common target-independent lowering
 | |
| /// implementation that is parameterized by a TargetLowering object.
 | |
| /// Also, targets can overload any lowering method.
 | |
| ///
 | |
| namespace llvm {
 | |
| class SelectionDAGLowering {
 | |
|   MachineBasicBlock *CurMBB;
 | |
| 
 | |
|   std::map<const Value*, SDOperand> NodeMap;
 | |
| 
 | |
|   /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
 | |
|   /// them up and then emit token factor nodes when possible.  This allows us to
 | |
|   /// get simple disambiguation between loads without worrying about alias
 | |
|   /// analysis.
 | |
|   std::vector<SDOperand> PendingLoads;
 | |
| 
 | |
|   /// Case - A pair of values to record the Value for a switch case, and the
 | |
|   /// case's target basic block.  
 | |
|   typedef std::pair<Constant*, MachineBasicBlock*> Case;
 | |
|   typedef std::vector<Case>::iterator              CaseItr;
 | |
|   typedef std::pair<CaseItr, CaseItr>              CaseRange;
 | |
| 
 | |
|   /// CaseRec - A struct with ctor used in lowering switches to a binary tree
 | |
|   /// of conditional branches.
 | |
|   struct CaseRec {
 | |
|     CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
 | |
|     CaseBB(bb), LT(lt), GE(ge), Range(r) {}
 | |
| 
 | |
|     /// CaseBB - The MBB in which to emit the compare and branch
 | |
|     MachineBasicBlock *CaseBB;
 | |
|     /// LT, GE - If nonzero, we know the current case value must be less-than or
 | |
|     /// greater-than-or-equal-to these Constants.
 | |
|     Constant *LT;
 | |
|     Constant *GE;
 | |
|     /// Range - A pair of iterators representing the range of case values to be
 | |
|     /// processed at this point in the binary search tree.
 | |
|     CaseRange Range;
 | |
|   };
 | |
|   
 | |
|   /// The comparison function for sorting Case values.
 | |
|   struct CaseCmp {
 | |
|     bool operator () (const Case& C1, const Case& C2) {
 | |
|       if (const ConstantUInt* U1 = dyn_cast<const ConstantUInt>(C1.first))
 | |
|         return U1->getValue() < cast<const ConstantUInt>(C2.first)->getValue();
 | |
|       
 | |
|       const ConstantSInt* S1 = dyn_cast<const ConstantSInt>(C1.first);
 | |
|       return S1->getValue() < cast<const ConstantSInt>(C2.first)->getValue();
 | |
|     }
 | |
|   };
 | |
|   
 | |
| public:
 | |
|   // TLI - This is information that describes the available target features we
 | |
|   // need for lowering.  This indicates when operations are unavailable,
 | |
|   // implemented with a libcall, etc.
 | |
|   TargetLowering &TLI;
 | |
|   SelectionDAG &DAG;
 | |
|   const TargetData *TD;
 | |
| 
 | |
|   /// SwitchCases - Vector of CaseBlock structures used to communicate
 | |
|   /// SwitchInst code generation information.
 | |
|   std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
 | |
|   SelectionDAGISel::JumpTable JT;
 | |
|   
 | |
|   /// FuncInfo - Information about the function as a whole.
 | |
|   ///
 | |
|   FunctionLoweringInfo &FuncInfo;
 | |
| 
 | |
|   SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
 | |
|                        FunctionLoweringInfo &funcinfo)
 | |
|     : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
 | |
|       JT(0,0,0,0), FuncInfo(funcinfo) {
 | |
|   }
 | |
| 
 | |
|   /// getRoot - Return the current virtual root of the Selection DAG.
 | |
|   ///
 | |
|   SDOperand getRoot() {
 | |
|     if (PendingLoads.empty())
 | |
|       return DAG.getRoot();
 | |
| 
 | |
|     if (PendingLoads.size() == 1) {
 | |
|       SDOperand Root = PendingLoads[0];
 | |
|       DAG.setRoot(Root);
 | |
|       PendingLoads.clear();
 | |
|       return Root;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, we have to make a token factor node.
 | |
|     SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other, PendingLoads);
 | |
|     PendingLoads.clear();
 | |
|     DAG.setRoot(Root);
 | |
|     return Root;
 | |
|   }
 | |
| 
 | |
|   void visit(Instruction &I) { visit(I.getOpcode(), I); }
 | |
| 
 | |
|   void visit(unsigned Opcode, User &I) {
 | |
|     switch (Opcode) {
 | |
|     default: assert(0 && "Unknown instruction type encountered!");
 | |
|              abort();
 | |
|       // Build the switch statement using the Instruction.def file.
 | |
| #define HANDLE_INST(NUM, OPCODE, CLASS) \
 | |
|     case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
 | |
| #include "llvm/Instruction.def"
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
 | |
| 
 | |
|   SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
 | |
|                         SDOperand SrcValue, SDOperand Root,
 | |
|                         bool isVolatile);
 | |
| 
 | |
|   SDOperand getIntPtrConstant(uint64_t Val) {
 | |
|     return DAG.getConstant(Val, TLI.getPointerTy());
 | |
|   }
 | |
| 
 | |
|   SDOperand getValue(const Value *V);
 | |
| 
 | |
|   const SDOperand &setValue(const Value *V, SDOperand NewN) {
 | |
|     SDOperand &N = NodeMap[V];
 | |
|     assert(N.Val == 0 && "Already set a value for this node!");
 | |
|     return N = NewN;
 | |
|   }
 | |
|   
 | |
|   RegsForValue GetRegistersForValue(const std::string &ConstrCode,
 | |
|                                     MVT::ValueType VT,
 | |
|                                     bool OutReg, bool InReg,
 | |
|                                     std::set<unsigned> &OutputRegs, 
 | |
|                                     std::set<unsigned> &InputRegs);
 | |
| 
 | |
|   // Terminator instructions.
 | |
|   void visitRet(ReturnInst &I);
 | |
|   void visitBr(BranchInst &I);
 | |
|   void visitSwitch(SwitchInst &I);
 | |
|   void visitUnreachable(UnreachableInst &I) { /* noop */ }
 | |
| 
 | |
|   // Helper for visitSwitch
 | |
|   void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
 | |
|   void visitJumpTable(SelectionDAGISel::JumpTable &JT);
 | |
|   
 | |
|   // These all get lowered before this pass.
 | |
|   void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
 | |
|   void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }
 | |
| 
 | |
|   void visitBinary(User &I, unsigned IntOp, unsigned FPOp, unsigned VecOp);
 | |
|   void visitShift(User &I, unsigned Opcode);
 | |
|   void visitAdd(User &I) { 
 | |
|     visitBinary(I, ISD::ADD, ISD::FADD, ISD::VADD); 
 | |
|   }
 | |
|   void visitSub(User &I);
 | |
|   void visitMul(User &I) { 
 | |
|     visitBinary(I, ISD::MUL, ISD::FMUL, ISD::VMUL); 
 | |
|   }
 | |
|   void visitDiv(User &I) {
 | |
|     const Type *Ty = I.getType();
 | |
|     visitBinary(I,
 | |
|                 Ty->isSigned() ? ISD::SDIV : ISD::UDIV, ISD::FDIV,
 | |
|                 Ty->isSigned() ? ISD::VSDIV : ISD::VUDIV);
 | |
|   }
 | |
|   void visitRem(User &I) {
 | |
|     const Type *Ty = I.getType();
 | |
|     visitBinary(I, Ty->isSigned() ? ISD::SREM : ISD::UREM, ISD::FREM, 0);
 | |
|   }
 | |
|   void visitAnd(User &I) { visitBinary(I, ISD::AND, 0, ISD::VAND); }
 | |
|   void visitOr (User &I) { visitBinary(I, ISD::OR,  0, ISD::VOR); }
 | |
|   void visitXor(User &I) { visitBinary(I, ISD::XOR, 0, ISD::VXOR); }
 | |
|   void visitShl(User &I) { visitShift(I, ISD::SHL); }
 | |
|   void visitShr(User &I) { 
 | |
|     visitShift(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA);
 | |
|   }
 | |
| 
 | |
|   void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc);
 | |
|   void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ); }
 | |
|   void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE); }
 | |
|   void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE); }
 | |
|   void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE); }
 | |
|   void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT); }
 | |
|   void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT); }
 | |
| 
 | |
|   void visitExtractElement(User &I);
 | |
|   void visitInsertElement(User &I);
 | |
|   void visitShuffleVector(User &I);
 | |
| 
 | |
|   void visitGetElementPtr(User &I);
 | |
|   void visitCast(User &I);
 | |
|   void visitSelect(User &I);
 | |
| 
 | |
|   void visitMalloc(MallocInst &I);
 | |
|   void visitFree(FreeInst &I);
 | |
|   void visitAlloca(AllocaInst &I);
 | |
|   void visitLoad(LoadInst &I);
 | |
|   void visitStore(StoreInst &I);
 | |
|   void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
 | |
|   void visitCall(CallInst &I);
 | |
|   void visitInlineAsm(CallInst &I);
 | |
|   const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
 | |
|   void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
 | |
| 
 | |
|   void visitVAStart(CallInst &I);
 | |
|   void visitVAArg(VAArgInst &I);
 | |
|   void visitVAEnd(CallInst &I);
 | |
|   void visitVACopy(CallInst &I);
 | |
|   void visitFrameReturnAddress(CallInst &I, bool isFrameAddress);
 | |
| 
 | |
|   void visitMemIntrinsic(CallInst &I, unsigned Op);
 | |
| 
 | |
|   void visitUserOp1(Instruction &I) {
 | |
|     assert(0 && "UserOp1 should not exist at instruction selection time!");
 | |
|     abort();
 | |
|   }
 | |
|   void visitUserOp2(Instruction &I) {
 | |
|     assert(0 && "UserOp2 should not exist at instruction selection time!");
 | |
|     abort();
 | |
|   }
 | |
| };
 | |
| } // end namespace llvm
 | |
| 
 | |
| SDOperand SelectionDAGLowering::getValue(const Value *V) {
 | |
|   SDOperand &N = NodeMap[V];
 | |
|   if (N.Val) return N;
 | |
|   
 | |
|   const Type *VTy = V->getType();
 | |
|   MVT::ValueType VT = TLI.getValueType(VTy);
 | |
|   if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
 | |
|     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | |
|       visit(CE->getOpcode(), *CE);
 | |
|       assert(N.Val && "visit didn't populate the ValueMap!");
 | |
|       return N;
 | |
|     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
 | |
|       return N = DAG.getGlobalAddress(GV, VT);
 | |
|     } else if (isa<ConstantPointerNull>(C)) {
 | |
|       return N = DAG.getConstant(0, TLI.getPointerTy());
 | |
|     } else if (isa<UndefValue>(C)) {
 | |
|       if (!isa<PackedType>(VTy))
 | |
|         return N = DAG.getNode(ISD::UNDEF, VT);
 | |
| 
 | |
|       // Create a VBUILD_VECTOR of undef nodes.
 | |
|       const PackedType *PTy = cast<PackedType>(VTy);
 | |
|       unsigned NumElements = PTy->getNumElements();
 | |
|       MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
 | |
| 
 | |
|       std::vector<SDOperand> Ops;
 | |
|       Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
 | |
|       
 | |
|       // Create a VConstant node with generic Vector type.
 | |
|       Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
 | |
|       Ops.push_back(DAG.getValueType(PVT));
 | |
|       return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops);
 | |
|     } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
 | |
|       return N = DAG.getConstantFP(CFP->getValue(), VT);
 | |
|     } else if (const PackedType *PTy = dyn_cast<PackedType>(VTy)) {
 | |
|       unsigned NumElements = PTy->getNumElements();
 | |
|       MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
 | |
|       
 | |
|       // Now that we know the number and type of the elements, push a
 | |
|       // Constant or ConstantFP node onto the ops list for each element of
 | |
|       // the packed constant.
 | |
|       std::vector<SDOperand> Ops;
 | |
|       if (ConstantPacked *CP = dyn_cast<ConstantPacked>(C)) {
 | |
|         for (unsigned i = 0; i != NumElements; ++i)
 | |
|           Ops.push_back(getValue(CP->getOperand(i)));
 | |
|       } else {
 | |
|         assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
 | |
|         SDOperand Op;
 | |
|         if (MVT::isFloatingPoint(PVT))
 | |
|           Op = DAG.getConstantFP(0, PVT);
 | |
|         else
 | |
|           Op = DAG.getConstant(0, PVT);
 | |
|         Ops.assign(NumElements, Op);
 | |
|       }
 | |
|       
 | |
|       // Create a VBUILD_VECTOR node with generic Vector type.
 | |
|       Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
 | |
|       Ops.push_back(DAG.getValueType(PVT));
 | |
|       return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops);
 | |
|     } else {
 | |
|       // Canonicalize all constant ints to be unsigned.
 | |
|       return N = DAG.getConstant(cast<ConstantIntegral>(C)->getRawValue(),VT);
 | |
|     }
 | |
|   }
 | |
|       
 | |
|   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
 | |
|     std::map<const AllocaInst*, int>::iterator SI =
 | |
|     FuncInfo.StaticAllocaMap.find(AI);
 | |
|     if (SI != FuncInfo.StaticAllocaMap.end())
 | |
|       return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
 | |
|   }
 | |
|       
 | |
|   std::map<const Value*, unsigned>::const_iterator VMI =
 | |
|       FuncInfo.ValueMap.find(V);
 | |
|   assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");
 | |
|   
 | |
|   unsigned InReg = VMI->second;
 | |
|   
 | |
|   // If this type is not legal, make it so now.
 | |
|   if (VT != MVT::Vector) {
 | |
|     MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
 | |
|   
 | |
|     N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
 | |
|     if (DestVT < VT) {
 | |
|       // Source must be expanded.  This input value is actually coming from the
 | |
|       // register pair VMI->second and VMI->second+1.
 | |
|       N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
 | |
|                       DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
 | |
|     } else if (DestVT > VT) { // Promotion case
 | |
|       if (MVT::isFloatingPoint(VT))
 | |
|         N = DAG.getNode(ISD::FP_ROUND, VT, N);
 | |
|       else
 | |
|         N = DAG.getNode(ISD::TRUNCATE, VT, N);
 | |
|     }
 | |
|   } else {
 | |
|     // Otherwise, if this is a vector, make it available as a generic vector
 | |
|     // here.
 | |
|     MVT::ValueType PTyElementVT, PTyLegalElementVT;
 | |
|     const PackedType *PTy = cast<PackedType>(VTy);
 | |
|     unsigned NE = TLI.getPackedTypeBreakdown(PTy, PTyElementVT,
 | |
|                                              PTyLegalElementVT);
 | |
| 
 | |
|     // Build a VBUILD_VECTOR with the input registers.
 | |
|     std::vector<SDOperand> Ops;
 | |
|     if (PTyElementVT == PTyLegalElementVT) {
 | |
|       // If the value types are legal, just VBUILD the CopyFromReg nodes.
 | |
|       for (unsigned i = 0; i != NE; ++i)
 | |
|         Ops.push_back(DAG.getCopyFromReg(DAG.getEntryNode(), InReg++, 
 | |
|                                          PTyElementVT));
 | |
|     } else if (PTyElementVT < PTyLegalElementVT) {
 | |
|       // If the register was promoted, use TRUNCATE of FP_ROUND as appropriate.
 | |
|       for (unsigned i = 0; i != NE; ++i) {
 | |
|         SDOperand Op = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++, 
 | |
|                                           PTyElementVT);
 | |
|         if (MVT::isFloatingPoint(PTyElementVT))
 | |
|           Op = DAG.getNode(ISD::FP_ROUND, PTyElementVT, Op);
 | |
|         else
 | |
|           Op = DAG.getNode(ISD::TRUNCATE, PTyElementVT, Op);
 | |
|         Ops.push_back(Op);
 | |
|       }
 | |
|     } else {
 | |
|       // If the register was expanded, use BUILD_PAIR.
 | |
|       assert((NE & 1) == 0 && "Must expand into a multiple of 2 elements!");
 | |
|       for (unsigned i = 0; i != NE/2; ++i) {
 | |
|         SDOperand Op0 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++, 
 | |
|                                            PTyElementVT);
 | |
|         SDOperand Op1 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++, 
 | |
|                                            PTyElementVT);
 | |
|         Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Op0, Op1));
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     Ops.push_back(DAG.getConstant(NE, MVT::i32));
 | |
|     Ops.push_back(DAG.getValueType(PTyLegalElementVT));
 | |
|     N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops);
 | |
|     
 | |
|     // Finally, use a VBIT_CONVERT to make this available as the appropriate
 | |
|     // vector type.
 | |
|     N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N, 
 | |
|                     DAG.getConstant(PTy->getNumElements(),
 | |
|                                     MVT::i32),
 | |
|                     DAG.getValueType(TLI.getValueType(PTy->getElementType())));
 | |
|   }
 | |
|   
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| 
 | |
| void SelectionDAGLowering::visitRet(ReturnInst &I) {
 | |
|   if (I.getNumOperands() == 0) {
 | |
|     DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
 | |
|     return;
 | |
|   }
 | |
|   std::vector<SDOperand> NewValues;
 | |
|   NewValues.push_back(getRoot());
 | |
|   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
 | |
|     SDOperand RetOp = getValue(I.getOperand(i));
 | |
|     
 | |
|     // If this is an integer return value, we need to promote it ourselves to
 | |
|     // the full width of a register, since LegalizeOp will use ANY_EXTEND rather
 | |
|     // than sign/zero.
