mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206252 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			761 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			761 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- Type.cpp - Implement the Type class -------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the Type class for the IR library.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "LLVMContextImpl.h"
 | |
| #include "llvm/ADT/SmallString.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include <algorithm>
 | |
| #include <cstdarg>
 | |
| using namespace llvm;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         Type Class Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
 | |
|   switch (IDNumber) {
 | |
|   case VoidTyID      : return getVoidTy(C);
 | |
|   case HalfTyID      : return getHalfTy(C);
 | |
|   case FloatTyID     : return getFloatTy(C);
 | |
|   case DoubleTyID    : return getDoubleTy(C);
 | |
|   case X86_FP80TyID  : return getX86_FP80Ty(C);
 | |
|   case FP128TyID     : return getFP128Ty(C);
 | |
|   case PPC_FP128TyID : return getPPC_FP128Ty(C);
 | |
|   case LabelTyID     : return getLabelTy(C);
 | |
|   case MetadataTyID  : return getMetadataTy(C);
 | |
|   case X86_MMXTyID   : return getX86_MMXTy(C);
 | |
|   default:
 | |
|     return nullptr;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getScalarType - If this is a vector type, return the element type,
 | |
| /// otherwise return this.
 | |
| Type *Type::getScalarType() {
 | |
|   if (VectorType *VTy = dyn_cast<VectorType>(this))
 | |
|     return VTy->getElementType();
 | |
|   return this;
 | |
| }
 | |
| 
 | |
| const Type *Type::getScalarType() const {
 | |
|   if (const VectorType *VTy = dyn_cast<VectorType>(this))
 | |
|     return VTy->getElementType();
 | |
|   return this;
 | |
| }
 | |
| 
 | |
| /// isIntegerTy - Return true if this is an IntegerType of the specified width.
 | |
| bool Type::isIntegerTy(unsigned Bitwidth) const {
 | |
|   return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
 | |
| }
 | |
| 
 | |
| // canLosslesslyBitCastTo - Return true if this type can be converted to
 | |
| // 'Ty' without any reinterpretation of bits.  For example, i8* to i32*.
 | |
| //
 | |
| bool Type::canLosslesslyBitCastTo(Type *Ty) const {
 | |
|   // Identity cast means no change so return true
 | |
|   if (this == Ty) 
 | |
|     return true;
 | |
|   
 | |
|   // They are not convertible unless they are at least first class types
 | |
|   if (!this->isFirstClassType() || !Ty->isFirstClassType())
 | |
|     return false;
 | |
| 
 | |
|   // Vector -> Vector conversions are always lossless if the two vector types
 | |
|   // have the same size, otherwise not.  Also, 64-bit vector types can be
 | |
|   // converted to x86mmx.
 | |
|   if (const VectorType *thisPTy = dyn_cast<VectorType>(this)) {
 | |
|     if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
 | |
|       return thisPTy->getBitWidth() == thatPTy->getBitWidth();
 | |
|     if (Ty->getTypeID() == Type::X86_MMXTyID &&
 | |
|         thisPTy->getBitWidth() == 64)
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   if (this->getTypeID() == Type::X86_MMXTyID)
 | |
|     if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
 | |
|       if (thatPTy->getBitWidth() == 64)
 | |
|         return true;
 | |
| 
 | |
|   // At this point we have only various mismatches of the first class types
 | |
|   // remaining and ptr->ptr. Just select the lossless conversions. Everything
 | |
|   // else is not lossless.
