mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	An obfuscated splat is where the frontend poorly generates code for a splat using several different shuffles to create the splat, i.e., %A = load <4 x float>* %in_ptr, align 16 %B = shufflevector <4 x float> %A, <4 x float> undef, <4 x i32> <i32 0, i32 0, i32 undef, i32 undef> %C = shufflevector <4 x float> %B, <4 x float> %A, <4 x i32> <i32 0, i32 1, i32 4, i32 undef> %D = shufflevector <4 x float> %C, <4 x float> %A, <4 x i32> <i32 0, i32 1, i32 2, i32 4> git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166061 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			676 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			676 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- InstCombineVectorOps.cpp -------------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements instcombine for ExtractElement, InsertElement and
 | |
| // ShuffleVector.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "InstCombine.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| /// CheapToScalarize - Return true if the value is cheaper to scalarize than it
 | |
| /// is to leave as a vector operation.  isConstant indicates whether we're
 | |
| /// extracting one known element.  If false we're extracting a variable index.
 | |
| static bool CheapToScalarize(Value *V, bool isConstant) {
 | |
|   if (Constant *C = dyn_cast<Constant>(V)) {
 | |
|     if (isConstant) return true;
 | |
| 
 | |
|     // If all elts are the same, we can extract it and use any of the values.
 | |
|     Constant *Op0 = C->getAggregateElement(0U);
 | |
|     for (unsigned i = 1, e = V->getType()->getVectorNumElements(); i != e; ++i)
 | |
|       if (C->getAggregateElement(i) != Op0)
 | |
|         return false;
 | |
|     return true;
 | |
|   }
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I) return false;
 | |
| 
 | |
|   // Insert element gets simplified to the inserted element or is deleted if
 | |
|   // this is constant idx extract element and its a constant idx insertelt.
 | |
|   if (I->getOpcode() == Instruction::InsertElement && isConstant &&
 | |
|       isa<ConstantInt>(I->getOperand(2)))
 | |
|     return true;
 | |
|   if (I->getOpcode() == Instruction::Load && I->hasOneUse())
 | |
|     return true;
 | |
|   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
 | |
|     if (BO->hasOneUse() &&
 | |
|         (CheapToScalarize(BO->getOperand(0), isConstant) ||
 | |
|          CheapToScalarize(BO->getOperand(1), isConstant)))
 | |
|       return true;
 | |
|   if (CmpInst *CI = dyn_cast<CmpInst>(I))
 | |
|     if (CI->hasOneUse() &&
 | |
|         (CheapToScalarize(CI->getOperand(0), isConstant) ||
 | |
|          CheapToScalarize(CI->getOperand(1), isConstant)))
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// FindScalarElement - Given a vector and an element number, see if the scalar
 | |
| /// value is already around as a register, for example if it were inserted then
 | |
| /// extracted from the vector.
 | |
| static Value *FindScalarElement(Value *V, unsigned EltNo) {
 | |
|   assert(V->getType()->isVectorTy() && "Not looking at a vector?");
 | |
|   VectorType *VTy = cast<VectorType>(V->getType());
 | |
|   unsigned Width = VTy->getNumElements();
 | |
|   if (EltNo >= Width)  // Out of range access.
 | |
|     return UndefValue::get(VTy->getElementType());
 | |
| 
 | |
|   if (Constant *C = dyn_cast<Constant>(V))
 | |
|     return C->getAggregateElement(EltNo);
 | |
| 
 | |
|   if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
 | |
|     // If this is an insert to a variable element, we don't know what it is.
 | |
|     if (!isa<ConstantInt>(III->getOperand(2)))
 | |
|       return 0;
 | |
|     unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
 | |
| 
 | |
|     // If this is an insert to the element we are looking for, return the
 | |
|     // inserted value.
 | |
|     if (EltNo == IIElt)
 | |
|       return III->getOperand(1);
 | |
| 
 | |
|     // Otherwise, the insertelement doesn't modify the value, recurse on its
 | |
|     // vector input.
 | |
|     return FindScalarElement(III->getOperand(0), EltNo);
 | |
|   }
 | |
| 
 | |
|   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
 | |
|     unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
 | |
|     int InEl = SVI->getMaskValue(EltNo);
 | |
|     if (InEl < 0)
 | |
|       return UndefValue::get(VTy->getElementType());
 | |
|     if (InEl < (int)LHSWidth)
 | |
|       return FindScalarElement(SVI->getOperand(0), InEl);
 | |
|     return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth);
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we don't know.