 | |
|     if (MVT::isInteger(RetOp.getValueType()) && 
 | |
|         RetOp.getValueType() < MVT::i64) {
 | |
|       MVT::ValueType TmpVT;
 | |
|       if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
 | |
|         TmpVT = TLI.getTypeToTransformTo(MVT::i32);
 | |
|       else
 | |
|         TmpVT = MVT::i32;
 | |
| 
 | |
|       if (I.getOperand(i)->getType()->isSigned())
 | |
|         RetOp = DAG.getNode(ISD::SIGN_EXTEND, TmpVT, RetOp);
 | |
|       else
 | |
|         RetOp = DAG.getNode(ISD::ZERO_EXTEND, TmpVT, RetOp);
 | |
|     }
 | |
|     NewValues.push_back(RetOp);
 | |
|   }
 | |
|   DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, NewValues));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitBr(BranchInst &I) {
 | |
|   // Update machine-CFG edges.
 | |
|   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
 | |
|   CurMBB->addSuccessor(Succ0MBB);
 | |
| 
 | |
|   // Figure out which block is immediately after the current one.
 | |
|   MachineBasicBlock *NextBlock = 0;
 | |
|   MachineFunction::iterator BBI = CurMBB;
 | |
|   if (++BBI != CurMBB->getParent()->end())
 | |
|     NextBlock = BBI;
 | |
| 
 | |
|   if (I.isUnconditional()) {
 | |
|     // If this is not a fall-through branch, emit the branch.
 | |
|     if (Succ0MBB != NextBlock)
 | |
|       DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
 | |
|                               DAG.getBasicBlock(Succ0MBB)));
 | |
|   } else {
 | |
|     MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
 | |
|     CurMBB->addSuccessor(Succ1MBB);
 | |
| 
 | |
|     SDOperand Cond = getValue(I.getCondition());
 | |
|     if (Succ1MBB == NextBlock) {
 | |
|       // If the condition is false, fall through.  This means we should branch
 | |
|       // if the condition is true to Succ #0.
 | |
|       DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
 | |
|                               Cond, DAG.getBasicBlock(Succ0MBB)));
 | |
|     } else if (Succ0MBB == NextBlock) {
 | |
|       // If the condition is true, fall through.  This means we should branch if
 | |
|       // the condition is false to Succ #1.  Invert the condition first.
 | |
|       SDOperand True = DAG.getConstant(1, Cond.getValueType());
 | |
|       Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
 | |
|       DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
 | |
|                               Cond, DAG.getBasicBlock(Succ1MBB)));
 | |
|     } else {
 | |
|       std::vector<SDOperand> Ops;
 | |
|       Ops.push_back(getRoot());
 | |
|       // If the false case is the current basic block, then this is a self
 | |
|       // loop. We do not want to emit "Loop: ... brcond Out; br Loop", as it
 | |
|       // adds an extra instruction in the loop.  Instead, invert the
 | |
|       // condition and emit "Loop: ... br!cond Loop; br Out. 
 | |
|       if (CurMBB == Succ1MBB) {
 | |
|         std::swap(Succ0MBB, Succ1MBB);
 | |
|         SDOperand True = DAG.getConstant(1, Cond.getValueType());
 | |
|         Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
 | |
|       }
 | |
|       SDOperand True = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
 | |
|                                    DAG.getBasicBlock(Succ0MBB));
 | |
|       DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, True, 
 | |
|                               DAG.getBasicBlock(Succ1MBB)));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// visitSwitchCase - Emits the necessary code to represent a single node in
 | |
| /// the binary search tree resulting from lowering a switch instruction.
 | |
| void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
 | |
|   SDOperand SwitchOp = getValue(CB.SwitchV);
 | |
|   SDOperand CaseOp = getValue(CB.CaseC);
 | |
|   SDOperand Cond = DAG.getSetCC(MVT::i1, SwitchOp, CaseOp, CB.CC);
 | |
|   
 | |
|   // Set NextBlock to be the MBB immediately after the current one, if any.
 | |
|   // This is used to avoid emitting unnecessary branches to the next block.
 | |
|   MachineBasicBlock *NextBlock = 0;
 | |
|   MachineFunction::iterator BBI = CurMBB;
 | |
|   if (++BBI != CurMBB->getParent()->end())
 | |
|     NextBlock = BBI;
 | |
|   
 | |
|   // If the lhs block is the next block, invert the condition so that we can
 | |
|   // fall through to the lhs instead of the rhs block.
 | |
|   if (CB.LHSBB == NextBlock) {
 | |
|     std::swap(CB.LHSBB, CB.RHSBB);
 | |
|     SDOperand True = DAG.getConstant(1, Cond.getValueType());
 | |
|     Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
 | |
|   }
 | |
|   SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
 | |
|                                  DAG.getBasicBlock(CB.LHSBB));
 | |
|   if (CB.RHSBB == NextBlock)
 | |
|     DAG.setRoot(BrCond);
 | |
|   else
 | |
|     DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond, 
 | |
|                             DAG.getBasicBlock(CB.RHSBB)));
 | |
|   // Update successor info
 | |
|   CurMBB->addSuccessor(CB.LHSBB);
 | |
|   CurMBB->addSuccessor(CB.RHSBB);
 | |
| }
 | |
| 
 | |
| /// visitSwitchCase - Emits the necessary code to represent a single node in
 | |
| /// the binary search tree resulting from lowering a switch instruction.
 | |
| void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
 | |
|   // FIXME: Need to emit different code for PIC vs. Non-PIC, specifically,
 | |
|   // we need to add the address of the jump table to the value loaded, since
 | |
|   // the entries in the jump table will be differences rather than absolute
 | |
|   // addresses.
 | |
|   
 | |
|   // Emit the code for the jump table
 | |
|   MVT::ValueType PTy = TLI.getPointerTy();
 | |
|   unsigned PTyBytes = MVT::getSizeInBits(PTy)/8;
 | |
|   SDOperand Copy = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
 | |
|   SDOperand IDX = DAG.getNode(ISD::MUL, PTy, Copy,
 | |
|                               DAG.getConstant(PTyBytes, PTy));
 | |
|   SDOperand ADD = DAG.getNode(ISD::ADD, PTy, IDX, DAG.getJumpTable(JT.JTI,PTy));
 | |
|   SDOperand LD  = DAG.getLoad(PTy, Copy.getValue(1), ADD, DAG.getSrcValue(0));
 | |
|   DAG.setRoot(DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), LD));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitSwitch(SwitchInst &I) {
 | |
|   // Figure out which block is immediately after the current one.
 | |
|   MachineBasicBlock *NextBlock = 0;
 | |
|   MachineFunction::iterator BBI = CurMBB;
 | |
|   if (++BBI != CurMBB->getParent()->end())
 | |
|     NextBlock = BBI;
 | |
|   
 | |
|   // If there is only the default destination, branch to it if it is not the
 | |
|   // next basic block.  Otherwise, just fall through.
 | |
|   if (I.getNumOperands() == 2) {
 | |
|     // Update machine-CFG edges.
 | |
|     MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[I.getDefaultDest()];
 | |
|     // If this is not a fall-through branch, emit the branch.
 | |
|     if (DefaultMBB != NextBlock)
 | |
|       DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
 | |
|                               DAG.getBasicBlock(DefaultMBB)));
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // If there are any non-default case statements, create a vector of Cases
 | |
|   // representing each one, and sort the vector so that we can efficiently
 | |
|   // create a binary search tree from them.
 | |
|   std::vector<Case> Cases;
 | |
|   for (unsigned i = 1; i < I.getNumSuccessors(); ++i) {
 | |
|     MachineBasicBlock *SMBB = FuncInfo.MBBMap[I.getSuccessor(i)];
 | |
|     Cases.push_back(Case(I.getSuccessorValue(i), SMBB));
 | |
|   }
 | |
|   std::sort(Cases.begin(), Cases.end(), CaseCmp());
 | |
|   
 | |
|   // Get the Value to be switched on and default basic blocks, which will be
 | |
|   // inserted into CaseBlock records, representing basic blocks in the binary
 | |
|   // search tree.
 | |
|   Value *SV = I.getOperand(0);
 | |
|   MachineBasicBlock *Default = FuncInfo.MBBMap[I.getDefaultDest()];
 | |
| 
 | |
|   // Get the MachineFunction which holds the current MBB.  This is used during
 | |
|   // emission of jump tables, and when inserting any additional MBBs necessary
 | |
|   // to represent the switch.
 | |
|   MachineFunction *CurMF = CurMBB->getParent();
 | |
|   const BasicBlock *LLVMBB = CurMBB->getBasicBlock();
 | |
|   Reloc::Model Relocs = TLI.getTargetMachine().getRelocationModel();
 | |
| 
 | |
|   // If the switch has more than 5 blocks, and at least 31.25% dense, and the 
 | |
|   // target supports indirect branches, then emit a jump table rather than 
 | |
|   // lowering the switch to a binary tree of conditional branches.
 | |
|   // FIXME: Make this work with PIC code
 | |
|   if (TLI.isOperationLegal(ISD::BRIND, TLI.getPointerTy()) &&
 | |
|       (Relocs == Reloc::Static || Relocs == Reloc::DynamicNoPIC) &&
 | |
|       Cases.size() > 5) {
 | |
|     uint64_t First = cast<ConstantIntegral>(Cases.front().first)->getRawValue();
 | |
|     uint64_t Last  = cast<ConstantIntegral>(Cases.back().first)->getRawValue();
 | |
|     double Density = (double)Cases.size() / (double)((Last - First) + 1ULL);
 | |
|     
 | |
|     if (Density >= 0.3125) {
 | |
|       // Create a new basic block to hold the code for loading the address
 | |
|       // of the jump table, and jumping to it.  Update successor information;
 | |
|       // we will either branch to the default case for the switch, or the jump
 | |
|       // table.
 | |
|       MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
 | |
|       CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
 | |
|       CurMBB->addSuccessor(Default);
 | |
|       CurMBB->addSuccessor(JumpTableBB);
 | |
|       
 | |
|       // Subtract the lowest switch case value from the value being switched on
 | |
|       // and conditional branch to default mbb if the result is greater than the
 | |
|       // difference between smallest and largest cases.
 | |
|       SDOperand SwitchOp = getValue(SV);
 | |
|       MVT::ValueType VT = SwitchOp.getValueType();
 | |
|       SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp, 
 | |
|                                   DAG.getConstant(First, VT));
 | |
| 
 | |
|       // The SDNode we just created, which holds the value being switched on
 | |
|       // minus the the smallest case value, needs to be copied to a virtual
 | |
|       // register so it can be used as an index into the jump table in a 
 | |
|       // subsequent basic block.  This value may be smaller or larger than the
 | |
|       // target's pointer type, and therefore require extension or truncating.
 | |
|       if (VT > TLI.getPointerTy())
 | |
|         SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
 | |
|       else
 | |
|         SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
 | |
|       unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
 | |
|       SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
 | |
|       
 | |
|       // Emit the range check for the jump table, and branch to the default
 | |
|       // block for the switch statement if the value being switched on exceeds
 | |
|       // the largest case in the switch.
 | |
|       SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
 | |
|                                    DAG.getConstant(Last-First,VT), ISD::SETUGT);
 | |
|       DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP, 
 | |
|                               DAG.getBasicBlock(Default)));
 | |
| 
 | |
|       // Build a vector of destination BBs, corresponding to each target
 | |
|       // of the jump table.  If the value of the jump table slot corresponds to
 | |
|       // a case statement, push the case's BB onto the vector, otherwise, push
 | |
|       // the default BB.
 | |
|       std::set<MachineBasicBlock*> UniqueBBs;
 | |
|       std::vector<MachineBasicBlock*> DestBBs;
 | |
|       uint64_t TEI = First;
 | |
|       for (CaseItr ii = Cases.begin(), ee = Cases.end(); ii != ee; ++TEI) {
 | |
|         if (cast<ConstantIntegral>(ii->first)->getRawValue() == TEI) {
 | |
|           DestBBs.push_back(ii->second);
 | |
|           UniqueBBs.insert(ii->second);
 | |
|           ++ii;
 | |
|         } else {
 | |
|           DestBBs.push_back(Default);
 | |
|           UniqueBBs.insert(Default);
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       // Update successor info
 | |
|       for (std::set<MachineBasicBlock*>::iterator ii = UniqueBBs.begin(), 
 | |
|            ee = UniqueBBs.end(); ii != ee; ++ii)
 | |
|         JumpTableBB->addSuccessor(*ii);
 | |
|       
 | |
|       // Create a jump table index for this jump table, or return an existing
 | |
|       // one.
 | |
|       unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
 | |
|       
 | |
|       // Set the jump table information so that we can codegen it as a second
 | |
|       // MachineBasicBlock
 | |
|       JT.Reg = JumpTableReg;
 | |
|       JT.JTI = JTI;
 | |
|       JT.MBB = JumpTableBB;
 | |
|       JT.Default = Default;
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Push the initial CaseRec onto the worklist
 | |
|   std::vector<CaseRec> CaseVec;
 | |
|   CaseVec.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
 | |
|   
 | |
|   while (!CaseVec.empty()) {
 | |
|     // Grab a record representing a case range to process off the worklist
 | |
|     CaseRec CR = CaseVec.back();
 | |
|     CaseVec.pop_back();
 | |
|     
 | |
|     // Size is the number of Cases represented by this range.  If Size is 1,
 | |
|     // then we are processing a leaf of the binary search tree.  Otherwise,
 | |
|     // we need to pick a pivot, and push left and right ranges onto the 
 | |
|     // worklist.
 | |
|     unsigned Size = CR.Range.second - CR.Range.first;
 | |
|     
 | |
|     if (Size == 1) {
 | |
|       // Create a CaseBlock record representing a conditional branch to
 | |
|       // the Case's target mbb if the value being switched on SV is equal
 | |
|       // to C.  Otherwise, branch to default.
 | |
|       Constant *C = CR.Range.first->first;
 | |
|       MachineBasicBlock *Target = CR.Range.first->second;
 | |
|       SelectionDAGISel::CaseBlock CB(ISD::SETEQ, SV, C, Target, Default, 
 | |
|                                      CR.CaseBB);
 | |
|       // If the MBB representing the leaf node is the current MBB, then just
 | |
|       // call visitSwitchCase to emit the code into the current block.
 | |
|       // Otherwise, push the CaseBlock onto the vector to be later processed
 | |
|       // by SDISel, and insert the node's MBB before the next MBB.
 | |
|       if (CR.CaseBB == CurMBB)
 | |
|         visitSwitchCase(CB);
 | |
|       else {
 | |
|         SwitchCases.push_back(CB);
 | |
|         CurMF->getBasicBlockList().insert(BBI, CR.CaseBB);
 | |
|       }
 | |
|     } else {
 | |
|       // split case range at pivot
 | |
|       CaseItr Pivot = CR.Range.first + (Size / 2);
 | |
|       CaseRange LHSR(CR.Range.first, Pivot);
 | |
|       CaseRange RHSR(Pivot, CR.Range.second);
 | |
|       Constant *C = Pivot->first;
 | |
|       MachineBasicBlock *RHSBB = 0, *LHSBB = 0;
 | |
|       // We know that we branch to the LHS if the Value being switched on is
 | |
|       // less than the Pivot value, C.  We use this to optimize our binary 
 | |
|       // tree a bit, by recognizing that if SV is greater than or equal to the
 | |
|       // LHS's Case Value, and that Case Value is exactly one less than the 
 | |
|       // Pivot's Value, then we can branch directly to the LHS's Target,
 | |
|       // rather than creating a leaf node for it.
 | |
|       if ((LHSR.second - LHSR.first) == 1 &&
 | |
|           LHSR.first->first == CR.GE &&
 | |
|           cast<ConstantIntegral>(C)->getRawValue() ==
 | |
|           (cast<ConstantIntegral>(CR.GE)->getRawValue() + 1ULL)) {
 | |
|         LHSBB = LHSR.first->second;
 | |
|       } else {
 | |
|         LHSBB = new MachineBasicBlock(LLVMBB);
 | |
|         CaseVec.push_back(CaseRec(LHSBB,C,CR.GE,LHSR));
 | |
|       }
 | |
|       // Similar to the optimization above, if the Value being switched on is
 | |
|       // known to be less than the Constant CR.LT, and the current Case Value
 | |
|       // is CR.LT - 1, then we can branch directly to the target block for
 | |
|       // the current Case Value, rather than emitting a RHS leaf node for it.
 | |
|       if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
 | |
|           cast<ConstantIntegral>(RHSR.first->first)->getRawValue() ==
 | |
|           (cast<ConstantIntegral>(CR.LT)->getRawValue() - 1ULL)) {
 | |
|         RHSBB = RHSR.first->second;
 | |
|       } else {
 | |
|         RHSBB = new MachineBasicBlock(LLVMBB);
 | |
|         CaseVec.push_back(CaseRec(RHSBB,CR.LT,C,RHSR));
 | |
|       }
 | |
|       // Create a CaseBlock record representing a conditional branch to
 | |
|       // the LHS node if the value being switched on SV is less than C. 
 | |
|       // Otherwise, branch to LHS.
