mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	Summary: This change splits `makeICmpRegion` into `makeAllowedICmpRegion` and `makeSatisfyingICmpRegion` with slightly different contracts. The first one is useful for determining what values some expression //may// take, given that a certain `icmp` evaluates to true. The second one is useful for determining what values are guaranteed to //satisfy// a given `icmp`. Reviewers: nlewycky Reviewed By: nlewycky Subscribers: llvm-commits Differential Revision: http://reviews.llvm.org/D8345 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232575 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1283 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1283 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the interface for lazy computation of value constraint
 | |
| // information.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/LazyValueInfo.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/Analysis/AssumptionCache.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/ConstantRange.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/IR/ValueHandle.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <map>
 | |
| #include <stack>
 | |
| using namespace llvm;
 | |
| using namespace PatternMatch;
 | |
| 
 | |
| #define DEBUG_TYPE "lazy-value-info"
 | |
| 
 | |
| char LazyValueInfo::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(LazyValueInfo, "lazy-value-info",
 | |
|                 "Lazy Value Information Analysis", false, true)
 | |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | |
| INITIALIZE_PASS_END(LazyValueInfo, "lazy-value-info",
 | |
|                 "Lazy Value Information Analysis", false, true)
 | |
| 
 | |
| namespace llvm {
 | |
|   FunctionPass *createLazyValueInfoPass() { return new LazyValueInfo(); }
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                               LVILatticeVal
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// This is the information tracked by LazyValueInfo for each value.
 | |
| ///
 | |
| /// FIXME: This is basically just for bringup, this can be made a lot more rich
 | |
| /// in the future.
 | |
| ///
 | |
| namespace {
 | |
| class LVILatticeVal {
 | |
|   enum LatticeValueTy {
 | |
|     /// This Value has no known value yet.
 | |
|     undefined,
 | |
|     
 | |
|     /// This Value has a specific constant value.
 | |
|     constant,
 | |
|     
 | |
|     /// This Value is known to not have the specified value.
 | |
|     notconstant,
 | |
| 
 | |
|     /// The Value falls within this range.
 | |
|     constantrange,
 | |
| 
 | |
|     /// This value is not known to be constant, and we know that it has a value.
 | |
|     overdefined
 | |
|   };
 | |
|   
 | |
|   /// Val: This stores the current lattice value along with the Constant* for
 | |
|   /// the constant if this is a 'constant' or 'notconstant' value.
 | |
|   LatticeValueTy Tag;
 | |
|   Constant *Val;
 | |
|   ConstantRange Range;
 | |
|   
 | |
| public:
 | |
|   LVILatticeVal() : Tag(undefined), Val(nullptr), Range(1, true) {}
 | |
| 
 | |
|   static LVILatticeVal get(Constant *C) {
 | |
|     LVILatticeVal Res;
 | |
|     if (!isa<UndefValue>(C))
 | |
|       Res.markConstant(C);
 | |
|     return Res;
 | |
|   }
 | |
|   static LVILatticeVal getNot(Constant *C) {
 | |
|     LVILatticeVal Res;
 | |
|     if (!isa<UndefValue>(C))
 | |
|       Res.markNotConstant(C);
 | |
|     return Res;
 | |
|   }
 | |
|   static LVILatticeVal getRange(ConstantRange CR) {
 | |
|     LVILatticeVal Res;
 | |
|     Res.markConstantRange(CR);
 | |
|     return Res;
 | |
|   }
 | |
|   
 | |
|   bool isUndefined() const     { return Tag == undefined; }
 | |
|   bool isConstant() const      { return Tag == constant; }
 | |
|   bool isNotConstant() const   { return Tag == notconstant; }
 | |
|   bool isConstantRange() const { return Tag == constantrange; }
 | |
|   bool isOverdefined() const   { return Tag == overdefined; }
 | |
|   
 | |
|   Constant *getConstant() const {
 | |
|     assert(isConstant() && "Cannot get the constant of a non-constant!");
 | |
|     return Val;
 | |
|   }
 | |
|   
 | |
|   Constant *getNotConstant() const {
 | |
|     assert(isNotConstant() && "Cannot get the constant of a non-notconstant!");
 | |
|     return Val;
 | |
|   }
 | |
|   
 | |
|   ConstantRange getConstantRange() const {
 | |
|     assert(isConstantRange() &&
 | |
|            "Cannot get the constant-range of a non-constant-range!");
 | |
|     return Range;
 | |
|   }
 | |
|   
 | |
|   /// Return true if this is a change in status.
 | |
|   bool markOverdefined() {
 | |
|     if (isOverdefined())
 | |
|       return false;
 | |
|     Tag = overdefined;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// Return true if this is a change in status.
 | |
|   bool markConstant(Constant *V) {
 | |
|     assert(V && "Marking constant with NULL");
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
 | |
|       return markConstantRange(ConstantRange(CI->getValue()));
 | |
|     if (isa<UndefValue>(V))
 | |
|       return false;
 | |
| 
 | |
|     assert((!isConstant() || getConstant() == V) &&
 | |
|            "Marking constant with different value");
 | |
|     assert(isUndefined());
 | |
|     Tag = constant;
 | |
|     Val = V;
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   /// Return true if this is a change in status.
 | |
|   bool markNotConstant(Constant *V) {
 | |
|     assert(V && "Marking constant with NULL");
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
 | |
|       return markConstantRange(ConstantRange(CI->getValue()+1, CI->getValue()));
 | |
|     if (isa<UndefValue>(V))
 | |
|       return false;
 | |
| 
 | |
|     assert((!isConstant() || getConstant() != V) &&
 | |
|            "Marking constant !constant with same value");
 | |
|     assert((!isNotConstant() || getNotConstant() == V) &&
 | |
|            "Marking !constant with different value");
 | |
|     assert(isUndefined() || isConstant());
 | |
|     Tag = notconstant;
 | |
|     Val = V;
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   /// Return true if this is a change in status.
 | |
|   bool markConstantRange(const ConstantRange NewR) {
 | |
|     if (isConstantRange()) {
 | |
|       if (NewR.isEmptySet())
 | |
|         return markOverdefined();
 | |
|       
 | |
|       bool changed = Range != NewR;
 | |
|       Range = NewR;
 | |
|       return changed;
 | |
|     }
 | |
|     
 | |
|     assert(isUndefined());
 | |
|     if (NewR.isEmptySet())
 | |
|       return markOverdefined();
 | |
|     
 | |
|     Tag = constantrange;
 | |
|     Range = NewR;
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   /// Merge the specified lattice value into this one, updating this
 | |
|   /// one and returning true if anything changed.