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
 | |
|   // If vector val is constant with all elements the same, replace EI with
 | |
|   // that element.  We handle a known element # below.
 | |
|   if (Constant *C = dyn_cast<Constant>(EI.getOperand(0)))
 | |
|     if (CheapToScalarize(C, false))
 | |
|       return ReplaceInstUsesWith(EI, C->getAggregateElement(0U));
 | |
| 
 | |
|   // If extracting a specified index from the vector, see if we can recursively
 | |
|   // find a previously computed scalar that was inserted into the vector.
 | |
|   if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
 | |
|     unsigned IndexVal = IdxC->getZExtValue();
 | |
|     unsigned VectorWidth = EI.getVectorOperandType()->getNumElements();
 | |
| 
 | |
|     // If this is extracting an invalid index, turn this into undef, to avoid
 | |
|     // crashing the code below.
 | |
|     if (IndexVal >= VectorWidth)
 | |
|       return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
 | |
| 
 | |
|     // This instruction only demands the single element from the input vector.
 | |
|     // If the input vector has a single use, simplify it based on this use
 | |
|     // property.
 | |
|     if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
 | |
|       APInt UndefElts(VectorWidth, 0);
 | |
|       APInt DemandedMask(VectorWidth, 0);
 | |
|       DemandedMask.setBit(IndexVal);
 | |
|       if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
 | |
|                                                 DemandedMask, UndefElts)) {
 | |
|         EI.setOperand(0, V);
 | |
|         return &EI;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
 | |
|       return ReplaceInstUsesWith(EI, Elt);
 | |
| 
 | |
|     // If the this extractelement is directly using a bitcast from a vector of
 | |
|     // the same number of elements, see if we can find the source element from
 | |
|     // it.  In this case, we will end up needing to bitcast the scalars.
 | |
|     if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
 | |
|       if (VectorType *VT = dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
 | |
|         if (VT->getNumElements() == VectorWidth)
 | |
|           if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
 | |
|             return new BitCastInst(Elt, EI.getType());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
 | |
|     // Push extractelement into predecessor operation if legal and
 | |
|     // profitable to do so
 | |
|     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
 | |
|       if (I->hasOneUse() &&
 | |
|           CheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) {
 | |
|         Value *newEI0 =
 | |
|           Builder->CreateExtractElement(BO->getOperand(0), EI.getOperand(1),
 | |
|                                         EI.getName()+".lhs");
 | |
|         Value *newEI1 =
 | |
|           Builder->CreateExtractElement(BO->getOperand(1), EI.getOperand(1),
 | |
|                                         EI.getName()+".rhs");
 | |
|         return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
 | |
|       }
 | |
|     } else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
 | |
|       // Extracting the inserted element?
 | |
|       if (IE->getOperand(2) == EI.getOperand(1))
 | |
|         return ReplaceInstUsesWith(EI, IE->getOperand(1));
 | |
|       // If the inserted and extracted elements are constants, they must not
 | |
|       // be the same value, extract from the pre-inserted value instead.
 | |
|       if (isa<Constant>(IE->getOperand(2)) && isa<Constant>(EI.getOperand(1))) {
 | |
|         Worklist.AddValue(EI.getOperand(0));
 | |
|         EI.setOperand(0, IE->getOperand(0));
 | |
|         return &EI;
 | |
|       }
 | |
|     } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
 | |
|       // If this is extracting an element from a shufflevector, figure out where
 | |
|       // it came from and extract from the appropriate input element instead.