 | |
|   if (this->isPointerTy())
 | |
|     return Ty->isPointerTy();
 | |
|   return false;  // Other types have no identity values
 | |
| }
 | |
| 
 | |
| bool Type::isEmptyTy() const {
 | |
|   const ArrayType *ATy = dyn_cast<ArrayType>(this);
 | |
|   if (ATy) {
 | |
|     unsigned NumElements = ATy->getNumElements();
 | |
|     return NumElements == 0 || ATy->getElementType()->isEmptyTy();
 | |
|   }
 | |
| 
 | |
|   const StructType *STy = dyn_cast<StructType>(this);
 | |
|   if (STy) {
 | |
|     unsigned NumElements = STy->getNumElements();
 | |
|     for (unsigned i = 0; i < NumElements; ++i)
 | |
|       if (!STy->getElementType(i)->isEmptyTy())
 | |
|         return false;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| unsigned Type::getPrimitiveSizeInBits() const {
 | |
|   switch (getTypeID()) {
 | |
|   case Type::HalfTyID: return 16;
 | |
|   case Type::FloatTyID: return 32;
 | |
|   case Type::DoubleTyID: return 64;
 | |
|   case Type::X86_FP80TyID: return 80;
 | |
|   case Type::FP128TyID: return 128;
 | |
|   case Type::PPC_FP128TyID: return 128;
 | |
|   case Type::X86_MMXTyID: return 64;
 | |
|   case Type::IntegerTyID: return cast<IntegerType>(this)->getBitWidth();
 | |
|   case Type::VectorTyID:  return cast<VectorType>(this)->getBitWidth();
 | |
|   default: return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getScalarSizeInBits - If this is a vector type, return the
 | |
| /// getPrimitiveSizeInBits value for the element type. Otherwise return the
 | |
| /// getPrimitiveSizeInBits value for this type.
 | |
| unsigned Type::getScalarSizeInBits() const {
 | |
|   return getScalarType()->getPrimitiveSizeInBits();
 | |
| }
 | |
| 
 | |
| /// getFPMantissaWidth - Return the width of the mantissa of this type.  This
 | |
| /// is only valid on floating point types.  If the FP type does not
 | |
| /// have a stable mantissa (e.g. ppc long double), this method returns -1.
 | |
| int Type::getFPMantissaWidth() const {
 | |
|   if (const VectorType *VTy = dyn_cast<VectorType>(this))
 | |
|     return VTy->getElementType()->getFPMantissaWidth();
 | |
|   assert(isFloatingPointTy() && "Not a floating point type!");
 | |
|   if (getTypeID() == HalfTyID) return 11;
 | |
|   if (getTypeID() == FloatTyID) return 24;
 | |
|   if (getTypeID() == DoubleTyID) return 53;
 | |
|   if (getTypeID() == X86_FP80TyID) return 64;
 | |
|   if (getTypeID() == FP128TyID) return 113;
 | |
|   assert(getTypeID() == PPC_FP128TyID && "unknown fp type");
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| /// isSizedDerivedType - Derived types like structures and arrays are sized
 | |
| /// iff all of the members of the type are sized as well.  Since asking for
 | |
| /// their size is relatively uncommon, move this operation out of line.
 | |
| bool Type::isSizedDerivedType(SmallPtrSet<const Type*, 4> *Visited) const {
 | |
|   if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
 | |
|     return ATy->getElementType()->isSized(Visited);
 | |
| 
 | |
|   if (const VectorType *VTy = dyn_cast<VectorType>(this))
 | |
|     return VTy->getElementType()->isSized(Visited);
 | |
| 
 | |
|   return cast<StructType>(this)->isSized(Visited);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         Subclass Helper Methods
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| unsigned Type::getIntegerBitWidth() const {
 | |
|   return cast<IntegerType>(this)->getBitWidth();
 | |
| }
 | |
| 
 | |
| bool Type::isFunctionVarArg() const {
 | |
|   return cast<FunctionType>(this)->isVarArg();
 | |
| }
 | |
| 
 | |
| Type *Type::getFunctionParamType(unsigned i) const {
 | |
|   return cast<FunctionType>(this)->getParamType(i);
 | |
| }
 | |
| 
 | |
| unsigned Type::getFunctionNumParams() const {
 | |
|   return cast<FunctionType>(this)->getNumParams();
 | |
| }
 | |
| 
 | |
| StringRef Type::getStructName() const {
 | |
|   return cast<StructType>(this)->getName();
 | |
| }
 | |
| 
 | |
| unsigned Type::getStructNumElements() const {
 | |
|   return cast<StructType>(this)->getNumElements();
 | |
| }
 | |
| 
 | |
| Type *Type::getStructElementType(unsigned N) const {
 | |
|   return cast<StructType>(this)->getElementType(N);
 | |
| }
 | |
| 
 | |
| Type *Type::getSequentialElementType() const {
 | |
|   return cast<SequentialType>(this)->getElementType();
 | |
| }
 | |
| 
 | |
| uint64_t Type::getArrayNumElements() const {
 | |
|   return cast<ArrayType>(this)->getNumElements();
 | |
| }
 | |
| 
 | |
| unsigned Type::getVectorNumElements() const {
 | |
|   return cast<VectorType>(this)->getNumElements();
 | |
| }
 | |
| 
 | |
| unsigned Type::getPointerAddressSpace() const {
 | |
|   return cast<PointerType>(getScalarType())->getAddressSpace();
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                          Primitive 'Type' data
