mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	If the type isn't trivially moveable emplace can skip a potentially
expensive move. It also saves a couple of characters.
Call sites were found with the ASTMatcher + some semi-automated cleanup.
memberCallExpr(
    argumentCountIs(1), callee(methodDecl(hasName("push_back"))),
    on(hasType(recordDecl(has(namedDecl(hasName("emplace_back")))))),
    hasArgument(0, bindTemporaryExpr(
                       hasType(recordDecl(hasNonTrivialDestructor())),
                       has(constructExpr()))),
    unless(isInTemplateInstantiation()))
No functional change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238602 91177308-0d34-0410-b5e6-96231b3b80d8
		
	
		
			
				
	
	
		
			1945 lines
		
	
	
		
			76 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1945 lines
		
	
	
		
			76 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the implementation of the scalar evolution expander,
 | |
| // which is used to generate the code corresponding to a given scalar evolution
 | |
| // expression.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/ScalarEvolutionExpander.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
 | |
| /// reusing an existing cast if a suitable one exists, moving an existing
 | |
| /// cast if a suitable one exists but isn't in the right place, or
 | |
| /// creating a new one.
 | |
| Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
 | |
|                                        Instruction::CastOps Op,
 | |
|                                        BasicBlock::iterator IP) {
 | |
|   // This function must be called with the builder having a valid insertion
 | |
|   // point. It doesn't need to be the actual IP where the uses of the returned
 | |
|   // cast will be added, but it must dominate such IP.
 | |
|   // We use this precondition to produce a cast that will dominate all its
 | |
|   // uses. In particular, this is crucial for the case where the builder's
 | |
|   // insertion point *is* the point where we were asked to put the cast.
 | |
|   // Since we don't know the builder's insertion point is actually
 | |
|   // where the uses will be added (only that it dominates it), we are
 | |
|   // not allowed to move it.
 | |
|   BasicBlock::iterator BIP = Builder.GetInsertPoint();
 | |
| 
 | |
|   Instruction *Ret = nullptr;
 | |
| 
 | |
|   // Check to see if there is already a cast!
 | |
|   for (User *U : V->users())
 | |
|     if (U->getType() == Ty)
 | |
|       if (CastInst *CI = dyn_cast<CastInst>(U))
 | |
|         if (CI->getOpcode() == Op) {
 | |
|           // If the cast isn't where we want it, create a new cast at IP.
 | |
|           // Likewise, do not reuse a cast at BIP because it must dominate
 | |
|           // instructions that might be inserted before BIP.
 | |
|           if (BasicBlock::iterator(CI) != IP || BIP == IP) {
 | |
|             // Create a new cast, and leave the old cast in place in case
 | |
|             // it is being used as an insert point. Clear its operand
 | |
|             // so that it doesn't hold anything live.
 | |
|             Ret = CastInst::Create(Op, V, Ty, "", IP);
 | |
|             Ret->takeName(CI);
 | |
|             CI->replaceAllUsesWith(Ret);
 | |
|             CI->setOperand(0, UndefValue::get(V->getType()));
 | |
|             break;
 | |
|           }
 | |
|           Ret = CI;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|   // Create a new cast.
 | |
|   if (!Ret)
 | |
|     Ret = CastInst::Create(Op, V, Ty, V->getName(), IP);
 | |
| 
 | |
|   // We assert at the end of the function since IP might point to an
 | |
|   // instruction with different dominance properties than a cast
 | |
|   // (an invoke for example) and not dominate BIP (but the cast does).
 | |
|   assert(SE.DT->dominates(Ret, BIP));
 | |
| 
 | |
|   rememberInstruction(Ret);
 | |
|   return Ret;
 | |
| }
 | |
| 
 | |
| /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
 | |
| /// which must be possible with a noop cast, doing what we can to share
 | |
| /// the casts.
 | |
| Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
 | |
|   Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
 | |
|   assert((Op == Instruction::BitCast ||
 | |
|           Op == Instruction::PtrToInt ||
 | |
|           Op == Instruction::IntToPtr) &&
 | |
|          "InsertNoopCastOfTo cannot perform non-noop casts!");
 | |
|   assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
 | |
|          "InsertNoopCastOfTo cannot change sizes!");
 | |
| 
 | |
|   // Short-circuit unnecessary bitcasts.
 | |
|   if (Op == Instruction::BitCast) {
 | |
|     if (V->getType() == Ty)
 | |
|       return V;
 | |
|     if (CastInst *CI = dyn_cast<CastInst>(V)) {
 | |
|       if (CI->getOperand(0)->getType() == Ty)
 | |
|         return CI->getOperand(0);
 | |
|     }
 | |
|   }
 | |
|   // Short-circuit unnecessary inttoptr<->ptrtoint casts.
 | |
|   if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
 | |
|       SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
 | |
|     if (CastInst *CI = dyn_cast<CastInst>(V))
 | |
|       if ((CI->getOpcode() == Instruction::PtrToInt ||
 | |
|            CI->getOpcode() == Instruction::IntToPtr) &&
 | |
|           SE.getTypeSizeInBits(CI->getType()) ==
 | |
|           SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
 | |
|         return CI->getOperand(0);
 | |
|     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
 | |
|       if ((CE->getOpcode() == Instruction::PtrToInt ||
 | |
|            CE->getOpcode() == Instruction::IntToPtr) &&
 | |
|           SE.getTypeSizeInBits(CE->getType()) ==
 | |
|           SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
 | |
|         return CE->getOperand(0);
 | |
|   }
 | |
| 
 | |
|   // Fold a cast of a constant.
 | |
|   if (Constant *C = dyn_cast<Constant>(V))
 | |
|     return ConstantExpr::getCast(Op, C, Ty);
 | |
| 
 | |
|   // Cast the argument at the beginning of the entry block, after
 | |
|   // any bitcasts of other arguments.
 | |
|   if (Argument *A = dyn_cast<Argument>(V)) {
 | |
|     BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
 | |
|     while ((isa<BitCastInst>(IP) &&
 | |
|             isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
 | |
|             cast<BitCastInst>(IP)->getOperand(0) != A) ||
 | |
|            isa<DbgInfoIntrinsic>(IP) ||
 | |
|            isa<LandingPadInst>(IP))
 | |
|       ++IP;
 | |
|     return ReuseOrCreateCast(A, Ty, Op, IP);
 | |
|   }
 | |
| 
 | |
|   // Cast the instruction immediately after the instruction.
 | |
|   Instruction *I = cast<Instruction>(V);
 | |
|   BasicBlock::iterator IP = I; ++IP;
 | |
|   if (InvokeInst *II = dyn_cast<InvokeInst>(I))
 | |
|     IP = II->getNormalDest()->begin();
 | |
|   while (isa<PHINode>(IP) || isa<LandingPadInst>(IP))
 | |
|     ++IP;
 | |
|   return ReuseOrCreateCast(I, Ty, Op, IP);
 | |
| }
 | |
| 
 | |
| /// InsertBinop - Insert the specified binary operator, doing a small amount
 | |
| /// of work to avoid inserting an obviously redundant operation.
 | |
| Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
 | |
|                                  Value *LHS, Value *RHS) {
 | |
|   // Fold a binop with constant operands.
 | |
|   if (Constant *CLHS = dyn_cast<Constant>(LHS))
 | |
|     if (Constant *CRHS = dyn_cast<Constant>(RHS))
 | |
|       return ConstantExpr::get(Opcode, CLHS, CRHS);
 | |
| 
 | |
|   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
 | |
|   unsigned ScanLimit = 6;
 | |
|   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
 | |
|   // Scanning starts from the last instruction before the insertion point.
 | |
|   BasicBlock::iterator IP = Builder.GetInsertPoint();
 | |
|   if (IP != BlockBegin) {
 | |
|     --IP;
 | |
|     for (; ScanLimit; --IP, --ScanLimit) {
 | |
|       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
 | |
|       // generated code.
 | |
|       if (isa<DbgInfoIntrinsic>(IP))
 | |
|         ScanLimit++;
 | |
|       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
 | |
|           IP->getOperand(1) == RHS)
 | |
|         return IP;
 | |
|       if (IP == BlockBegin) break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Save the original insertion point so we can restore it when we're done.
 | |
|   DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
 | |
|   BuilderType::InsertPointGuard Guard(Builder);
 | |
| 
 | |
|   // Move the insertion point out of as many loops as we can.
 | |
|   while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
 | |
|     if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
 | |
|     BasicBlock *Preheader = L->getLoopPreheader();
 | |
|     if (!Preheader) break;
 | |
| 
 | |
|     // Ok, move up a level.
 | |
|     Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
 | |
|   }
 | |
| 
 | |
|   // If we haven't found this binop, insert it.
 | |
|   Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
 | |
|   BO->setDebugLoc(Loc);
 | |
|   rememberInstruction(BO);
 | |
| 
 | |
|   return BO;
 | |
| }
 | |
| 
 | |
| /// FactorOutConstant - Test if S is divisible by Factor, using signed
 | |
| /// division. If so, update S with Factor divided out and return true.
 | |
| /// S need not be evenly divisible if a reasonable remainder can be
 | |
| /// computed.
 | |
| /// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
 | |
| /// unnecessary; in its place, just signed-divide Ops[i] by the scale and
 | |
| /// check to see if the divide was folded.
 | |
| static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder,
 | |
|                               const SCEV *Factor, ScalarEvolution &SE,
 | |
|                               const DataLayout &DL) {
 | |
|   // Everything is divisible by one.
 | |
|   if (Factor->isOne())
 | |
|     return true;
 | |
| 
 | |
|   // x/x == 1.
 | |
|   if (S == Factor) {
 | |
|     S = SE.getConstant(S->getType(), 1);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // For a Constant, check for a multiple of the given factor.
 | |
|   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
 | |
|     // 0/x == 0.
 | |
|     if (C->isZero())
 | |
|       return true;
 | |
|     // Check for divisibility.
 | |
|     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
 | |
|       ConstantInt *CI =
 | |
|         ConstantInt::get(SE.getContext(),
 | |
|                          C->getValue()->getValue().sdiv(
 | |
|                                                    FC->getValue()->getValue()));
 | |
|       // If the quotient is zero and the remainder is non-zero, reject
 | |
|       // the value at this scale. It will be considered for subsequent
 | |
|       // smaller scales.
 | |
|       if (!CI->isZero()) {
 | |
|         const SCEV *Div = SE.getConstant(CI);
 | |
|         S = Div;
 | |
|         Remainder =
 | |
|           SE.getAddExpr(Remainder,
 | |
|                         SE.getConstant(C->getValue()->getValue().srem(
 | |
|                                                   FC->getValue()->getValue())));
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // In a Mul, check if there is a constant operand which is a multiple
 | |
|   // of the given factor.