 | |
|       if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
 | |
|         int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
 | |
|         Value *Src;
 | |
|         unsigned LHSWidth =
 | |
|           SVI->getOperand(0)->getType()->getVectorNumElements();
 | |
| 
 | |
|         if (SrcIdx < 0)
 | |
|           return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
 | |
|         if (SrcIdx < (int)LHSWidth)
 | |
|           Src = SVI->getOperand(0);
 | |
|         else {
 | |
|           SrcIdx -= LHSWidth;
 | |
|           Src = SVI->getOperand(1);
 | |
|         }
 | |
|         Type *Int32Ty = Type::getInt32Ty(EI.getContext());
 | |
|         return ExtractElementInst::Create(Src,
 | |
|                                           ConstantInt::get(Int32Ty,
 | |
|                                                            SrcIdx, false));
 | |
|       }
 | |
|     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
 | |
|       // Canonicalize extractelement(cast) -> cast(extractelement)
 | |
|       // bitcasts can change the number of vector elements and they cost nothing
 | |
|       if (CI->hasOneUse() && EI.hasOneUse() &&
 | |
|           (CI->getOpcode() != Instruction::BitCast)) {
 | |
|         Value *EE = Builder->CreateExtractElement(CI->getOperand(0),
 | |
|                                                   EI.getIndexOperand());
 | |
|         return CastInst::Create(CI->getOpcode(), EE, EI.getType());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
 | |
| /// elements from either LHS or RHS, return the shuffle mask and true.
 | |
| /// Otherwise, return false.
 | |
| static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
 | |
|                                          SmallVectorImpl<Constant*> &Mask) {
 | |
|   assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
 | |
|          "Invalid CollectSingleShuffleElements");
 | |
|   unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
 | |
| 
 | |
|   if (isa<UndefValue>(V)) {
 | |
|     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (V == LHS) {
 | |
|     for (unsigned i = 0; i != NumElts; ++i)
 | |
|       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (V == RHS) {
 | |
|     for (unsigned i = 0; i != NumElts; ++i)
 | |
|       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
 | |
|                                       i+NumElts));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
 | |
|     // If this is an insert of an extract from some other vector, include it.
 | |
|     Value *VecOp    = IEI->getOperand(0);
 | |
|     Value *ScalarOp = IEI->getOperand(1);
 | |
|     Value *IdxOp    = IEI->getOperand(2);
 | |
| 
 | |
|     if (!isa<ConstantInt>(IdxOp))
 | |
|       return false;
 | |
|     unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
 | |
| 
 | |
|     if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
 | |
|       // Okay, we can handle this if the vector we are insertinting into is
 | |
|       // transitively ok.
 | |
|       if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
 | |
|         // If so, update the mask to reflect the inserted undef.
 | |
|         Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
 | |
|         return true;
 | |
|       }
 | |
|     } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
 | |
|       if (isa<ConstantInt>(EI->getOperand(1)) &&
 | |
|           EI->getOperand(0)->getType() == V->getType()) {
 | |
|         unsigned ExtractedIdx =
 | |
|         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
 | |
| 
 | |
|         // This must be extracting from either LHS or RHS.
 | |
|         if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
 | |
|           // Okay, we can handle this if the vector we are insertinting into is
 | |
|           // transitively ok.
 | |
|           if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
 | |
|             // If so, update the mask to reflect the inserted value.
 | |
|             if (EI->getOperand(0) == LHS) {
 | |
|               Mask[InsertedIdx % NumElts] =
 | |
|               ConstantInt::get(Type::getInt32Ty(V->getContext()),
 | |
|                                ExtractedIdx);
 | |
|             } else {
 | |
|               assert(EI->getOperand(0) == RHS);
 | |
|               Mask[InsertedIdx % NumElts] =
 | |
|               ConstantInt::get(Type::getInt32Ty(V->getContext()),
 | |
|                                ExtractedIdx+NumElts);
 | |
|             }
 | |
|             return true;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // TODO: Handle shufflevector here!
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// CollectShuffleElements - We are building a shuffle of V, using RHS as the
 | |
| /// RHS of the shuffle instruction, if it is not null.  Return a shuffle mask
 | |
| /// that computes V and the LHS value of the shuffle.
 | |
| static Value *CollectShuffleElements(Value *V, SmallVectorImpl<Constant*> &Mask,
 | |
|                                      Value *&RHS) {
 | |
|   assert(V->getType()->isVectorTy() &&
 | |
|          (RHS == 0 || V->getType() == RHS->getType()) &&
 | |
|          "Invalid shuffle!");
 | |
|   unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
 | |
| 
 | |
|   if (isa<UndefValue>(V)) {
 | |
|     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
 | |
|     return V;
 | |
|   }
 | |
|   
 | |
|   if (isa<ConstantAggregateZero>(V)) {
 | |
|     Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
 | |
|     return V;
 | |
|   }
 | |
|   
 | |
|   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
 | |
|     // If this is an insert of an extract from some other vector, include it.