 | |
|   bool mergeIn(const LVILatticeVal &RHS, const DataLayout &DL) {
 | |
|     if (RHS.isUndefined() || isOverdefined()) return false;
 | |
|     if (RHS.isOverdefined()) return markOverdefined();
 | |
| 
 | |
|     if (isUndefined()) {
 | |
|       Tag = RHS.Tag;
 | |
|       Val = RHS.Val;
 | |
|       Range = RHS.Range;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (isConstant()) {
 | |
|       if (RHS.isConstant()) {
 | |
|         if (Val == RHS.Val)
 | |
|           return false;
 | |
|         return markOverdefined();
 | |
|       }
 | |
| 
 | |
|       if (RHS.isNotConstant()) {
 | |
|         if (Val == RHS.Val)
 | |
|           return markOverdefined();
 | |
| 
 | |
|         // Unless we can prove that the two Constants are different, we must
 | |
|         // move to overdefined.
 | |
|         if (ConstantInt *Res =
 | |
|                 dyn_cast<ConstantInt>(ConstantFoldCompareInstOperands(
 | |
|                     CmpInst::ICMP_NE, getConstant(), RHS.getNotConstant(), DL)))
 | |
|           if (Res->isOne())
 | |
|             return markNotConstant(RHS.getNotConstant());
 | |
| 
 | |
|         return markOverdefined();
 | |
|       }
 | |
| 
 | |
|       // RHS is a ConstantRange, LHS is a non-integer Constant.
 | |
| 
 | |
|       // FIXME: consider the case where RHS is a range [1, 0) and LHS is
 | |
|       // a function. The correct result is to pick up RHS.
 | |
| 
 | |
|       return markOverdefined();
 | |
|     }
 | |
| 
 | |
|     if (isNotConstant()) {
 | |
|       if (RHS.isConstant()) {
 | |
|         if (Val == RHS.Val)
 | |
|           return markOverdefined();
 | |
| 
 | |
|         // Unless we can prove that the two Constants are different, we must
 | |
|         // move to overdefined.
 | |
|         if (ConstantInt *Res =
 | |
|                 dyn_cast<ConstantInt>(ConstantFoldCompareInstOperands(
 | |
|                     CmpInst::ICMP_NE, getNotConstant(), RHS.getConstant(), DL)))
 | |
|           if (Res->isOne())
 | |
|             return false;
 | |
| 
 | |
|         return markOverdefined();
 | |
|       }
 | |
| 
 | |
|       if (RHS.isNotConstant()) {
 | |
|         if (Val == RHS.Val)
 | |
|           return false;
 | |
|         return markOverdefined();
 | |
|       }
 | |
| 
 | |
|       return markOverdefined();
 | |
|     }
 | |
| 
 | |
|     assert(isConstantRange() && "New LVILattice type?");
 | |
|     if (!RHS.isConstantRange())
 | |
|       return markOverdefined();
 | |
| 
 | |
|     ConstantRange NewR = Range.unionWith(RHS.getConstantRange());
 | |
|     if (NewR.isFullSet())
 | |
|       return markOverdefined();
 | |
|     return markConstantRange(NewR);
 | |
|   }
 | |
| };
 | |
|   
 | |
| } // end anonymous namespace.
 | |
| 
 | |
| namespace llvm {
 | |
| raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val)
 | |
|     LLVM_ATTRIBUTE_USED;
 | |
| raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) {
 | |
|   if (Val.isUndefined())
 | |
|     return OS << "undefined";
 | |
|   if (Val.isOverdefined())
 | |
|     return OS << "overdefined";
 | |
| 
 | |
|   if (Val.isNotConstant())
 | |
|     return OS << "notconstant<" << *Val.getNotConstant() << '>';
 | |
|   else if (Val.isConstantRange())
 | |
|     return OS << "constantrange<" << Val.getConstantRange().getLower() << ", "
 | |
|               << Val.getConstantRange().getUpper() << '>';
 | |
|   return OS << "constant<" << *Val.getConstant() << '>';
 | |
| }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                          LazyValueInfoCache Decl
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
|   /// A callback value handle updates the cache when values are erased.
 | |
|   class LazyValueInfoCache;
 | |
|   struct LVIValueHandle : public CallbackVH {
 | |
|     LazyValueInfoCache *Parent;
 | |
|       
 | |
|     LVIValueHandle(Value *V, LazyValueInfoCache *P)
 | |
|       : CallbackVH(V), Parent(P) { }
 | |
| 
 | |
|     void deleted() override;
 | |
|     void allUsesReplacedWith(Value *V) override {
 | |
|       deleted();
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| namespace { 
 | |
|   /// This is the cache kept by LazyValueInfo which
 | |
|   /// maintains information about queries across the clients' queries.
 | |
|   class LazyValueInfoCache {
 | |
|     /// This is all of the cached block information for exactly one Value*.
 | |
|     /// The entries are sorted by the BasicBlock* of the
 | |
|     /// entries, allowing us to do a lookup with a binary search.
 | |
|     typedef std::map<AssertingVH<BasicBlock>, LVILatticeVal> ValueCacheEntryTy;
 | |
| 
 | |
|     /// This is all of the cached information for all values,
 | |
|     /// mapped from Value* to key information.
 | |
|     std::map<LVIValueHandle, ValueCacheEntryTy> ValueCache;
 | |
|     
 | |
|     /// This tracks, on a per-block basis, the set of values that are
 | |
|     /// over-defined at the end of that block.  This is required
 | |
|     /// for cache updating.
 | |
|     typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy;
 | |
|     DenseSet<OverDefinedPairTy> OverDefinedCache;
 | |
| 
 | |
|     /// Keep track of all blocks that we have ever seen, so we
 | |
|     /// don't spend time removing unused blocks from our caches.
 | |
|     DenseSet<AssertingVH<BasicBlock> > SeenBlocks;
 | |
| 
 | |
|     /// This stack holds the state of the value solver during a query.
 | |
|     /// It basically emulates the callstack of the naive
 | |
|     /// recursive value lookup process.
 | |
|     std::stack<std::pair<BasicBlock*, Value*> > BlockValueStack;
 | |
| 
 | |
|     /// Keeps track of which block-value pairs are in BlockValueStack.
 | |
|     DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet;
 | |
| 
 | |
|     /// Push BV onto BlockValueStack unless it's already in there.
 | |
|     /// Returns true on success.
 | |
|     bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) {
 | |
|       if (!BlockValueSet.insert(BV).second)
 | |
|         return false;  // It's already in the stack.
 | |
| 
 | |
|       BlockValueStack.push(BV);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     AssumptionCache *AC;  ///< A pointer to the cache of @llvm.assume calls.
 | |
|     const DataLayout &DL; ///< A mandatory DataLayout
 | |
|     DominatorTree *DT;    ///< An optional DT pointer.