 | |
|   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
 | |
|     // Size is known, check if there is a constant operand which is a multiple
 | |
|     // of the given factor. If so, we can factor it.
 | |
|     const SCEVConstant *FC = cast<SCEVConstant>(Factor);
 | |
|     if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
 | |
|       if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) {
 | |
|         SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
 | |
|         NewMulOps[0] = SE.getConstant(
 | |
|             C->getValue()->getValue().sdiv(FC->getValue()->getValue()));
 | |
|         S = SE.getMulExpr(NewMulOps);
 | |
|         return true;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // In an AddRec, check if both start and step are divisible.
 | |
|   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
 | |
|     const SCEV *Step = A->getStepRecurrence(SE);
 | |
|     const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
 | |
|     if (!FactorOutConstant(Step, StepRem, Factor, SE, DL))
 | |
|       return false;
 | |
|     if (!StepRem->isZero())
 | |
|       return false;
 | |
|     const SCEV *Start = A->getStart();
 | |
|     if (!FactorOutConstant(Start, Remainder, Factor, SE, DL))
 | |
|       return false;
 | |
|     S = SE.getAddRecExpr(Start, Step, A->getLoop(),
 | |
|                          A->getNoWrapFlags(SCEV::FlagNW));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
 | |
| /// is the number of SCEVAddRecExprs present, which are kept at the end of
 | |
| /// the list.
 | |
| ///
 | |
| static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
 | |
|                                 Type *Ty,
 | |
|                                 ScalarEvolution &SE) {
 | |
|   unsigned NumAddRecs = 0;
 | |
|   for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
 | |
|     ++NumAddRecs;
 | |
|   // Group Ops into non-addrecs and addrecs.
 | |
|   SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
 | |
|   SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
 | |
|   // Let ScalarEvolution sort and simplify the non-addrecs list.
 | |
|   const SCEV *Sum = NoAddRecs.empty() ?
 | |
|                     SE.getConstant(Ty, 0) :
 | |
|                     SE.getAddExpr(NoAddRecs);
 | |
|   // If it returned an add, use the operands. Otherwise it simplified
 | |
|   // the sum into a single value, so just use that.
 | |
|   Ops.clear();
 | |
|   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
 | |
|     Ops.append(Add->op_begin(), Add->op_end());
 | |
|   else if (!Sum->isZero())
 | |
|     Ops.push_back(Sum);
 | |
|   // Then append the addrecs.
 | |
|   Ops.append(AddRecs.begin(), AddRecs.end());
 | |
| }
 | |
| 
 | |
| /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
 | |
| /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
 | |
| /// This helps expose more opportunities for folding parts of the expressions
 | |
| /// into GEP indices.
 | |
| ///
 | |
| static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
 | |
|                          Type *Ty,
 | |
|                          ScalarEvolution &SE) {
 | |
|   // Find the addrecs.
 | |
|   SmallVector<const SCEV *, 8> AddRecs;
 | |
|   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | |
|     while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
 | |
|       const SCEV *Start = A->getStart();
 | |
|       if (Start->isZero()) break;
 | |
|       const SCEV *Zero = SE.getConstant(Ty, 0);
 | |
|       AddRecs.push_back(SE.getAddRecExpr(Zero,
 | |
|                                          A->getStepRecurrence(SE),
 | |
|                                          A->getLoop(),
 | |
|                                          A->getNoWrapFlags(SCEV::FlagNW)));
 | |
|       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
 | |
|         Ops[i] = Zero;
 | |
|         Ops.append(Add->op_begin(), Add->op_end());
 | |
|         e += Add->getNumOperands();
 | |
|       } else {
 | |
|         Ops[i] = Start;
 | |
|       }
 | |
|     }
 | |
|   if (!AddRecs.empty()) {
 | |
|     // Add the addrecs onto the end of the list.
 | |
|     Ops.append(AddRecs.begin(), AddRecs.end());
 | |
|     // Resort the operand list, moving any constants to the front.
 | |
|     SimplifyAddOperands(Ops, Ty, SE);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// expandAddToGEP - Expand an addition expression with a pointer type into
 | |
| /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
 | |
| /// BasicAliasAnalysis and other passes analyze the result. See the rules
 | |
| /// for getelementptr vs. inttoptr in
 | |
| /// http://llvm.org/docs/LangRef.html#pointeraliasing
 | |
| /// for details.
 | |
| ///
 | |
| /// Design note: The correctness of using getelementptr here depends on
 | |
| /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
 | |
| /// they may introduce pointer arithmetic which may not be safely converted
 | |
| /// into getelementptr.
 | |
| ///
 | |
| /// Design note: It might seem desirable for this function to be more
 | |
| /// loop-aware. If some of the indices are loop-invariant while others
 | |
| /// aren't, it might seem desirable to emit multiple GEPs, keeping the
 | |
| /// loop-invariant portions of the overall computation outside the loop.
 | |
| /// However, there are a few reasons this is not done here. Hoisting simple
 | |
| /// arithmetic is a low-level optimization that often isn't very
 | |
| /// important until late in the optimization process. In fact, passes
 | |
| /// like InstructionCombining will combine GEPs, even if it means
 | |
| /// pushing loop-invariant computation down into loops, so even if the
 | |
| /// GEPs were split here, the work would quickly be undone. The
 | |
| /// LoopStrengthReduction pass, which is usually run quite late (and
 | |
| /// after the last InstructionCombining pass), takes care of hoisting
 | |
| /// loop-invariant portions of expressions, after considering what
 | |
| /// can be folded using target addressing modes.
 | |
| ///
 | |
| Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
 | |
|                                     const SCEV *const *op_end,
 | |
|                                     PointerType *PTy,
 | |
|                                     Type *Ty,
 | |
|                                     Value *V) {
 | |
|   Type *OriginalElTy = PTy->getElementType();
 | |
|   Type *ElTy = OriginalElTy;
 | |
|   SmallVector<Value *, 4> GepIndices;
 | |
|   SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
 | |
|   bool AnyNonZeroIndices = false;
 | |
| 
 | |
|   // Split AddRecs up into parts as either of the parts may be usable
 | |
|   // without the other.
 | |
|   SplitAddRecs(Ops, Ty, SE);
 | |
| 
 | |
|   Type *IntPtrTy = DL.getIntPtrType(PTy);
 | |
| 
 | |
|   // Descend down the pointer's type and attempt to convert the other
 | |
|   // operands into GEP indices, at each level. The first index in a GEP
 | |
|   // indexes into the array implied by the pointer operand; the rest of
 | |
|   // the indices index into the element or field type selected by the
 | |
|   // preceding index.
 | |
|   for (;;) {
 | |
|     // If the scale size is not 0, attempt to factor out a scale for
 | |
|     // array indexing.
 | |
|     SmallVector<const SCEV *, 8> ScaledOps;
 | |
|     if (ElTy->isSized()) {
 | |
|       const SCEV *ElSize = SE.getSizeOfExpr(IntPtrTy, ElTy);
 | |
|       if (!ElSize->isZero()) {
 | |
|         SmallVector<const SCEV *, 8> NewOps;
 | |
|         for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | |
|           const SCEV *Op = Ops[i];
 | |
|           const SCEV *Remainder = SE.getConstant(Ty, 0);
 | |
|           if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) {
 | |
|             // Op now has ElSize factored out.
 | |
|             ScaledOps.push_back(Op);
 | |
|             if (!Remainder->isZero())
 | |
|               NewOps.push_back(Remainder);
 | |
|             AnyNonZeroIndices = true;
 | |
|           } else {
 | |
|             // The operand was not divisible, so add it to the list of operands
 | |
|             // we'll scan next iteration.
 | |
|             NewOps.push_back(Ops[i]);
 | |
|           }
 | |
|         }
 | |
|         // If we made any changes, update Ops.
 | |
|         if (!ScaledOps.empty()) {
 | |
|           Ops = NewOps;
 | |
|           SimplifyAddOperands(Ops, Ty, SE);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Record the scaled array index for this level of the type. If
 | |
|     // we didn't find any operands that could be factored, tentatively
 | |
|     // assume that element zero was selected (since the zero offset
 | |
|     // would obviously be folded away).
 | |
|     Value *Scaled = ScaledOps.empty() ?
 | |
|                     Constant::getNullValue(Ty) :
 | |
|                     expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
 | |
|     GepIndices.push_back(Scaled);
 | |
| 
 | |
|     // Collect struct field index operands.
 | |
|     while (StructType *STy = dyn_cast<StructType>(ElTy)) {
 | |
|       bool FoundFieldNo = false;
 | |
|       // An empty struct has no fields.
 | |
|       if (STy->getNumElements() == 0) break;
 | |
|       // Field offsets are known. See if a constant offset falls within any of
 | |
|       // the struct fields.
 | |
|       if (Ops.empty())
 | |
|         break;
 | |
|       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
 | |
|         if (SE.getTypeSizeInBits(C->getType()) <= 64) {
 | |
|           const StructLayout &SL = *DL.getStructLayout(STy);
 | |
|           uint64_t FullOffset = C->getValue()->getZExtValue();
 | |
|           if (FullOffset < SL.getSizeInBytes()) {
 | |
|             unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
 | |
|             GepIndices.push_back(
 | |
|                 ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
 | |
|             ElTy = STy->getTypeAtIndex(ElIdx);
 | |
|             Ops[0] =
 | |
|                 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
 | |
|             AnyNonZeroIndices = true;
 | |
|             FoundFieldNo = true;
 | |
|           }
 | |
|         }
 | |
|       // If no struct field offsets were found, tentatively assume that
 | |
|       // field zero was selected (since the zero offset would obviously
 | |
|       // be folded away).
 | |
|       if (!FoundFieldNo) {
 | |
|         ElTy = STy->getTypeAtIndex(0u);
 | |
|         GepIndices.push_back(
 | |
|           Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
 | |
|       ElTy = ATy->getElementType();
 | |
|     else
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   // If none of the operands were convertible to proper GEP indices, cast
 | |
|   // the base to i8* and do an ugly getelementptr with that. It's still
 | |
|   // better than ptrtoint+arithmetic+inttoptr at least.
 | |
|   if (!AnyNonZeroIndices) {
 | |
|     // Cast the base to i8*.
 | |
|     V = InsertNoopCastOfTo(V,
 | |
|        Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
 | |
| 
 | |
|     assert(!isa<Instruction>(V) ||
 | |
|            SE.DT->dominates(cast<Instruction>(V), Builder.GetInsertPoint()));
 | |
| 
 | |
|     // Expand the operands for a plain byte offset.