 | |
|     Value *VecOp    = IEI->getOperand(0);
 | |
|     Value *ScalarOp = IEI->getOperand(1);
 | |
|     Value *IdxOp    = IEI->getOperand(2);
 | |
| 
 | |
|     if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
 | |
|       if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
 | |
|           EI->getOperand(0)->getType() == V->getType()) {
 | |
|         unsigned ExtractedIdx =
 | |
|           cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
 | |
|         unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
 | |
| 
 | |
|         // Either the extracted from or inserted into vector must be RHSVec,
 | |
|         // otherwise we'd end up with a shuffle of three inputs.
 | |
|         if (EI->getOperand(0) == RHS || RHS == 0) {
 | |
|           RHS = EI->getOperand(0);
 | |
|           Value *V = CollectShuffleElements(VecOp, Mask, RHS);
 | |
|           Mask[InsertedIdx % NumElts] =
 | |
|             ConstantInt::get(Type::getInt32Ty(V->getContext()),
 | |
|                              NumElts+ExtractedIdx);
 | |
|           return V;
 | |
|         }
 | |
| 
 | |
|         if (VecOp == RHS) {
 | |
|           Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
 | |
|           // Everything but the extracted element is replaced with the RHS.
 | |
|           for (unsigned i = 0; i != NumElts; ++i) {
 | |
|             if (i != InsertedIdx)
 | |
|               Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()),
 | |
|                                          NumElts+i);
 | |
|           }
 | |
|           return V;
 | |
|         }
 | |
| 
 | |
|         // If this insertelement is a chain that comes from exactly these two
 | |
|         // vectors, return the vector and the effective shuffle.
 | |
|         if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
 | |
|           return EI->getOperand(0);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // TODO: Handle shufflevector here!
 | |
| 
 | |
|   // Otherwise, can't do anything fancy.  Return an identity vector.
 | |
|   for (unsigned i = 0; i != NumElts; ++i)
 | |
|     Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
 | |
|   Value *VecOp    = IE.getOperand(0);
 | |
|   Value *ScalarOp = IE.getOperand(1);
 | |
|   Value *IdxOp    = IE.getOperand(2);
 | |
| 
 | |
|   // Inserting an undef or into an undefined place, remove this.
 | |
|   if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
 | |
|     ReplaceInstUsesWith(IE, VecOp);
 | |
| 
 | |
|   // If the inserted element was extracted from some other vector, and if the
 | |
|   // indexes are constant, try to turn this into a shufflevector operation.
 | |
|   if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
 | |
|     if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
 | |
|         EI->getOperand(0)->getType() == IE.getType()) {
 | |
|       unsigned NumVectorElts = IE.getType()->getNumElements();
 | |
|       unsigned ExtractedIdx =
 | |
|         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
 | |
|       unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
 | |
| 
 | |
|       if (ExtractedIdx >= NumVectorElts) // Out of range extract.
 | |
|         return ReplaceInstUsesWith(IE, VecOp);
 | |
| 
 | |
|       if (InsertedIdx >= NumVectorElts)  // Out of range insert.
 | |
|         return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
 | |
| 
 | |
|       // If we are extracting a value from a vector, then inserting it right
 | |
|       // back into the same place, just use the input vector.
 | |
|       if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
 | |
|         return ReplaceInstUsesWith(IE, VecOp);
 | |
| 
 | |
|       // If this insertelement isn't used by some other insertelement, turn it
 | |
|       // (and any insertelements it points to), into one big shuffle.
 | |
|       if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
 | |
|         SmallVector<Constant*, 16> Mask;
 | |
|         Value *RHS = 0;
 | |
|         Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
 | |
|         if (RHS == 0) RHS = UndefValue::get(LHS->getType());
 | |
|         // We now have a shuffle of LHS, RHS, Mask.