 | |
| 
 | |
|     friend struct LVIValueHandle;
 | |
| 
 | |
|     void insertResult(Value *Val, BasicBlock *BB, const LVILatticeVal &Result) {
 | |
|       SeenBlocks.insert(BB);
 | |
|       lookup(Val)[BB] = Result;
 | |
|       if (Result.isOverdefined())
 | |
|         OverDefinedCache.insert(std::make_pair(BB, Val));
 | |
|     }
 | |
| 
 | |
|     LVILatticeVal getBlockValue(Value *Val, BasicBlock *BB);
 | |
|     bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T,
 | |
|                       LVILatticeVal &Result,
 | |
|                       Instruction *CxtI = nullptr);
 | |
|     bool hasBlockValue(Value *Val, BasicBlock *BB);
 | |
| 
 | |
|     // These methods process one work item and may add more. A false value
 | |
|     // returned means that the work item was not completely processed and must
 | |
|     // be revisited after going through the new items.
 | |
|     bool solveBlockValue(Value *Val, BasicBlock *BB);
 | |
|     bool solveBlockValueNonLocal(LVILatticeVal &BBLV,
 | |
|                                  Value *Val, BasicBlock *BB);
 | |
|     bool solveBlockValuePHINode(LVILatticeVal &BBLV,
 | |
|                                 PHINode *PN, BasicBlock *BB);
 | |
|     bool solveBlockValueConstantRange(LVILatticeVal &BBLV,
 | |
|                                       Instruction *BBI, BasicBlock *BB);
 | |
|     void mergeAssumeBlockValueConstantRange(Value *Val, LVILatticeVal &BBLV,
 | |
|                                             Instruction *BBI);
 | |
| 
 | |
|     void solve();
 | |
|     
 | |
|     ValueCacheEntryTy &lookup(Value *V) {
 | |
|       return ValueCache[LVIValueHandle(V, this)];
 | |
|     }
 | |
| 
 | |
|   public:
 | |
|     /// This is the query interface to determine the lattice
 | |
|     /// value for the specified Value* at the end of the specified block.
 | |
|     LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB,
 | |
|                                   Instruction *CxtI = nullptr);
 | |
| 
 | |
|     /// This is the query interface to determine the lattice
 | |
|     /// value for the specified Value* at the specified instruction (generally
 | |
|     /// from an assume intrinsic).
 | |
|     LVILatticeVal getValueAt(Value *V, Instruction *CxtI);
 | |
| 
 | |
|     /// This is the query interface to determine the lattice
 | |
|     /// value for the specified Value* that is true on the specified edge.
 | |
|     LVILatticeVal getValueOnEdge(Value *V, BasicBlock *FromBB,BasicBlock *ToBB,
 | |
|                                  Instruction *CxtI = nullptr);
 | |
|     
 | |
|     /// This is the update interface to inform the cache that an edge from
 | |
|     /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc.
 | |
|     void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);
 | |
|     
 | |
|     /// This is part of the update interface to inform the cache
 | |
|     /// that a block has been deleted.
 | |
|     void eraseBlock(BasicBlock *BB);
 | |
|     
 | |
|     /// clear - Empty the cache.
 | |
|     void clear() {
 | |
|       SeenBlocks.clear();
 | |
|       ValueCache.clear();
 | |
|       OverDefinedCache.clear();
 | |
|     }
 | |
| 
 | |
|     LazyValueInfoCache(AssumptionCache *AC, const DataLayout &DL,
 | |
|                        DominatorTree *DT = nullptr)
 | |
|         : AC(AC), DL(DL), DT(DT) {}
 | |
|   };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| void LVIValueHandle::deleted() {
 | |
|   typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy;
 | |
|   
 | |
|   SmallVector<OverDefinedPairTy, 4> ToErase;
 | |
|   for (const OverDefinedPairTy &P : Parent->OverDefinedCache)
 | |
|     if (P.second == getValPtr())
 | |
|       ToErase.push_back(P);
 | |
|   for (const OverDefinedPairTy &P : ToErase)
 | |
|     Parent->OverDefinedCache.erase(P);
 | |
|   
 | |
|   // This erasure deallocates *this, so it MUST happen after we're done
 | |
|   // using any and all members of *this.
 | |
|   Parent->ValueCache.erase(*this);
 | |
| }
 | |
| 
 | |
| void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
 | |
|   // Shortcut if we have never seen this block.
 | |
|   DenseSet<AssertingVH<BasicBlock> >::iterator I = SeenBlocks.find(BB);
 | |
|   if (I == SeenBlocks.end())
 | |
|     return;
 | |
|   SeenBlocks.erase(I);
 | |
| 
 | |
|   SmallVector<OverDefinedPairTy, 4> ToErase;
 | |
|   for (const OverDefinedPairTy& P : OverDefinedCache)
 | |
|     if (P.first == BB)
 | |
|       ToErase.push_back(P);
 | |
|   for (const OverDefinedPairTy &P : ToErase)
 | |
|     OverDefinedCache.erase(P);
 | |
| 
 | |
|   for (std::map<LVIValueHandle, ValueCacheEntryTy>::iterator
 | |
|        I = ValueCache.begin(), E = ValueCache.end(); I != E; ++I)
 | |
|     I->second.erase(BB);
 | |
| }
 | |
| 
 | |
| void LazyValueInfoCache::solve() {
 | |
|   while (!BlockValueStack.empty()) {
 | |
|     std::pair<BasicBlock*, Value*> &e = BlockValueStack.top();
 | |
|     assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!");
 | |
| 
 | |
|     if (solveBlockValue(e.second, e.first)) {
 | |
|       // The work item was completely processed.
 | |
|       assert(BlockValueStack.top() == e && "Nothing should have been pushed!");
 | |
|       assert(lookup(e.second).count(e.first) && "Result should be in cache!");
 | |
| 
 | |
|       BlockValueStack.pop();
 | |
|       BlockValueSet.erase(e);
 | |
|     } else {
 | |
|       // More work needs to be done before revisiting.
 | |
|       assert(BlockValueStack.top() != e && "Stack should have been pushed!");
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool LazyValueInfoCache::hasBlockValue(Value *Val, BasicBlock *BB) {
 | |
|   // If already a constant, there is nothing to compute.
 | |
|   if (isa<Constant>(Val))
 | |
|     return true;
 | |
| 
 | |
|   LVIValueHandle ValHandle(Val, this);
 | |
|   std::map<LVIValueHandle, ValueCacheEntryTy>::iterator I =
 | |
|     ValueCache.find(ValHandle);
 | |
|   if (I == ValueCache.end()) return false;
 | |
|   return I->second.count(BB);
 | |
| }
 | |
| 
 | |
| LVILatticeVal LazyValueInfoCache::getBlockValue(Value *Val, BasicBlock *BB) {
 | |
|   // If already a constant, there is nothing to compute.
 | |
|   if (Constant *VC = dyn_cast<Constant>(Val))
 | |
|     return LVILatticeVal::get(VC);
 | |
| 
 | |
|   SeenBlocks.insert(BB);
 | |
|   return lookup(Val)[BB];
 | |
| }
 | |
| 
 | |
| bool LazyValueInfoCache::solveBlockValue(Value *Val, BasicBlock *BB) {
 | |
|   if (isa<Constant>(Val))
 | |
|     return true;
 | |
| 
 | |
|   if (lookup(Val).count(BB)) {
 | |
|     // If we have a cached value, use that.