 | |
|     Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
 | |
| 
 | |
|     // Fold a GEP with constant operands.
 | |
|     if (Constant *CLHS = dyn_cast<Constant>(V))
 | |
|       if (Constant *CRHS = dyn_cast<Constant>(Idx))
 | |
|         return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()),
 | |
|                                               CLHS, CRHS);
 | |
| 
 | |
|     // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
 | |
|     unsigned ScanLimit = 6;
 | |
|     BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
 | |
|     // Scanning starts from the last instruction before the insertion point.
 | |
|     BasicBlock::iterator IP = Builder.GetInsertPoint();
 | |
|     if (IP != BlockBegin) {
 | |
|       --IP;
 | |
|       for (; ScanLimit; --IP, --ScanLimit) {
 | |
|         // Don't count dbg.value against the ScanLimit, to avoid perturbing the
 | |
|         // generated code.
 | |
|         if (isa<DbgInfoIntrinsic>(IP))
 | |
|           ScanLimit++;
 | |
|         if (IP->getOpcode() == Instruction::GetElementPtr &&
 | |
|             IP->getOperand(0) == V && IP->getOperand(1) == Idx)
 | |
|           return IP;
 | |
|         if (IP == BlockBegin) break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Save the original insertion point so we can restore it when we're done.
 | |
|     BuilderType::InsertPointGuard Guard(Builder);
 | |
| 
 | |
|     // Move the insertion point out of as many loops as we can.
 | |
|     while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
 | |
|       if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
 | |
|       BasicBlock *Preheader = L->getLoopPreheader();
 | |
|       if (!Preheader) break;
 | |
| 
 | |
|       // Ok, move up a level.
 | |
|       Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
 | |
|     }
 | |
| 
 | |
|     // Emit a GEP.
 | |
|     Value *GEP = Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep");
 | |
|     rememberInstruction(GEP);
 | |
| 
 | |
|     return GEP;
 | |
|   }
 | |
| 
 | |
|   // Save the original insertion point so we can restore it when we're done.
 | |
|   BuilderType::InsertPoint SaveInsertPt = Builder.saveIP();
 | |
| 
 | |
|   // Move the insertion point out of as many loops as we can.
 | |
|   while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
 | |
|     if (!L->isLoopInvariant(V)) break;
 | |
| 
 | |
|     bool AnyIndexNotLoopInvariant = false;
 | |
|     for (SmallVectorImpl<Value *>::const_iterator I = GepIndices.begin(),
 | |
|          E = GepIndices.end(); I != E; ++I)
 | |
|       if (!L->isLoopInvariant(*I)) {
 | |
|         AnyIndexNotLoopInvariant = true;
 | |
|         break;
 | |
|       }
 | |
|     if (AnyIndexNotLoopInvariant)
 | |
|       break;
 | |
| 
 | |
|     BasicBlock *Preheader = L->getLoopPreheader();
 | |
|     if (!Preheader) break;
 | |
| 
 | |
|     // Ok, move up a level.
 | |
|     Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
 | |
|   }
 | |
| 
 | |
|   // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
 | |
|   // because ScalarEvolution may have changed the address arithmetic to
 | |
|   // compute a value which is beyond the end of the allocated object.
 | |
|   Value *Casted = V;
 | |
|   if (V->getType() != PTy)
 | |
|     Casted = InsertNoopCastOfTo(Casted, PTy);
 | |
|   Value *GEP = Builder.CreateGEP(OriginalElTy, Casted,
 | |
|                                  GepIndices,
 | |
|                                  "scevgep");
 | |
|   Ops.push_back(SE.getUnknown(GEP));
 | |
|   rememberInstruction(GEP);
 | |
| 
 | |
|   // Restore the original insert point.
 | |
|   Builder.restoreIP(SaveInsertPt);
 | |
| 
 | |
|   return expand(SE.getAddExpr(Ops));
 | |
| }
 | |
| 
 | |
| /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
 | |
| /// SCEV expansion. If they are nested, this is the most nested. If they are
 | |
| /// neighboring, pick the later.
 | |
| static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
 | |
|                                         DominatorTree &DT) {
 | |
|   if (!A) return B;
 | |
|   if (!B) return A;
 | |
|   if (A->contains(B)) return B;
 | |
|   if (B->contains(A)) return A;
 | |
|   if (DT.dominates(A->getHeader(), B->getHeader())) return B;
 | |
|   if (DT.dominates(B->getHeader(), A->getHeader())) return A;
 | |
|   return A; // Arbitrarily break the tie.
 | |
| }
 | |
| 
 | |
| /// getRelevantLoop - Get the most relevant loop associated with the given
 | |
| /// expression, according to PickMostRelevantLoop.
 | |
| const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
 | |
|   // Test whether we've already computed the most relevant loop for this SCEV.
 | |
|   std::pair<DenseMap<const SCEV *, const Loop *>::iterator, bool> Pair =
 | |
|     RelevantLoops.insert(std::make_pair(S, nullptr));
 | |
|   if (!Pair.second)
 | |
|     return Pair.first->second;
 | |
| 
 | |
|   if (isa<SCEVConstant>(S))
 | |
|     // A constant has no relevant loops.
 | |
|     return nullptr;
 | |
|   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
 | |
|     if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
 | |
|       return Pair.first->second = SE.LI->getLoopFor(I->getParent());
 | |
|     // A non-instruction has no relevant loops.
 | |
|     return nullptr;
 | |
|   }
 | |
|   if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
 | |
|     const Loop *L = nullptr;
 | |
|     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
 | |
|       L = AR->getLoop();
 | |
|     for (SCEVNAryExpr::op_iterator I = N->op_begin(), E = N->op_end();
 | |
|          I != E; ++I)
 | |
|       L = PickMostRelevantLoop(L, getRelevantLoop(*I), *SE.DT);
 | |
|     return RelevantLoops[N] = L;
 | |
|   }
 | |
|   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
 | |
|     const Loop *Result = getRelevantLoop(C->getOperand());
 | |
|     return RelevantLoops[C] = Result;
 | |
|   }
 | |
|   if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
 | |
|     const Loop *Result =
 | |
|       PickMostRelevantLoop(getRelevantLoop(D->getLHS()),
 | |
|                            getRelevantLoop(D->getRHS()),
 | |
|                            *SE.DT);
 | |
|     return RelevantLoops[D] = Result;
 | |
|   }
 | |
|   llvm_unreachable("Unexpected SCEV type!");
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// LoopCompare - Compare loops by PickMostRelevantLoop.
 | |
| class LoopCompare {
 | |
|   DominatorTree &DT;
 | |
| public:
 | |
|   explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
 | |
| 
 | |
|   bool operator()(std::pair<const Loop *, const SCEV *> LHS,
 | |
|                   std::pair<const Loop *, const SCEV *> RHS) const {
 | |
|     // Keep pointer operands sorted at the end.
 | |
|     if (LHS.second->getType()->isPointerTy() !=
 | |
|         RHS.second->getType()->isPointerTy())
 | |
|       return LHS.second->getType()->isPointerTy();
 | |
| 
 | |
|     // Compare loops with PickMostRelevantLoop.
 | |
|     if (LHS.first != RHS.first)
 | |
|       return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
 | |
| 
 | |
|     // If one operand is a non-constant negative and the other is not,
 | |
|     // put the non-constant negative on the right so that a sub can
 | |
|     // be used instead of a negate and add.
 | |
|     if (LHS.second->isNonConstantNegative()) {
 | |
|       if (!RHS.second->isNonConstantNegative())
 | |
|         return false;
 | |
|     } else if (RHS.second->isNonConstantNegative())
 | |
|       return true;
 | |
| 
 | |
|     // Otherwise they are equivalent according to this comparison.
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
 | |
|   Type *Ty = SE.getEffectiveSCEVType(S->getType());
 | |
| 
 | |
|   // Collect all the add operands in a loop, along with their associated loops.
 | |
|   // Iterate in reverse so that constants are emitted last, all else equal, and
 | |
|   // so that pointer operands are inserted first, which the code below relies on
 | |
|   // to form more involved GEPs.
 | |
|   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
 | |
|   for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
 | |
|        E(S->op_begin()); I != E; ++I)
 | |
|     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
 | |
| 
 | |
|   // Sort by loop. Use a stable sort so that constants follow non-constants and
 | |
|   // pointer operands precede non-pointer operands.
 | |
|   std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
 | |
| 
 | |
|   // Emit instructions to add all the operands. Hoist as much as possible
 | |
|   // out of loops, and form meaningful getelementptrs where possible.
 | |
|   Value *Sum = nullptr;
 | |
|   for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
 | |
|        I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
 | |
|     const Loop *CurLoop = I->first;
 | |
|     const SCEV *Op = I->second;
 | |
|     if (!Sum) {
 | |
|       // This is the first operand. Just expand it.
 | |
|       Sum = expand(Op);
 | |
|       ++I;
 | |
|     } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
 | |
|       // The running sum expression is a pointer. Try to form a getelementptr
 | |
|       // at this level with that as the base.
 | |
|       SmallVector<const SCEV *, 4> NewOps;
 | |
|       for (; I != E && I->first == CurLoop; ++I) {
 | |
|         // If the operand is SCEVUnknown and not instructions, peek through
 | |
|         // it, to enable more of it to be folded into the GEP.
 | |
|         const SCEV *X = I->second;
 | |
|         if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
 | |
|           if (!isa<Instruction>(U->getValue()))
 | |
|             X = SE.getSCEV(U->getValue());
 | |
|         NewOps.push_back(X);
 | |
|       }
 | |
|       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
 | |
|     } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
 | |
|       // The running sum is an integer, and there's a pointer at this level.
 | |
|       // Try to form a getelementptr. If the running sum is instructions,
 | |
|       // use a SCEVUnknown to avoid re-analyzing them.
 | |
|       SmallVector<const SCEV *, 4> NewOps;
 | |
|       NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
 | |
|                                                SE.getSCEV(Sum));
 | |
|       for (++I; I != E && I->first == CurLoop; ++I)
 | |
|         NewOps.push_back(I->second);
 | |
|       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
 | |
|     } else if (Op->isNonConstantNegative()) {
 | |
|       // Instead of doing a negate and add, just do a subtract.
 | |
|       Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
 | |
|       Sum = InsertNoopCastOfTo(Sum, Ty);
 | |
|       Sum = InsertBinop(Instruction::Sub, Sum, W);
 | |
|       ++I;
 | |
|     } else {
 | |
|       // A simple add.
 | |
|       Value *W = expandCodeFor(Op, Ty);
 | |
|       Sum = InsertNoopCastOfTo(Sum, Ty);
 | |
|       // Canonicalize a constant to the RHS.