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; }
 | |
| Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; }
 | |
| Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; }
 | |
| Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; }
 | |
| Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; }
 | |
| Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; }
 | |
| Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; }
 | |
| Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; }
 | |
| Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; }
 | |
| Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; }
 | |
| 
 | |
| IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; }
 | |
| IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; }
 | |
| IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; }
 | |
| IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; }
 | |
| IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; }
 | |
| 
 | |
| IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
 | |
|   return IntegerType::get(C, N);
 | |
| }
 | |
| 
 | |
| PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) {
 | |
|   return getHalfTy(C)->getPointerTo(AS);
 | |
| }
 | |
| 
 | |
| PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) {
 | |
|   return getFloatTy(C)->getPointerTo(AS);
 | |
| }
 | |
| 
 | |
| PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) {
 | |
|   return getDoubleTy(C)->getPointerTo(AS);
 | |
| }
 | |
| 
 | |
| PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) {
 | |
|   return getX86_FP80Ty(C)->getPointerTo(AS);
 | |
| }
 | |
| 
 | |
| PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) {
 | |
|   return getFP128Ty(C)->getPointerTo(AS);
 | |
| }
 | |
| 
 | |
| PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) {
 | |
|   return getPPC_FP128Ty(C)->getPointerTo(AS);
 | |
| }
 | |
| 
 | |
| PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) {
 | |
|   return getX86_MMXTy(C)->getPointerTo(AS);
 | |
| }
 | |
| 
 | |
| PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
 | |
|   return getIntNTy(C, N)->getPointerTo(AS);
 | |
| }
 | |
| 
 | |
| PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) {
 | |
|   return getInt1Ty(C)->getPointerTo(AS);
 | |
| }
 | |
| 
 | |
| PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) {
 | |
|   return getInt8Ty(C)->getPointerTo(AS);
 | |
| }
 | |
| 
 | |
| PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) {
 | |
|   return getInt16Ty(C)->getPointerTo(AS);
 | |
| }
 | |
| 
 | |
| PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) {
 | |
|   return getInt32Ty(C)->getPointerTo(AS);
 | |
| }
 | |
| 
 | |
| PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) {
 | |
|   return getInt64Ty(C)->getPointerTo(AS);
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                       IntegerType Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
 | |
|   assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
 | |
|   assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
 | |
|   
 | |
|   // Check for the built-in integer types
 | |
|   switch (NumBits) {
 | |
|   case  1: return cast<IntegerType>(Type::getInt1Ty(C));
 | |
|   case  8: return cast<IntegerType>(Type::getInt8Ty(C));
 | |
|   case 16: return cast<IntegerType>(Type::getInt16Ty(C));
 | |
|   case 32: return cast<IntegerType>(Type::getInt32Ty(C));
 | |
|   case 64: return cast<IntegerType>(Type::getInt64Ty(C));
 | |
|   default: 
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
 | |
| 
 | |
|   if (!Entry)
 | |
|     Entry = new (C.pImpl->TypeAllocator) IntegerType(C, NumBits);
 | |
|   
 | |
|   return Entry;
 | |
| }
 | |
| 
 | |
| bool IntegerType::isPowerOf2ByteWidth() const {
 | |
|   unsigned BitWidth = getBitWidth();
 | |
|   return (BitWidth > 7) && isPowerOf2_32(BitWidth);
 | |
| }
 | |
| 
 | |
| APInt IntegerType::getMask() const {
 | |
|   return APInt::getAllOnesValue(getBitWidth());
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                       FunctionType Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params,
 | |
|                            bool IsVarArgs)
 | |
|   : Type(Result->getContext(), FunctionTyID) {
 | |
|   Type **SubTys = reinterpret_cast<Type**>(this+1);
 | |
|   assert(isValidReturnType(Result) && "invalid return type for function");
 | |
|   setSubclassData(IsVarArgs);
 | |
| 
 | |
|   SubTys[0] = const_cast<Type*>(Result);
 | |
| 
 | |
|   for (unsigned i = 0, e = Params.size(); i != e; ++i) {
 | |
|     assert(isValidArgumentType(Params[i]) &&
 | |
|            "Not a valid type for function argument!");
 | |
|     SubTys[i+1] = Params[i];
 | |
|   }
 | |
| 
 | |
|   ContainedTys = SubTys;
 | |
|   NumContainedTys = Params.size() + 1; // + 1 for result type
 | |
| }
 | |
| 
 | |
| // FunctionType::get - The factory function for the FunctionType class.