 | |
|     DEBUG(dbgs() << "  reuse BB '" << BB->getName()
 | |
|                  << "' val=" << lookup(Val)[BB] << '\n');
 | |
| 
 | |
|     // Since we're reusing a cached value, we don't need to update the
 | |
|     // OverDefinedCache. The cache will have been properly updated whenever the
 | |
|     // cached value was inserted.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Hold off inserting this value into the Cache in case we have to return
 | |
|   // false and come back later.
 | |
|   LVILatticeVal Res;
 | |
|   
 | |
|   Instruction *BBI = dyn_cast<Instruction>(Val);
 | |
|   if (!BBI || BBI->getParent() != BB) {
 | |
|     if (!solveBlockValueNonLocal(Res, Val, BB))
 | |
|       return false;
 | |
|    insertResult(Val, BB, Res);
 | |
|    return true;
 | |
|   }
 | |
| 
 | |
|   if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
 | |
|     if (!solveBlockValuePHINode(Res, PN, BB))
 | |
|       return false;
 | |
|     insertResult(Val, BB, Res);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (AllocaInst *AI = dyn_cast<AllocaInst>(BBI)) {
 | |
|     Res = LVILatticeVal::getNot(ConstantPointerNull::get(AI->getType()));
 | |
|     insertResult(Val, BB, Res);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // We can only analyze the definitions of certain classes of instructions
 | |
|   // (integral binops and casts at the moment), so bail if this isn't one.
 | |
|   LVILatticeVal Result;
 | |
|   if ((!isa<BinaryOperator>(BBI) && !isa<CastInst>(BBI)) ||
 | |
|      !BBI->getType()->isIntegerTy()) {
 | |
|     DEBUG(dbgs() << " compute BB '" << BB->getName()
 | |
|                  << "' - overdefined because inst def found.\n");
 | |
|     Res.markOverdefined();
 | |
|     insertResult(Val, BB, Res);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // FIXME: We're currently limited to binops with a constant RHS.  This should
 | |
|   // be improved.
 | |
|   BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI);
 | |
|   if (BO && !isa<ConstantInt>(BO->getOperand(1))) { 
 | |
|     DEBUG(dbgs() << " compute BB '" << BB->getName()
 | |
|                  << "' - overdefined because inst def found.\n");
 | |
| 
 | |
|     Res.markOverdefined();
 | |
|     insertResult(Val, BB, Res);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (!solveBlockValueConstantRange(Res, BBI, BB))
 | |
|     return false;
 | |
|   insertResult(Val, BB, Res);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) {
 | |
|   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
 | |
|     return L->getPointerAddressSpace() == 0 &&
 | |
|            GetUnderlyingObject(L->getPointerOperand(),
 | |
|                                L->getModule()->getDataLayout()) == Ptr;
 | |
|   }
 | |
|   if (StoreInst *S = dyn_cast<StoreInst>(I)) {
 | |
|     return S->getPointerAddressSpace() == 0 &&
 | |
|            GetUnderlyingObject(S->getPointerOperand(),
 | |
|                                S->getModule()->getDataLayout()) == Ptr;
 | |
|   }
 | |
|   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
 | |
|     if (MI->isVolatile()) return false;
 | |
| 
 | |
|     // FIXME: check whether it has a valuerange that excludes zero?
 | |
|     ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength());
 | |
|     if (!Len || Len->isZero()) return false;
 | |
| 
 | |
|     if (MI->getDestAddressSpace() == 0)
 | |
|       if (GetUnderlyingObject(MI->getRawDest(),
 | |
|                               MI->getModule()->getDataLayout()) == Ptr)
 | |
|         return true;
 | |
|     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
 | |
|       if (MTI->getSourceAddressSpace() == 0)
 | |
|         if (GetUnderlyingObject(MTI->getRawSource(),
 | |
|                                 MTI->getModule()->getDataLayout()) == Ptr)
 | |
|           return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool LazyValueInfoCache::solveBlockValueNonLocal(LVILatticeVal &BBLV,
 | |
|                                                  Value *Val, BasicBlock *BB) {
 | |
|   LVILatticeVal Result;  // Start Undefined.
 | |
| 
 | |
|   // If this is a pointer, and there's a load from that pointer in this BB,
 | |
|   // then we know that the pointer can't be NULL.
 | |
|   bool NotNull = false;
 | |
|   if (Val->getType()->isPointerTy()) {
 | |
|     if (isKnownNonNull(Val)) {
 | |
|       NotNull = true;
 | |
|     } else {
 | |
|       const DataLayout &DL = BB->getModule()->getDataLayout();
 | |
|       Value *UnderlyingVal = GetUnderlyingObject(Val, DL);
 | |
|       // If 'GetUnderlyingObject' didn't converge, skip it. It won't converge
 | |
|       // inside InstructionDereferencesPointer either.
 | |
|       if (UnderlyingVal == GetUnderlyingObject(UnderlyingVal, DL, 1)) {
 | |
|         for (Instruction &I : *BB) {
 | |
|           if (InstructionDereferencesPointer(&I, UnderlyingVal)) {
 | |
|             NotNull = true;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this is the entry block, we must be asking about an argument.  The
 | |
|   // value is overdefined.
 | |
|   if (BB == &BB->getParent()->getEntryBlock()) {
 | |
|     assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
 | |
|     if (NotNull) {
 | |
|       PointerType *PTy = cast<PointerType>(Val->getType());
 | |
|       Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
 | |
|     } else {
 | |
|       Result.markOverdefined();
 | |
|     }
 | |
|     BBLV = Result;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Loop over all of our predecessors, merging what we know from them into
 | |
|   // result.
 | |
|   bool EdgesMissing = false;
 | |
|   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
 | |
|     LVILatticeVal EdgeResult;
 | |
|     EdgesMissing |= !getEdgeValue(Val, *PI, BB, EdgeResult);
 | |
|     if (EdgesMissing)
 | |
|       continue;
 | |
| 
 | |
|     Result.mergeIn(EdgeResult, DL);
 | |
| 
 | |
|     // If we hit overdefined, exit early.  The BlockVals entry is already set
 | |
|     // to overdefined.
 | |
|     if (Result.isOverdefined()) {
 | |
|       DEBUG(dbgs() << " compute BB '" << BB->getName()
 | |
|             << "' - overdefined because of pred.\n");
 | |
|       // If we previously determined that this is a pointer that can't be null
 | |
|       // then return that rather than giving up entirely.
 | |
|       if (NotNull) {
 | |
|         PointerType *PTy = cast<PointerType>(Val->getType());
 | |
|         Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
 | |
|       }
 | |
|       
 | |
|       BBLV = Result;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   if (EdgesMissing)
 | |
|     return false;
 | |
| 
 | |
|   // Return the merged value, which is more precise than 'overdefined'.