 | |
|       ISD::CondCode CC = C->getType()->isSigned() ? ISD::SETLT : ISD::SETULT;
 | |
|       SelectionDAGISel::CaseBlock CB(CC, SV, C, LHSBB, RHSBB, CR.CaseBB);
 | |
|       if (CR.CaseBB == CurMBB)
 | |
|         visitSwitchCase(CB);
 | |
|       else {
 | |
|         SwitchCases.push_back(CB);
 | |
|         CurMF->getBasicBlockList().insert(BBI, CR.CaseBB);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitSub(User &I) {
 | |
|   // -0.0 - X --> fneg
 | |
|   if (I.getType()->isFloatingPoint()) {
 | |
|     if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
 | |
|       if (CFP->isExactlyValue(-0.0)) {
 | |
|         SDOperand Op2 = getValue(I.getOperand(1));
 | |
|         setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
 | |
|         return;
 | |
|       }
 | |
|   }
 | |
|   visitBinary(I, ISD::SUB, ISD::FSUB, ISD::VSUB);
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitBinary(User &I, unsigned IntOp, unsigned FPOp, 
 | |
|                                        unsigned VecOp) {
 | |
|   const Type *Ty = I.getType();
 | |
|   SDOperand Op1 = getValue(I.getOperand(0));
 | |
|   SDOperand Op2 = getValue(I.getOperand(1));
 | |
| 
 | |
|   if (Ty->isIntegral()) {
 | |
|     setValue(&I, DAG.getNode(IntOp, Op1.getValueType(), Op1, Op2));
 | |
|   } else if (Ty->isFloatingPoint()) {
 | |
|     setValue(&I, DAG.getNode(FPOp, Op1.getValueType(), Op1, Op2));
 | |
|   } else {
 | |
|     const PackedType *PTy = cast<PackedType>(Ty);
 | |
|     SDOperand Num = DAG.getConstant(PTy->getNumElements(), MVT::i32);
 | |
|     SDOperand Typ = DAG.getValueType(TLI.getValueType(PTy->getElementType()));
 | |
|     setValue(&I, DAG.getNode(VecOp, MVT::Vector, Op1, Op2, Num, Typ));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
 | |
|   SDOperand Op1 = getValue(I.getOperand(0));
 | |
|   SDOperand Op2 = getValue(I.getOperand(1));
 | |
|   
 | |
|   Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
 | |
|   
 | |
|   setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode,
 | |
|                                       ISD::CondCode UnsignedOpcode) {
 | |
|   SDOperand Op1 = getValue(I.getOperand(0));
 | |
|   SDOperand Op2 = getValue(I.getOperand(1));
 | |
|   ISD::CondCode Opcode = SignedOpcode;
 | |
|   if (I.getOperand(0)->getType()->isUnsigned())
 | |
|     Opcode = UnsignedOpcode;
 | |
|   setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitSelect(User &I) {
 | |
|   SDOperand Cond     = getValue(I.getOperand(0));
 | |
|   SDOperand TrueVal  = getValue(I.getOperand(1));
 | |
|   SDOperand FalseVal = getValue(I.getOperand(2));
 | |
|   if (!isa<PackedType>(I.getType())) {
 | |
|     setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
 | |
|                              TrueVal, FalseVal));
 | |
|   } else {
 | |
|     setValue(&I, DAG.getNode(ISD::VSELECT, MVT::Vector, Cond, TrueVal, FalseVal,
 | |
|                              *(TrueVal.Val->op_end()-2),
 | |
|                              *(TrueVal.Val->op_end()-1)));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitCast(User &I) {
 | |
|   SDOperand N = getValue(I.getOperand(0));
 | |
|   MVT::ValueType SrcVT = N.getValueType();
 | |
|   MVT::ValueType DestVT = TLI.getValueType(I.getType());
 | |
| 
 | |
|   if (DestVT == MVT::Vector) {
 | |
|     // This is a cast to a vector from something else.  This is always a bit
 | |
|     // convert.  Get information about the input vector.
 | |
|     const PackedType *DestTy = cast<PackedType>(I.getType());
 | |
|     MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
 | |
|     setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N, 
 | |
|                              DAG.getConstant(DestTy->getNumElements(),MVT::i32),
 | |
|                              DAG.getValueType(EltVT)));
 | |
|   } else if (SrcVT == DestVT) {
 | |
|     setValue(&I, N);  // noop cast.
 | |
|   } else if (DestVT == MVT::i1) {
 | |
|     // Cast to bool is a comparison against zero, not truncation to zero.
 | |
|     SDOperand Zero = isInteger(SrcVT) ? DAG.getConstant(0, N.getValueType()) :
 | |
|                                        DAG.getConstantFP(0.0, N.getValueType());
 | |
|     setValue(&I, DAG.getSetCC(MVT::i1, N, Zero, ISD::SETNE));
 | |
|   } else if (isInteger(SrcVT)) {
 | |
|     if (isInteger(DestVT)) {        // Int -> Int cast
 | |
|       if (DestVT < SrcVT)   // Truncating cast?
 | |
|         setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
 | |
|       else if (I.getOperand(0)->getType()->isSigned())
 | |
|         setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
 | |
|       else
 | |
|         setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
 | |
|     } else if (isFloatingPoint(DestVT)) {           // Int -> FP cast
 | |
|       if (I.getOperand(0)->getType()->isSigned())
 | |
|         setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
 | |
|       else
 | |
|         setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
 | |
|     } else {
 | |
|       assert(0 && "Unknown cast!");
 | |
|     }
 | |
|   } else if (isFloatingPoint(SrcVT)) {
 | |
|     if (isFloatingPoint(DestVT)) {  // FP -> FP cast
 | |
|       if (DestVT < SrcVT)   // Rounding cast?
 | |
|         setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
 | |
|       else
 | |
|         setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
 | |
|     } else if (isInteger(DestVT)) {        // FP -> Int cast.
 | |
|       if (I.getType()->isSigned())
 | |
|         setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
 | |
|       else
 | |
|         setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
 | |
|     } else {
 | |
|       assert(0 && "Unknown cast!");
 | |
|     }
 | |
|   } else {
 | |
|     assert(SrcVT == MVT::Vector && "Unknown cast!");
 | |
|     assert(DestVT != MVT::Vector && "Casts to vector already handled!");
 | |
|     // This is a cast from a vector to something else.  This is always a bit
 | |
|     // convert.  Get information about the input vector.
 | |
|     setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitInsertElement(User &I) {
 | |
|   SDOperand InVec = getValue(I.getOperand(0));
 | |
|   SDOperand InVal = getValue(I.getOperand(1));
 | |
|   SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
 | |
|                                 getValue(I.getOperand(2)));
 | |
| 
 | |
|   SDOperand Num = *(InVec.Val->op_end()-2);
 | |
|   SDOperand Typ = *(InVec.Val->op_end()-1);
 | |
|   setValue(&I, DAG.getNode(ISD::VINSERT_VECTOR_ELT, MVT::Vector,
 | |
|                            InVec, InVal, InIdx, Num, Typ));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitExtractElement(User &I) {
 | |
|   SDOperand InVec = getValue(I.getOperand(0));
 | |
|   SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
 | |
|                                 getValue(I.getOperand(1)));
 | |
|   SDOperand Typ = *(InVec.Val->op_end()-1);
 | |
|   setValue(&I, DAG.getNode(ISD::VEXTRACT_VECTOR_ELT,
 | |
|                            TLI.getValueType(I.getType()), InVec, InIdx));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitShuffleVector(User &I) {
 | |
|   SDOperand V1   = getValue(I.getOperand(0));
 | |
|   SDOperand V2   = getValue(I.getOperand(1));
 | |
|   SDOperand Mask = getValue(I.getOperand(2));
 | |
| 
 | |
|   SDOperand Num = *(V1.Val->op_end()-2);
 | |
|   SDOperand Typ = *(V2.Val->op_end()-1);
 | |
|   setValue(&I, DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector,
 | |
|                            V1, V2, Mask, Num, Typ));
 | |
| }
 | |
| 
 | |
| 
 | |
| void SelectionDAGLowering::visitGetElementPtr(User &I) {
 | |
|   SDOperand N = getValue(I.getOperand(0));
 | |
|   const Type *Ty = I.getOperand(0)->getType();
 | |
| 
 | |
|   for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
 | |
|        OI != E; ++OI) {
 | |
|     Value *Idx = *OI;
 | |
|     if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
 | |
|       unsigned Field = cast<ConstantUInt>(Idx)->getValue();
 | |
|       if (Field) {
 | |
|         // N = N + Offset
 | |
|         uint64_t Offset = TD->getStructLayout(StTy)->MemberOffsets[Field];
 | |
|         N = DAG.getNode(ISD::ADD, N.getValueType(), N,
 | |
|                         getIntPtrConstant(Offset));
 | |
|       }
 | |
|       Ty = StTy->getElementType(Field);
 | |
|     } else {
 | |
|       Ty = cast<SequentialType>(Ty)->getElementType();
 | |
| 
 | |
|       // If this is a constant subscript, handle it quickly.
 | |
|       if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
 | |
|         if (CI->getRawValue() == 0) continue;
 | |
| 
 | |
|         uint64_t Offs;
 | |
|         if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI))
 | |
|           Offs = (int64_t)TD->getTypeSize(Ty)*CSI->getValue();
 | |
|         else
 | |
|           Offs = TD->getTypeSize(Ty)*cast<ConstantUInt>(CI)->getValue();
 | |
|         N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       // N = N + Idx * ElementSize;
 | |
|       uint64_t ElementSize = TD->getTypeSize(Ty);
 | |
|       SDOperand IdxN = getValue(Idx);
 | |
| 
 | |
|       // If the index is smaller or larger than intptr_t, truncate or extend
 | |
|       // it.
 | |
|       if (IdxN.getValueType() < N.getValueType()) {
 | |
|         if (Idx->getType()->isSigned())
 | |
|           IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
 | |
|         else
 | |
|           IdxN = DAG.getNode(ISD::ZERO_EXTEND, N.getValueType(), IdxN);
 | |
|       } else if (IdxN.getValueType() > N.getValueType())
 | |
|         IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
 | |
| 
 | |
|       // If this is a multiply by a power of two, turn it into a shl
 | |
|       // immediately.  This is a very common case.
 | |
|       if (isPowerOf2_64(ElementSize)) {
 | |
|         unsigned Amt = Log2_64(ElementSize);
 | |
|         IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
 | |
|                            DAG.getConstant(Amt, TLI.getShiftAmountTy()));
 | |
|         N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       SDOperand Scale = getIntPtrConstant(ElementSize);
 | |
|       IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
 | |
|       N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
 | |
|     }
 | |
|   }
 | |
|   setValue(&I, N);
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
 | |
|   // If this is a fixed sized alloca in the entry block of the function,
 | |
|   // allocate it statically on the stack.
 | |
|   if (FuncInfo.StaticAllocaMap.count(&I))
 | |
|     return;   // getValue will auto-populate this.
 | |
| 
 | |
|   const Type *Ty = I.getAllocatedType();
 | |
|   uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
 | |
|   unsigned Align = std::max((unsigned)TLI.getTargetData()->getTypeAlignment(Ty),
 | |
|                             I.getAlignment());
 | |
| 
 | |
|   SDOperand AllocSize = getValue(I.getArraySize());
 | |
|   MVT::ValueType IntPtr = TLI.getPointerTy();
 | |
|   if (IntPtr < AllocSize.getValueType())
 | |
|     AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
 | |
|   else if (IntPtr > AllocSize.getValueType())
 | |
|     AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
 | |
| 
 | |
|   AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
 | |
|                           getIntPtrConstant(TySize));
 | |
| 
 | |
|   // Handle alignment.  If the requested alignment is less than or equal to the
 | |
|   // stack alignment, ignore it and round the size of the allocation up to the
 | |
|   // stack alignment size.  If the size is greater than the stack alignment, we
 | |
|   // note this in the DYNAMIC_STACKALLOC node.
 | |
|   unsigned StackAlign =
 | |
|     TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
 | |
|   if (Align <= StackAlign) {
 | |
|     Align = 0;
 | |
|     // Add SA-1 to the size.
 | |
|     AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
 | |
|                             getIntPtrConstant(StackAlign-1));
 | |
|     // Mask out the low bits for alignment purposes.
 | |
|     AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
 | |
|                             getIntPtrConstant(~(uint64_t)(StackAlign-1)));
 | |
|   }
 | |
| 
 | |
|   std::vector<MVT::ValueType> VTs;
 | |
|   VTs.push_back(AllocSize.getValueType());
 | |
|   VTs.push_back(MVT::Other);
 | |
|   std::vector<SDOperand> Ops;
 | |
|   Ops.push_back(getRoot());
 | |
|   Ops.push_back(AllocSize);
 | |
|   Ops.push_back(getIntPtrConstant(Align));
 | |
|   SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, Ops);
 | |
|   DAG.setRoot(setValue(&I, DSA).getValue(1));
 | |
| 
 | |
|   // Inform the Frame Information that we have just allocated a variable-sized
 | |
|   // object.
 | |
|   CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitLoad(LoadInst &I) {
 | |
|   SDOperand Ptr = getValue(I.getOperand(0));
 | |
| 
 | |
|   SDOperand Root;
 | |
|   if (I.isVolatile())
 | |
|     Root = getRoot();
 | |
|   else {
 | |
|     // Do not serialize non-volatile loads against each other.
 | |
|     Root = DAG.getRoot();
 | |
|   }
 | |
| 
 | |
|   setValue(&I, getLoadFrom(I.getType(), Ptr, DAG.getSrcValue(I.getOperand(0)),
 | |
|                            Root, I.isVolatile()));
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
 | |
|                                             SDOperand SrcValue, SDOperand Root,
 | |
|                                             bool isVolatile) {
 | |
|   SDOperand L;
 | |
|   if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
 | |
|     MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
 | |
|     L = DAG.getVecLoad(PTy->getNumElements(), PVT, Root, Ptr, SrcValue);
 | |
|   } else {
 | |
|     L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SrcValue);
 | |
|   }
 | |
| 
 | |
|   if (isVolatile)
 | |
|     DAG.setRoot(L.getValue(1));
 | |
|   else
 | |
|     PendingLoads.push_back(L.getValue(1));
 | |
|   
 | |
|   return L;
 | |
| }
 | |
| 
 | |
| 
 | |
| void SelectionDAGLowering::visitStore(StoreInst &I) {
 | |
|   Value *SrcV = I.getOperand(0);
 | |
|   SDOperand Src = getValue(SrcV);
 | |
|   SDOperand Ptr = getValue(I.getOperand(1));
 | |
|   DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, getRoot(), Src, Ptr,
 | |
|                           DAG.getSrcValue(I.getOperand(1))));
 | |
| }
 | |
| 
 | |
| /// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
 | |
| /// access memory and has no other side effects at all.
 | |
| static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
 | |
| #define GET_NO_MEMORY_INTRINSICS
 | |
| #include "llvm/Intrinsics.gen"
 | |
| #undef GET_NO_MEMORY_INTRINSICS
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't
 | |
| // have any side-effects or if it only reads memory.
 | |
| static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) {
 | |
| #define GET_SIDE_EFFECT_INFO
 | |
| #include "llvm/Intrinsics.gen"
 | |
| #undef GET_SIDE_EFFECT_INFO
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
 | |
| /// node.
 | |
| void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I, 
 | |
|                                                 unsigned Intrinsic) {
 | |
|   bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
 | |
|   bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic);
 | |
|   
 | |
|   // Build the operand list.
 | |
|   std::vector<SDOperand> Ops;
 | |
|   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
 | |
|     if (OnlyLoad) {
 | |
|       // We don't need to serialize loads against other loads.
 | |
|       Ops.push_back(DAG.getRoot());
 | |
|     } else { 
 | |
|       Ops.push_back(getRoot());
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Add the intrinsic ID as an integer operand.
 | |
|   Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
 | |
| 
 | |
|   // Add all operands of the call to the operand list.
 | |
|   for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
 | |
|     SDOperand Op = getValue(I.getOperand(i));
 | |
|     
 | |
|     // If this is a vector type, force it to the right packed type.
 | |
|     if (Op.getValueType() == MVT::Vector) {
 | |
|       const PackedType *OpTy = cast<PackedType>(I.getOperand(i)->getType());
 | |
|       MVT::ValueType EltVT = TLI.getValueType(OpTy->getElementType());
 | |
|       
 | |
|       MVT::ValueType VVT = MVT::getVectorType(EltVT, OpTy->getNumElements());
 | |
|       assert(VVT != MVT::Other && "Intrinsic uses a non-legal type?");
 | |
|       Op = DAG.getNode(ISD::VBIT_CONVERT, VVT, Op);
 | |
|     }
 | |
|     
 | |
|     assert(TLI.isTypeLegal(Op.getValueType()) &&
 | |
|            "Intrinsic uses a non-legal type?");
 | |
|     Ops.push_back(Op);
 | |
|   }
 | |
| 
 | |
|   std::vector<MVT::ValueType> VTs;
 | |
|   if (I.getType() != Type::VoidTy) {
 | |
|     MVT::ValueType VT = TLI.getValueType(I.getType());
 | |
|     if (VT == MVT::Vector) {
 | |
|       const PackedType *DestTy = cast<PackedType>(I.getType());
 | |
|       MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
 | |
|       
 | |
|       VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
 | |
|       assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
 | |
|     }
 | |
|     
 | |
|     assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
 | |
|     VTs.push_back(VT);
 | |
|   }
 | |
|   if (HasChain)
 | |
|     VTs.push_back(MVT::Other);
 | |
| 
 | |
|   // Create the node.
 | |
|   SDOperand Result;
 | |
|   if (!HasChain)
 | |
|     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTs, Ops);
 | |
|   else if (I.getType() != Type::VoidTy)
 | |
|     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTs, Ops);
 | |
|   else
 | |
|     Result = DAG.getNode(ISD::INTRINSIC_VOID, VTs, Ops);
 | |
| 
 | |
|   if (HasChain) {
 | |
|     SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
 | |
|     if (OnlyLoad)
 | |
|       PendingLoads.push_back(Chain);
 | |
|     else
 | |
|       DAG.setRoot(Chain);
 | |
|   }
 | |
|   if (I.getType() != Type::VoidTy) {
 | |
|     if (const PackedType *PTy = dyn_cast<PackedType>(I.getType())) {
 | |
|       MVT::ValueType EVT = TLI.getValueType(PTy->getElementType());
 | |
|       Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result,
 | |
|                            DAG.getConstant(PTy->getNumElements(), MVT::i32),
 | |
|                            DAG.getValueType(EVT));
 | |
|     } 
 | |
|     setValue(&I, Result);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
 | |
| /// we want to emit this as a call to a named external function, return the name
 | |
| /// otherwise lower it and return null.
 | |
| const char *
 | |
| SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
 | |
|   switch (Intrinsic) {
 | |
|   default:
 | |
|     // By default, turn this into a target intrinsic node.