 | |
|       if (isa<Constant>(Sum)) std::swap(Sum, W);
 | |
|       Sum = InsertBinop(Instruction::Add, Sum, W);
 | |
|       ++I;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Sum;
 | |
| }
 | |
| 
 | |
| Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
 | |
|   Type *Ty = SE.getEffectiveSCEVType(S->getType());
 | |
| 
 | |
|   // Collect all the mul operands in a loop, along with their associated loops.
 | |
|   // Iterate in reverse so that constants are emitted last, all else equal.
 | |
|   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
 | |
|   for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
 | |
|        E(S->op_begin()); I != E; ++I)
 | |
|     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
 | |
| 
 | |
|   // Sort by loop. Use a stable sort so that constants follow non-constants.
 | |
|   std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
 | |
| 
 | |
|   // Emit instructions to mul all the operands. Hoist as much as possible
 | |
|   // out of loops.
 | |
|   Value *Prod = nullptr;
 | |
|   for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
 | |
|        I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
 | |
|     const SCEV *Op = I->second;
 | |
|     if (!Prod) {
 | |
|       // This is the first operand. Just expand it.
 | |
|       Prod = expand(Op);
 | |
|       ++I;
 | |
|     } else if (Op->isAllOnesValue()) {
 | |
|       // Instead of doing a multiply by negative one, just do a negate.
 | |
|       Prod = InsertNoopCastOfTo(Prod, Ty);
 | |
|       Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod);
 | |
|       ++I;
 | |
|     } else {
 | |
|       // A simple mul.
 | |
|       Value *W = expandCodeFor(Op, Ty);
 | |
|       Prod = InsertNoopCastOfTo(Prod, Ty);
 | |
|       // Canonicalize a constant to the RHS.
 | |
|       if (isa<Constant>(Prod)) std::swap(Prod, W);
 | |
|       Prod = InsertBinop(Instruction::Mul, Prod, W);
 | |
|       ++I;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Prod;
 | |
| }
 | |
| 
 | |
| Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
 | |
|   Type *Ty = SE.getEffectiveSCEVType(S->getType());
 | |
| 
 | |
|   Value *LHS = expandCodeFor(S->getLHS(), Ty);
 | |
|   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
 | |
|     const APInt &RHS = SC->getValue()->getValue();
 | |
|     if (RHS.isPowerOf2())
 | |
|       return InsertBinop(Instruction::LShr, LHS,
 | |
|                          ConstantInt::get(Ty, RHS.logBase2()));
 | |
|   }
 | |
| 
 | |
|   Value *RHS = expandCodeFor(S->getRHS(), Ty);
 | |
|   return InsertBinop(Instruction::UDiv, LHS, RHS);
 | |
| }
 | |
| 
 | |
| /// Move parts of Base into Rest to leave Base with the minimal
 | |
| /// expression that provides a pointer operand suitable for a
 | |
| /// GEP expansion.
 | |
| static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
 | |
|                               ScalarEvolution &SE) {
 | |
|   while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
 | |
|     Base = A->getStart();
 | |
|     Rest = SE.getAddExpr(Rest,
 | |
|                          SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
 | |
|                                           A->getStepRecurrence(SE),
 | |
|                                           A->getLoop(),
 | |
|                                           A->getNoWrapFlags(SCEV::FlagNW)));
 | |
|   }
 | |
|   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
 | |
|     Base = A->getOperand(A->getNumOperands()-1);
 | |
|     SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
 | |
|     NewAddOps.back() = Rest;
 | |
|     Rest = SE.getAddExpr(NewAddOps);
 | |
|     ExposePointerBase(Base, Rest, SE);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Determine if this is a well-behaved chain of instructions leading back to
 | |
| /// the PHI. If so, it may be reused by expanded expressions.
 | |
| bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
 | |
|                                          const Loop *L) {
 | |
|   if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
 | |
|       (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
 | |
|     return false;
 | |
|   // If any of the operands don't dominate the insert position, bail.
 | |
|   // Addrec operands are always loop-invariant, so this can only happen
 | |
|   // if there are instructions which haven't been hoisted.
 | |
|   if (L == IVIncInsertLoop) {
 | |
|     for (User::op_iterator OI = IncV->op_begin()+1,
 | |
|            OE = IncV->op_end(); OI != OE; ++OI)
 | |
|       if (Instruction *OInst = dyn_cast<Instruction>(OI))
 | |
|         if (!SE.DT->dominates(OInst, IVIncInsertPos))
 | |
|           return false;
 | |
|   }
 | |
|   // Advance to the next instruction.
 | |
|   IncV = dyn_cast<Instruction>(IncV->getOperand(0));
 | |
|   if (!IncV)
 | |
|     return false;
 | |
| 
 | |
|   if (IncV->mayHaveSideEffects())
 | |
|     return false;
 | |
| 
 | |
|   if (IncV != PN)
 | |
|     return true;
 | |
| 
 | |
|   return isNormalAddRecExprPHI(PN, IncV, L);
 | |
| }
 | |
| 
 | |
| /// getIVIncOperand returns an induction variable increment's induction
 | |
| /// variable operand.
 | |
| ///
 | |
| /// If allowScale is set, any type of GEP is allowed as long as the nonIV
 | |
| /// operands dominate InsertPos.
 | |
| ///
 | |
| /// If allowScale is not set, ensure that a GEP increment conforms to one of the
 | |
| /// simple patterns generated by getAddRecExprPHILiterally and
 | |
| /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
 | |
| Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
 | |
|                                            Instruction *InsertPos,
 | |
|                                            bool allowScale) {
 | |
|   if (IncV == InsertPos)
 | |
|     return nullptr;
 | |
| 
 | |
|   switch (IncV->getOpcode()) {
 | |
|   default:
 | |
|     return nullptr;
 | |
|   // Check for a simple Add/Sub or GEP of a loop invariant step.
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub: {
 | |
|     Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
 | |
|     if (!OInst || SE.DT->dominates(OInst, InsertPos))
 | |
|       return dyn_cast<Instruction>(IncV->getOperand(0));
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Instruction::BitCast:
 | |
|     return dyn_cast<Instruction>(IncV->getOperand(0));
 | |
|   case Instruction::GetElementPtr:
 | |
|     for (Instruction::op_iterator I = IncV->op_begin()+1, E = IncV->op_end();
 | |
|          I != E; ++I) {
 | |
|       if (isa<Constant>(*I))
 | |
|         continue;
 | |
|       if (Instruction *OInst = dyn_cast<Instruction>(*I)) {
 | |
|         if (!SE.DT->dominates(OInst, InsertPos))
 | |
|           return nullptr;
 | |
|       }
 | |
|       if (allowScale) {
 | |
|         // allow any kind of GEP as long as it can be hoisted.
 | |
|         continue;
 | |
|       }
 | |
|       // This must be a pointer addition of constants (pretty), which is already
 | |
|       // handled, or some number of address-size elements (ugly). Ugly geps
 | |
|       // have 2 operands. i1* is used by the expander to represent an
 | |
|       // address-size element.
 | |
|       if (IncV->getNumOperands() != 2)
 | |
|         return nullptr;
 | |
|       unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
 | |
|       if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
 | |
|           && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
 | |
|         return nullptr;
 | |
|       break;
 | |
|     }
 | |
|     return dyn_cast<Instruction>(IncV->getOperand(0));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
 | |
| /// it available to other uses in this loop. Recursively hoist any operands,
 | |
| /// until we reach a value that dominates InsertPos.
 | |
| bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
 | |
|   if (SE.DT->dominates(IncV, InsertPos))
 | |
|       return true;
 | |
| 
 | |
|   // InsertPos must itself dominate IncV so that IncV's new position satisfies
 | |
|   // its existing users.
 | |
|   if (isa<PHINode>(InsertPos)
 | |
|       || !SE.DT->dominates(InsertPos->getParent(), IncV->getParent()))
 | |
|     return false;
 | |
| 
 | |
|   // Check that the chain of IV operands leading back to Phi can be hoisted.
 | |
|   SmallVector<Instruction*, 4> IVIncs;
 | |
|   for(;;) {
 | |
|     Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
 | |
|     if (!Oper)
 | |
|       return false;
 | |
|     // IncV is safe to hoist.
 | |
|     IVIncs.push_back(IncV);
 | |
|     IncV = Oper;
 | |
|     if (SE.DT->dominates(IncV, InsertPos))
 | |
|       break;
 | |
|   }
 | |
|   for (SmallVectorImpl<Instruction*>::reverse_iterator I = IVIncs.rbegin(),
 | |
|          E = IVIncs.rend(); I != E; ++I) {
 | |
|     (*I)->moveBefore(InsertPos);
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Determine if this cyclic phi is in a form that would have been generated by
 | |
| /// LSR. We don't care if the phi was actually expanded in this pass, as long
 | |
| /// as it is in a low-cost form, for example, no implied multiplication. This
 | |
| /// should match any patterns generated by getAddRecExprPHILiterally and
 | |
| /// expandAddtoGEP.
 | |
| bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
 | |
|                                            const Loop *L) {
 | |
|   for(Instruction *IVOper = IncV;
 | |
|       (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
 | |
|                                 /*allowScale=*/false));) {
 | |
|     if (IVOper == PN)
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
 | |
| /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
 | |
| /// need to materialize IV increments elsewhere to handle difficult situations.
 | |
| Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
 | |
|                                  Type *ExpandTy, Type *IntTy,
 | |
|                                  bool useSubtract) {
 | |
|   Value *IncV;
 | |
|   // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
 | |
|   if (ExpandTy->isPointerTy()) {
 | |
|     PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
 | |
|     // If the step isn't constant, don't use an implicitly scaled GEP, because
 | |
|     // that would require a multiply inside the loop.
 | |
|     if (!isa<ConstantInt>(StepV))
 | |
|       GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
 | |
|                                   GEPPtrTy->getAddressSpace());
 | |
|     const SCEV *const StepArray[1] = { SE.getSCEV(StepV) };
 | |
|     IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN);
 | |
|     if (IncV->getType() != PN->getType()) {
 | |
|       IncV = Builder.CreateBitCast(IncV, PN->getType());
 | |
|       rememberInstruction(IncV);
 | |
|     }
 | |
|   } else {
 | |
|     IncV = useSubtract ?
 | |
|       Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
 | |
|       Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
 | |
|     rememberInstruction(IncV);
 | |
|   }
 | |
|   return IncV;
 | |
| }
 | |
| 
 | |
| /// \brief Hoist the addrec instruction chain rooted in the loop phi above the
 | |
| /// position. This routine assumes that this is possible (has been checked).