 | |
|   assert(!Result.isOverdefined());
 | |
|   BBLV = Result;
 | |
|   return true;
 | |
| }
 | |
|   
 | |
| bool LazyValueInfoCache::solveBlockValuePHINode(LVILatticeVal &BBLV,
 | |
|                                                 PHINode *PN, BasicBlock *BB) {
 | |
|   LVILatticeVal Result;  // Start Undefined.
 | |
| 
 | |
|   // Loop over all of our predecessors, merging what we know from them into
 | |
|   // result.
 | |
|   bool EdgesMissing = false;
 | |
|   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|     BasicBlock *PhiBB = PN->getIncomingBlock(i);
 | |
|     Value *PhiVal = PN->getIncomingValue(i);
 | |
|     LVILatticeVal EdgeResult;
 | |
|     // Note that we can provide PN as the context value to getEdgeValue, even
 | |
|     // though the results will be cached, because PN is the value being used as
 | |
|     // the cache key in the caller.
 | |
|     EdgesMissing |= !getEdgeValue(PhiVal, PhiBB, BB, EdgeResult, PN);
 | |
|     if (EdgesMissing)
 | |
|       continue;
 | |
| 
 | |
|     Result.mergeIn(EdgeResult, DL);
 | |
| 
 | |
|     // If we hit overdefined, exit early.  The BlockVals entry is already set
 | |
|     // to overdefined.
 | |
|     if (Result.isOverdefined()) {
 | |
|       DEBUG(dbgs() << " compute BB '" << BB->getName()
 | |
|             << "' - overdefined because of pred.\n");
 | |
|       
 | |
|       BBLV = Result;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   if (EdgesMissing)
 | |
|     return false;
 | |
| 
 | |
|   // Return the merged value, which is more precise than 'overdefined'.
 | |
|   assert(!Result.isOverdefined() && "Possible PHI in entry block?");
 | |
|   BBLV = Result;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool getValueFromFromCondition(Value *Val, ICmpInst *ICI,
 | |
|                                       LVILatticeVal &Result,
 | |
|                                       bool isTrueDest = true);
 | |
| 
 | |
| // If we can determine a constant range for the value Val in the context
 | |
| // provided by the instruction BBI, then merge it into BBLV. If we did find a
 | |
| // constant range, return true.
 | |
| void LazyValueInfoCache::mergeAssumeBlockValueConstantRange(Value *Val,
 | |
|                                                             LVILatticeVal &BBLV,
 | |
|                                                             Instruction *BBI) {
 | |
|   BBI = BBI ? BBI : dyn_cast<Instruction>(Val);
 | |
|   if (!BBI)
 | |
|     return;
 | |
| 
 | |
|   for (auto &AssumeVH : AC->assumptions()) {
 | |
|     if (!AssumeVH)
 | |
|       continue;
 | |
|     auto *I = cast<CallInst>(AssumeVH);
 | |
|     if (!isValidAssumeForContext(I, BBI, DT))
 | |
|       continue;
 | |
| 
 | |
|     Value *C = I->getArgOperand(0);
 | |
|     if (ICmpInst *ICI = dyn_cast<ICmpInst>(C)) {
 | |
|       LVILatticeVal Result;
 | |
|       if (getValueFromFromCondition(Val, ICI, Result)) {
 | |
|         if (BBLV.isOverdefined())
 | |
|           BBLV = Result;
 | |
|         else
 | |
|           BBLV.mergeIn(Result, DL);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool LazyValueInfoCache::solveBlockValueConstantRange(LVILatticeVal &BBLV,
 | |
|                                                       Instruction *BBI,
 | |
|                                                       BasicBlock *BB) {
 | |
|   // Figure out the range of the LHS.  If that fails, bail.
 | |
|   if (!hasBlockValue(BBI->getOperand(0), BB)) {
 | |
|     if (pushBlockValue(std::make_pair(BB, BBI->getOperand(0))))
 | |
|       return false;
 | |
|     BBLV.markOverdefined();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   LVILatticeVal LHSVal = getBlockValue(BBI->getOperand(0), BB);
 | |
|   mergeAssumeBlockValueConstantRange(BBI->getOperand(0), LHSVal, BBI);
 | |
|   if (!LHSVal.isConstantRange()) {
 | |
|     BBLV.markOverdefined();
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   ConstantRange LHSRange = LHSVal.getConstantRange();
 | |
|   ConstantRange RHSRange(1);
 | |
|   IntegerType *ResultTy = cast<IntegerType>(BBI->getType());
 | |
|   if (isa<BinaryOperator>(BBI)) {
 | |
|     if (ConstantInt *RHS = dyn_cast<ConstantInt>(BBI->getOperand(1))) {
 | |
|       RHSRange = ConstantRange(RHS->getValue());
 | |
|     } else {
 | |
|       BBLV.markOverdefined();
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // NOTE: We're currently limited by the set of operations that ConstantRange
 | |
|   // can evaluate symbolically.  Enhancing that set will allows us to analyze
 | |
|   // more definitions.
 | |
|   LVILatticeVal Result;
 | |
|   switch (BBI->getOpcode()) {
 | |
|   case Instruction::Add:
 | |
|     Result.markConstantRange(LHSRange.add(RHSRange));
 | |
|     break;
 | |
|   case Instruction::Sub:
 | |
|     Result.markConstantRange(LHSRange.sub(RHSRange));
 | |
|     break;
 | |
|   case Instruction::Mul:
 | |
|     Result.markConstantRange(LHSRange.multiply(RHSRange));
 | |
|     break;
 | |
|   case Instruction::UDiv:
 | |
|     Result.markConstantRange(LHSRange.udiv(RHSRange));
 | |
|     break;
 | |
|   case Instruction::Shl:
 | |
|     Result.markConstantRange(LHSRange.shl(RHSRange));
 | |
|     break;
 | |
|   case Instruction::LShr:
 | |
|     Result.markConstantRange(LHSRange.lshr(RHSRange));
 | |
|     break;
 | |
|   case Instruction::Trunc:
 | |
|     Result.markConstantRange(LHSRange.truncate(ResultTy->getBitWidth()));
 | |
|     break;
 | |
|   case Instruction::SExt:
 | |
|     Result.markConstantRange(LHSRange.signExtend(ResultTy->getBitWidth()));
 | |
|     break;
 | |
|   case Instruction::ZExt:
 | |
|     Result.markConstantRange(LHSRange.zeroExtend(ResultTy->getBitWidth()));
 | |
|     break;
 | |
|   case Instruction::BitCast:
 | |
|     Result.markConstantRange(LHSRange);
 | |
|     break;
 | |
|   case Instruction::And:
 | |
|     Result.markConstantRange(LHSRange.binaryAnd(RHSRange));
 | |
|     break;
 | |
|   case Instruction::Or:
 | |
|     Result.markConstantRange(LHSRange.binaryOr(RHSRange));
 | |
|     break;
 | |
|   
 | |
|   // Unhandled instructions are overdefined.