 | |
|     visitTargetIntrinsic(I, Intrinsic);
 | |
|     return 0;
 | |
|   case Intrinsic::vastart:  visitVAStart(I); return 0;
 | |
|   case Intrinsic::vaend:    visitVAEnd(I); return 0;
 | |
|   case Intrinsic::vacopy:   visitVACopy(I); return 0;
 | |
|   case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return 0;
 | |
|   case Intrinsic::frameaddress:  visitFrameReturnAddress(I, true); return 0;
 | |
|   case Intrinsic::setjmp:
 | |
|     return "_setjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
 | |
|     break;
 | |
|   case Intrinsic::longjmp:
 | |
|     return "_longjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
 | |
|     break;
 | |
|   case Intrinsic::memcpy_i32:
 | |
|   case Intrinsic::memcpy_i64:
 | |
|     visitMemIntrinsic(I, ISD::MEMCPY);
 | |
|     return 0;
 | |
|   case Intrinsic::memset_i32:
 | |
|   case Intrinsic::memset_i64:
 | |
|     visitMemIntrinsic(I, ISD::MEMSET);
 | |
|     return 0;
 | |
|   case Intrinsic::memmove_i32:
 | |
|   case Intrinsic::memmove_i64:
 | |
|     visitMemIntrinsic(I, ISD::MEMMOVE);
 | |
|     return 0;
 | |
|     
 | |
|   case Intrinsic::dbg_stoppoint: {
 | |
|     MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
 | |
|     DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
 | |
|     if (DebugInfo && SPI.getContext() && DebugInfo->Verify(SPI.getContext())) {
 | |
|       std::vector<SDOperand> Ops;
 | |
| 
 | |
|       Ops.push_back(getRoot());
 | |
|       Ops.push_back(getValue(SPI.getLineValue()));
 | |
|       Ops.push_back(getValue(SPI.getColumnValue()));
 | |
| 
 | |
|       DebugInfoDesc *DD = DebugInfo->getDescFor(SPI.getContext());
 | |
|       assert(DD && "Not a debug information descriptor");
 | |
|       CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
 | |
|       
 | |
|       Ops.push_back(DAG.getString(CompileUnit->getFileName()));
 | |
|       Ops.push_back(DAG.getString(CompileUnit->getDirectory()));
 | |
|       
 | |
|       DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops));
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::dbg_region_start: {
 | |
|     MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
 | |
|     DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
 | |
|     if (DebugInfo && RSI.getContext() && DebugInfo->Verify(RSI.getContext())) {
 | |
|       std::vector<SDOperand> Ops;
 | |
| 
 | |
|       unsigned LabelID = DebugInfo->RecordRegionStart(RSI.getContext());
 | |
|       
 | |
|       Ops.push_back(getRoot());
 | |
|       Ops.push_back(DAG.getConstant(LabelID, MVT::i32));
 | |
| 
 | |
|       DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other, Ops));
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::dbg_region_end: {
 | |
|     MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
 | |
|     DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
 | |
|     if (DebugInfo && REI.getContext() && DebugInfo->Verify(REI.getContext())) {
 | |
|       std::vector<SDOperand> Ops;
 | |
| 
 | |
|       unsigned LabelID = DebugInfo->RecordRegionEnd(REI.getContext());
 | |
|       
 | |
|       Ops.push_back(getRoot());
 | |
|       Ops.push_back(DAG.getConstant(LabelID, MVT::i32));
 | |
| 
 | |
|       DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other, Ops));
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::dbg_func_start: {
 | |
|     MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
 | |
|     DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
 | |
|     if (DebugInfo && FSI.getSubprogram() &&
 | |
|         DebugInfo->Verify(FSI.getSubprogram())) {
 | |
|       std::vector<SDOperand> Ops;
 | |
| 
 | |
|       unsigned LabelID = DebugInfo->RecordRegionStart(FSI.getSubprogram());
 | |
|       
 | |
|       Ops.push_back(getRoot());
 | |
|       Ops.push_back(DAG.getConstant(LabelID, MVT::i32));
 | |
| 
 | |
|       DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other, Ops));
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::dbg_declare: {
 | |
|     MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
 | |
|     DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
 | |
|     if (DebugInfo && DI.getVariable() && DebugInfo->Verify(DI.getVariable())) {
 | |
|       std::vector<SDOperand> Ops;
 | |
| 
 | |
|       SDOperand AddressOp  = getValue(DI.getAddress());
 | |
|       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp)) {
 | |
|         DebugInfo->RecordVariable(DI.getVariable(), FI->getIndex());
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
|   }
 | |
|     
 | |
|   case Intrinsic::isunordered_f32:
 | |
|   case Intrinsic::isunordered_f64:
 | |
|     setValue(&I, DAG.getSetCC(MVT::i1,getValue(I.getOperand(1)),
 | |
|                               getValue(I.getOperand(2)), ISD::SETUO));
 | |
|     return 0;
 | |
|     
 | |
|   case Intrinsic::sqrt_f32:
 | |
|   case Intrinsic::sqrt_f64:
 | |
|     setValue(&I, DAG.getNode(ISD::FSQRT,
 | |
|                              getValue(I.getOperand(1)).getValueType(),
 | |
|                              getValue(I.getOperand(1))));
 | |
|     return 0;
 | |
|   case Intrinsic::pcmarker: {
 | |
|     SDOperand Tmp = getValue(I.getOperand(1));
 | |
|     DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::readcyclecounter: {
 | |
|     std::vector<MVT::ValueType> VTs;
 | |
|     VTs.push_back(MVT::i64);
 | |
|     VTs.push_back(MVT::Other);
 | |
|     std::vector<SDOperand> Ops;
 | |
|     Ops.push_back(getRoot());
 | |
|     SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER, VTs, Ops);
 | |
|     setValue(&I, Tmp);
 | |
|     DAG.setRoot(Tmp.getValue(1));
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::bswap_i16:
 | |
|   case Intrinsic::bswap_i32:
 | |
|   case Intrinsic::bswap_i64:
 | |
|     setValue(&I, DAG.getNode(ISD::BSWAP,
 | |
|                              getValue(I.getOperand(1)).getValueType(),
 | |
|                              getValue(I.getOperand(1))));
 | |
|     return 0;
 | |
|   case Intrinsic::cttz_i8:
 | |
|   case Intrinsic::cttz_i16:
 | |
|   case Intrinsic::cttz_i32:
 | |
|   case Intrinsic::cttz_i64:
 | |
|     setValue(&I, DAG.getNode(ISD::CTTZ,
 | |
|                              getValue(I.getOperand(1)).getValueType(),
 | |
|                              getValue(I.getOperand(1))));
 | |
|     return 0;
 | |
|   case Intrinsic::ctlz_i8:
 | |
|   case Intrinsic::ctlz_i16:
 | |
|   case Intrinsic::ctlz_i32:
 | |
|   case Intrinsic::ctlz_i64:
 | |
|     setValue(&I, DAG.getNode(ISD::CTLZ,
 | |
|                              getValue(I.getOperand(1)).getValueType(),
 | |
|                              getValue(I.getOperand(1))));
 | |
|     return 0;
 | |
|   case Intrinsic::ctpop_i8:
 | |
|   case Intrinsic::ctpop_i16:
 | |
|   case Intrinsic::ctpop_i32:
 | |
|   case Intrinsic::ctpop_i64:
 | |
|     setValue(&I, DAG.getNode(ISD::CTPOP,
 | |
|                              getValue(I.getOperand(1)).getValueType(),
 | |
|                              getValue(I.getOperand(1))));
 | |
|     return 0;
 | |
|   case Intrinsic::stacksave: {
 | |
|     std::vector<MVT::ValueType> VTs;
 | |
|     VTs.push_back(TLI.getPointerTy());
 | |
|     VTs.push_back(MVT::Other);
 | |
|     std::vector<SDOperand> Ops;
 | |
|     Ops.push_back(getRoot());
 | |
|     SDOperand Tmp = DAG.getNode(ISD::STACKSAVE, VTs, Ops);
 | |
|     setValue(&I, Tmp);
 | |
|     DAG.setRoot(Tmp.getValue(1));
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::stackrestore: {
 | |
|     SDOperand Tmp = getValue(I.getOperand(1));
 | |
|     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::prefetch:
 | |
|     // FIXME: Currently discarding prefetches.
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void SelectionDAGLowering::visitCall(CallInst &I) {
 | |
|   const char *RenameFn = 0;
 | |
|   if (Function *F = I.getCalledFunction()) {
 | |
|     if (F->isExternal())
 | |
|       if (unsigned IID = F->getIntrinsicID()) {
 | |
|         RenameFn = visitIntrinsicCall(I, IID);
 | |
|         if (!RenameFn)
 | |
|           return;
 | |
|       } else {    // Not an LLVM intrinsic.
 | |
|         const std::string &Name = F->getName();
 | |
|         if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
 | |
|           if (I.getNumOperands() == 3 &&   // Basic sanity checks.
 | |
|               I.getOperand(1)->getType()->isFloatingPoint() &&
 | |
|               I.getType() == I.getOperand(1)->getType() &&
 | |
|               I.getType() == I.getOperand(2)->getType()) {
 | |
|             SDOperand LHS = getValue(I.getOperand(1));
 | |
|             SDOperand RHS = getValue(I.getOperand(2));
 | |
|             setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
 | |
|                                      LHS, RHS));
 | |
|             return;
 | |
|           }
 | |
|         } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
 | |
|           if (I.getNumOperands() == 2 &&   // Basic sanity checks.
 | |
|               I.getOperand(1)->getType()->isFloatingPoint() &&
 | |
|               I.getType() == I.getOperand(1)->getType()) {
 | |
|             SDOperand Tmp = getValue(I.getOperand(1));
 | |
|             setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
 | |
|             return;
 | |
|           }
 | |
|         } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
 | |
|           if (I.getNumOperands() == 2 &&   // Basic sanity checks.
 | |
|               I.getOperand(1)->getType()->isFloatingPoint() &&
 | |
|               I.getType() == I.getOperand(1)->getType()) {
 | |
|             SDOperand Tmp = getValue(I.getOperand(1));
 | |
|             setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
 | |
|             return;
 | |
|           }
 | |
|         } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
 | |
|           if (I.getNumOperands() == 2 &&   // Basic sanity checks.
 | |
|               I.getOperand(1)->getType()->isFloatingPoint() &&
 | |
|               I.getType() == I.getOperand(1)->getType()) {
 | |
|             SDOperand Tmp = getValue(I.getOperand(1));
 | |
|             setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
 | |
|             return;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|   } else if (isa<InlineAsm>(I.getOperand(0))) {
 | |
|     visitInlineAsm(I);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   SDOperand Callee;
 | |
|   if (!RenameFn)
 | |
|     Callee = getValue(I.getOperand(0));
 | |
|   else
 | |
|     Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
 | |
|   std::vector<std::pair<SDOperand, const Type*> > Args;
 | |
|   Args.reserve(I.getNumOperands());
 | |
|   for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
 | |
|     Value *Arg = I.getOperand(i);
 | |
|     SDOperand ArgNode = getValue(Arg);
 | |
|     Args.push_back(std::make_pair(ArgNode, Arg->getType()));
 | |
|   }
 | |
| 
 | |
|   const PointerType *PT = cast<PointerType>(I.getCalledValue()->getType());
 | |
|   const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
 | |
| 
 | |
|   std::pair<SDOperand,SDOperand> Result =
 | |
|     TLI.LowerCallTo(getRoot(), I.getType(), FTy->isVarArg(), I.getCallingConv(),
 | |
|                     I.isTailCall(), Callee, Args, DAG);
 | |
|   if (I.getType() != Type::VoidTy)
 | |
|     setValue(&I, Result.first);
 | |
|   DAG.setRoot(Result.second);
 | |
| }
 | |
| 
 | |
| SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
 | |
|                                         SDOperand &Chain, SDOperand &Flag)const{
 | |
|   SDOperand Val = DAG.getCopyFromReg(Chain, Regs[0], RegVT, Flag);
 | |
|   Chain = Val.getValue(1);
 | |
|   Flag  = Val.getValue(2);
 | |
|   
 | |
|   // If the result was expanded, copy from the top part.
 | |
|   if (Regs.size() > 1) {
 | |
|     assert(Regs.size() == 2 &&
 | |
|            "Cannot expand to more than 2 elts yet!");
 | |
|     SDOperand Hi = DAG.getCopyFromReg(Chain, Regs[1], RegVT, Flag);
 | |
|     Chain = Val.getValue(1);
 | |
|     Flag  = Val.getValue(2);
 | |
|     if (DAG.getTargetLoweringInfo().isLittleEndian())
 | |
|       return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
 | |
|     else
 | |
|       return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Hi, Val);
 | |
|   }
 | |
| 
 | |
|   // Otherwise, if the return value was promoted, truncate it to the
 | |
|   // appropriate type.
 | |
|   if (RegVT == ValueVT)
 | |
|     return Val;
 | |
|   
 | |
|   if (MVT::isInteger(RegVT))
 | |
|     return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
 | |
|   else
 | |
|     return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
 | |
| }
 | |
| 
 | |
| /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
 | |
| /// specified value into the registers specified by this object.  This uses 
 | |
| /// Chain/Flag as the input and updates them for the output Chain/Flag.
 | |
| void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
 | |
|                                  SDOperand &Chain, SDOperand &Flag) const {
 | |
|   if (Regs.size() == 1) {
 | |
|     // If there is a single register and the types differ, this must be
 | |
|     // a promotion.
 | |
|     if (RegVT != ValueVT) {
 | |
|       if (MVT::isInteger(RegVT))
 | |
|         Val = DAG.getNode(ISD::ANY_EXTEND, RegVT, Val);
 | |
|       else
 | |
|         Val = DAG.getNode(ISD::FP_EXTEND, RegVT, Val);
 | |
|     }
 | |
|     Chain = DAG.getCopyToReg(Chain, Regs[0], Val, Flag);
 | |
|     Flag = Chain.getValue(1);
 | |
|   } else {
 | |
|     std::vector<unsigned> R(Regs);
 | |
|     if (!DAG.getTargetLoweringInfo().isLittleEndian())
 | |
|       std::reverse(R.begin(), R.end());
 | |
|     
 | |
|     for (unsigned i = 0, e = R.size(); i != e; ++i) {
 | |
|       SDOperand Part = DAG.getNode(ISD::EXTRACT_ELEMENT, RegVT, Val, 
 | |
|                                    DAG.getConstant(i, MVT::i32));
 | |
|       Chain = DAG.getCopyToReg(Chain, R[i], Part, Flag);
 | |
|       Flag = Chain.getValue(1);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// AddInlineAsmOperands - Add this value to the specified inlineasm node
 | |
| /// operand list.  This adds the code marker and includes the number of 
 | |
| /// values added into it.
 | |
| void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
 | |
|                                         std::vector<SDOperand> &Ops) const {
 | |
|   Ops.push_back(DAG.getConstant(Code | (Regs.size() << 3), MVT::i32));
 | |
|   for (unsigned i = 0, e = Regs.size(); i != e; ++i)
 | |
|     Ops.push_back(DAG.getRegister(Regs[i], RegVT));
 | |
| }
 | |
| 
 | |
| /// isAllocatableRegister - If the specified register is safe to allocate, 
 | |
| /// i.e. it isn't a stack pointer or some other special register, return the
 | |
| /// register class for the register.  Otherwise, return null.
 | |
| static const TargetRegisterClass *
 | |
| isAllocatableRegister(unsigned Reg, MachineFunction &MF,
 | |
|                       const TargetLowering &TLI, const MRegisterInfo *MRI) {
 | |
|   MVT::ValueType FoundVT = MVT::Other;
 | |
|   const TargetRegisterClass *FoundRC = 0;
 | |
|   for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
 | |
|        E = MRI->regclass_end(); RCI != E; ++RCI) {
 | |
|     MVT::ValueType ThisVT = MVT::Other;
 | |
| 
 | |
|     const TargetRegisterClass *RC = *RCI;
 | |
|     // If none of the the value types for this register class are valid, we 
 | |
|     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
 | |
|     for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
 | |
|          I != E; ++I) {
 | |
|       if (TLI.isTypeLegal(*I)) {
 | |
|         // If we have already found this register in a different register class,
 | |
|         // choose the one with the largest VT specified.  For example, on
 | |
|         // PowerPC, we favor f64 register classes over f32.
 | |
|         if (FoundVT == MVT::Other || 
 | |
|             MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
 | |
|           ThisVT = *I;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     if (ThisVT == MVT::Other) continue;
 | |
|     
 | |
|     // NOTE: This isn't ideal.  In particular, this might allocate the
 | |
|     // frame pointer in functions that need it (due to them not being taken
 | |
|     // out of allocation, because a variable sized allocation hasn't been seen
 | |
|     // yet).  This is a slight code pessimization, but should still work.
 | |
|     for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
 | |
|          E = RC->allocation_order_end(MF); I != E; ++I)
 | |
|       if (*I == Reg) {
 | |
|         // We found a matching register class.  Keep looking at others in case
 | |
|         // we find one with larger registers that this physreg is also in.
 | |
|         FoundRC = RC;
 | |
|         FoundVT = ThisVT;
 | |
|         break;
 | |
|       }
 | |
|   }
 | |
|   return FoundRC;
 | |
| }    
 | |
| 
 | |
| RegsForValue SelectionDAGLowering::
 | |
| GetRegistersForValue(const std::string &ConstrCode,
 | |
|                      MVT::ValueType VT, bool isOutReg, bool isInReg,
 | |
|                      std::set<unsigned> &OutputRegs, 
 | |
|                      std::set<unsigned> &InputRegs) {
 | |
|   std::pair<unsigned, const TargetRegisterClass*> PhysReg = 
 | |
|     TLI.getRegForInlineAsmConstraint(ConstrCode, VT);
 | |
|   std::vector<unsigned> Regs;
 | |
| 
 | |
|   unsigned NumRegs = VT != MVT::Other ? TLI.getNumElements(VT) : 1;
 | |
|   MVT::ValueType RegVT;
 | |
|   MVT::ValueType ValueVT = VT;
 | |
|   
 | |
|   if (PhysReg.first) {
 | |
|     if (VT == MVT::Other)
 | |
|       ValueVT = *PhysReg.second->vt_begin();
 | |
|     RegVT = VT;
 | |
|     
 | |
|     // This is a explicit reference to a physical register.