 | |
| static void hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist,
 | |
|                            Instruction *Pos, PHINode *LoopPhi) {
 | |
|   do {
 | |
|     if (DT->dominates(InstToHoist, Pos))
 | |
|       break;
 | |
|     // Make sure the increment is where we want it. But don't move it
 | |
|     // down past a potential existing post-inc user.
 | |
|     InstToHoist->moveBefore(Pos);
 | |
|     Pos = InstToHoist;
 | |
|     InstToHoist = cast<Instruction>(InstToHoist->getOperand(0));
 | |
|   } while (InstToHoist != LoopPhi);
 | |
| }
 | |
| 
 | |
| /// \brief Check whether we can cheaply express the requested SCEV in terms of
 | |
| /// the available PHI SCEV by truncation and/or invertion of the step.
 | |
| static bool canBeCheaplyTransformed(ScalarEvolution &SE,
 | |
|                                     const SCEVAddRecExpr *Phi,
 | |
|                                     const SCEVAddRecExpr *Requested,
 | |
|                                     bool &InvertStep) {
 | |
|   Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
 | |
|   Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
 | |
| 
 | |
|   if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
 | |
|     return false;
 | |
| 
 | |
|   // Try truncate it if necessary.
 | |
|   Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
 | |
|   if (!Phi)
 | |
|     return false;
 | |
| 
 | |
|   // Check whether truncation will help.
 | |
|   if (Phi == Requested) {
 | |
|     InvertStep = false;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
 | |
|   if (SE.getAddExpr(Requested->getStart(),
 | |
|                     SE.getNegativeSCEV(Requested)) == Phi) {
 | |
|     InvertStep = true;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
 | |
|   if (!isa<IntegerType>(AR->getType()))
 | |
|     return false;
 | |
| 
 | |
|   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
 | |
|   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
 | |
|   const SCEV *Step = AR->getStepRecurrence(SE);
 | |
|   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
 | |
|                                             SE.getSignExtendExpr(AR, WideTy));
 | |
|   const SCEV *ExtendAfterOp =
 | |
|     SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
 | |
|   return ExtendAfterOp == OpAfterExtend;
 | |
| }
 | |
| 
 | |
| static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
 | |
|   if (!isa<IntegerType>(AR->getType()))
 | |
|     return false;
 | |
| 
 | |
|   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
 | |
|   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
 | |
|   const SCEV *Step = AR->getStepRecurrence(SE);
 | |
|   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
 | |
|                                             SE.getZeroExtendExpr(AR, WideTy));
 | |
|   const SCEV *ExtendAfterOp =
 | |
|     SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
 | |
|   return ExtendAfterOp == OpAfterExtend;
 | |
| }
 | |
| 
 | |
| /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
 | |
| /// the base addrec, which is the addrec without any non-loop-dominating
 | |
| /// values, and return the PHI.
 | |
| PHINode *
 | |
| SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
 | |
|                                         const Loop *L,
 | |
|                                         Type *ExpandTy,
 | |
|                                         Type *IntTy,
 | |
|                                         Type *&TruncTy,
 | |
|                                         bool &InvertStep) {
 | |
|   assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
 | |
| 
 | |
|   // Reuse a previously-inserted PHI, if present.
 | |
|   BasicBlock *LatchBlock = L->getLoopLatch();
 | |
|   if (LatchBlock) {
 | |
|     PHINode *AddRecPhiMatch = nullptr;
 | |
|     Instruction *IncV = nullptr;
 | |
|     TruncTy = nullptr;
 | |
|     InvertStep = false;
 | |
| 
 | |
|     // Only try partially matching scevs that need truncation and/or
 | |
|     // step-inversion if we know this loop is outside the current loop.
 | |
|     bool TryNonMatchingSCEV = IVIncInsertLoop &&
 | |
|       SE.DT->properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
 | |
| 
 | |
|     for (BasicBlock::iterator I = L->getHeader()->begin();
 | |
|          PHINode *PN = dyn_cast<PHINode>(I); ++I) {
 | |
|       if (!SE.isSCEVable(PN->getType()))
 | |
|         continue;
 | |
| 
 | |
|       const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PN));
 | |
|       if (!PhiSCEV)
 | |
|         continue;
 | |
| 
 | |
|       bool IsMatchingSCEV = PhiSCEV == Normalized;
 | |
|       // We only handle truncation and inversion of phi recurrences for the
 | |
|       // expanded expression if the expanded expression's loop dominates the
 | |
|       // loop we insert to. Check now, so we can bail out early.
 | |
|       if (!IsMatchingSCEV && !TryNonMatchingSCEV)
 | |
|           continue;
 | |
| 
 | |
|       Instruction *TempIncV =
 | |
|           cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
 | |
| 
 | |
|       // Check whether we can reuse this PHI node.
 | |
|       if (LSRMode) {
 | |
|         if (!isExpandedAddRecExprPHI(PN, TempIncV, L))
 | |
|           continue;
 | |
|         if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos))
 | |
|           continue;
 | |
|       } else {
 | |
|         if (!isNormalAddRecExprPHI(PN, TempIncV, L))
 | |
|           continue;
 | |
|       }
 | |
| 
 | |
|       // Stop if we have found an exact match SCEV.
 | |
|       if (IsMatchingSCEV) {
 | |
|         IncV = TempIncV;
 | |
|         TruncTy = nullptr;
 | |
|         InvertStep = false;
 | |
|         AddRecPhiMatch = PN;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // Try whether the phi can be translated into the requested form
 | |
|       // (truncated and/or offset by a constant).
 | |
|       if ((!TruncTy || InvertStep) &&
 | |
|           canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
 | |
|         // Record the phi node. But don't stop we might find an exact match
 | |
|         // later.
 | |
|         AddRecPhiMatch = PN;
 | |
|         IncV = TempIncV;
 | |
|         TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (AddRecPhiMatch) {
 | |
|       // Potentially, move the increment. We have made sure in
 | |
|       // isExpandedAddRecExprPHI or hoistIVInc that this is possible.
 | |
|       if (L == IVIncInsertLoop)
 | |
|         hoistBeforePos(SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch);
 | |
| 
 | |
|       // Ok, the add recurrence looks usable.
 | |
|       // Remember this PHI, even in post-inc mode.
 | |
|       InsertedValues.insert(AddRecPhiMatch);
 | |
|       // Remember the increment.
 | |
|       rememberInstruction(IncV);
 | |
|       return AddRecPhiMatch;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Save the original insertion point so we can restore it when we're done.
 | |
|   BuilderType::InsertPointGuard Guard(Builder);
 | |
| 
 | |
|   // Another AddRec may need to be recursively expanded below. For example, if
 | |
|   // this AddRec is quadratic, the StepV may itself be an AddRec in this
 | |
|   // loop. Remove this loop from the PostIncLoops set before expanding such
 | |
|   // AddRecs. Otherwise, we cannot find a valid position for the step
 | |
|   // (i.e. StepV can never dominate its loop header).  Ideally, we could do
 | |
|   // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
 | |
|   // so it's not worth implementing SmallPtrSet::swap.
 | |
|   PostIncLoopSet SavedPostIncLoops = PostIncLoops;
 | |
|   PostIncLoops.clear();
 | |
| 
 | |
|   // Expand code for the start value.
 | |
|   Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
 | |
|                                 L->getHeader()->begin());
 | |
| 
 | |
|   // StartV must be hoisted into L's preheader to dominate the new phi.
 | |
|   assert(!isa<Instruction>(StartV) ||
 | |
|          SE.DT->properlyDominates(cast<Instruction>(StartV)->getParent(),
 | |
|                                   L->getHeader()));
 | |
| 
 | |
|   // Expand code for the step value. Do this before creating the PHI so that PHI
 | |
|   // reuse code doesn't see an incomplete PHI.
 | |
|   const SCEV *Step = Normalized->getStepRecurrence(SE);
 | |
|   // If the stride is negative, insert a sub instead of an add for the increment
 | |
|   // (unless it's a constant, because subtracts of constants are canonicalized
 | |
|   // to adds).
 | |
|   bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
 | |
|   if (useSubtract)
 | |
|     Step = SE.getNegativeSCEV(Step);
 | |
|   // Expand the step somewhere that dominates the loop header.
 | |
|   Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
 | |
| 
 | |
|   // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
 | |
|   // we actually do emit an addition.  It does not apply if we emit a
 | |
|   // subtraction.
 | |
|   bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
 | |
|   bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
 | |
| 
 | |
|   // Create the PHI.
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   Builder.SetInsertPoint(Header, Header->begin());
 | |
|   pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
 | |
|   PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
 | |
|                                   Twine(IVName) + ".iv");
 | |
|   rememberInstruction(PN);
 | |
| 
 | |
|   // Create the step instructions and populate the PHI.
 | |
|   for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
 | |
|     BasicBlock *Pred = *HPI;
 | |
| 
 | |
|     // Add a start value.
 | |
|     if (!L->contains(Pred)) {
 | |
|       PN->addIncoming(StartV, Pred);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Create a step value and add it to the PHI.
 | |
|     // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
 | |
|     // instructions at IVIncInsertPos.
 | |
|     Instruction *InsertPos = L == IVIncInsertLoop ?
 | |
|       IVIncInsertPos : Pred->getTerminator();
 | |
|     Builder.SetInsertPoint(InsertPos);
 | |
|     Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
 | |
| 
 | |
|     if (isa<OverflowingBinaryOperator>(IncV)) {
 | |
|       if (IncrementIsNUW)
 | |
|         cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
 | |
|       if (IncrementIsNSW)
 | |
|         cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
 | |
|     }
 | |
|     PN->addIncoming(IncV, Pred);
 | |
|   }
 | |
| 
 | |
|   // After expanding subexpressions, restore the PostIncLoops set so the caller
 | |
|   // can ensure that IVIncrement dominates the current uses.
 | |
|   PostIncLoops = SavedPostIncLoops;
 | |
| 
 | |
|   // Remember this PHI, even in post-inc mode.
 | |
|   InsertedValues.insert(PN);
 | |
| 
 | |
|   return PN;
 | |
| }
 | |
| 
 | |
| Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
 | |
|   Type *STy = S->getType();
 | |
|   Type *IntTy = SE.getEffectiveSCEVType(STy);
 | |
|   const Loop *L = S->getLoop();
 | |
| 
 | |
|   // Determine a normalized form of this expression, which is the expression
 | |
|   // before any post-inc adjustment is made.