 | |
|   default:
 | |
|     DEBUG(dbgs() << " compute BB '" << BB->getName()
 | |
|                  << "' - overdefined because inst def found.\n");
 | |
|     Result.markOverdefined();
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   BBLV = Result;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool getValueFromFromCondition(Value *Val, ICmpInst *ICI,
 | |
|                                LVILatticeVal &Result, bool isTrueDest) {
 | |
|   if (ICI && isa<Constant>(ICI->getOperand(1))) {
 | |
|     if (ICI->isEquality() && ICI->getOperand(0) == Val) {
 | |
|       // We know that V has the RHS constant if this is a true SETEQ or
 | |
|       // false SETNE. 
 | |
|       if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ))
 | |
|         Result = LVILatticeVal::get(cast<Constant>(ICI->getOperand(1)));
 | |
|       else
 | |
|         Result = LVILatticeVal::getNot(cast<Constant>(ICI->getOperand(1)));
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Recognize the range checking idiom that InstCombine produces.
 | |
|     // (X-C1) u< C2 --> [C1, C1+C2)
 | |
|     ConstantInt *NegOffset = nullptr;
 | |
|     if (ICI->getPredicate() == ICmpInst::ICMP_ULT)
 | |
|       match(ICI->getOperand(0), m_Add(m_Specific(Val),
 | |
|                                       m_ConstantInt(NegOffset)));
 | |
| 
 | |
|     ConstantInt *CI = dyn_cast<ConstantInt>(ICI->getOperand(1));
 | |
|     if (CI && (ICI->getOperand(0) == Val || NegOffset)) {
 | |
|       // Calculate the range of values that are allowed by the comparison
 | |
|       ConstantRange CmpRange(CI->getValue());
 | |
|       ConstantRange TrueValues =
 | |
|           ConstantRange::makeAllowedICmpRegion(ICI->getPredicate(), CmpRange);
 | |
| 
 | |
|       if (NegOffset) // Apply the offset from above.
 | |
|         TrueValues = TrueValues.subtract(NegOffset->getValue());
 | |
| 
 | |
|       // If we're interested in the false dest, invert the condition.
 | |
|       if (!isTrueDest) TrueValues = TrueValues.inverse();
 | |
| 
 | |
|       Result = LVILatticeVal::getRange(TrueValues);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Compute the value of Val on the edge BBFrom -> BBTo. Returns false if
 | |
| /// Val is not constrained on the edge.
 | |
| static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom,
 | |
|                               BasicBlock *BBTo, LVILatticeVal &Result) {
 | |
|   // TODO: Handle more complex conditionals.  If (v == 0 || v2 < 1) is false, we
 | |
|   // know that v != 0.
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
 | |
|     // If this is a conditional branch and only one successor goes to BBTo, then
 | |
|     // we may be able to infer something from the condition.
 | |
|     if (BI->isConditional() &&
 | |
|         BI->getSuccessor(0) != BI->getSuccessor(1)) {
 | |
|       bool isTrueDest = BI->getSuccessor(0) == BBTo;
 | |
|       assert(BI->getSuccessor(!isTrueDest) == BBTo &&
 | |
|              "BBTo isn't a successor of BBFrom");
 | |
|       
 | |
|       // If V is the condition of the branch itself, then we know exactly what
 | |
|       // it is.
 | |
|       if (BI->getCondition() == Val) {
 | |
|         Result = LVILatticeVal::get(ConstantInt::get(
 | |
|                               Type::getInt1Ty(Val->getContext()), isTrueDest));
 | |
|         return true;
 | |
|       }
 | |
|       
 | |
|       // If the condition of the branch is an equality comparison, we may be
 | |
|       // able to infer the value.
 | |
|       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
 | |
|         if (getValueFromFromCondition(Val, ICI, Result, isTrueDest))
 | |
|           return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the edge was formed by a switch on the value, then we may know exactly
 | |
|   // what it is.
 | |
|   if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
 | |
|     if (SI->getCondition() != Val)
 | |
|       return false;
 | |
| 
 | |
|     bool DefaultCase = SI->getDefaultDest() == BBTo;
 | |
|     unsigned BitWidth = Val->getType()->getIntegerBitWidth();
 | |
|     ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/);
 | |
| 
 | |
|     for (SwitchInst::CaseIt i : SI->cases()) {
 | |
|       ConstantRange EdgeVal(i.getCaseValue()->getValue());
 | |
|       if (DefaultCase) {
 | |
|         // It is possible that the default destination is the destination of
 | |
|         // some cases. There is no need to perform difference for those cases.
 | |
|         if (i.getCaseSuccessor() != BBTo)
 | |
|           EdgesVals = EdgesVals.difference(EdgeVal);
 | |
|       } else if (i.getCaseSuccessor() == BBTo)
 | |
|         EdgesVals = EdgesVals.unionWith(EdgeVal);
 | |
|     }
 | |
|     Result = LVILatticeVal::getRange(EdgesVals);
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Compute the value of Val on the edge BBFrom -> BBTo or the value at
 | |
| /// the basic block if the edge does not constrain Val.
 | |
| bool LazyValueInfoCache::getEdgeValue(Value *Val, BasicBlock *BBFrom,
 | |
|                                       BasicBlock *BBTo, LVILatticeVal &Result,
 | |
|                                       Instruction *CxtI) {
 | |
|   // If already a constant, there is nothing to compute.
 | |
|   if (Constant *VC = dyn_cast<Constant>(Val)) {
 | |
|     Result = LVILatticeVal::get(VC);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (getEdgeValueLocal(Val, BBFrom, BBTo, Result)) {
 | |
|     if (!Result.isConstantRange() ||
 | |
|         Result.getConstantRange().getSingleElement())
 | |
|       return true;
 | |
| 
 | |
|     // FIXME: this check should be moved to the beginning of the function when
 | |
|     // LVI better supports recursive values. Even for the single value case, we
 | |
|     // can intersect to detect dead code (an empty range).
 | |
|     if (!hasBlockValue(Val, BBFrom)) {
 | |
|       if (pushBlockValue(std::make_pair(BBFrom, Val)))
 | |
|         return false;
 | |
|       Result.markOverdefined();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Try to intersect ranges of the BB and the constraint on the edge.
 | |
|     LVILatticeVal InBlock = getBlockValue(Val, BBFrom);
 | |
|     mergeAssumeBlockValueConstantRange(Val, InBlock, BBFrom->getTerminator());
 | |
|     // See note on the use of the CxtI with mergeAssumeBlockValueConstantRange,
 | |
|     // and caching, below.