 | |
|     Regs.push_back(PhysReg.first);
 | |
| 
 | |
|     // If this is an expanded reference, add the rest of the regs to Regs.
 | |
|     if (NumRegs != 1) {
 | |
|       RegVT = *PhysReg.second->vt_begin();
 | |
|       TargetRegisterClass::iterator I = PhysReg.second->begin();
 | |
|       TargetRegisterClass::iterator E = PhysReg.second->end();
 | |
|       for (; *I != PhysReg.first; ++I)
 | |
|         assert(I != E && "Didn't find reg!"); 
 | |
|       
 | |
|       // Already added the first reg.
 | |
|       --NumRegs; ++I;
 | |
|       for (; NumRegs; --NumRegs, ++I) {
 | |
|         assert(I != E && "Ran out of registers to allocate!");
 | |
|         Regs.push_back(*I);
 | |
|       }
 | |
|     }
 | |
|     return RegsForValue(Regs, RegVT, ValueVT);
 | |
|   }
 | |
|   
 | |
|   // This is a reference to a register class.  Allocate NumRegs consecutive,
 | |
|   // available, registers from the class.
 | |
|   std::vector<unsigned> RegClassRegs =
 | |
|     TLI.getRegClassForInlineAsmConstraint(ConstrCode, VT);
 | |
| 
 | |
|   const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
 | |
|   MachineFunction &MF = *CurMBB->getParent();
 | |
|   unsigned NumAllocated = 0;
 | |
|   for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
 | |
|     unsigned Reg = RegClassRegs[i];
 | |
|     // See if this register is available.
 | |
|     if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
 | |
|         (isInReg  && InputRegs.count(Reg))) {    // Already used.
 | |
|       // Make sure we find consecutive registers.
 | |
|       NumAllocated = 0;
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // Check to see if this register is allocatable (i.e. don't give out the
 | |
|     // stack pointer).
 | |
|     const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, MRI);
 | |
|     if (!RC) {
 | |
|       // Make sure we find consecutive registers.
 | |
|       NumAllocated = 0;
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // Okay, this register is good, we can use it.
 | |
|     ++NumAllocated;
 | |
| 
 | |
|     // If we allocated enough consecutive   
 | |
|     if (NumAllocated == NumRegs) {
 | |
|       unsigned RegStart = (i-NumAllocated)+1;
 | |
|       unsigned RegEnd   = i+1;
 | |
|       // Mark all of the allocated registers used.
 | |
|       for (unsigned i = RegStart; i != RegEnd; ++i) {
 | |
|         unsigned Reg = RegClassRegs[i];
 | |
|         Regs.push_back(Reg);
 | |
|         if (isOutReg) OutputRegs.insert(Reg);    // Mark reg used.
 | |
|         if (isInReg)  InputRegs.insert(Reg);     // Mark reg used.
 | |
|       }
 | |
|       
 | |
|       return RegsForValue(Regs, *RC->vt_begin(), VT);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Otherwise, we couldn't allocate enough registers for this.
 | |
|   return RegsForValue();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// visitInlineAsm - Handle a call to an InlineAsm object.
 | |
| ///
 | |
| void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
 | |
|   InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
 | |
|   
 | |
|   SDOperand AsmStr = DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
 | |
|                                                  MVT::Other);
 | |
| 
 | |
|   // Note, we treat inline asms both with and without side-effects as the same.
 | |
|   // If an inline asm doesn't have side effects and doesn't access memory, we
 | |
|   // could not choose to not chain it.
 | |
|   bool hasSideEffects = IA->hasSideEffects();
 | |
| 
 | |
|   std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
 | |
|   std::vector<MVT::ValueType> ConstraintVTs;
 | |
|   
 | |
|   /// AsmNodeOperands - A list of pairs.  The first element is a register, the
 | |
|   /// second is a bitfield where bit #0 is set if it is a use and bit #1 is set
 | |
|   /// if it is a def of that register.
 | |
|   std::vector<SDOperand> AsmNodeOperands;
 | |
|   AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
 | |
|   AsmNodeOperands.push_back(AsmStr);
 | |
|   
 | |
|   SDOperand Chain = getRoot();
 | |
|   SDOperand Flag;
 | |
|   
 | |
|   // We fully assign registers here at isel time.  This is not optimal, but
 | |
|   // should work.  For register classes that correspond to LLVM classes, we
 | |
|   // could let the LLVM RA do its thing, but we currently don't.  Do a prepass
 | |
|   // over the constraints, collecting fixed registers that we know we can't use.
 | |
|   std::set<unsigned> OutputRegs, InputRegs;
 | |
|   unsigned OpNum = 1;
 | |
|   for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
 | |
|     assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
 | |
|     std::string &ConstraintCode = Constraints[i].Codes[0];
 | |
|     
 | |
|     MVT::ValueType OpVT;
 | |
| 
 | |
|     // Compute the value type for each operand and add it to ConstraintVTs.
 | |
|     switch (Constraints[i].Type) {
 | |
|     case InlineAsm::isOutput:
 | |
|       if (!Constraints[i].isIndirectOutput) {
 | |
|         assert(I.getType() != Type::VoidTy && "Bad inline asm!");
 | |
|         OpVT = TLI.getValueType(I.getType());
 | |
|       } else {
 | |
|         const Type *OpTy = I.getOperand(OpNum)->getType();
 | |
|         OpVT = TLI.getValueType(cast<PointerType>(OpTy)->getElementType());
 | |
|         OpNum++;  // Consumes a call operand.
 | |
|       }
 | |
|       break;
 | |
|     case InlineAsm::isInput:
 | |
|       OpVT = TLI.getValueType(I.getOperand(OpNum)->getType());
 | |
|       OpNum++;  // Consumes a call operand.
 | |
|       break;
 | |
|     case InlineAsm::isClobber:
 | |
|       OpVT = MVT::Other;
 | |
|       break;
 | |
|     }
 | |
|     
 | |
|     ConstraintVTs.push_back(OpVT);
 | |
| 
 | |
|     if (TLI.getRegForInlineAsmConstraint(ConstraintCode, OpVT).first == 0)
 | |
|       continue;  // Not assigned a fixed reg.
 | |
|     
 | |
|     // Build a list of regs that this operand uses.  This always has a single
 | |
|     // element for promoted/expanded operands.
 | |
|     RegsForValue Regs = GetRegistersForValue(ConstraintCode, OpVT,
 | |
|                                              false, false,
 | |
|                                              OutputRegs, InputRegs);
 | |
|     
 | |
|     switch (Constraints[i].Type) {
 | |
|     case InlineAsm::isOutput:
 | |
|       // We can't assign any other output to this register.
 | |
|       OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
 | |
|       // If this is an early-clobber output, it cannot be assigned to the same
 | |
|       // value as the input reg.
 | |
|       if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
 | |
|         InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
 | |
|       break;
 | |
|     case InlineAsm::isInput:
 | |
|       // We can't assign any other input to this register.
 | |
|       InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
 | |
|       break;
 | |
|     case InlineAsm::isClobber:
 | |
|       // Clobbered regs cannot be used as inputs or outputs.
 | |
|       InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
 | |
|       OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
 | |
|       break;
 | |
|     }
 | |
|   }      
 | |
|   
 | |
|   // Loop over all of the inputs, copying the operand values into the
 | |
|   // appropriate registers and processing the output regs.
 | |
|   RegsForValue RetValRegs;
 | |
|   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
 | |
|   OpNum = 1;
 | |
|   
 | |
|   for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
 | |
|     assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
 | |
|     std::string &ConstraintCode = Constraints[i].Codes[0];
 | |
| 
 | |
|     switch (Constraints[i].Type) {
 | |
|     case InlineAsm::isOutput: {
 | |
|       TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
 | |
|       if (ConstraintCode.size() == 1)   // not a physreg name.
 | |
|         CTy = TLI.getConstraintType(ConstraintCode[0]);
 | |
|       
 | |
|       if (CTy == TargetLowering::C_Memory) {
 | |
|         // Memory output.
 | |
|         SDOperand InOperandVal = getValue(I.getOperand(OpNum));
 | |
|         
 | |
|         // Check that the operand (the address to store to) isn't a float.
 | |
|         if (!MVT::isInteger(InOperandVal.getValueType()))
 | |
|           assert(0 && "MATCH FAIL!");
 | |
|         
 | |
|         if (!Constraints[i].isIndirectOutput)
 | |
|           assert(0 && "MATCH FAIL!");
 | |
| 
 | |
|         OpNum++;  // Consumes a call operand.
 | |
|         
 | |
|         // Extend/truncate to the right pointer type if needed.
 | |
|         MVT::ValueType PtrType = TLI.getPointerTy();
 | |
|         if (InOperandVal.getValueType() < PtrType)
 | |
|           InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
 | |
|         else if (InOperandVal.getValueType() > PtrType)
 | |
|           InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
 | |
|         
 | |
|         // Add information to the INLINEASM node to know about this output.
 | |
|         unsigned ResOpType = 4/*MEM*/ | (1 << 3);
 | |
|         AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
 | |
|         AsmNodeOperands.push_back(InOperandVal);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // Otherwise, this is a register output.
 | |
|       assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
 | |
| 
 | |
|       // If this is an early-clobber output, or if there is an input
 | |
|       // constraint that matches this, we need to reserve the input register
 | |
|       // so no other inputs allocate to it.
 | |
|       bool UsesInputRegister = false;
 | |
|       if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
 | |
|         UsesInputRegister = true;
 | |
|       
 | |
|       // Copy the output from the appropriate register.  Find a register that
 | |
|       // we can use.
 | |
|       RegsForValue Regs =
 | |
|         GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
 | |
|                              true, UsesInputRegister, 
 | |
|                              OutputRegs, InputRegs);
 | |
|       assert(!Regs.Regs.empty() && "Couldn't allocate output reg!");
 | |
| 
 | |
|       if (!Constraints[i].isIndirectOutput) {
 | |
|         assert(RetValRegs.Regs.empty() &&
 | |
|                "Cannot have multiple output constraints yet!");
 | |
|         assert(I.getType() != Type::VoidTy && "Bad inline asm!");
 | |
|         RetValRegs = Regs;
 | |
|       } else {
 | |
|         IndirectStoresToEmit.push_back(std::make_pair(Regs, 
 | |
|                                                       I.getOperand(OpNum)));
 | |
|         OpNum++;  // Consumes a call operand.
 | |
|       }
 | |
|       
 | |
|       // Add information to the INLINEASM node to know that this register is
 | |
|       // set.
 | |
|       Regs.AddInlineAsmOperands(2 /*REGDEF*/, DAG, AsmNodeOperands);
 | |
|       break;
 | |
|     }
 | |
|     case InlineAsm::isInput: {
 | |
|       SDOperand InOperandVal = getValue(I.getOperand(OpNum));
 | |
|       OpNum++;  // Consumes a call operand.
 | |
|       
 | |
|       if (isdigit(ConstraintCode[0])) {    // Matching constraint?
 | |
|         // If this is required to match an output register we have already set,
 | |
|         // just use its register.
 | |
|         unsigned OperandNo = atoi(ConstraintCode.c_str());
 | |
|         
 | |
|         // Scan until we find the definition we already emitted of this operand.
 | |
|         // When we find it, create a RegsForValue operand.
 | |
|         unsigned CurOp = 2;  // The first operand.
 | |
|         for (; OperandNo; --OperandNo) {
 | |
|           // Advance to the next operand.
 | |
|           unsigned NumOps = 
 | |
|             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
 | |
|           assert((NumOps & 7) == 2 /*REGDEF*/ &&
 | |
|                  "Skipped past definitions?");
 | |
|           CurOp += (NumOps>>3)+1;
 | |
|         }
 | |
| 
 | |
|         unsigned NumOps = 
 | |
|           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
 | |
|         assert((NumOps & 7) == 2 /*REGDEF*/ &&
 | |
|                "Skipped past definitions?");
 | |
|         
 | |
|         // Add NumOps>>3 registers to MatchedRegs.
 | |
|         RegsForValue MatchedRegs;
 | |
|         MatchedRegs.ValueVT = InOperandVal.getValueType();
 | |
|         MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
 | |
|         for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
 | |
|           unsigned Reg=cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
 | |
|           MatchedRegs.Regs.push_back(Reg);
 | |
|         }
 | |
|         
 | |
|         // Use the produced MatchedRegs object to 
 | |
|         MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag);
 | |
|         MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
 | |
|         break;
 | |
|       }
 | |
|       
 | |
|       TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
 | |
|       if (ConstraintCode.size() == 1)   // not a physreg name.
 | |
|         CTy = TLI.getConstraintType(ConstraintCode[0]);
 | |
|         
 | |
|       if (CTy == TargetLowering::C_Other) {
 | |
|         if (!TLI.isOperandValidForConstraint(InOperandVal, ConstraintCode[0]))
 | |
|           assert(0 && "MATCH FAIL!");
 | |
|         
 | |
|         // Add information to the INLINEASM node to know about this input.
 | |
|         unsigned ResOpType = 3 /*IMM*/ | (1 << 3);
 | |
|         AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
 | |
|         AsmNodeOperands.push_back(InOperandVal);
 | |
|         break;
 | |
|       } else if (CTy == TargetLowering::C_Memory) {
 | |
|         // Memory input.
 | |
|         
 | |
|         // Check that the operand isn't a float.
 | |
|         if (!MVT::isInteger(InOperandVal.getValueType()))
 | |
|           assert(0 && "MATCH FAIL!");
 | |
|         
 | |
|         // Extend/truncate to the right pointer type if needed.
 | |
|         MVT::ValueType PtrType = TLI.getPointerTy();
 | |
|         if (InOperandVal.getValueType() < PtrType)
 | |
|           InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
 | |
|         else if (InOperandVal.getValueType() > PtrType)
 | |
|           InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
 | |
| 
 | |
|         // Add information to the INLINEASM node to know about this input.
 | |
|         unsigned ResOpType = 4/*MEM*/ | (1 << 3);
 | |
|         AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
 | |
|         AsmNodeOperands.push_back(InOperandVal);
 | |
|         break;
 | |
|       }
 | |
|         
 | |
|       assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
 | |
| 
 | |
|       // Copy the input into the appropriate registers.
 | |
|       RegsForValue InRegs =
 | |
|         GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
 | |
|                              false, true, OutputRegs, InputRegs);
 | |
|       // FIXME: should be match fail.
 | |
|       assert(!InRegs.Regs.empty() && "Couldn't allocate input reg!");
 | |
| 
 | |
|       InRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag);
 | |
|       
 | |
|       InRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG, AsmNodeOperands);
 | |
|       break;
 | |
|     }
 | |
|     case InlineAsm::isClobber: {
 | |
|       RegsForValue ClobberedRegs =
 | |
|         GetRegistersForValue(ConstraintCode, MVT::Other, false, false,
 | |
|                              OutputRegs, InputRegs);
 | |
|       // Add the clobbered value to the operand list, so that the register
 | |
|       // allocator is aware that the physreg got clobbered.
 | |
|       if (!ClobberedRegs.Regs.empty())
 | |
|         ClobberedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG, AsmNodeOperands);
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Finish up input operands.
 | |
|   AsmNodeOperands[0] = Chain;
 | |
|   if (Flag.Val) AsmNodeOperands.push_back(Flag);
 | |
|   
 | |
|   std::vector<MVT::ValueType> VTs;
 | |
|   VTs.push_back(MVT::Other);
 | |
|   VTs.push_back(MVT::Flag);
 | |
|   Chain = DAG.getNode(ISD::INLINEASM, VTs, AsmNodeOperands);
 | |
|   Flag = Chain.getValue(1);
 | |
| 
 | |
|   // If this asm returns a register value, copy the result from that register
 | |
|   // and set it as the value of the call.
 | |
|   if (!RetValRegs.Regs.empty())
 | |
|     setValue(&I, RetValRegs.getCopyFromRegs(DAG, Chain, Flag));
 | |
|   
 | |
|   std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
 | |
|   
 | |
|   // Process indirect outputs, first output all of the flagged copies out of
 | |
|   // physregs.
 | |
|   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
 | |
|     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
 | |
|     Value *Ptr = IndirectStoresToEmit[i].second;
 | |
|     SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, Flag);
 | |
|     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
 | |
|   }
 | |
|   
 | |
|   // Emit the non-flagged stores from the physregs.
 | |
|   std::vector<SDOperand> OutChains;
 | |
|   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
 | |
|     OutChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, 
 | |
|                                     StoresToEmit[i].first,
 | |
|                                     getValue(StoresToEmit[i].second),
 | |
|                                     DAG.getSrcValue(StoresToEmit[i].second)));
 | |
|   if (!OutChains.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains);
 | |
|   DAG.setRoot(Chain);
 | |
| }
 | |
| 
 | |
| 
 | |
| void SelectionDAGLowering::visitMalloc(MallocInst &I) {
 | |
|   SDOperand Src = getValue(I.getOperand(0));
 | |
| 
 | |
|   MVT::ValueType IntPtr = TLI.getPointerTy();
 | |
| 
 | |
|   if (IntPtr < Src.getValueType())
 | |
|     Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
 | |
|   else if (IntPtr > Src.getValueType())
 | |
|     Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
 | |
| 
 | |
|   // Scale the source by the type size.