 | |
|   const SCEVAddRecExpr *Normalized = S;
 | |
|   if (PostIncLoops.count(L)) {
 | |
|     PostIncLoopSet Loops;
 | |
|     Loops.insert(L);
 | |
|     Normalized =
 | |
|       cast<SCEVAddRecExpr>(TransformForPostIncUse(Normalize, S, nullptr,
 | |
|                                                   nullptr, Loops, SE, *SE.DT));
 | |
|   }
 | |
| 
 | |
|   // Strip off any non-loop-dominating component from the addrec start.
 | |
|   const SCEV *Start = Normalized->getStart();
 | |
|   const SCEV *PostLoopOffset = nullptr;
 | |
|   if (!SE.properlyDominates(Start, L->getHeader())) {
 | |
|     PostLoopOffset = Start;
 | |
|     Start = SE.getConstant(Normalized->getType(), 0);
 | |
|     Normalized = cast<SCEVAddRecExpr>(
 | |
|       SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
 | |
|                        Normalized->getLoop(),
 | |
|                        Normalized->getNoWrapFlags(SCEV::FlagNW)));
 | |
|   }
 | |
| 
 | |
|   // Strip off any non-loop-dominating component from the addrec step.
 | |
|   const SCEV *Step = Normalized->getStepRecurrence(SE);
 | |
|   const SCEV *PostLoopScale = nullptr;
 | |
|   if (!SE.dominates(Step, L->getHeader())) {
 | |
|     PostLoopScale = Step;
 | |
|     Step = SE.getConstant(Normalized->getType(), 1);
 | |
|     Normalized =
 | |
|       cast<SCEVAddRecExpr>(SE.getAddRecExpr(
 | |
|                              Start, Step, Normalized->getLoop(),
 | |
|                              Normalized->getNoWrapFlags(SCEV::FlagNW)));
 | |
|   }
 | |
| 
 | |
|   // Expand the core addrec. If we need post-loop scaling, force it to
 | |
|   // expand to an integer type to avoid the need for additional casting.
 | |
|   Type *ExpandTy = PostLoopScale ? IntTy : STy;
 | |
|   // In some cases, we decide to reuse an existing phi node but need to truncate
 | |
|   // it and/or invert the step.
 | |
|   Type *TruncTy = nullptr;
 | |
|   bool InvertStep = false;
 | |
|   PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy,
 | |
|                                           TruncTy, InvertStep);
 | |
| 
 | |
|   // Accommodate post-inc mode, if necessary.
 | |
|   Value *Result;
 | |
|   if (!PostIncLoops.count(L))
 | |
|     Result = PN;
 | |
|   else {
 | |
|     // In PostInc mode, use the post-incremented value.
 | |
|     BasicBlock *LatchBlock = L->getLoopLatch();
 | |
|     assert(LatchBlock && "PostInc mode requires a unique loop latch!");
 | |
|     Result = PN->getIncomingValueForBlock(LatchBlock);
 | |
| 
 | |
|     // For an expansion to use the postinc form, the client must call
 | |
|     // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
 | |
|     // or dominated by IVIncInsertPos.
 | |
|     if (isa<Instruction>(Result)
 | |
|         && !SE.DT->dominates(cast<Instruction>(Result),
 | |
|                              Builder.GetInsertPoint())) {
 | |
|       // The induction variable's postinc expansion does not dominate this use.
 | |
|       // IVUsers tries to prevent this case, so it is rare. However, it can
 | |
|       // happen when an IVUser outside the loop is not dominated by the latch
 | |
|       // block. Adjusting IVIncInsertPos before expansion begins cannot handle
 | |
|       // all cases. Consider a phi outide whose operand is replaced during
 | |
|       // expansion with the value of the postinc user. Without fundamentally
 | |
|       // changing the way postinc users are tracked, the only remedy is
 | |
|       // inserting an extra IV increment. StepV might fold into PostLoopOffset,
 | |
|       // but hopefully expandCodeFor handles that.
 | |
|       bool useSubtract =
 | |
|         !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
 | |
|       if (useSubtract)
 | |
|         Step = SE.getNegativeSCEV(Step);
 | |
|       Value *StepV;
 | |
|       {
 | |
|         // Expand the step somewhere that dominates the loop header.
 | |
|         BuilderType::InsertPointGuard Guard(Builder);
 | |
|         StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
 | |
|       }
 | |
|       Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We have decided to reuse an induction variable of a dominating loop. Apply
 | |
|   // truncation and/or invertion of the step.
 | |
|   if (TruncTy) {
 | |
|     Type *ResTy = Result->getType();
 | |
|     // Normalize the result type.
 | |
|     if (ResTy != SE.getEffectiveSCEVType(ResTy))
 | |
|       Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
 | |
|     // Truncate the result.
 | |
|     if (TruncTy != Result->getType()) {
 | |
|       Result = Builder.CreateTrunc(Result, TruncTy);
 | |
|       rememberInstruction(Result);
 | |
|     }
 | |
|     // Invert the result.
 | |
|     if (InvertStep) {
 | |
|       Result = Builder.CreateSub(expandCodeFor(Normalized->getStart(), TruncTy),
 | |
|                                  Result);
 | |
|       rememberInstruction(Result);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Re-apply any non-loop-dominating scale.
 | |
|   if (PostLoopScale) {
 | |
|     assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
 | |
|     Result = InsertNoopCastOfTo(Result, IntTy);
 | |
|     Result = Builder.CreateMul(Result,
 | |
|                                expandCodeFor(PostLoopScale, IntTy));
 | |
|     rememberInstruction(Result);
 | |
|   }
 | |
| 
 | |
|   // Re-apply any non-loop-dominating offset.
 | |
|   if (PostLoopOffset) {
 | |
|     if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
 | |
|       const SCEV *const OffsetArray[1] = { PostLoopOffset };
 | |
|       Result = expandAddToGEP(OffsetArray, OffsetArray+1, PTy, IntTy, Result);
 | |
|     } else {
 | |
|       Result = InsertNoopCastOfTo(Result, IntTy);
 | |
|       Result = Builder.CreateAdd(Result,
 | |
|                                  expandCodeFor(PostLoopOffset, IntTy));
 | |
|       rememberInstruction(Result);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
 | |
|   if (!CanonicalMode) return expandAddRecExprLiterally(S);
 | |
| 
 | |
|   Type *Ty = SE.getEffectiveSCEVType(S->getType());
 | |
|   const Loop *L = S->getLoop();
 | |
| 
 | |
|   // First check for an existing canonical IV in a suitable type.
 | |
|   PHINode *CanonicalIV = nullptr;
 | |
|   if (PHINode *PN = L->getCanonicalInductionVariable())
 | |
|     if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
 | |
|       CanonicalIV = PN;
 | |
| 
 | |
|   // Rewrite an AddRec in terms of the canonical induction variable, if
 | |
|   // its type is more narrow.
 | |
|   if (CanonicalIV &&
 | |
|       SE.getTypeSizeInBits(CanonicalIV->getType()) >
 | |
|       SE.getTypeSizeInBits(Ty)) {
 | |
|     SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
 | |
|     for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
 | |
|       NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
 | |
|     Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
 | |
|                                        S->getNoWrapFlags(SCEV::FlagNW)));
 | |
|     BasicBlock::iterator NewInsertPt =
 | |
|       std::next(BasicBlock::iterator(cast<Instruction>(V)));
 | |
|     BuilderType::InsertPointGuard Guard(Builder);
 | |
|     while (isa<PHINode>(NewInsertPt) || isa<DbgInfoIntrinsic>(NewInsertPt) ||
 | |
|            isa<LandingPadInst>(NewInsertPt))
 | |
|       ++NewInsertPt;
 | |
|     V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
 | |
|                       NewInsertPt);
 | |
|     return V;
 | |
|   }
 | |
| 
 | |
|   // {X,+,F} --> X + {0,+,F}
 | |
|   if (!S->getStart()->isZero()) {
 | |
|     SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
 | |
|     NewOps[0] = SE.getConstant(Ty, 0);
 | |
|     const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
 | |
|                                         S->getNoWrapFlags(SCEV::FlagNW));
 | |
| 
 | |
|     // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
 | |
|     // comments on expandAddToGEP for details.
 | |
|     const SCEV *Base = S->getStart();
 | |
|     const SCEV *RestArray[1] = { Rest };
 | |
|     // Dig into the expression to find the pointer base for a GEP.
 | |
|     ExposePointerBase(Base, RestArray[0], SE);
 | |
|     // If we found a pointer, expand the AddRec with a GEP.
 | |
|     if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
 | |
|       // Make sure the Base isn't something exotic, such as a multiplied
 | |
|       // or divided pointer value. In those cases, the result type isn't
 | |
|       // actually a pointer type.
 | |
|       if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
 | |
|         Value *StartV = expand(Base);
 | |
|         assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
 | |
|         return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Just do a normal add. Pre-expand the operands to suppress folding.
 | |
|     return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())),
 | |
|                                 SE.getUnknown(expand(Rest))));
 | |
|   }
 | |
| 
 | |
|   // If we don't yet have a canonical IV, create one.
 | |
|   if (!CanonicalIV) {
 | |
|     // Create and insert the PHI node for the induction variable in the
 | |
|     // specified loop.
 | |
|     BasicBlock *Header = L->getHeader();
 | |
|     pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
 | |
|     CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
 | |
|                                   Header->begin());
 | |
|     rememberInstruction(CanonicalIV);
 | |
| 
 | |
|     SmallSet<BasicBlock *, 4> PredSeen;
 | |
|     Constant *One = ConstantInt::get(Ty, 1);
 | |
|     for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
 | |
|       BasicBlock *HP = *HPI;
 | |
|       if (!PredSeen.insert(HP).second) {
 | |
|         // There must be an incoming value for each predecessor, even the
 | |
|         // duplicates!
 | |
|         CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (L->contains(HP)) {
 | |
|         // Insert a unit add instruction right before the terminator
 | |
|         // corresponding to the back-edge.
 | |
|         Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
 | |
|                                                      "indvar.next",
 | |
|                                                      HP->getTerminator());
 | |
|         Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
 | |
|         rememberInstruction(Add);
 | |
|         CanonicalIV->addIncoming(Add, HP);
 | |
|       } else {
 | |
|         CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // {0,+,1} --> Insert a canonical induction variable into the loop!
 | |
|   if (S->isAffine() && S->getOperand(1)->isOne()) {
 | |
|     assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
 | |
|            "IVs with types different from the canonical IV should "
 | |
|            "already have been handled!");
 | |
|     return CanonicalIV;
 | |
|   }
 | |
| 
 | |
|   // {0,+,F} --> {0,+,1} * F
 | |
| 
 | |
|   // If this is a simple linear addrec, emit it now as a special case.