 | |
|         return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned VWidth = cast<VectorType>(VecOp->getType())->getNumElements();
 | |
|   APInt UndefElts(VWidth, 0);
 | |
|   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
 | |
|   if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
 | |
|     if (V != &IE)
 | |
|       return ReplaceInstUsesWith(IE, V);
 | |
|     return &IE;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
 | |
|   Value *LHS = SVI.getOperand(0);
 | |
|   Value *RHS = SVI.getOperand(1);
 | |
|   SmallVector<int, 16> Mask = SVI.getShuffleMask();
 | |
| 
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   // Undefined shuffle mask -> undefined value.
 | |
|   if (isa<UndefValue>(SVI.getOperand(2)))
 | |
|     return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
 | |
| 
 | |
|   unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
 | |
| 
 | |
|   APInt UndefElts(VWidth, 0);
 | |
|   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
 | |
|   if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
 | |
|     if (V != &SVI)
 | |
|       return ReplaceInstUsesWith(SVI, V);
 | |
|     LHS = SVI.getOperand(0);
 | |
|     RHS = SVI.getOperand(1);
 | |
|     MadeChange = true;
 | |
|   }
 | |
| 
 | |
|   unsigned LHSWidth = cast<VectorType>(LHS->getType())->getNumElements();
 | |
| 
 | |
|   // Canonicalize shuffle(x    ,x,mask) -> shuffle(x, undef,mask')
 | |
|   // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
 | |
|   if (LHS == RHS || isa<UndefValue>(LHS)) {
 | |
|     if (isa<UndefValue>(LHS) && LHS == RHS) {
 | |
|       // shuffle(undef,undef,mask) -> undef.
 | |
|       Value* result = (VWidth == LHSWidth)
 | |
|                       ? LHS : UndefValue::get(SVI.getType());
 | |
|       return ReplaceInstUsesWith(SVI, result);
 | |
|     }
 | |
| 
 | |
|     // Remap any references to RHS to use LHS.
 | |
|     SmallVector<Constant*, 16> Elts;
 | |
|     for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) {
 | |
|       if (Mask[i] < 0) {
 | |
|         Elts.push_back(UndefValue::get(Type::getInt32Ty(SVI.getContext())));
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) ||
 | |
|           (Mask[i] <  (int)e && isa<UndefValue>(LHS))) {
 | |
|         Mask[i] = -1;     // Turn into undef.
 | |
|         Elts.push_back(UndefValue::get(Type::getInt32Ty(SVI.getContext())));
 | |
|       } else {
 | |
|         Mask[i] = Mask[i] % e;  // Force to LHS.
 | |
|         Elts.push_back(ConstantInt::get(Type::getInt32Ty(SVI.getContext()),
 | |
|                                         Mask[i]));
 | |
|       }
 | |
|     }
 | |
|     SVI.setOperand(0, SVI.getOperand(1));
 | |
|     SVI.setOperand(1, UndefValue::get(RHS->getType()));
 | |
|     SVI.setOperand(2, ConstantVector::get(Elts));
 | |
|     LHS = SVI.getOperand(0);
 | |
|     RHS = SVI.getOperand(1);
 | |
|     MadeChange = true;
 | |
|   }
 | |
| 
 | |
|   if (VWidth == LHSWidth) {
 | |
|     // Analyze the shuffle, are the LHS or RHS and identity shuffles?
 | |
|     bool isLHSID = true, isRHSID = true;
 | |
| 
 | |
|     for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
 | |
|       if (Mask[i] < 0) continue;  // Ignore undef values.
 | |
|       // Is this an identity shuffle of the LHS value?
 | |
|       isLHSID &= (Mask[i] == (int)i);
 | |
| 
 | |
|       // Is this an identity shuffle of the RHS value?
 | |
|       isRHSID &= (Mask[i]-e == i);
 | |
|     }
 | |
| 
 | |
|     // Eliminate identity shuffles.
 | |
|     if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
 | |
|     if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
 | |
|   }
 | |
| 
 | |
|   // If the LHS is a shufflevector itself, see if we can combine it with this
 | |
|   // one without producing an unusual shuffle.
 | |
|   // Cases that might be simplified:
 | |
|   // 1.
 | |
|   // x1=shuffle(v1,v2,mask1)
 | |
|   //  x=shuffle(x1,undef,mask)
 | |
|   //        ==>
 | |
|   //  x=shuffle(v1,undef,newMask)
 | |
|   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
 | |
|   // 2.