 | |
|   uint64_t ElementSize = TD->getTypeSize(I.getType()->getElementType());
 | |
|   Src = DAG.getNode(ISD::MUL, Src.getValueType(),
 | |
|                     Src, getIntPtrConstant(ElementSize));
 | |
| 
 | |
|   std::vector<std::pair<SDOperand, const Type*> > Args;
 | |
|   Args.push_back(std::make_pair(Src, TLI.getTargetData()->getIntPtrType()));
 | |
| 
 | |
|   std::pair<SDOperand,SDOperand> Result =
 | |
|     TLI.LowerCallTo(getRoot(), I.getType(), false, CallingConv::C, true,
 | |
|                     DAG.getExternalSymbol("malloc", IntPtr),
 | |
|                     Args, DAG);
 | |
|   setValue(&I, Result.first);  // Pointers always fit in registers
 | |
|   DAG.setRoot(Result.second);
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitFree(FreeInst &I) {
 | |
|   std::vector<std::pair<SDOperand, const Type*> > Args;
 | |
|   Args.push_back(std::make_pair(getValue(I.getOperand(0)),
 | |
|                                 TLI.getTargetData()->getIntPtrType()));
 | |
|   MVT::ValueType IntPtr = TLI.getPointerTy();
 | |
|   std::pair<SDOperand,SDOperand> Result =
 | |
|     TLI.LowerCallTo(getRoot(), Type::VoidTy, false, CallingConv::C, true,
 | |
|                     DAG.getExternalSymbol("free", IntPtr), Args, DAG);
 | |
|   DAG.setRoot(Result.second);
 | |
| }
 | |
| 
 | |
| // InsertAtEndOfBasicBlock - This method should be implemented by targets that
 | |
| // mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
 | |
| // instructions are special in various ways, which require special support to
 | |
| // insert.  The specified MachineInstr is created but not inserted into any
 | |
| // basic blocks, and the scheduler passes ownership of it to this method.
 | |
| MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
 | |
|                                                        MachineBasicBlock *MBB) {
 | |
|   std::cerr << "If a target marks an instruction with "
 | |
|                "'usesCustomDAGSchedInserter', it must implement "
 | |
|                "TargetLowering::InsertAtEndOfBasicBlock!\n";
 | |
|   abort();
 | |
|   return 0;  
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitVAStart(CallInst &I) {
 | |
|   DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(), 
 | |
|                           getValue(I.getOperand(1)), 
 | |
|                           DAG.getSrcValue(I.getOperand(1))));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
 | |
|   SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
 | |
|                              getValue(I.getOperand(0)),
 | |
|                              DAG.getSrcValue(I.getOperand(0)));
 | |
|   setValue(&I, V);
 | |
|   DAG.setRoot(V.getValue(1));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitVAEnd(CallInst &I) {
 | |
|   DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
 | |
|                           getValue(I.getOperand(1)), 
 | |
|                           DAG.getSrcValue(I.getOperand(1))));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitVACopy(CallInst &I) {
 | |
|   DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(), 
 | |
|                           getValue(I.getOperand(1)), 
 | |
|                           getValue(I.getOperand(2)),
 | |
|                           DAG.getSrcValue(I.getOperand(1)),
 | |
|                           DAG.getSrcValue(I.getOperand(2))));
 | |
| }
 | |
| 
 | |
| /// TargetLowering::LowerArguments - This is the default LowerArguments
 | |
| /// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
 | |
| /// targets are migrated to using FORMAL_ARGUMENTS, this hook should be removed.
 | |
| std::vector<SDOperand> 
 | |
| TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
 | |
|   // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
 | |
|   std::vector<SDOperand> Ops;
 | |
|   Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
 | |
|   Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
 | |
| 
 | |
|   // Add one result value for each formal argument.
 | |
|   std::vector<MVT::ValueType> RetVals;
 | |
|   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
 | |
|     MVT::ValueType VT = getValueType(I->getType());
 | |
|     
 | |
|     switch (getTypeAction(VT)) {
 | |
|     default: assert(0 && "Unknown type action!");
 | |
|     case Legal: 
 | |
|       RetVals.push_back(VT);
 | |
|       break;
 | |
|     case Promote:
 | |
|       RetVals.push_back(getTypeToTransformTo(VT));
 | |
|       break;
 | |
|     case Expand:
 | |
|       if (VT != MVT::Vector) {
 | |
|         // If this is a large integer, it needs to be broken up into small
 | |
|         // integers.  Figure out what the destination type is and how many small
 | |
|         // integers it turns into.
 | |
|         MVT::ValueType NVT = getTypeToTransformTo(VT);
 | |
|         unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
 | |
|         for (unsigned i = 0; i != NumVals; ++i)
 | |
|           RetVals.push_back(NVT);
 | |
|       } else {
 | |
|         // Otherwise, this is a vector type.  We only support legal vectors
 | |
|         // right now.
 | |
|         unsigned NumElems = cast<PackedType>(I->getType())->getNumElements();
 | |
|         const Type *EltTy = cast<PackedType>(I->getType())->getElementType();
 | |
| 
 | |
|         // Figure out if there is a Packed type corresponding to this Vector
 | |
|         // type.  If so, convert to the packed type.
 | |
|         MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
 | |
|         if (TVT != MVT::Other && isTypeLegal(TVT)) {
 | |
|           RetVals.push_back(TVT);
 | |
|         } else {
 | |
|           assert(0 && "Don't support illegal by-val vector arguments yet!");
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (RetVals.size() == 0)
 | |
|     RetVals.push_back(MVT::isVoid);
 | |
|   
 | |
|   // Create the node.
 | |
|   SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS, RetVals, Ops).Val;
 | |
| 
 | |
|   // Set up the return result vector.
 | |
|   Ops.clear();
 | |
|   unsigned i = 0;
 | |
|   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
 | |
|     MVT::ValueType VT = getValueType(I->getType());
 | |
|     
 | |
|     switch (getTypeAction(VT)) {
 | |
|     default: assert(0 && "Unknown type action!");
 | |
|     case Legal: 
 | |
|       Ops.push_back(SDOperand(Result, i++));
 | |
|       break;
 | |
|     case Promote: {
 | |
|       SDOperand Op(Result, i++);
 | |
|       if (MVT::isInteger(VT)) {
 | |
|         unsigned AssertOp = I->getType()->isSigned() ? ISD::AssertSext 
 | |
|                                                      : ISD::AssertZext;
 | |
|         Op = DAG.getNode(AssertOp, Op.getValueType(), Op, DAG.getValueType(VT));
 | |
|         Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
 | |
|       } else {
 | |
|         assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
 | |
|         Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
 | |
|       }
 | |
|       Ops.push_back(Op);
 | |
|       break;
 | |
|     }
 | |
|     case Expand:
 | |
|       if (VT != MVT::Vector) {
 | |
|         // If this is a large integer, it needs to be reassembled from small
 | |
|         // integers.  Figure out what the source elt type is and how many small
 | |
|         // integers it is.
 | |
|         MVT::ValueType NVT = getTypeToTransformTo(VT);
 | |
|         unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
 | |
|         if (NumVals == 2) {
 | |
|           SDOperand Lo = SDOperand(Result, i++);
 | |
|           SDOperand Hi = SDOperand(Result, i++);
 | |
|           
 | |
|           if (!isLittleEndian())
 | |
|             std::swap(Lo, Hi);
 | |
|             
 | |
|           Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi));
 | |
|         } else {
 | |
|           // Value scalarized into many values.  Unimp for now.
 | |
|           assert(0 && "Cannot expand i64 -> i16 yet!");
 | |
|         }
 | |
|       } else {
 | |
|         // Otherwise, this is a vector type.  We only support legal vectors
 | |
|         // right now.
 | |
|         const PackedType *PTy = cast<PackedType>(I->getType());
 | |
|         unsigned NumElems = PTy->getNumElements();
 | |
|         const Type *EltTy = PTy->getElementType();
 | |
| 
 | |
|         // Figure out if there is a Packed type corresponding to this Vector
 | |
|         // type.  If so, convert to the packed type.
 | |
|         MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
 | |
|         if (TVT != MVT::Other && isTypeLegal(TVT)) {
 | |
|           SDOperand N = SDOperand(Result, i++);
 | |
|           // Handle copies from generic vectors to registers.
 | |
|           MVT::ValueType PTyElementVT, PTyLegalElementVT;
 | |
|           unsigned NE = getPackedTypeBreakdown(PTy, PTyElementVT,
 | |
|                                                PTyLegalElementVT);
 | |
|           // Insert a VBIT_CONVERT of the FORMAL_ARGUMENTS to a
 | |
|           // "N x PTyElementVT" MVT::Vector type.
 | |
|           N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
 | |
|                           DAG.getConstant(NE, MVT::i32), 
 | |
|                           DAG.getValueType(PTyElementVT));
 | |
|           Ops.push_back(N);
 | |
|         } else {
 | |
|           assert(0 && "Don't support illegal by-val vector arguments yet!");
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return Ops;
 | |
| }
 | |
| 
 | |
| // It is always conservatively correct for llvm.returnaddress and
 | |
| // llvm.frameaddress to return 0.
 | |
| std::pair<SDOperand, SDOperand>
 | |
| TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain,
 | |
|                                         unsigned Depth, SelectionDAG &DAG) {
 | |
|   return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain);
 | |
| }
 | |
| 
 | |
| SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
 | |
|   assert(0 && "LowerOperation not implemented for this target!");
 | |
|   abort();
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
 | |
|                                                  SelectionDAG &DAG) {
 | |
|   assert(0 && "CustomPromoteOperation not implemented for this target!");
 | |
|   abort();
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) {
 | |
|   unsigned Depth = (unsigned)cast<ConstantUInt>(I.getOperand(1))->getValue();
 | |
|   std::pair<SDOperand,SDOperand> Result =
 | |
|     TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG);
 | |
|   setValue(&I, Result.first);
 | |
|   DAG.setRoot(Result.second);
 | |
| }
 | |
| 
 | |
| /// getMemsetValue - Vectorized representation of the memset value
 | |
| /// operand.
 | |
| static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
 | |
|                                 SelectionDAG &DAG) {
 | |
|   MVT::ValueType CurVT = VT;
 | |
|   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
 | |
|     uint64_t Val   = C->getValue() & 255;
 | |
|     unsigned Shift = 8;
 | |
|     while (CurVT != MVT::i8) {
 | |
|       Val = (Val << Shift) | Val;
 | |
|       Shift <<= 1;
 | |
|       CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
 | |
|     }
 | |
|     return DAG.getConstant(Val, VT);
 | |
|   } else {
 | |
|     Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
 | |
|     unsigned Shift = 8;
 | |
|     while (CurVT != MVT::i8) {
 | |
|       Value =
 | |
|         DAG.getNode(ISD::OR, VT,
 | |
|                     DAG.getNode(ISD::SHL, VT, Value,
 | |
|                                 DAG.getConstant(Shift, MVT::i8)), Value);
 | |
|       Shift <<= 1;
 | |
|       CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
 | |
|     }
 | |
| 
 | |
|     return Value;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
 | |
| /// used when a memcpy is turned into a memset when the source is a constant
 | |
| /// string ptr.
 | |
| static SDOperand getMemsetStringVal(MVT::ValueType VT,
 | |
|                                     SelectionDAG &DAG, TargetLowering &TLI,
 | |
|                                     std::string &Str, unsigned Offset) {
 | |
|   MVT::ValueType CurVT = VT;
 | |
|   uint64_t Val = 0;
 | |
|   unsigned MSB = getSizeInBits(VT) / 8;
 | |
|   if (TLI.isLittleEndian())
 | |
|     Offset = Offset + MSB - 1;
 | |
|   for (unsigned i = 0; i != MSB; ++i) {
 | |
|     Val = (Val << 8) | Str[Offset];
 | |
|     Offset += TLI.isLittleEndian() ? -1 : 1;
 | |
|   }
 | |
|   return DAG.getConstant(Val, VT);
 | |
| }
 | |
| 
 | |
| /// getMemBasePlusOffset - Returns base and offset node for the 
 | |
| static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
 | |
|                                       SelectionDAG &DAG, TargetLowering &TLI) {
 | |
|   MVT::ValueType VT = Base.getValueType();
 | |
|   return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
 | |
| }
 | |
| 
 | |
| /// MeetsMaxMemopRequirement - Determines if the number of memory ops required
 | |
| /// to replace the memset / memcpy is below the threshold. It also returns the
 | |
| /// types of the sequence of  memory ops to perform memset / memcpy.
 | |
| static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
 | |
|                                      unsigned Limit, uint64_t Size,
 | |
|                                      unsigned Align, TargetLowering &TLI) {
 | |
|   MVT::ValueType VT;
 | |
| 
 | |
|   if (TLI.allowsUnalignedMemoryAccesses()) {
 | |
|     VT = MVT::i64;
 | |
|   } else {
 | |
|     switch (Align & 7) {
 | |
|     case 0:
 | |
|       VT = MVT::i64;
 | |
|       break;
 | |
|     case 4:
 | |
|       VT = MVT::i32;
 | |
|       break;
 | |
|     case 2:
 | |
|       VT = MVT::i16;
 | |
|       break;
 | |
|     default:
 | |
|       VT = MVT::i8;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   MVT::ValueType LVT = MVT::i64;
 | |
|   while (!TLI.isTypeLegal(LVT))
 | |
|     LVT = (MVT::ValueType)((unsigned)LVT - 1);
 | |
|   assert(MVT::isInteger(LVT));
 | |
| 
 | |
|   if (VT > LVT)
 | |
|     VT = LVT;
 | |
| 
 | |
|   unsigned NumMemOps = 0;
 | |
|   while (Size != 0) {
 | |
|     unsigned VTSize = getSizeInBits(VT) / 8;
 | |
|     while (VTSize > Size) {
 | |
|       VT = (MVT::ValueType)((unsigned)VT - 1);
 | |
|       VTSize >>= 1;
 | |
|     }
 | |
|     assert(MVT::isInteger(VT));
 | |
| 
 | |
|     if (++NumMemOps > Limit)
 | |
|       return false;
 | |
|     MemOps.push_back(VT);
 | |
|     Size -= VTSize;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
 | |
|   SDOperand Op1 = getValue(I.getOperand(1));
 | |
|   SDOperand Op2 = getValue(I.getOperand(2));
 | |
|   SDOperand Op3 = getValue(I.getOperand(3));
 | |
|   SDOperand Op4 = getValue(I.getOperand(4));
 | |
|   unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
 | |
|   if (Align == 0) Align = 1;
 | |
| 
 | |
|   if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
 | |
|     std::vector<MVT::ValueType> MemOps;
 | |
| 
 | |
|     // Expand memset / memcpy to a series of load / store ops
 | |
|     // if the size operand falls below a certain threshold.
 | |
|     std::vector<SDOperand> OutChains;
 | |
|     switch (Op) {
 | |
|     default: break;  // Do nothing for now.
 | |
|     case ISD::MEMSET: {
 | |
|       if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
 | |
|                                    Size->getValue(), Align, TLI)) {
 | |
|         unsigned NumMemOps = MemOps.size();
 | |
|         unsigned Offset = 0;
 | |
|         for (unsigned i = 0; i < NumMemOps; i++) {
 | |
|           MVT::ValueType VT = MemOps[i];
 | |
|           unsigned VTSize = getSizeInBits(VT) / 8;
 | |
|           SDOperand Value = getMemsetValue(Op2, VT, DAG);
 | |
|           SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, getRoot(),
 | |
|                                         Value,
 | |
|                                     getMemBasePlusOffset(Op1, Offset, DAG, TLI),
 | |
|                                       DAG.getSrcValue(I.getOperand(1), Offset));
 | |
|           OutChains.push_back(Store);
 | |
|           Offset += VTSize;
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case ISD::MEMCPY: {
 | |
|       if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
 | |
|                                    Size->getValue(), Align, TLI)) {
 | |
|         unsigned NumMemOps = MemOps.size();
 | |
|         unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
 | |
|         GlobalAddressSDNode *G = NULL;
 | |
|         std::string Str;
 | |
|         bool CopyFromStr = false;
 | |
| 
 | |
|         if (Op2.getOpcode() == ISD::GlobalAddress)
 | |
|           G = cast<GlobalAddressSDNode>(Op2);
 | |
|         else if (Op2.getOpcode() == ISD::ADD &&
 | |
|                  Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
 | |
|                  Op2.getOperand(1).getOpcode() == ISD::Constant) {
 | |
|           G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
 | |
|           SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
 | |
|         }
 | |
|         if (G) {
 | |
|           GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
 | |
|           if (GV) {
 | |
|             Str = GV->getStringValue(false);
 | |
|             if (!Str.empty()) {
 | |
|               CopyFromStr = true;
 | |
|               SrcOff += SrcDelta;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         for (unsigned i = 0; i < NumMemOps; i++) {
 | |
|           MVT::ValueType VT = MemOps[i];
 | |
|           unsigned VTSize = getSizeInBits(VT) / 8;
 | |
|           SDOperand Value, Chain, Store;
 | |
| 
 | |
|           if (CopyFromStr) {
 | |
|             Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
 | |
|             Chain = getRoot();
 | |
|             Store =
 | |
|               DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
 | |
|                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
 | |
|                           DAG.getSrcValue(I.getOperand(1), DstOff));
 | |
|           } else {
 | |
|             Value = DAG.getLoad(VT, getRoot(),
 | |
|                         getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
 | |
|                         DAG.getSrcValue(I.getOperand(2), SrcOff));
 | |
|             Chain = Value.getValue(1);
 | |
|             Store =
 | |
|               DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
 | |
|                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
 | |
|                           DAG.getSrcValue(I.getOperand(1), DstOff));
 | |
|           }
 | |
|           OutChains.push_back(Store);
 | |
|           SrcOff += VTSize;
 | |
|           DstOff += VTSize;
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
| 
 | |
|     if (!OutChains.empty()) {
 | |
|       DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains));
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   std::vector<SDOperand> Ops;
 | |
|   Ops.push_back(getRoot());
 | |
|   Ops.push_back(Op1);
 | |
|   Ops.push_back(Op2);
 | |
|   Ops.push_back(Op3);
 | |
|   Ops.push_back(Op4);
 | |
|   DAG.setRoot(DAG.getNode(Op, MVT::Other, Ops));
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // SelectionDAGISel code
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
 | |
|   return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
 | |
| }
 | |
| 
 | |
| void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   // FIXME: we only modify the CFG to split critical edges.  This
 | |
|   // updates dom and loop info.