 | |
|   if (S->isAffine())    // {0,+,F} --> i*F
 | |
|     return
 | |
|       expand(SE.getTruncateOrNoop(
 | |
|         SE.getMulExpr(SE.getUnknown(CanonicalIV),
 | |
|                       SE.getNoopOrAnyExtend(S->getOperand(1),
 | |
|                                             CanonicalIV->getType())),
 | |
|         Ty));
 | |
| 
 | |
|   // If this is a chain of recurrences, turn it into a closed form, using the
 | |
|   // folders, then expandCodeFor the closed form.  This allows the folders to
 | |
|   // simplify the expression without having to build a bunch of special code
 | |
|   // into this folder.
 | |
|   const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
 | |
| 
 | |
|   // Promote S up to the canonical IV type, if the cast is foldable.
 | |
|   const SCEV *NewS = S;
 | |
|   const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
 | |
|   if (isa<SCEVAddRecExpr>(Ext))
 | |
|     NewS = Ext;
 | |
| 
 | |
|   const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
 | |
|   //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
 | |
| 
 | |
|   // Truncate the result down to the original type, if needed.
 | |
|   const SCEV *T = SE.getTruncateOrNoop(V, Ty);
 | |
|   return expand(T);
 | |
| }
 | |
| 
 | |
| Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
 | |
|   Type *Ty = SE.getEffectiveSCEVType(S->getType());
 | |
|   Value *V = expandCodeFor(S->getOperand(),
 | |
|                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
 | |
|   Value *I = Builder.CreateTrunc(V, Ty);
 | |
|   rememberInstruction(I);
 | |
|   return I;
 | |
| }
 | |
| 
 | |
| Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
 | |
|   Type *Ty = SE.getEffectiveSCEVType(S->getType());
 | |
|   Value *V = expandCodeFor(S->getOperand(),
 | |
|                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
 | |
|   Value *I = Builder.CreateZExt(V, Ty);
 | |
|   rememberInstruction(I);
 | |
|   return I;
 | |
| }
 | |
| 
 | |
| Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
 | |
|   Type *Ty = SE.getEffectiveSCEVType(S->getType());
 | |
|   Value *V = expandCodeFor(S->getOperand(),
 | |
|                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
 | |
|   Value *I = Builder.CreateSExt(V, Ty);
 | |
|   rememberInstruction(I);
 | |
|   return I;
 | |
| }
 | |
| 
 | |
| Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
 | |
|   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
 | |
|   Type *Ty = LHS->getType();
 | |
|   for (int i = S->getNumOperands()-2; i >= 0; --i) {
 | |
|     // In the case of mixed integer and pointer types, do the
 | |
|     // rest of the comparisons as integer.
 | |
|     if (S->getOperand(i)->getType() != Ty) {
 | |
|       Ty = SE.getEffectiveSCEVType(Ty);
 | |
|       LHS = InsertNoopCastOfTo(LHS, Ty);
 | |
|     }
 | |
|     Value *RHS = expandCodeFor(S->getOperand(i), Ty);
 | |
|     Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
 | |
|     rememberInstruction(ICmp);
 | |
|     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
 | |
|     rememberInstruction(Sel);
 | |
|     LHS = Sel;
 | |
|   }
 | |
|   // In the case of mixed integer and pointer types, cast the
 | |
|   // final result back to the pointer type.
 | |
|   if (LHS->getType() != S->getType())
 | |
|     LHS = InsertNoopCastOfTo(LHS, S->getType());
 | |
|   return LHS;
 | |
| }
 | |
| 
 | |
| Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
 | |
|   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
 | |
|   Type *Ty = LHS->getType();
 | |
|   for (int i = S->getNumOperands()-2; i >= 0; --i) {
 | |
|     // In the case of mixed integer and pointer types, do the
 | |
|     // rest of the comparisons as integer.
 | |
|     if (S->getOperand(i)->getType() != Ty) {
 | |
|       Ty = SE.getEffectiveSCEVType(Ty);
 | |
|       LHS = InsertNoopCastOfTo(LHS, Ty);
 | |
|     }
 | |
|     Value *RHS = expandCodeFor(S->getOperand(i), Ty);
 | |
|     Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
 | |
|     rememberInstruction(ICmp);
 | |
|     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
 | |
|     rememberInstruction(Sel);
 | |
|     LHS = Sel;
 | |
|   }
 | |
|   // In the case of mixed integer and pointer types, cast the
 | |
|   // final result back to the pointer type.
 | |
|   if (LHS->getType() != S->getType())
 | |
|     LHS = InsertNoopCastOfTo(LHS, S->getType());
 | |
|   return LHS;
 | |
| }
 | |
| 
 | |
| Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
 | |
|                                    Instruction *IP) {
 | |
|   Builder.SetInsertPoint(IP->getParent(), IP);
 | |
|   return expandCodeFor(SH, Ty);
 | |
| }
 | |
| 
 | |
| Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
 | |
|   // Expand the code for this SCEV.
 | |
|   Value *V = expand(SH);
 | |
|   if (Ty) {
 | |
|     assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
 | |
|            "non-trivial casts should be done with the SCEVs directly!");
 | |
|     V = InsertNoopCastOfTo(V, Ty);
 | |
|   }
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| Value *SCEVExpander::expand(const SCEV *S) {
 | |
|   // Compute an insertion point for this SCEV object. Hoist the instructions
 | |
|   // as far out in the loop nest as possible.
 | |
|   Instruction *InsertPt = Builder.GetInsertPoint();
 | |
|   for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ;
 | |
|        L = L->getParentLoop())
 | |
|     if (SE.isLoopInvariant(S, L)) {
 | |
|       if (!L) break;
 | |
|       if (BasicBlock *Preheader = L->getLoopPreheader())
 | |
|         InsertPt = Preheader->getTerminator();
 | |
|       else {
 | |
|         // LSR sets the insertion point for AddRec start/step values to the
 | |
|         // block start to simplify value reuse, even though it's an invalid
 | |
|         // position. SCEVExpander must correct for this in all cases.
 | |
|         InsertPt = L->getHeader()->getFirstInsertionPt();
 | |
|       }
 | |
|     } else {
 | |
|       // If the SCEV is computable at this level, insert it into the header
 | |
|       // after the PHIs (and after any other instructions that we've inserted
 | |
|       // there) so that it is guaranteed to dominate any user inside the loop.
 | |
|       if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
 | |
|         InsertPt = L->getHeader()->getFirstInsertionPt();
 | |
|       while (InsertPt != Builder.GetInsertPoint()
 | |
|              && (isInsertedInstruction(InsertPt)
 | |
|                  || isa<DbgInfoIntrinsic>(InsertPt))) {
 | |
|         InsertPt = std::next(BasicBlock::iterator(InsertPt));
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   // Check to see if we already expanded this here.
 | |
|   std::map<std::pair<const SCEV *, Instruction *>, TrackingVH<Value> >::iterator
 | |
|     I = InsertedExpressions.find(std::make_pair(S, InsertPt));
 | |
|   if (I != InsertedExpressions.end())
 | |
|     return I->second;
 | |
| 
 | |
|   BuilderType::InsertPointGuard Guard(Builder);
 | |
|   Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
 | |
| 
 | |
|   // Expand the expression into instructions.
 | |
|   Value *V = visit(S);
 | |
| 
 | |
|   // Remember the expanded value for this SCEV at this location.
 | |
|   //
 | |
|   // This is independent of PostIncLoops. The mapped value simply materializes
 | |
|   // the expression at this insertion point. If the mapped value happened to be
 | |
|   // a postinc expansion, it could be reused by a non-postinc user, but only if
 | |
|   // its insertion point was already at the head of the loop.
 | |
|   InsertedExpressions[std::make_pair(S, InsertPt)] = V;
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| void SCEVExpander::rememberInstruction(Value *I) {
 | |
|   if (!PostIncLoops.empty())
 | |
|     InsertedPostIncValues.insert(I);
 | |
|   else
 | |
|     InsertedValues.insert(I);
 | |
| }
 | |
| 
 | |
| /// getOrInsertCanonicalInductionVariable - This method returns the
 | |
| /// canonical induction variable of the specified type for the specified
 | |
| /// loop (inserting one if there is none).  A canonical induction variable
 | |
| /// starts at zero and steps by one on each iteration.
 | |
| PHINode *
 | |
| SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
 | |
|                                                     Type *Ty) {
 | |
|   assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
 | |
| 
 | |
|   // Build a SCEV for {0,+,1}<L>.
 | |
|   // Conservatively use FlagAnyWrap for now.
 | |
|   const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
 | |
|                                    SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap);
 | |
| 
 | |
|   // Emit code for it.
 | |
|   BuilderType::InsertPointGuard Guard(Builder);
 | |
|   PHINode *V = cast<PHINode>(expandCodeFor(H, nullptr,
 | |
|                                            L->getHeader()->begin()));
 | |
| 
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// replaceCongruentIVs - Check for congruent phis in this loop header and
 | |
| /// replace them with their most canonical representative. Return the number of
 | |
| /// phis eliminated.
 | |
| ///
 | |
| /// This does not depend on any SCEVExpander state but should be used in
 | |
| /// the same context that SCEVExpander is used.
 | |
| unsigned SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
 | |
|                                            SmallVectorImpl<WeakVH> &DeadInsts,
 | |
|                                            const TargetTransformInfo *TTI) {
 | |
|   // Find integer phis in order of increasing width.
 | |
|   SmallVector<PHINode*, 8> Phis;
 | |
|   for (BasicBlock::iterator I = L->getHeader()->begin();
 | |
|        PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
 | |
|     Phis.push_back(Phi);
 | |
|   }
 | |
|   if (TTI)
 | |
|     std::sort(Phis.begin(), Phis.end(), [](Value *LHS, Value *RHS) {
 | |
|       // Put pointers at the back and make sure pointer < pointer = false.
 | |
|       if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
 | |
|         return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
 | |
|       return RHS->getType()->getPrimitiveSizeInBits() <
 | |
|              LHS->getType()->getPrimitiveSizeInBits();
 | |
|     });
 | |
| 
 | |
|   unsigned NumElim = 0;
 | |
|   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
 | |
|   // Process phis from wide to narrow. Mapping wide phis to the their truncation
 | |
|   // so narrow phis can reuse them.
 | |
|   for (SmallVectorImpl<PHINode*>::const_iterator PIter = Phis.begin(),
 | |
|          PEnd = Phis.end(); PIter != PEnd; ++PIter) {
 | |
|     PHINode *Phi = *PIter;
 | |
| 
 | |
|     // Fold constant phis. They may be congruent to other constant phis and
 | |
|     // would confuse the logic below that expects proper IVs.