 | |
|     mergeAssumeBlockValueConstantRange(Val, InBlock, CxtI);
 | |
|     if (!InBlock.isConstantRange())
 | |
|       return true;
 | |
| 
 | |
|     ConstantRange Range =
 | |
|       Result.getConstantRange().intersectWith(InBlock.getConstantRange());
 | |
|     Result = LVILatticeVal::getRange(Range);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (!hasBlockValue(Val, BBFrom)) {
 | |
|     if (pushBlockValue(std::make_pair(BBFrom, Val)))
 | |
|       return false;
 | |
|     Result.markOverdefined();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // If we couldn't compute the value on the edge, use the value from the BB.
 | |
|   Result = getBlockValue(Val, BBFrom);
 | |
|   mergeAssumeBlockValueConstantRange(Val, Result, BBFrom->getTerminator());
 | |
|   // We can use the context instruction (generically the ultimate instruction
 | |
|   // the calling pass is trying to simplify) here, even though the result of
 | |
|   // this function is generally cached when called from the solve* functions
 | |
|   // (and that cached result might be used with queries using a different
 | |
|   // context instruction), because when this function is called from the solve*
 | |
|   // functions, the context instruction is not provided. When called from
 | |
|   // LazyValueInfoCache::getValueOnEdge, the context instruction is provided,
 | |
|   // but then the result is not cached.
 | |
|   mergeAssumeBlockValueConstantRange(Val, Result, CxtI);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| LVILatticeVal LazyValueInfoCache::getValueInBlock(Value *V, BasicBlock *BB,
 | |
|                                                   Instruction *CxtI) {
 | |
|   DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
 | |
|         << BB->getName() << "'\n");
 | |
|   
 | |
|   assert(BlockValueStack.empty() && BlockValueSet.empty());
 | |
|   pushBlockValue(std::make_pair(BB, V));
 | |
| 
 | |
|   solve();
 | |
|   LVILatticeVal Result = getBlockValue(V, BB);
 | |
|   mergeAssumeBlockValueConstantRange(V, Result, CxtI);
 | |
| 
 | |
|   DEBUG(dbgs() << "  Result = " << Result << "\n");
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| LVILatticeVal LazyValueInfoCache::getValueAt(Value *V, Instruction *CxtI) {
 | |
|   DEBUG(dbgs() << "LVI Getting value " << *V << " at '"
 | |
|         << CxtI->getName() << "'\n");
 | |
| 
 | |
|   LVILatticeVal Result;
 | |
|   mergeAssumeBlockValueConstantRange(V, Result, CxtI);
 | |
| 
 | |
|   DEBUG(dbgs() << "  Result = " << Result << "\n");
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| LVILatticeVal LazyValueInfoCache::
 | |
| getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB,
 | |
|                Instruction *CxtI) {
 | |
|   DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
 | |
|         << FromBB->getName() << "' to '" << ToBB->getName() << "'\n");
 | |
|   
 | |
|   LVILatticeVal Result;
 | |
|   if (!getEdgeValue(V, FromBB, ToBB, Result, CxtI)) {
 | |
|     solve();
 | |
|     bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result, CxtI);
 | |
|     (void)WasFastQuery;
 | |
|     assert(WasFastQuery && "More work to do after problem solved?");
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "  Result = " << Result << "\n");
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| void LazyValueInfoCache::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
 | |
|                                     BasicBlock *NewSucc) {
 | |
|   // When an edge in the graph has been threaded, values that we could not 
 | |
|   // determine a value for before (i.e. were marked overdefined) may be possible
 | |
|   // to solve now.  We do NOT try to proactively update these values.  Instead,
 | |
|   // we clear their entries from the cache, and allow lazy updating to recompute
 | |
|   // them when needed.
 | |
|   
 | |
|   // The updating process is fairly simple: we need to drop cached info
 | |
|   // for all values that were marked overdefined in OldSucc, and for those same
 | |
|   // values in any successor of OldSucc (except NewSucc) in which they were
 | |
|   // also marked overdefined.
 | |
|   std::vector<BasicBlock*> worklist;
 | |
|   worklist.push_back(OldSucc);
 | |
|   
 | |
|   DenseSet<Value*> ClearSet;
 | |
|   for (OverDefinedPairTy &P : OverDefinedCache)
 | |
|     if (P.first == OldSucc)
 | |
|       ClearSet.insert(P.second);
 | |
|   
 | |
|   // Use a worklist to perform a depth-first search of OldSucc's successors.
 | |
|   // NOTE: We do not need a visited list since any blocks we have already
 | |
|   // visited will have had their overdefined markers cleared already, and we
 | |
|   // thus won't loop to their successors.
 | |
|   while (!worklist.empty()) {
 | |
|     BasicBlock *ToUpdate = worklist.back();
 | |
|     worklist.pop_back();
 | |
|     
 | |
|     // Skip blocks only accessible through NewSucc.
 | |
|     if (ToUpdate == NewSucc) continue;
 | |
|     
 | |
|     bool changed = false;
 | |
|     for (Value *V : ClearSet) {
 | |
|       // If a value was marked overdefined in OldSucc, and is here too...
 | |
|       DenseSet<OverDefinedPairTy>::iterator OI =
 | |
|         OverDefinedCache.find(std::make_pair(ToUpdate, V));
 | |
|       if (OI == OverDefinedCache.end()) continue;
 | |
| 
 | |
|       // Remove it from the caches.
 | |
|       ValueCacheEntryTy &Entry = ValueCache[LVIValueHandle(V, this)];
 | |
|       ValueCacheEntryTy::iterator CI = Entry.find(ToUpdate);
 | |
| 
 | |
|       assert(CI != Entry.end() && "Couldn't find entry to update?");
 | |
|       Entry.erase(CI);
 | |
|       OverDefinedCache.erase(OI);
 | |
| 
 | |
|       // If we removed anything, then we potentially need to update 
 | |
|       // blocks successors too.
 | |
|       changed = true;
 | |
|     }
 | |
| 
 | |
|     if (!changed) continue;
 | |
|     
 | |
|     worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate));
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                            LazyValueInfo Impl
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// This lazily constructs the LazyValueInfoCache.
 | |
| static LazyValueInfoCache &getCache(void *&PImpl, AssumptionCache *AC,
 | |
|                                     const DataLayout *DL,
 | |
|                                     DominatorTree *DT = nullptr) {
 | |
|   if (!PImpl) {
 | |
|     assert(DL && "getCache() called with a null DataLayout");
 | |
|     PImpl = new LazyValueInfoCache(AC, *DL, DT);
 | |
|   }
 | |
|   return *static_cast<LazyValueInfoCache*>(PImpl);
 | |
| }
 | |
| 
 | |
| bool LazyValueInfo::runOnFunction(Function &F) {
 | |
|   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
 | |
|   const DataLayout &DL = F.getParent()->getDataLayout();
 | |
| 
 | |
|   DominatorTreeWrapperPass *DTWP =
 | |
|       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
 | |
|   DT = DTWP ? &DTWP->getDomTree() : nullptr;
 | |
| 
 | |
|   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
 | |
| 
 | |
|   if (PImpl)
 | |
|     getCache(PImpl, AC, &DL, DT).clear();
 | |
| 
 | |
|   // Fully lazy.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void LazyValueInfo::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesAll();
 | |
|   AU.addRequired<AssumptionCacheTracker>();
 | |
|   AU.addRequired<TargetLibraryInfoWrapperPass>();
 | |
| }
 | |
| 
 | |
| void LazyValueInfo::releaseMemory() {
 | |
|   // If the cache was allocated, free it.