 | |
| FunctionType *FunctionType::get(Type *ReturnType,
 | |
|                                 ArrayRef<Type*> Params, bool isVarArg) {
 | |
|   LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
 | |
|   FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg);
 | |
|   LLVMContextImpl::FunctionTypeMap::iterator I =
 | |
|     pImpl->FunctionTypes.find_as(Key);
 | |
|   FunctionType *FT;
 | |
| 
 | |
|   if (I == pImpl->FunctionTypes.end()) {
 | |
|     FT = (FunctionType*) pImpl->TypeAllocator.
 | |
|       Allocate(sizeof(FunctionType) + sizeof(Type*) * (Params.size() + 1),
 | |
|                AlignOf<FunctionType>::Alignment);
 | |
|     new (FT) FunctionType(ReturnType, Params, isVarArg);
 | |
|     pImpl->FunctionTypes[FT] = true;
 | |
|   } else {
 | |
|     FT = I->first;
 | |
|   }
 | |
| 
 | |
|   return FT;
 | |
| }
 | |
| 
 | |
| FunctionType *FunctionType::get(Type *Result, bool isVarArg) {
 | |
|   return get(Result, None, isVarArg);
 | |
| }
 | |
| 
 | |
| /// isValidReturnType - Return true if the specified type is valid as a return
 | |
| /// type.
 | |
| bool FunctionType::isValidReturnType(Type *RetTy) {
 | |
|   return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
 | |
|   !RetTy->isMetadataTy();
 | |
| }
 | |
| 
 | |
| /// isValidArgumentType - Return true if the specified type is valid as an
 | |
| /// argument type.
 | |
| bool FunctionType::isValidArgumentType(Type *ArgTy) {
 | |
|   return ArgTy->isFirstClassType();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                       StructType Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Primitive Constructors.
 | |
| 
 | |
| StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes, 
 | |
|                             bool isPacked) {
 | |
|   LLVMContextImpl *pImpl = Context.pImpl;
 | |
|   AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked);
 | |
|   LLVMContextImpl::StructTypeMap::iterator I =
 | |
|     pImpl->AnonStructTypes.find_as(Key);
 | |
|   StructType *ST;
 | |
| 
 | |
|   if (I == pImpl->AnonStructTypes.end()) {
 | |
|     // Value not found.  Create a new type!
 | |
|     ST = new (Context.pImpl->TypeAllocator) StructType(Context);
 | |
|     ST->setSubclassData(SCDB_IsLiteral);  // Literal struct.
 | |
|     ST->setBody(ETypes, isPacked);
 | |
|     Context.pImpl->AnonStructTypes[ST] = true;
 | |
|   } else {
 | |
|     ST = I->first;
 | |
|   }
 | |
| 
 | |
|   return ST;
 | |
| }
 | |
| 
 | |
| void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
 | |
|   assert(isOpaque() && "Struct body already set!");
 | |
|   
 | |
|   setSubclassData(getSubclassData() | SCDB_HasBody);
 | |
|   if (isPacked)
 | |
|     setSubclassData(getSubclassData() | SCDB_Packed);
 | |
| 
 | |
|   unsigned NumElements = Elements.size();
 | |
|   Type **Elts = getContext().pImpl->TypeAllocator.Allocate<Type*>(NumElements);
 | |
|   memcpy(Elts, Elements.data(), sizeof(Elements[0]) * NumElements);
 | |
|   
 | |
|   ContainedTys = Elts;
 | |
|   NumContainedTys = NumElements;
 | |
| }
 | |
| 
 | |
| void StructType::setName(StringRef Name) {
 | |
|   if (Name == getName()) return;
 | |
| 
 | |
|   StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes;
 | |
|   typedef StringMap<StructType *>::MapEntryTy EntryTy;
 | |
| 
 | |
|   // If this struct already had a name, remove its symbol table entry. Don't
 | |
|   // delete the data yet because it may be part of the new name.
