llvm-6502/include/llvm/ADT/DenseMap.h
Chris Lattner 6e94c00ab2 Add a new dense hash table implementation
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@33751 91177308-0d34-0410-b5e6-96231b3b80d8
2007-02-01 07:49:59 +00:00

204 lines
6.4 KiB
C++

//===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the DenseMap class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_DENSEMAP_H
#define LLVM_ADT_DENSEMAP_H
#include "llvm/Support/DataTypes.h"
#include <cassert>
namespace llvm {
template<typename T>
struct DenseMapKeyInfo {
//static inline T getEmptyKey();
//static inline T getTombstoneKey();
//static unsigned getHashValue(const T &Val);
//static bool isPod()
};
template<typename T>
struct DenseMapKeyInfo<T*> {
static inline T* getEmptyKey() { return (T*)-1; }
static inline T* getTombstoneKey() { return (T*)-2; }
static unsigned getHashValue(const T *PtrVal) {
return (unsigned)((uintptr_t)PtrVal >> 4) ^
(unsigned)((uintptr_t)PtrVal >> 9);
}
static bool isPod() { return true; }
};
template<typename KeyT, typename ValueT>
class DenseMap {
struct BucketT { KeyT Key; ValueT Value; };
unsigned NumBuckets;
BucketT *Buckets;
unsigned NumEntries;
DenseMap(const DenseMap &); // not implemented.
public:
explicit DenseMap(unsigned NumInitBuckets = 8) {
init(NumInitBuckets);
}
~DenseMap() {
const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) {
if (P->Key != EmptyKey && P->Key != TombstoneKey)
P->Value.~ValueT();
P->Key.~KeyT();
}
delete[] (char*)Buckets;
}
unsigned size() const { return NumEntries; }
void clear() {
const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) {
if (P->Key != EmptyKey && P->Key != TombstoneKey) {
P->Key = EmptyKey;
P->Value.~ValueT();
--NumEntries;
}
}
assert(NumEntries == 0 && "Node count imbalance!");
}
/// count - Return true if the specified key is in the map.
bool count(const KeyT &Val) const {
BucketT *TheBucket;
return LookupBucketFor(Val, TheBucket);
}
ValueT &operator[](const KeyT &Val) {
BucketT *TheBucket;
if (LookupBucketFor(Val, TheBucket))
return TheBucket->Value;
// If the load of the hash table is more than 3/4, grow it.
if (NumEntries*4 >= NumBuckets*3) {
this->grow();
LookupBucketFor(Val, TheBucket);
}
++NumEntries;
TheBucket->Key = Val;
new (&TheBucket->Value) ValueT();
return TheBucket->Value;
}
private:
unsigned getHashValue(const KeyT &Val) const {
return DenseMapKeyInfo<KeyT>::getHashValue(Val);
}
const KeyT getEmptyKey() const { return DenseMapKeyInfo<KeyT>::getEmptyKey();}
const KeyT getTombstoneKey() const {
return DenseMapKeyInfo<KeyT>::getTombstoneKey();
}
/// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
/// FoundBucket. If the bucket contains the key and a value, this returns
/// true, otherwise it returns a bucket with an empty marker or tombstone and
/// returns false.
bool LookupBucketFor(const KeyT &Val, BucketT *&FoundBucket) const {
unsigned BucketNo = getHashValue(Val);
unsigned ProbeAmt = 1;
BucketT *BucketsPtr = Buckets;
// FoundTombstone - Keep track of whether we find a tombstone while probing.
BucketT *FoundTombstone = 0;
const KeyT EmptyKey = getEmptyKey();
const KeyT TombstoneKey = getTombstoneKey();
assert(Val != EmptyKey && Val != TombstoneKey &&
"Empty/Tombstone value shouldn't be inserted into map!");
while (1) {
BucketT *ThisBucket = BucketsPtr + (BucketNo & (NumBuckets-1));
// Found Val's bucket? If so, return it.
if (ThisBucket->Key == Val) {
FoundBucket = ThisBucket;
return true;
}
// If we found an empty bucket, the key doesn't exist in the set.
// Insert it and return the default value.
if (ThisBucket->Key == EmptyKey) {
// If we've already seen a tombstone while probing, fill it in instead
// of the empty bucket we eventually probed to.
if (FoundTombstone) ThisBucket = FoundTombstone;
FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
return false;
}
// If this is a tombstone, remember it. If Val ends up not in the map, we
// prefer to return it than something that would require more probing.
if (ThisBucket->Key == TombstoneKey && !FoundTombstone)
FoundTombstone = ThisBucket; // Remember the first tombstone found.
// Otherwise, it's a hash collision or a tombstone, continue quadratic
// probing.
BucketNo += ProbeAmt++;
}
}
void init(unsigned InitBuckets) {
NumEntries = 0;
NumBuckets = InitBuckets;
assert(InitBuckets && (InitBuckets & InitBuckets-1) == 0 &&
"# initial buckets must be a power of two!");
Buckets = (BucketT*)new char[sizeof(BucketT)*InitBuckets];
// Initialize all the keys to EmptyKey.
const KeyT EmptyKey = getEmptyKey();
for (unsigned i = 0; i != InitBuckets; ++i)
new (&Buckets[i].Key) KeyT(EmptyKey);
}
void grow() {
unsigned OldNumBuckets = NumBuckets;
BucketT *OldBuckets = Buckets;
// Double the number of buckets.
NumBuckets <<= 1;
Buckets = (BucketT*)new char[sizeof(BucketT)*NumBuckets];
// Initialize all the keys to EmptyKey.
const KeyT EmptyKey = getEmptyKey();
for (unsigned i = 0, e = NumBuckets; i != e; ++i)
new (&Buckets[i].Key) KeyT(EmptyKey);
// Insert all the old elements.
const KeyT TombstoneKey = getTombstoneKey();
for (BucketT *B = OldBuckets, *E = OldBuckets+OldNumBuckets; B != E; ++B) {
if (B->Key != EmptyKey && B->Key != TombstoneKey) {
// Insert the key/value into the new table.
BucketT *DestBucket;
bool FoundVal = LookupBucketFor(B->Key, DestBucket);
assert(!FoundVal && "Key already in new map?");
DestBucket->Key = B->Key;
new (&DestBucket->Value) ValueT(B->Value);
// Free the value.
B->Value.~ValueT();
}
B->Key.~KeyT();
}
// Free the old table.
delete[] (char*)OldBuckets;
}
};
} // end namespace llvm
#endif