 | |
|   if (PImpl) {
 | |
|     delete &getCache(PImpl, AC, nullptr);
 | |
|     PImpl = nullptr;
 | |
|   }
 | |
| }
 | |
| 
 | |
| Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB,
 | |
|                                      Instruction *CxtI) {
 | |
|   const DataLayout &DL = BB->getModule()->getDataLayout();
 | |
|   LVILatticeVal Result =
 | |
|       getCache(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI);
 | |
| 
 | |
|   if (Result.isConstant())
 | |
|     return Result.getConstant();
 | |
|   if (Result.isConstantRange()) {
 | |
|     ConstantRange CR = Result.getConstantRange();
 | |
|     if (const APInt *SingleVal = CR.getSingleElement())
 | |
|       return ConstantInt::get(V->getContext(), *SingleVal);
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Determine whether the specified value is known to be a
 | |
| /// constant on the specified edge.  Return null if not.
 | |
| Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
 | |
|                                            BasicBlock *ToBB,
 | |
|                                            Instruction *CxtI) {
 | |
|   const DataLayout &DL = FromBB->getModule()->getDataLayout();
 | |
|   LVILatticeVal Result =
 | |
|       getCache(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
 | |
| 
 | |
|   if (Result.isConstant())
 | |
|     return Result.getConstant();
 | |
|   if (Result.isConstantRange()) {
 | |
|     ConstantRange CR = Result.getConstantRange();
 | |
|     if (const APInt *SingleVal = CR.getSingleElement())
 | |
|       return ConstantInt::get(V->getContext(), *SingleVal);
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static LazyValueInfo::Tristate getPredicateResult(unsigned Pred, Constant *C,
 | |
|                                                   LVILatticeVal &Result,
 | |
|                                                   const DataLayout &DL,
 | |
|                                                   TargetLibraryInfo *TLI) {
 | |
| 
 | |
|   // If we know the value is a constant, evaluate the conditional.
 | |
|   Constant *Res = nullptr;
 | |
|   if (Result.isConstant()) {
 | |
|     Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, DL,
 | |
|                                           TLI);
 | |
|     if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res))
 | |
|       return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True;
 | |
|     return LazyValueInfo::Unknown;
 | |
|   }
 | |
|   
 | |
|   if (Result.isConstantRange()) {
 | |
|     ConstantInt *CI = dyn_cast<ConstantInt>(C);
 | |
|     if (!CI) return LazyValueInfo::Unknown;
 | |
|     
 | |
|     ConstantRange CR = Result.getConstantRange();
 | |
|     if (Pred == ICmpInst::ICMP_EQ) {
 | |
|       if (!CR.contains(CI->getValue()))
 | |
|         return LazyValueInfo::False;
 | |
|       
 | |
|       if (CR.isSingleElement() && CR.contains(CI->getValue()))
 | |
|         return LazyValueInfo::True;
 | |
|     } else if (Pred == ICmpInst::ICMP_NE) {
 | |
|       if (!CR.contains(CI->getValue()))
 | |
|         return LazyValueInfo::True;
 | |
|       
 | |
|       if (CR.isSingleElement() && CR.contains(CI->getValue()))
 | |
|         return LazyValueInfo::False;
 | |
|     }
 | |
|     
 | |
|     // Handle more complex predicates.
 | |
|     ConstantRange TrueValues =
 | |
|         ICmpInst::makeConstantRange((ICmpInst::Predicate)Pred, CI->getValue());
 | |
|     if (TrueValues.contains(CR))
 | |
|       return LazyValueInfo::True;
 | |
|     if (TrueValues.inverse().contains(CR))
 | |
|       return LazyValueInfo::False;
 | |
|     return LazyValueInfo::Unknown;
 | |
|   }
 | |
|   
 | |
|   if (Result.isNotConstant()) {
 | |
|     // If this is an equality comparison, we can try to fold it knowing that
 | |
|     // "V != C1".
 | |
|     if (Pred == ICmpInst::ICMP_EQ) {
 | |
|       // !C1 == C -> false iff C1 == C.
 | |
|       Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
 | |
|                                             Result.getNotConstant(), C, DL,
 | |
|                                             TLI);
 | |
|       if (Res->isNullValue())
 | |
|         return LazyValueInfo::False;
 | |
|     } else if (Pred == ICmpInst::ICMP_NE) {
 | |
|       // !C1 != C -> true iff C1 == C.
 | |
|       Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
 | |
|                                             Result.getNotConstant(), C, DL,
 | |
|                                             TLI);
 | |
|       if (Res->isNullValue())
 | |
|         return LazyValueInfo::True;
 | |
|     }
 | |
|     return LazyValueInfo::Unknown;
 | |
|   }
 | |
|   
 | |
|   return LazyValueInfo::Unknown;
 | |
| }
 | |
| 
 | |
| /// Determine whether the specified value comparison with a constant is known to
 | |
| /// be true or false on the specified CFG edge. Pred is a CmpInst predicate.
 | |
| LazyValueInfo::Tristate
 | |
| LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
 | |
|                                   BasicBlock *FromBB, BasicBlock *ToBB,
 | |
|                                   Instruction *CxtI) {
 | |
|   const DataLayout &DL = FromBB->getModule()->getDataLayout();
 | |
|   LVILatticeVal Result =
 | |
|       getCache(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
 | |
| 
 | |
|   return getPredicateResult(Pred, C, Result, DL, TLI);
 | |
| }
 | |
| 
 | |
| LazyValueInfo::Tristate
 | |
| LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C,
 | |
|                               Instruction *CxtI) {
 | |
|   const DataLayout &DL = CxtI->getModule()->getDataLayout();
 | |
|   LVILatticeVal Result = getCache(PImpl, AC, &DL, DT).getValueAt(V, CxtI);
 | |
| 
 | |
|   return getPredicateResult(Pred, C, Result, DL, TLI);
 | |
| }
 | |
| 
 | |
| void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
 | |
|                                BasicBlock *NewSucc) {
 | |
|   if (PImpl) {
 | |
|     const DataLayout &DL = PredBB->getModule()->getDataLayout();
 | |
|     getCache(PImpl, AC, &DL, DT).threadEdge(PredBB, OldSucc, NewSucc);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void LazyValueInfo::eraseBlock(BasicBlock *BB) {
 | |
|   if (PImpl) {
 | |
|     const DataLayout &DL = BB->getModule()->getDataLayout();
 | |
|     getCache(PImpl, AC, &DL, DT).eraseBlock(BB);
 | |
|   }
 | |
| }
 |