 | |
|   if (SymbolTableEntry)
 | |
|     SymbolTable.remove((EntryTy *)SymbolTableEntry);
 | |
| 
 | |
|   // If this is just removing the name, we're done.
 | |
|   if (Name.empty()) {
 | |
|     if (SymbolTableEntry) {
 | |
|       // Delete the old string data.
 | |
|       ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
 | |
|       SymbolTableEntry = nullptr;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // Look up the entry for the name.
 | |
|   EntryTy *Entry = &getContext().pImpl->NamedStructTypes.GetOrCreateValue(Name);
 | |
|   
 | |
|   // While we have a name collision, try a random rename.
 | |
|   if (Entry->getValue()) {
 | |
|     SmallString<64> TempStr(Name);
 | |
|     TempStr.push_back('.');
 | |
|     raw_svector_ostream TmpStream(TempStr);
 | |
|     unsigned NameSize = Name.size();
 | |
|    
 | |
|     do {
 | |
|       TempStr.resize(NameSize + 1);
 | |
|       TmpStream.resync();
 | |
|       TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
 | |
|       
 | |
|       Entry = &getContext().pImpl->
 | |
|                  NamedStructTypes.GetOrCreateValue(TmpStream.str());
 | |
|     } while (Entry->getValue());
 | |
|   }
 | |
| 
 | |
|   // Okay, we found an entry that isn't used.  It's us!
 | |
|   Entry->setValue(this);
 | |
| 
 | |
|   // Delete the old string data.
 | |
|   if (SymbolTableEntry)
 | |
|     ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
 | |
|   SymbolTableEntry = Entry;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // StructType Helper functions.
 | |
| 
 | |
| StructType *StructType::create(LLVMContext &Context, StringRef Name) {
 | |
|   StructType *ST = new (Context.pImpl->TypeAllocator) StructType(Context);
 | |
|   if (!Name.empty())
 | |
|     ST->setName(Name);
 | |
|   return ST;
 | |
| }
 | |
| 
 | |
| StructType *StructType::get(LLVMContext &Context, bool isPacked) {
 | |
|   return get(Context, None, isPacked);
 | |
| }
 | |
| 
 | |
| StructType *StructType::get(Type *type, ...) {
 | |
|   assert(type && "Cannot create a struct type with no elements with this");
 | |
|   LLVMContext &Ctx = type->getContext();
 | |
|   va_list ap;
 | |
|   SmallVector<llvm::Type*, 8> StructFields;
 | |
|   va_start(ap, type);
 | |
|   while (type) {
 | |
|     StructFields.push_back(type);
 | |
|     type = va_arg(ap, llvm::Type*);
 | |
|   }
 | |
|   return llvm::StructType::get(Ctx, StructFields);
 | |
| }
 | |
| 
 | |
| StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements,
 | |
|                                StringRef Name, bool isPacked) {
 | |
|   StructType *ST = create(Context, Name);
 | |
|   ST->setBody(Elements, isPacked);
 | |
|   return ST;
 | |
| }
 | |
| 
 | |
| StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) {
 | |
|   return create(Context, Elements, StringRef());
 | |
| }
 | |
| 
 | |
| StructType *StructType::create(LLVMContext &Context) {
 | |
|   return create(Context, StringRef());
 | |
| }
 | |
| 
 | |
| StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name,
 | |
|                                bool isPacked) {
 | |
|   assert(!Elements.empty() &&
 | |
|          "This method may not be invoked with an empty list");
 | |
|   return create(Elements[0]->getContext(), Elements, Name, isPacked);
 | |
| }
 | |
| 
 | |
| StructType *StructType::create(ArrayRef<Type*> Elements) {
 | |
|   assert(!Elements.empty() &&
 | |
|          "This method may not be invoked with an empty list");
 | |
|   return create(Elements[0]->getContext(), Elements, StringRef());
 | |
| }
 | |
| 
 | |
| StructType *StructType::create(StringRef Name, Type *type, ...) {
 | |
|   assert(type && "Cannot create a struct type with no elements with this");
 | |
|   LLVMContext &Ctx = type->getContext();
 | |
|   va_list ap;
 | |
|   SmallVector<llvm::Type*, 8> StructFields;
 | |
|   va_start(ap, type);
 | |
|   while (type) {
 | |
|     StructFields.push_back(type);
 | |
|     type = va_arg(ap, llvm::Type*);
 | |
|   }
 | |
|   return llvm::StructType::create(Ctx, StructFields, Name);
 | |
| }
 | |
| 
 | |
| bool StructType::isSized(SmallPtrSet<const Type*, 4> *Visited) const {
 | |
|   if ((getSubclassData() & SCDB_IsSized) != 0)
 | |
|     return true;
 | |
|   if (isOpaque())
 | |
|     return false;
 | |
| 
 | |
|   if (Visited && !Visited->insert(this))
 | |
|     return false;
 | |
| 
 | |
|   // Okay, our struct is sized if all of the elements are, but if one of the
 | |
|   // elements is opaque, the struct isn't sized *yet*, but may become sized in
 | |
|   // the future, so just bail out without caching.