 | |
| }
 | |
| 
 | |
| 
 | |
| /// OptimizeNoopCopyExpression - We have determined that the specified cast
 | |
| /// instruction is a noop copy (e.g. it's casting from one pointer type to
 | |
| /// another, int->uint, or int->sbyte on PPC.
 | |
| ///
 | |
| /// Return true if any changes are made.
 | |
| static bool OptimizeNoopCopyExpression(CastInst *CI) {
 | |
|   BasicBlock *DefBB = CI->getParent();
 | |
|   
 | |
|   /// InsertedCasts - Only insert a cast in each block once.
 | |
|   std::map<BasicBlock*, CastInst*> InsertedCasts;
 | |
|   
 | |
|   bool MadeChange = false;
 | |
|   for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end(); 
 | |
|        UI != E; ) {
 | |
|     Use &TheUse = UI.getUse();
 | |
|     Instruction *User = cast<Instruction>(*UI);
 | |
|     
 | |
|     // Figure out which BB this cast is used in.  For PHI's this is the
 | |
|     // appropriate predecessor block.
 | |
|     BasicBlock *UserBB = User->getParent();
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(User)) {
 | |
|       unsigned OpVal = UI.getOperandNo()/2;
 | |
|       UserBB = PN->getIncomingBlock(OpVal);
 | |
|     }
 | |
|     
 | |
|     // Preincrement use iterator so we don't invalidate it.
 | |
|     ++UI;
 | |
|     
 | |
|     // If this user is in the same block as the cast, don't change the cast.
 | |
|     if (UserBB == DefBB) continue;
 | |
|     
 | |
|     // If we have already inserted a cast into this block, use it.
 | |
|     CastInst *&InsertedCast = InsertedCasts[UserBB];
 | |
| 
 | |
|     if (!InsertedCast) {
 | |
|       BasicBlock::iterator InsertPt = UserBB->begin();
 | |
|       while (isa<PHINode>(InsertPt)) ++InsertPt;
 | |
|       
 | |
|       InsertedCast = 
 | |
|         new CastInst(CI->getOperand(0), CI->getType(), "", InsertPt);
 | |
|       MadeChange = true;
 | |
|     }
 | |
|     
 | |
|     // Replace a use of the cast with a use of the new casat.
 | |
|     TheUse = InsertedCast;
 | |
|   }
 | |
|   
 | |
|   // If we removed all uses, nuke the cast.
 | |
|   if (CI->use_empty())
 | |
|     CI->eraseFromParent();
 | |
|   
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// InsertGEPComputeCode - Insert code into BB to compute Ptr+PtrOffset,
 | |
| /// casting to the type of GEPI.
 | |
| static Instruction *InsertGEPComputeCode(Instruction *&V, BasicBlock *BB,
 | |
|                                          Instruction *GEPI, Value *Ptr,
 | |
|                                          Value *PtrOffset) {
 | |
|   if (V) return V;   // Already computed.
 | |
|   
 | |
|   BasicBlock::iterator InsertPt;
 | |
|   if (BB == GEPI->getParent()) {
 | |
|     // If insert into the GEP's block, insert right after the GEP.
 | |
|     InsertPt = GEPI;
 | |
|     ++InsertPt;
 | |
|   } else {
 | |
|     // Otherwise, insert at the top of BB, after any PHI nodes
 | |
|     InsertPt = BB->begin();
 | |
|     while (isa<PHINode>(InsertPt)) ++InsertPt;
 | |
|   }
 | |
|   
 | |
|   // If Ptr is itself a cast, but in some other BB, emit a copy of the cast into
 | |
|   // BB so that there is only one value live across basic blocks (the cast 
 | |
|   // operand).
 | |
|   if (CastInst *CI = dyn_cast<CastInst>(Ptr))
 | |
|     if (CI->getParent() != BB && isa<PointerType>(CI->getOperand(0)->getType()))
 | |
|       Ptr = new CastInst(CI->getOperand(0), CI->getType(), "", InsertPt);
 | |
|   
 | |
|   // Add the offset, cast it to the right type.
 | |
|   Ptr = BinaryOperator::createAdd(Ptr, PtrOffset, "", InsertPt);
 | |
|   return V = new CastInst(Ptr, GEPI->getType(), "", InsertPt);
 | |
| }
 | |
| 
 | |
| /// ReplaceUsesOfGEPInst - Replace all uses of RepPtr with inserted code to
 | |
| /// compute its value.  The RepPtr value can be computed with Ptr+PtrOffset. One
 | |
| /// trivial way of doing this would be to evaluate Ptr+PtrOffset in RepPtr's
 | |
| /// block, then ReplaceAllUsesWith'ing everything.  However, we would prefer to
 | |
| /// sink PtrOffset into user blocks where doing so will likely allow us to fold
 | |
| /// the constant add into a load or store instruction.  Additionally, if a user
 | |
| /// is a pointer-pointer cast, we look through it to find its users.
 | |
| static void ReplaceUsesOfGEPInst(Instruction *RepPtr, Value *Ptr, 
 | |
|                                  Constant *PtrOffset, BasicBlock *DefBB,
 | |
|                                  GetElementPtrInst *GEPI,
 | |
|                            std::map<BasicBlock*,Instruction*> &InsertedExprs) {
 | |
|   while (!RepPtr->use_empty()) {
 | |
|     Instruction *User = cast<Instruction>(RepPtr->use_back());
 | |
|     
 | |
|     // If the user is a Pointer-Pointer cast, recurse.
 | |
|     if (isa<CastInst>(User) && isa<PointerType>(User->getType())) {
 | |
|       ReplaceUsesOfGEPInst(User, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
 | |
|       
 | |
|       // Drop the use of RepPtr. The cast is dead.  Don't delete it now, else we
 | |
|       // could invalidate an iterator.
 | |
|       User->setOperand(0, UndefValue::get(RepPtr->getType()));
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // If this is a load of the pointer, or a store through the pointer, emit
 | |
|     // the increment into the load/store block.
 | |
|     Instruction *NewVal;
 | |
|     if (isa<LoadInst>(User) ||
 | |
|         (isa<StoreInst>(User) && User->getOperand(0) != RepPtr)) {
 | |
|       NewVal = InsertGEPComputeCode(InsertedExprs[User->getParent()], 
 | |
|                                     User->getParent(), GEPI,
 | |
|                                     Ptr, PtrOffset);
 | |
|     } else {
 | |
|       // If this use is not foldable into the addressing mode, use a version 
 | |
|       // emitted in the GEP block.
 | |
|       NewVal = InsertGEPComputeCode(InsertedExprs[DefBB], DefBB, GEPI, 
 | |
|                                     Ptr, PtrOffset);
 | |
|     }
 | |
|     
 | |
|     if (GEPI->getType() != RepPtr->getType()) {
 | |
|       BasicBlock::iterator IP = NewVal;
 | |
|       ++IP;
 | |
|       NewVal = new CastInst(NewVal, RepPtr->getType(), "", IP);
 | |
|     }
 | |
|     User->replaceUsesOfWith(RepPtr, NewVal);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// OptimizeGEPExpression - Since we are doing basic-block-at-a-time instruction
 | |
| /// selection, we want to be a bit careful about some things.  In particular, if
 | |
| /// we have a GEP instruction that is used in a different block than it is
 | |
| /// defined, the addressing expression of the GEP cannot be folded into loads or
 | |
| /// stores that use it.  In this case, decompose the GEP and move constant
 | |
| /// indices into blocks that use it.
 | |
| static bool OptimizeGEPExpression(GetElementPtrInst *GEPI,
 | |
|                                   const TargetData *TD) {
 | |
|   // If this GEP is only used inside the block it is defined in, there is no
 | |
|   // need to rewrite it.
 | |
|   bool isUsedOutsideDefBB = false;
 | |
|   BasicBlock *DefBB = GEPI->getParent();
 | |
|   for (Value::use_iterator UI = GEPI->use_begin(), E = GEPI->use_end(); 
 | |
|        UI != E; ++UI) {
 | |
|     if (cast<Instruction>(*UI)->getParent() != DefBB) {
 | |
|       isUsedOutsideDefBB = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if (!isUsedOutsideDefBB) return false;
 | |
| 
 | |
|   // If this GEP has no non-zero constant indices, there is nothing we can do,
 | |
|   // ignore it.
 | |
|   bool hasConstantIndex = false;
 | |
|   bool hasVariableIndex = false;
 | |
|   for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
 | |
|        E = GEPI->op_end(); OI != E; ++OI) {
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(*OI)) {
 | |
|       if (CI->getRawValue()) {
 | |
|         hasConstantIndex = true;
 | |
|         break;
 | |
|       }
 | |
|     } else {
 | |
|       hasVariableIndex = true;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If this is a "GEP X, 0, 0, 0", turn this into a cast.
 | |
|   if (!hasConstantIndex && !hasVariableIndex) {
 | |
|     Value *NC = new CastInst(GEPI->getOperand(0), GEPI->getType(), 
 | |
|                              GEPI->getName(), GEPI);
 | |
|     GEPI->replaceAllUsesWith(NC);
 | |
|     GEPI->eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   // If this is a GEP &Alloca, 0, 0, forward subst the frame index into uses.
 | |
|   if (!hasConstantIndex && !isa<AllocaInst>(GEPI->getOperand(0)))
 | |
|     return false;
 | |
|   
 | |
|   // Otherwise, decompose the GEP instruction into multiplies and adds.  Sum the
 | |
|   // constant offset (which we now know is non-zero) and deal with it later.
 | |
|   uint64_t ConstantOffset = 0;
 | |
|   const Type *UIntPtrTy = TD->getIntPtrType();
 | |
|   Value *Ptr = new CastInst(GEPI->getOperand(0), UIntPtrTy, "", GEPI);
 | |
|   const Type *Ty = GEPI->getOperand(0)->getType();
 | |
| 
 | |
|   for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
 | |
|        E = GEPI->op_end(); OI != E; ++OI) {
 | |
|     Value *Idx = *OI;
 | |
|     if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
 | |
|       unsigned Field = cast<ConstantUInt>(Idx)->getValue();
 | |
|       if (Field)
 | |
|         ConstantOffset += TD->getStructLayout(StTy)->MemberOffsets[Field];
 | |
|       Ty = StTy->getElementType(Field);
 | |
|     } else {
 | |
|       Ty = cast<SequentialType>(Ty)->getElementType();
 | |
| 
 | |
|       // Handle constant subscripts.
 | |
|       if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
 | |
|         if (CI->getRawValue() == 0) continue;
 | |
|         
 | |
|         if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI))
 | |
|           ConstantOffset += (int64_t)TD->getTypeSize(Ty)*CSI->getValue();
 | |
|         else
 | |
|           ConstantOffset+=TD->getTypeSize(Ty)*cast<ConstantUInt>(CI)->getValue();
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       // Ptr = Ptr + Idx * ElementSize;
 | |
|       
 | |
|       // Cast Idx to UIntPtrTy if needed.
 | |
|       Idx = new CastInst(Idx, UIntPtrTy, "", GEPI);
 | |
|       
 | |
|       uint64_t ElementSize = TD->getTypeSize(Ty);
 | |
|       // Mask off bits that should not be set.
 | |
|       ElementSize &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
 | |
|       Constant *SizeCst = ConstantUInt::get(UIntPtrTy, ElementSize);
 | |
| 
 | |
|       // Multiply by the element size and add to the base.
 | |
|       Idx = BinaryOperator::createMul(Idx, SizeCst, "", GEPI);
 | |
|       Ptr = BinaryOperator::createAdd(Ptr, Idx, "", GEPI);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Make sure that the offset fits in uintptr_t.
 | |
|   ConstantOffset &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
 | |
|   Constant *PtrOffset = ConstantUInt::get(UIntPtrTy, ConstantOffset);
 | |
|   
 | |
|   // Okay, we have now emitted all of the variable index parts to the BB that
 | |
|   // the GEP is defined in.  Loop over all of the using instructions, inserting
 | |
|   // an "add Ptr, ConstantOffset" into each block that uses it and update the
 | |
|   // instruction to use the newly computed value, making GEPI dead.  When the
 | |
|   // user is a load or store instruction address, we emit the add into the user
 | |
|   // block, otherwise we use a canonical version right next to the gep (these 
 | |
|   // won't be foldable as addresses, so we might as well share the computation).
 | |
|   
 | |
|   std::map<BasicBlock*,Instruction*> InsertedExprs;
 | |
|   ReplaceUsesOfGEPInst(GEPI, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
 | |
|   
 | |
|   // Finally, the GEP is dead, remove it.
 | |
|   GEPI->eraseFromParent();
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool SelectionDAGISel::runOnFunction(Function &Fn) {
 | |
|   MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
 | |
|   RegMap = MF.getSSARegMap();
 | |
|   DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n");
 | |
| 
 | |
|   // First, split all critical edges for PHI nodes with incoming values that are
 | |
|   // constants, this way the load of the constant into a vreg will not be placed
 | |
|   // into MBBs that are used some other way.
 | |
|   //
 | |
|   // In this pass we also look for GEP and cast instructions that are used
 | |
|   // across basic blocks and rewrite them to improve basic-block-at-a-time
 | |
|   // selection.
 | |
|   //
 | |
|   // 
 | |
|   bool MadeChange = true;
 | |
|   while (MadeChange) {
 | |
|     MadeChange = false;
 | |
|   for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
 | |
|     PHINode *PN;
 | |
|     BasicBlock::iterator BBI;
 | |
|     for (BBI = BB->begin(); (PN = dyn_cast<PHINode>(BBI)); ++BBI)
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|         if (isa<Constant>(PN->getIncomingValue(i)))
 | |
|           SplitCriticalEdge(PN->getIncomingBlock(i), BB);
 | |
|     
 | |
|     for (BasicBlock::iterator E = BB->end(); BBI != E; ) {
 | |
|       Instruction *I = BBI++;
 | |
|       if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
 | |
|         MadeChange |= OptimizeGEPExpression(GEPI, TLI.getTargetData());
 | |
|       } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
 | |
|         // If this is a noop copy, sink it into user blocks to reduce the number
 | |
|         // of virtual registers that must be created and coallesced.
 | |
|         MVT::ValueType SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
 | |
|         MVT::ValueType DstVT = TLI.getValueType(CI->getType());
 | |
|         
 | |
|         // This is an fp<->int conversion?
 | |
|         if (MVT::isInteger(SrcVT) != MVT::isInteger(DstVT))
 | |
|           continue;
 | |
|         
 | |
|         // If this is an extension, it will be a zero or sign extension, which
 | |
|         // isn't a noop.
 | |
|         if (SrcVT < DstVT) continue;
 | |
|         
 | |
|         // If these values will be promoted, find out what they will be promoted
 | |
|         // to.  This helps us consider truncates on PPC as noop copies when they
 | |
|         // are.
 | |
|         if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
 | |
|           SrcVT = TLI.getTypeToTransformTo(SrcVT);
 | |
|         if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
 | |
|           DstVT = TLI.getTypeToTransformTo(DstVT);
 | |
| 
 | |
|         // If, after promotion, these are the same types, this is a noop copy.
 | |
|         if (SrcVT == DstVT)
 | |
|           MadeChange |= OptimizeNoopCopyExpression(CI);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   }
 | |
|   
 | |
|   FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
 | |
| 
 | |
|   for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
 | |
|     SelectBasicBlock(I, MF, FuncInfo);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| SDOperand SelectionDAGISel::
 | |
| CopyValueToVirtualRegister(SelectionDAGLowering &SDL, Value *V, unsigned Reg) {
 | |
|   SDOperand Op = SDL.getValue(V);
 | |
|   assert((Op.getOpcode() != ISD::CopyFromReg ||
 | |
|           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
 | |
|          "Copy from a reg to the same reg!");
 | |
|   
 | |
|   // If this type is not legal, we must make sure to not create an invalid
 | |
|   // register use.
 | |
|   MVT::ValueType SrcVT = Op.getValueType();
 | |
|   MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
 | |
|   SelectionDAG &DAG = SDL.DAG;
 | |
|   if (SrcVT == DestVT) {
 | |
|     return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
 | |
|   } else if (SrcVT == MVT::Vector) {
 | |
|     // Handle copies from generic vectors to registers.
 | |
|     MVT::ValueType PTyElementVT, PTyLegalElementVT;
 | |
|     unsigned NE = TLI.getPackedTypeBreakdown(cast<PackedType>(V->getType()),
 | |
|                                              PTyElementVT, PTyLegalElementVT);
 | |
|     
 | |
|     // Insert a VBIT_CONVERT of the input vector to a "N x PTyElementVT" 
 | |
|     // MVT::Vector type.
 | |
|     Op = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Op,
 | |
|                      DAG.getConstant(NE, MVT::i32), 
 | |
|                      DAG.getValueType(PTyElementVT));
 | |
| 
 | |
|     // Loop over all of the elements of the resultant vector,
 | |
|     // VEXTRACT_VECTOR_ELT'ing them, converting them to PTyLegalElementVT, then
 | |
|     // copying them into output registers.
 | |
|     std::vector<SDOperand> OutChains;
 | |
|     SDOperand Root = SDL.getRoot();
 | |
|     for (unsigned i = 0; i != NE; ++i) {
 | |
|       SDOperand Elt = DAG.getNode(ISD::VEXTRACT_VECTOR_ELT, PTyElementVT,
 | |
|                                   Op, DAG.getConstant(i, MVT::i32));
 | |
|       if (PTyElementVT == PTyLegalElementVT) {
 | |
|         // Elements are legal.
 | |
|         OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
 | |
|       } else if (PTyLegalElementVT > PTyElementVT) {
 | |
|         // Elements are promoted.