 | |
|   // x1=shuffle(v1,undef,mask1)
 | |
|   //  x=shuffle(x1,x2,mask)
 | |
|   // where v1.size() == mask1.size()
 | |
|   //        ==>
 | |
|   //  x=shuffle(v1,x2,newMask)
 | |
|   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
 | |
|   // 3.
 | |
|   // x2=shuffle(v2,undef,mask2)
 | |
|   //  x=shuffle(x1,x2,mask)
 | |
|   // where v2.size() == mask2.size()
 | |
|   //        ==>
 | |
|   //  x=shuffle(x1,v2,newMask)
 | |
|   // newMask[i] = (mask[i] < x1.size())
 | |
|   //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
 | |
|   // 4.
 | |
|   // x1=shuffle(v1,undef,mask1)
 | |
|   // x2=shuffle(v2,undef,mask2)
 | |
|   //  x=shuffle(x1,x2,mask)
 | |
|   // where v1.size() == v2.size()
 | |
|   //        ==>
 | |
|   //  x=shuffle(v1,v2,newMask)
 | |
|   // newMask[i] = (mask[i] < x1.size())
 | |
|   //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
 | |
|   //
 | |
|   // Here we are really conservative:
 | |
|   // we are absolutely afraid of producing a shuffle mask not in the input
 | |
|   // program, because the code gen may not be smart enough to turn a merged
 | |
|   // shuffle into two specific shuffles: it may produce worse code.  As such,
 | |
|   // we only merge two shuffles if the result is either a splat or one of the
 | |
|   // input shuffle masks.  In this case, merging the shuffles just removes
 | |
|   // one instruction, which we know is safe.  This is good for things like
 | |
|   // turning: (splat(splat)) -> splat, or
 | |
|   // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
 | |
|   ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
 | |
|   ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
 | |
|   if (LHSShuffle)
 | |
|     if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
 | |
|       LHSShuffle = NULL;
 | |
|   if (RHSShuffle)
 | |
|     if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
 | |
|       RHSShuffle = NULL;
 | |
|   if (!LHSShuffle && !RHSShuffle)
 | |
|     return MadeChange ? &SVI : 0;
 | |
| 
 | |
|   Value* LHSOp0 = NULL;
 | |
|   Value* LHSOp1 = NULL;
 | |
|   Value* RHSOp0 = NULL;
 | |
|   unsigned LHSOp0Width = 0;
 | |
|   unsigned RHSOp0Width = 0;
 | |
|   if (LHSShuffle) {
 | |
|     LHSOp0 = LHSShuffle->getOperand(0);
 | |
|     LHSOp1 = LHSShuffle->getOperand(1);
 | |
|     LHSOp0Width = cast<VectorType>(LHSOp0->getType())->getNumElements();
 | |
|   }
 | |
|   if (RHSShuffle) {
 | |
|     RHSOp0 = RHSShuffle->getOperand(0);
 | |
|     RHSOp0Width = cast<VectorType>(RHSOp0->getType())->getNumElements();
 | |
|   }
 | |
|   Value* newLHS = LHS;
 | |
|   Value* newRHS = RHS;
 | |
|   if (LHSShuffle) {
 | |
|     // case 1
 | |
|     if (isa<UndefValue>(RHS)) {
 | |
|       newLHS = LHSOp0;
 | |
|       newRHS = LHSOp1;
 | |
|     }
 | |
|     // case 2 or 4
 | |
|     else if (LHSOp0Width == LHSWidth) {
 | |
|       newLHS = LHSOp0;
 | |
|     }
 | |
|   }
 | |
|   // case 3 or 4
 | |
|   if (RHSShuffle && RHSOp0Width == LHSWidth) {
 | |
|     newRHS = RHSOp0;
 | |
|   }
 | |
|   // case 4
 | |
|   if (LHSOp0 == RHSOp0) {
 | |
|     newLHS = LHSOp0;
 | |
|     newRHS = NULL;
 | |
|   }
 | |
| 
 | |
|   if (newLHS == LHS && newRHS == RHS)
 | |
|     return MadeChange ? &SVI : 0;
 | |
| 
 | |
|   SmallVector<int, 16> LHSMask;
 | |
|   SmallVector<int, 16> RHSMask;
 | |
|   if (newLHS != LHS)
 | |
|     LHSMask = LHSShuffle->getShuffleMask();
 | |
|   if (RHSShuffle && newRHS != RHS)
 | |
|     RHSMask = RHSShuffle->getShuffleMask();
 | |
| 
 | |
|   unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
 | |
|   SmallVector<int, 16> newMask;
 | |
|   bool isSplat = true;
 | |
|   int SplatElt = -1;
 | |
|   // Create a new mask for the new ShuffleVectorInst so that the new
 | |
|   // ShuffleVectorInst is equivalent to the original one.