 | |
|   for (element_iterator I = element_begin(), E = element_end(); I != E; ++I)
 | |
|     if (!(*I)->isSized(Visited))
 | |
|       return false;
 | |
| 
 | |
|   // Here we cheat a bit and cast away const-ness. The goal is to memoize when
 | |
|   // we find a sized type, as types can only move from opaque to sized, not the
 | |
|   // other way.
 | |
|   const_cast<StructType*>(this)->setSubclassData(
 | |
|     getSubclassData() | SCDB_IsSized);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| StringRef StructType::getName() const {
 | |
|   assert(!isLiteral() && "Literal structs never have names");
 | |
|   if (!SymbolTableEntry) return StringRef();
 | |
| 
 | |
|   return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
 | |
| }
 | |
| 
 | |
| void StructType::setBody(Type *type, ...) {
 | |
|   assert(type && "Cannot create a struct type with no elements with this");
 | |
|   va_list ap;
 | |
|   SmallVector<llvm::Type*, 8> StructFields;
 | |
|   va_start(ap, type);
 | |
|   while (type) {
 | |
|     StructFields.push_back(type);
 | |
|     type = va_arg(ap, llvm::Type*);
 | |
|   }
 | |
|   setBody(StructFields);
 | |
| }
 | |
| 
 | |
| bool StructType::isValidElementType(Type *ElemTy) {
 | |
|   return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
 | |
|          !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
 | |
| }
 | |
| 
 | |
| /// isLayoutIdentical - Return true if this is layout identical to the
 | |
| /// specified struct.
 | |
| bool StructType::isLayoutIdentical(StructType *Other) const {
 | |
|   if (this == Other) return true;
 | |
|   
 | |
|   if (isPacked() != Other->isPacked() ||
 | |
|       getNumElements() != Other->getNumElements())
 | |
|     return false;
 | |
|   
 | |
|   return std::equal(element_begin(), element_end(), Other->element_begin());
 | |
| }
 | |
| 
 | |
| /// getTypeByName - Return the type with the specified name, or null if there
 | |
| /// is none by that name.
 | |
| StructType *Module::getTypeByName(StringRef Name) const {
 | |
|   return getContext().pImpl->NamedStructTypes.lookup(Name);
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                       CompositeType Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| Type *CompositeType::getTypeAtIndex(const Value *V) {
 | |
|   if (StructType *STy = dyn_cast<StructType>(this)) {
 | |
|     unsigned Idx =
 | |
|       (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue();
 | |
|     assert(indexValid(Idx) && "Invalid structure index!");
 | |
|     return STy->getElementType(Idx);
 | |
|   }
 | |
| 
 | |
|   return cast<SequentialType>(this)->getElementType();
 | |
| }
 | |
| Type *CompositeType::getTypeAtIndex(unsigned Idx) {
 | |
|   if (StructType *STy = dyn_cast<StructType>(this)) {
 | |
|     assert(indexValid(Idx) && "Invalid structure index!");
 | |
|     return STy->getElementType(Idx);
 | |
|   }
 | |
|   
 | |
|   return cast<SequentialType>(this)->getElementType();
 | |
| }
 | |
| bool CompositeType::indexValid(const Value *V) const {
 | |
|   if (const StructType *STy = dyn_cast<StructType>(this)) {
 | |
|     // Structure indexes require (vectors of) 32-bit integer constants.  In the
 | |
|     // vector case all of the indices must be equal.