 | |
|         if (MVT::isFloatingPoint(PTyLegalElementVT))
 | |
|           Elt = DAG.getNode(ISD::FP_EXTEND, PTyLegalElementVT, Elt);
 | |
|         else
 | |
|           Elt = DAG.getNode(ISD::ANY_EXTEND, PTyLegalElementVT, Elt);
 | |
|         OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
 | |
|       } else {
 | |
|         // Elements are expanded.
 | |
|         // The src value is expanded into multiple registers.
 | |
|         SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
 | |
|                                    Elt, DAG.getConstant(0, MVT::i32));
 | |
|         SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
 | |
|                                    Elt, DAG.getConstant(1, MVT::i32));
 | |
|         OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Lo));
 | |
|         OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Hi));
 | |
|       }
 | |
|     }
 | |
|     return DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains);
 | |
|   } else if (SrcVT < DestVT) {
 | |
|     // The src value is promoted to the register.
 | |
|     if (MVT::isFloatingPoint(SrcVT))
 | |
|       Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
 | |
|     else
 | |
|       Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
 | |
|     return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
 | |
|   } else  {
 | |
|     // The src value is expanded into multiple registers.
 | |
|     SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
 | |
|                                Op, DAG.getConstant(0, MVT::i32));
 | |
|     SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
 | |
|                                Op, DAG.getConstant(1, MVT::i32));
 | |
|     Op = DAG.getCopyToReg(SDL.getRoot(), Reg, Lo);
 | |
|     return DAG.getCopyToReg(Op, Reg+1, Hi);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SelectionDAGISel::
 | |
| LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL,
 | |
|                std::vector<SDOperand> &UnorderedChains) {
 | |
|   // If this is the entry block, emit arguments.
 | |
|   Function &F = *BB->getParent();
 | |
|   FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
 | |
|   SDOperand OldRoot = SDL.DAG.getRoot();
 | |
|   std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
 | |
| 
 | |
|   unsigned a = 0;
 | |
|   for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
 | |
|        AI != E; ++AI, ++a)
 | |
|     if (!AI->use_empty()) {
 | |
|       SDL.setValue(AI, Args[a]);
 | |
| 
 | |
|       // If this argument is live outside of the entry block, insert a copy from
 | |
|       // whereever we got it to the vreg that other BB's will reference it as.
 | |
|       if (FuncInfo.ValueMap.count(AI)) {
 | |
|         SDOperand Copy =
 | |
|           CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
 | |
|         UnorderedChains.push_back(Copy);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // Next, if the function has live ins that need to be copied into vregs,
 | |
|   // emit the copies now, into the top of the block.
 | |
|   MachineFunction &MF = SDL.DAG.getMachineFunction();
 | |
|   if (MF.livein_begin() != MF.livein_end()) {
 | |
|     SSARegMap *RegMap = MF.getSSARegMap();
 | |
|     const MRegisterInfo &MRI = *MF.getTarget().getRegisterInfo();
 | |
|     for (MachineFunction::livein_iterator LI = MF.livein_begin(),
 | |
|          E = MF.livein_end(); LI != E; ++LI)
 | |
|       if (LI->second)
 | |
|         MRI.copyRegToReg(*MF.begin(), MF.begin()->end(), LI->second,
 | |
|                          LI->first, RegMap->getRegClass(LI->second));
 | |
|   }
 | |
|     
 | |
|   // Finally, if the target has anything special to do, allow it to do so.
 | |
|   EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
 | |
| }
 | |
| 
 | |
| 
 | |
| void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
 | |
|        std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
 | |
|                                          FunctionLoweringInfo &FuncInfo) {
 | |
|   SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
 | |
| 
 | |
|   std::vector<SDOperand> UnorderedChains;
 | |
| 
 | |
|   // Lower any arguments needed in this block if this is the entry block.
 | |
|   if (LLVMBB == &LLVMBB->getParent()->front())
 | |
|     LowerArguments(LLVMBB, SDL, UnorderedChains);
 | |
| 
 | |
|   BB = FuncInfo.MBBMap[LLVMBB];
 | |
|   SDL.setCurrentBasicBlock(BB);
 | |
| 
 | |
|   // Lower all of the non-terminator instructions.
 | |
|   for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
 | |
|        I != E; ++I)
 | |
|     SDL.visit(*I);
 | |
|   
 | |
|   // Ensure that all instructions which are used outside of their defining
 | |
|   // blocks are available as virtual registers.
 | |
|   for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
 | |
|     if (!I->use_empty() && !isa<PHINode>(I)) {
 | |
|       std::map<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
 | |
|       if (VMI != FuncInfo.ValueMap.end())
 | |
|         UnorderedChains.push_back(
 | |
|                            CopyValueToVirtualRegister(SDL, I, VMI->second));
 | |
|     }
 | |
| 
 | |
|   // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
 | |
|   // ensure constants are generated when needed.  Remember the virtual registers
 | |
|   // that need to be added to the Machine PHI nodes as input.  We cannot just
 | |
|   // directly add them, because expansion might result in multiple MBB's for one
 | |
|   // BB.  As such, the start of the BB might correspond to a different MBB than
 | |
|   // the end.
 | |
|   //
 | |
| 
 | |
|   // Emit constants only once even if used by multiple PHI nodes.
 | |
|   std::map<Constant*, unsigned> ConstantsOut;
 | |
| 
 | |
|   // Check successor nodes PHI nodes that expect a constant to be available from
 | |
|   // this block.
 | |
|   TerminatorInst *TI = LLVMBB->getTerminator();
 | |
|   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
 | |
|     BasicBlock *SuccBB = TI->getSuccessor(succ);
 | |
|     MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin();
 | |
|     PHINode *PN;
 | |
| 
 | |
|     // At this point we know that there is a 1-1 correspondence between LLVM PHI
 | |
|     // nodes and Machine PHI nodes, but the incoming operands have not been
 | |
|     // emitted yet.
 | |
|     for (BasicBlock::iterator I = SuccBB->begin();
 | |
|          (PN = dyn_cast<PHINode>(I)); ++I)
 | |
|       if (!PN->use_empty()) {
 | |
|         unsigned Reg;
 | |
|         Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
 | |
|         if (Constant *C = dyn_cast<Constant>(PHIOp)) {
 | |
|           unsigned &RegOut = ConstantsOut[C];
 | |
|           if (RegOut == 0) {
 | |
|             RegOut = FuncInfo.CreateRegForValue(C);
 | |
|             UnorderedChains.push_back(
 | |
|                              CopyValueToVirtualRegister(SDL, C, RegOut));
 | |
|           }
 | |
|           Reg = RegOut;
 | |
|         } else {
 | |
|           Reg = FuncInfo.ValueMap[PHIOp];
 | |
|           if (Reg == 0) {
 | |
|             assert(isa<AllocaInst>(PHIOp) &&
 | |
|                    FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
 | |
|                    "Didn't codegen value into a register!??");
 | |
|             Reg = FuncInfo.CreateRegForValue(PHIOp);
 | |
|             UnorderedChains.push_back(
 | |
|                              CopyValueToVirtualRegister(SDL, PHIOp, Reg));
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // Remember that this register needs to added to the machine PHI node as
 | |
|         // the input for this MBB.
 | |
|         MVT::ValueType VT = TLI.getValueType(PN->getType());
 | |
|         unsigned NumElements;
 | |
|         if (VT != MVT::Vector)
 | |
|           NumElements = TLI.getNumElements(VT);
 | |
|         else {
 | |
|           MVT::ValueType VT1,VT2;
 | |
|           NumElements = 
 | |
|             TLI.getPackedTypeBreakdown(cast<PackedType>(PN->getType()),
 | |
|                                        VT1, VT2);
 | |
|         }
 | |
|         for (unsigned i = 0, e = NumElements; i != e; ++i)
 | |
|           PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
 | |
|       }
 | |
|   }
 | |
|   ConstantsOut.clear();
 | |
| 
 | |
|   // Turn all of the unordered chains into one factored node.
 | |
|   if (!UnorderedChains.empty()) {
 | |
|     SDOperand Root = SDL.getRoot();
 | |
|     if (Root.getOpcode() != ISD::EntryToken) {
 | |
|       unsigned i = 0, e = UnorderedChains.size();
 | |
|       for (; i != e; ++i) {
 | |
|         assert(UnorderedChains[i].Val->getNumOperands() > 1);
 | |
|         if (UnorderedChains[i].Val->getOperand(0) == Root)
 | |
|           break;  // Don't add the root if we already indirectly depend on it.
 | |
|       }
 | |
|         
 | |
|       if (i == e)
 | |
|         UnorderedChains.push_back(Root);
 | |
|     }
 | |
|     DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, UnorderedChains));
 | |
|   }
 | |
| 
 | |
|   // Lower the terminator after the copies are emitted.
 | |
|   SDL.visit(*LLVMBB->getTerminator());
 | |
| 
 | |
|   // Copy over any CaseBlock records that may now exist due to SwitchInst
 | |
|   // lowering, as well as any jump table information.
 | |
|   SwitchCases.clear();
 | |
|   SwitchCases = SDL.SwitchCases;
 | |
|   JT = SDL.JT;
 | |
|   
 | |
|   // Make sure the root of the DAG is up-to-date.
 | |
|   DAG.setRoot(SDL.getRoot());
 | |
| }
 | |
| 
 | |
| void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
 | |
|   // Run the DAG combiner in pre-legalize mode.
 | |
|   DAG.Combine(false);
 | |
|   
 | |
|   DEBUG(std::cerr << "Lowered selection DAG:\n");
 | |
|   DEBUG(DAG.dump());
 | |
|   
 | |
|   // Second step, hack on the DAG until it only uses operations and types that
 | |
|   // the target supports.
 | |
|   DAG.Legalize();
 | |
|   
 | |
|   DEBUG(std::cerr << "Legalized selection DAG:\n");
 | |
|   DEBUG(DAG.dump());
 | |
|   
 | |
|   // Run the DAG combiner in post-legalize mode.
 | |
|   DAG.Combine(true);
 | |
|   
 | |
|   if (ViewISelDAGs) DAG.viewGraph();
 | |
| 
 | |
|   // Third, instruction select all of the operations to machine code, adding the
 | |
|   // code to the MachineBasicBlock.
 | |
|   InstructionSelectBasicBlock(DAG);
 | |
|   
 | |
|   DEBUG(std::cerr << "Selected machine code:\n");
 | |
|   DEBUG(BB->dump());
 | |
| }  
 | |
| 
 | |
| void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
 | |
|                                         FunctionLoweringInfo &FuncInfo) {
 | |
|   std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
 | |
|   {
 | |
|     SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
 | |
|     CurDAG = &DAG;
 | |
|   
 | |
|     // First step, lower LLVM code to some DAG.  This DAG may use operations and
 | |
|     // types that are not supported by the target.
 | |
|     BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
 | |
| 
 | |
|     // Second step, emit the lowered DAG as machine code.
 | |
|     CodeGenAndEmitDAG(DAG);
 | |
|   }
 | |
|   
 | |
|   // Next, now that we know what the last MBB the LLVM BB expanded is, update
 | |
|   // PHI nodes in successors.
 | |
|   if (SwitchCases.empty() && JT.Reg == 0) {
 | |
|     for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
 | |
|       MachineInstr *PHI = PHINodesToUpdate[i].first;
 | |
|       assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
 | |
|              "This is not a machine PHI node that we are updating!");
 | |
|       PHI->addRegOperand(PHINodesToUpdate[i].second);
 | |
|       PHI->addMachineBasicBlockOperand(BB);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // If the JumpTable record is filled in, then we need to emit a jump table.
 | |
|   // Updating the PHI nodes is tricky in this case, since we need to determine
 | |
|   // whether the PHI is a successor of the range check MBB or the jump table MBB
 | |
|   if (JT.Reg) {
 | |
|     assert(SwitchCases.empty() && "Cannot have jump table and lowered switch");
 | |
|     SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
 | |
|     CurDAG = &SDAG;
 | |
|     SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
 | |
|     MachineBasicBlock *RangeBB = BB;
 | |
|     // Set the current basic block to the mbb we wish to insert the code into
 | |
|     BB = JT.MBB;
 | |
|     SDL.setCurrentBasicBlock(BB);
 | |
|     // Emit the code
 | |
|     SDL.visitJumpTable(JT);
 | |
|     SDAG.setRoot(SDL.getRoot());
 | |
|     CodeGenAndEmitDAG(SDAG);
 | |
|     // Update PHI Nodes
 | |
|     for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
 | |
|       MachineInstr *PHI = PHINodesToUpdate[pi].first;
 | |
|       MachineBasicBlock *PHIBB = PHI->getParent();
 | |
|       assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
 | |
|              "This is not a machine PHI node that we are updating!");
 | |
|       if (PHIBB == JT.Default) {
 | |
|         PHI->addRegOperand(PHINodesToUpdate[pi].second);
 | |
|         PHI->addMachineBasicBlockOperand(RangeBB);
 | |
|       }
 | |
|       if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
 | |
|         PHI->addRegOperand(PHINodesToUpdate[pi].second);
 | |
|         PHI->addMachineBasicBlockOperand(BB);
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // If we generated any switch lowering information, build and codegen any
 | |
|   // additional DAGs necessary.
 | |
|   for(unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
 | |
|     SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
 | |
|     CurDAG = &SDAG;
 | |
|     SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
 | |
|     // Set the current basic block to the mbb we wish to insert the code into
 | |
|     BB = SwitchCases[i].ThisBB;
 | |
|     SDL.setCurrentBasicBlock(BB);
 | |
|     // Emit the code
 | |
|     SDL.visitSwitchCase(SwitchCases[i]);
 | |
|     SDAG.setRoot(SDL.getRoot());
 | |
|     CodeGenAndEmitDAG(SDAG);
 | |
|     // Iterate over the phi nodes, if there is a phi node in a successor of this
 | |
|     // block (for instance, the default block), then add a pair of operands to
 | |
|     // the phi node for this block, as if we were coming from the original
 | |
|     // BB before switch expansion.
 | |
|     for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
 | |
|       MachineInstr *PHI = PHINodesToUpdate[pi].first;
 | |
|       MachineBasicBlock *PHIBB = PHI->getParent();
 | |
|       assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
 | |
|              "This is not a machine PHI node that we are updating!");
 | |
|       if (PHIBB == SwitchCases[i].LHSBB || PHIBB == SwitchCases[i].RHSBB) {
 | |
|         PHI->addRegOperand(PHINodesToUpdate[pi].second);
 | |
|         PHI->addMachineBasicBlockOperand(BB);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
 | |
| /// target node in the graph.
 | |
| void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
 | |
|   if (ViewSchedDAGs) DAG.viewGraph();
 | |
|   ScheduleDAG *SL = NULL;
 | |
| 
 | |
|   switch (ISHeuristic) {
 | |
|   default: assert(0 && "Unrecognized scheduling heuristic");
 | |
|   case ScheduleDAG::defaultScheduling:
 | |
|     if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
 | |
|       SL = createTDListDAGScheduler(DAG, BB, CreateTargetHazardRecognizer());
 | |
|     else {
 | |
|       assert(TLI.getSchedulingPreference() ==
 | |
|              TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
 | |
|       SL = createBURRListDAGScheduler(DAG, BB);
 | |
|     }
 | |
|     break;
 | |
|   case ScheduleDAG::noScheduling:
 | |
|     SL = createBFS_DAGScheduler(DAG, BB);
 | |
|     break;
 | |
|   case ScheduleDAG::simpleScheduling:
 | |
|     SL = createSimpleDAGScheduler(false, DAG, BB);
 | |
|     break;
 | |
|   case ScheduleDAG::simpleNoItinScheduling:
 | |
|     SL = createSimpleDAGScheduler(true, DAG, BB);
 | |
|     break;
 | |
|   case ScheduleDAG::listSchedulingBURR:
 | |
|     SL = createBURRListDAGScheduler(DAG, BB);
 | |
|     break;
 | |
|   case ScheduleDAG::listSchedulingTDRR:
 | |
|     SL = createTDRRListDAGScheduler(DAG, BB);
 | |
|     break;
 | |
|   case ScheduleDAG::listSchedulingTD:
 | |
|     SL = createTDListDAGScheduler(DAG, BB, CreateTargetHazardRecognizer());
 | |
|     break;
 | |
|   }
 | |
|   BB = SL->Run();
 | |
|   delete SL;
 | |
| }
 | |
| 
 | |
| HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
 | |
|   return new HazardRecognizer();
 | |
| }
 | |
| 
 | |
| /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
 | |
| /// by tblgen.  Others should not call it.
 | |
| void SelectionDAGISel::
 | |
| SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
 | |
|   std::vector<SDOperand> InOps;
 | |
|   std::swap(InOps, Ops);
 | |
| 
 | |
|   Ops.push_back(InOps[0]);  // input chain.
 | |
|   Ops.push_back(InOps[1]);  // input asm string.
 | |
| 
 | |
|   unsigned i = 2, e = InOps.size();
 | |
|   if (InOps[e-1].getValueType() == MVT::Flag)
 | |
|     --e;  // Don't process a flag operand if it is here.
 | |
|   
 | |
|   while (i != e) {
 | |
|     unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
 | |
|     if ((Flags & 7) != 4 /*MEM*/) {
 | |
|       // Just skip over this operand, copying the operands verbatim.
 | |
|       Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
 | |
|       i += (Flags >> 3) + 1;
 | |
|     } else {
 | |
|       assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
 | |
|       // Otherwise, this is a memory operand.  Ask the target to select it.
 | |
|       std::vector<SDOperand> SelOps;
 | |
|       if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
 | |
|         std::cerr << "Could not match memory address.  Inline asm failure!\n";
 | |
|         exit(1);
 | |
|       }
 | |
|       
 | |
|       // Add this to the output node.
 | |
|       Ops.push_back(DAG.getConstant(4/*MEM*/ | (SelOps.size() << 3), MVT::i32));
 | |
|       Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
 | |
|       i += 2;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Add the flag input back if present.
 | |
|   if (e != InOps.size())
 | |
|     Ops.push_back(InOps.back());
 | |
| }
 |