 | |
|   for (unsigned i = 0; i < VWidth; ++i) {
 | |
|     int eltMask;
 | |
|     if (Mask[i] == -1) {
 | |
|       // This element is an undef value.
 | |
|       eltMask = -1;
 | |
|     } else if (Mask[i] < (int)LHSWidth) {
 | |
|       // This element is from left hand side vector operand.
 | |
|       // 
 | |
|       // If LHS is going to be replaced (case 1, 2, or 4), calculate the
 | |
|       // new mask value for the element.
 | |
|       if (newLHS != LHS) {
 | |
|         eltMask = LHSMask[Mask[i]];
 | |
|         // If the value selected is an undef value, explicitly specify it
 | |
|         // with a -1 mask value.
 | |
|         if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
 | |
|           eltMask = -1;
 | |
|       }
 | |
|       else
 | |
|         eltMask = Mask[i];
 | |
|     } else {
 | |
|       // This element is from right hand side vector operand
 | |
|       //
 | |
|       // If the value selected is an undef value, explicitly specify it
 | |
|       // with a -1 mask value. (case 1)
 | |
|       if (isa<UndefValue>(RHS))
 | |
|         eltMask = -1;
 | |
|       // If RHS is going to be replaced (case 3 or 4), calculate the
 | |
|       // new mask value for the element.
 | |
|       else if (newRHS != RHS) {
 | |
|         eltMask = RHSMask[Mask[i]-LHSWidth];
 | |
|         // If the value selected is an undef value, explicitly specify it
 | |
|         // with a -1 mask value.
 | |
|         if (eltMask >= (int)RHSOp0Width) {
 | |
|           assert(isa<UndefValue>(RHSShuffle->getOperand(1))
 | |
|                  && "should have been check above");
 | |
|           eltMask = -1;
 | |
|         }
 | |
|       }
 | |
|       else
 | |
|         eltMask = Mask[i]-LHSWidth;
 | |
| 
 | |
|       // If LHS's width is changed, shift the mask value accordingly.
 | |
|       // If newRHS == NULL, i.e. LHSOp0 == RHSOp0, we want to remap any
 | |
|       // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
 | |
|       // If newRHS == newLHS, we want to remap any references from newRHS to
 | |
|       // newLHS so that we can properly identify splats that may occur due to
 | |
|       // obfuscation accross the two vectors.
 | |
|       if (eltMask >= 0 && newRHS != NULL && newLHS != newRHS)
 | |
|         eltMask += newLHSWidth;
 | |
|     }
 | |
| 
 | |
|     // Check if this could still be a splat.
 | |
|     if (eltMask >= 0) {
 | |
|       if (SplatElt >= 0 && SplatElt != eltMask)
 | |
|         isSplat = false;
 | |
|       SplatElt = eltMask;
 | |
|     }
 | |
| 
 | |
|     newMask.push_back(eltMask);
 | |
|   }
 | |
| 
 | |
|   // If the result mask is equal to one of the original shuffle masks,
 | |
|   // or is a splat, do the replacement.
 | |
|   if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
 | |
|     SmallVector<Constant*, 16> Elts;
 | |
|     Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
 | |
|     for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
 | |
|       if (newMask[i] < 0) {
 | |
|         Elts.push_back(UndefValue::get(Int32Ty));
 | |
|       } else {
 | |
|         Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
 | |
|       }
 | |
|     }
 | |
|     if (newRHS == NULL)
 | |
|       newRHS = UndefValue::get(newLHS->getType());
 | |
|     return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
 | |
|   }
 | |
| 
 | |
|   return MadeChange ? &SVI : 0;
 | |
| }
 |