 | |
|     if (!V->getType()->getScalarType()->isIntegerTy(32))
 | |
|       return false;
 | |
|     const Constant *C = dyn_cast<Constant>(V);
 | |
|     if (C && V->getType()->isVectorTy())
 | |
|       C = C->getSplatValue();
 | |
|     const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C);
 | |
|     return CU && CU->getZExtValue() < STy->getNumElements();
 | |
|   }
 | |
| 
 | |
|   // Sequential types can be indexed by any integer.
 | |
|   return V->getType()->isIntOrIntVectorTy();
 | |
| }
 | |
| 
 | |
| bool CompositeType::indexValid(unsigned Idx) const {
 | |
|   if (const StructType *STy = dyn_cast<StructType>(this))
 | |
|     return Idx < STy->getNumElements();
 | |
|   // Sequential types can be indexed by any integer.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           ArrayType Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
 | |
|   : SequentialType(ArrayTyID, ElType) {
 | |
|   NumElements = NumEl;
 | |
| }
 | |
| 
 | |
| ArrayType *ArrayType::get(Type *elementType, uint64_t NumElements) {
 | |
|   Type *ElementType = const_cast<Type*>(elementType);
 | |
|   assert(isValidElementType(ElementType) && "Invalid type for array element!");
 | |
|     
 | |
|   LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
 | |
|   ArrayType *&Entry = 
 | |
|     pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)];
 | |
| 
 | |
|   if (!Entry)
 | |
|     Entry = new (pImpl->TypeAllocator) ArrayType(ElementType, NumElements);
 | |
|   return Entry;
 | |
| }
 | |
| 
 | |
| bool ArrayType::isValidElementType(Type *ElemTy) {
 | |
|   return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
 | |
|          !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                          VectorType Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| VectorType::VectorType(Type *ElType, unsigned NumEl)
 | |
|   : SequentialType(VectorTyID, ElType) {
 | |
|   NumElements = NumEl;
 | |
| }
 | |
| 
 | |
| VectorType *VectorType::get(Type *elementType, unsigned NumElements) {
 | |
|   Type *ElementType = const_cast<Type*>(elementType);
 | |
|   assert(NumElements > 0 && "#Elements of a VectorType must be greater than 0");
 | |
|   assert(isValidElementType(ElementType) &&
 | |
|          "Elements of a VectorType must be a primitive type");
 | |
|   
 | |
|   LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
 | |
|   VectorType *&Entry = ElementType->getContext().pImpl
 | |
|     ->VectorTypes[std::make_pair(ElementType, NumElements)];
 | |
| 
 | |
|   if (!Entry)
 | |
|     Entry = new (pImpl->TypeAllocator) VectorType(ElementType, NumElements);
 | |
|   return Entry;
 | |
| }
 | |
| 
 | |
| bool VectorType::isValidElementType(Type *ElemTy) {
 | |
|   return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
 | |
|     ElemTy->isPointerTy();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         PointerType Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) {
 | |
|   assert(EltTy && "Can't get a pointer to <null> type!");
 | |
|   assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
 | |
|   
 | |
|   LLVMContextImpl *CImpl = EltTy->getContext().pImpl;
 | |
|   
 | |
|   // Since AddressSpace #0 is the common case, we special case it.
 | |
|   PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy]
 | |
|      : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)];
 | |
| 
 | |
|   if (!Entry)
 | |
|     Entry = new (CImpl->TypeAllocator) PointerType(EltTy, AddressSpace);
 | |
|   return Entry;
 | |
| }
 | |
| 
 | |
| 
 | |
| PointerType::PointerType(Type *E, unsigned AddrSpace)
 | |
|   : SequentialType(PointerTyID, E) {
 | |
| #ifndef NDEBUG
 | |
|   const unsigned oldNCT = NumContainedTys;
 | |
| #endif
 | |
|   setSubclassData(AddrSpace);
 | |
|   // Check for miscompile. PR11652.
 | |
|   assert(oldNCT == NumContainedTys && "bitfield written out of bounds?");
 | |
| }
 | |
| 
 | |
| PointerType *Type::getPointerTo(unsigned addrs) {
 | |
|   return PointerType::get(this, addrs);
 | |
| }
 | |
| 
 | |
| bool PointerType::isValidElementType(Type *ElemTy) {
 | |
|   return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
 | |
|          !ElemTy->isMetadataTy();
 | |
| }
 |