 | |
|     if (Value *V = SimplifyInstruction(Phi, DL, SE.TLI, SE.DT, SE.AC)) {
 | |
|       Phi->replaceAllUsesWith(V);
 | |
|       DeadInsts.emplace_back(Phi);
 | |
|       ++NumElim;
 | |
|       DEBUG_WITH_TYPE(DebugType, dbgs()
 | |
|                       << "INDVARS: Eliminated constant iv: " << *Phi << '\n');
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (!SE.isSCEVable(Phi->getType()))
 | |
|       continue;
 | |
| 
 | |
|     PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
 | |
|     if (!OrigPhiRef) {
 | |
|       OrigPhiRef = Phi;
 | |
|       if (Phi->getType()->isIntegerTy() && TTI
 | |
|           && TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
 | |
|         // This phi can be freely truncated to the narrowest phi type. Map the
 | |
|         // truncated expression to it so it will be reused for narrow types.
 | |
|         const SCEV *TruncExpr =
 | |
|           SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
 | |
|         ExprToIVMap[TruncExpr] = Phi;
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Replacing a pointer phi with an integer phi or vice-versa doesn't make
 | |
|     // sense.
 | |
|     if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
 | |
|       continue;
 | |
| 
 | |
|     if (BasicBlock *LatchBlock = L->getLoopLatch()) {
 | |
|       Instruction *OrigInc =
 | |
|         cast<Instruction>(OrigPhiRef->getIncomingValueForBlock(LatchBlock));
 | |
|       Instruction *IsomorphicInc =
 | |
|         cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
 | |
| 
 | |
|       // If this phi has the same width but is more canonical, replace the
 | |
|       // original with it. As part of the "more canonical" determination,
 | |
|       // respect a prior decision to use an IV chain.
 | |
|       if (OrigPhiRef->getType() == Phi->getType()
 | |
|           && !(ChainedPhis.count(Phi)
 | |
|                || isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L))
 | |
|           && (ChainedPhis.count(Phi)
 | |
|               || isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
 | |
|         std::swap(OrigPhiRef, Phi);
 | |
|         std::swap(OrigInc, IsomorphicInc);
 | |
|       }
 | |
|       // Replacing the congruent phi is sufficient because acyclic redundancy
 | |
|       // elimination, CSE/GVN, should handle the rest. However, once SCEV proves
 | |
|       // that a phi is congruent, it's often the head of an IV user cycle that
 | |
|       // is isomorphic with the original phi. It's worth eagerly cleaning up the
 | |
|       // common case of a single IV increment so that DeleteDeadPHIs can remove
 | |
|       // cycles that had postinc uses.
 | |
|       const SCEV *TruncExpr = SE.getTruncateOrNoop(SE.getSCEV(OrigInc),
 | |
|                                                    IsomorphicInc->getType());
 | |
|       if (OrigInc != IsomorphicInc
 | |
|           && TruncExpr == SE.getSCEV(IsomorphicInc)
 | |
|           && ((isa<PHINode>(OrigInc) && isa<PHINode>(IsomorphicInc))
 | |
|               || hoistIVInc(OrigInc, IsomorphicInc))) {
 | |
|         DEBUG_WITH_TYPE(DebugType, dbgs()
 | |
|                         << "INDVARS: Eliminated congruent iv.inc: "
 | |
|                         << *IsomorphicInc << '\n');
 | |
|         Value *NewInc = OrigInc;
 | |
|         if (OrigInc->getType() != IsomorphicInc->getType()) {
 | |
|           Instruction *IP = nullptr;
 | |
|           if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
 | |
|             IP = PN->getParent()->getFirstInsertionPt();
 | |
|           else
 | |
|             IP = OrigInc->getNextNode();
 | |
| 
 | |
|           IRBuilder<> Builder(IP);
 | |
|           Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
 | |
|           NewInc = Builder.
 | |
|             CreateTruncOrBitCast(OrigInc, IsomorphicInc->getType(), IVName);
 | |
|         }
 | |
|         IsomorphicInc->replaceAllUsesWith(NewInc);
 | |
|         DeadInsts.emplace_back(IsomorphicInc);
 | |
|       }
 | |
|     }
 | |
|     DEBUG_WITH_TYPE(DebugType, dbgs()
 | |
|                     << "INDVARS: Eliminated congruent iv: " << *Phi << '\n');
 | |
|     ++NumElim;
 | |
|     Value *NewIV = OrigPhiRef;
 | |
|     if (OrigPhiRef->getType() != Phi->getType()) {
 | |
|       IRBuilder<> Builder(L->getHeader()->getFirstInsertionPt());
 | |
|       Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
 | |
|       NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
 | |
|     }
 | |
|     Phi->replaceAllUsesWith(NewIV);
 | |
|     DeadInsts.emplace_back(Phi);
 | |
|   }
 | |
|   return NumElim;
 | |
| }
 | |
| 
 | |
| bool SCEVExpander::isHighCostExpansionHelper(
 | |
|     const SCEV *S, Loop *L, SmallPtrSetImpl<const SCEV *> &Processed) {
 | |
| 
 | |
|   // Zero/One operand expressions
 | |
|   switch (S->getSCEVType()) {
 | |
|   case scUnknown:
 | |
|   case scConstant:
 | |
|     return false;
 | |
|   case scTruncate:
 | |
|     return isHighCostExpansionHelper(cast<SCEVTruncateExpr>(S)->getOperand(), L,
 | |
|                                      Processed);
 | |
|   case scZeroExtend:
 | |
|     return isHighCostExpansionHelper(cast<SCEVZeroExtendExpr>(S)->getOperand(),
 | |
|                                      L, Processed);
 | |
|   case scSignExtend:
 | |
|     return isHighCostExpansionHelper(cast<SCEVSignExtendExpr>(S)->getOperand(),
 | |
|                                      L, Processed);
 | |
|   }
 | |
| 
 | |
|   if (!Processed.insert(S).second)
 | |
|     return false;
 | |
| 
 | |
|   if (auto *UDivExpr = dyn_cast<SCEVUDivExpr>(S)) {
 | |
|     // If the divisor is a power of two and the SCEV type fits in a native
 | |
|     // integer, consider the divison cheap irrespective of whether it occurs in
 | |
|     // the user code since it can be lowered into a right shift.
 | |
|     if (auto *SC = dyn_cast<SCEVConstant>(UDivExpr->getRHS()))
 | |
|       if (SC->getValue()->getValue().isPowerOf2()) {
 | |
|         const DataLayout &DL =
 | |
|             L->getHeader()->getParent()->getParent()->getDataLayout();
 | |
|         unsigned Width = cast<IntegerType>(UDivExpr->getType())->getBitWidth();
 | |
|         return DL.isIllegalInteger(Width);
 | |
|       }
 | |
| 
 | |
|     // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
 | |
|     // HowManyLessThans produced to compute a precise expression, rather than a
 | |
|     // UDiv from the user's code. If we can't find a UDiv in the code with some
 | |
|     // simple searching, assume the former consider UDivExpr expensive to
 | |
|     // compute.
 | |
|     BasicBlock *ExitingBB = L->getExitingBlock();
 | |
|     if (!ExitingBB)
 | |
|       return true;
 | |
| 
 | |
|     BranchInst *ExitingBI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
 | |
|     if (!ExitingBI || !ExitingBI->isConditional())
 | |
|       return true;
 | |
| 
 | |
|     ICmpInst *OrigCond = dyn_cast<ICmpInst>(ExitingBI->getCondition());
 | |
|     if (!OrigCond)
 | |
|       return true;
 | |
| 
 | |
|     const SCEV *RHS = SE.getSCEV(OrigCond->getOperand(1));
 | |
|     RHS = SE.getMinusSCEV(RHS, SE.getConstant(RHS->getType(), 1));
 | |
|     if (RHS != S) {
 | |
|       const SCEV *LHS = SE.getSCEV(OrigCond->getOperand(0));
 | |
|       LHS = SE.getMinusSCEV(LHS, SE.getConstant(LHS->getType(), 1));
 | |
|       if (LHS != S)
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // HowManyLessThans uses a Max expression whenever the loop is not guarded by
 | |
|   // the exit condition.
 | |
|   if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
 | |
|     return true;
 | |
| 
 | |
|   // Recurse past nary expressions, which commonly occur in the
 | |
|   // BackedgeTakenCount. They may already exist in program code, and if not,
 | |
|   // they are not too expensive rematerialize.
 | |
|   if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(S)) {
 | |
|     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
 | |
|          I != E; ++I) {
 | |
|       if (isHighCostExpansionHelper(*I, L, Processed))
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we haven't recognized an expensive SCEV pattern, assume it's an
 | |
|   // expression produced by program code.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| // Search for a SCEV subexpression that is not safe to expand.  Any expression
 | |
| // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
 | |
| // UDiv expressions. We don't know if the UDiv is derived from an IR divide
 | |
| // instruction, but the important thing is that we prove the denominator is
 | |
| // nonzero before expansion.
 | |
| //
 | |
| // IVUsers already checks that IV-derived expressions are safe. So this check is
 | |
| // only needed when the expression includes some subexpression that is not IV
 | |
| // derived.
 | |
| //
 | |
| // Currently, we only allow division by a nonzero constant here. If this is
 | |
| // inadequate, we could easily allow division by SCEVUnknown by using
 | |
| // ValueTracking to check isKnownNonZero().
 | |
| //
 | |
| // We cannot generally expand recurrences unless the step dominates the loop
 | |
| // header. The expander handles the special case of affine recurrences by
 | |
| // scaling the recurrence outside the loop, but this technique isn't generally
 | |
| // applicable. Expanding a nested recurrence outside a loop requires computing
 | |
| // binomial coefficients. This could be done, but the recurrence has to be in a
 | |
| // perfectly reduced form, which can't be guaranteed.
 | |
| struct SCEVFindUnsafe {
 | |
|   ScalarEvolution &SE;
 | |
|   bool IsUnsafe;
 | |
| 
 | |
|   SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {}
 | |
| 
 | |
|   bool follow(const SCEV *S) {
 | |
|     if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
 | |
|       const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
 | |
|       if (!SC || SC->getValue()->isZero()) {
 | |
|         IsUnsafe = true;
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
 | |
|       const SCEV *Step = AR->getStepRecurrence(SE);
 | |
|       if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
 | |
|         IsUnsafe = true;
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   bool isDone() const { return IsUnsafe; }
 | |
| };
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
| bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) {
 | |
|   SCEVFindUnsafe Search(SE);
 | |
|   visitAll(S, Search);
 | |
|   return !Search.IsUnsafe;
 | |
| }
 | |
| }
 |