llvm-6502/lib/Target/PowerPC/PPCISelLowering.cpp
Evan Cheng 786225adf0 Make use of getStore().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@30759 91177308-0d34-0410-b5e6-96231b3b80d8
2006-10-05 23:01:46 +00:00

2707 lines
110 KiB
C++

//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the PPCISelLowering class.
//
//===----------------------------------------------------------------------===//
#include "PPCISelLowering.h"
#include "PPCTargetMachine.h"
#include "PPCPerfectShuffle.h"
#include "llvm/ADT/VectorExtras.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/Intrinsics.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetOptions.h"
using namespace llvm;
PPCTargetLowering::PPCTargetLowering(TargetMachine &TM)
: TargetLowering(TM) {
// Fold away setcc operations if possible.
setSetCCIsExpensive();
setPow2DivIsCheap();
// Use _setjmp/_longjmp instead of setjmp/longjmp.
setUseUnderscoreSetJmpLongJmp(true);
// Set up the register classes.
addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
// PowerPC has an i16 but no i8 (or i1) SEXTLOAD
setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
// PowerPC has no intrinsics for these particular operations
setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
setOperationAction(ISD::MEMSET, MVT::Other, Expand);
setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
// PowerPC has no SREM/UREM instructions
setOperationAction(ISD::SREM, MVT::i32, Expand);
setOperationAction(ISD::UREM, MVT::i32, Expand);
setOperationAction(ISD::SREM, MVT::i64, Expand);
setOperationAction(ISD::UREM, MVT::i64, Expand);
// We don't support sin/cos/sqrt/fmod
setOperationAction(ISD::FSIN , MVT::f64, Expand);
setOperationAction(ISD::FCOS , MVT::f64, Expand);
setOperationAction(ISD::FREM , MVT::f64, Expand);
setOperationAction(ISD::FSIN , MVT::f32, Expand);
setOperationAction(ISD::FCOS , MVT::f32, Expand);
setOperationAction(ISD::FREM , MVT::f32, Expand);
// If we're enabling GP optimizations, use hardware square root
if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
setOperationAction(ISD::FSQRT, MVT::f64, Expand);
setOperationAction(ISD::FSQRT, MVT::f32, Expand);
}
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
// PowerPC does not have BSWAP, CTPOP or CTTZ
setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
setOperationAction(ISD::BSWAP, MVT::i64 , Expand);
setOperationAction(ISD::CTPOP, MVT::i64 , Expand);
setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
// PowerPC does not have ROTR
setOperationAction(ISD::ROTR, MVT::i32 , Expand);
// PowerPC does not have Select
setOperationAction(ISD::SELECT, MVT::i32, Expand);
setOperationAction(ISD::SELECT, MVT::i64, Expand);
setOperationAction(ISD::SELECT, MVT::f32, Expand);
setOperationAction(ISD::SELECT, MVT::f64, Expand);
// PowerPC wants to turn select_cc of FP into fsel when possible.
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
// PowerPC wants to optimize integer setcc a bit
setOperationAction(ISD::SETCC, MVT::i32, Custom);
// PowerPC does not have BRCOND which requires SetCC
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
// PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
// PowerPC does not have [U|S]INT_TO_FP
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
// PowerPC does not have truncstore for i1.
setOperationAction(ISD::TRUNCSTORE, MVT::i1, Promote);
// We cannot sextinreg(i1). Expand to shifts.
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
// Support label based line numbers.
setOperationAction(ISD::LOCATION, MVT::Other, Expand);
setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
// FIXME - use subtarget debug flags
if (!TM.getSubtarget<PPCSubtarget>().isDarwin())
setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand);
// We want to legalize GlobalAddress and ConstantPool nodes into the
// appropriate instructions to materialize the address.
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
setOperationAction(ISD::JumpTable, MVT::i32, Custom);
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
setOperationAction(ISD::JumpTable, MVT::i64, Custom);
// RET must be custom lowered, to meet ABI requirements
setOperationAction(ISD::RET , MVT::Other, Custom);
// VASTART needs to be custom lowered to use the VarArgsFrameIndex
setOperationAction(ISD::VASTART , MVT::Other, Custom);
// Use the default implementation.
setOperationAction(ISD::VAARG , MVT::Other, Expand);
setOperationAction(ISD::VACOPY , MVT::Other, Expand);
setOperationAction(ISD::VAEND , MVT::Other, Expand);
setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Expand);
// We want to custom lower some of our intrinsics.
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
// They also have instructions for converting between i64 and fp.
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
// FIXME: disable this lowered code. This generates 64-bit register values,
// and we don't model the fact that the top part is clobbered by calls. We
// need to flag these together so that the value isn't live across a call.
//setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
// To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
} else {
// PowerPC does not have FP_TO_UINT on 32-bit implementations.
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
}
if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
// 64 bit PowerPC implementations can support i64 types directly
addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
// BUILD_PAIR can't be handled natively, and should be expanded to shl/or
setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
} else {
// 32 bit PowerPC wants to expand i64 shifts itself.
setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
}
if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
// First set operation action for all vector types to expand. Then we
// will selectively turn on ones that can be effectively codegen'd.
for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
// add/sub are legal for all supported vector VT's.
setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
// We promote all shuffles to v16i8.
setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
// We promote all non-typed operations to v4i32.
setOperationAction(ISD::AND , (MVT::ValueType)VT, Promote);
AddPromotedToType (ISD::AND , (MVT::ValueType)VT, MVT::v4i32);
setOperationAction(ISD::OR , (MVT::ValueType)VT, Promote);
AddPromotedToType (ISD::OR , (MVT::ValueType)VT, MVT::v4i32);
setOperationAction(ISD::XOR , (MVT::ValueType)VT, Promote);
AddPromotedToType (ISD::XOR , (MVT::ValueType)VT, MVT::v4i32);
setOperationAction(ISD::LOAD , (MVT::ValueType)VT, Promote);
AddPromotedToType (ISD::LOAD , (MVT::ValueType)VT, MVT::v4i32);
setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
// No other operations are legal.
setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
}
// We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
// with merges, splats, etc.
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
setOperationAction(ISD::AND , MVT::v4i32, Legal);
setOperationAction(ISD::OR , MVT::v4i32, Legal);
setOperationAction(ISD::XOR , MVT::v4i32, Legal);
setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
setOperationAction(ISD::STORE , MVT::v4i32, Legal);
addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
setOperationAction(ISD::MUL, MVT::v4f32, Legal);
setOperationAction(ISD::MUL, MVT::v4i32, Custom);
setOperationAction(ISD::MUL, MVT::v8i16, Custom);
setOperationAction(ISD::MUL, MVT::v16i8, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
}
setSetCCResultType(MVT::i32);
setShiftAmountType(MVT::i32);
setSetCCResultContents(ZeroOrOneSetCCResult);
setStackPointerRegisterToSaveRestore(PPC::R1);
// We have target-specific dag combine patterns for the following nodes:
setTargetDAGCombine(ISD::SINT_TO_FP);
setTargetDAGCombine(ISD::STORE);
setTargetDAGCombine(ISD::BR_CC);
setTargetDAGCombine(ISD::BSWAP);
computeRegisterProperties();
}
const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch (Opcode) {
default: return 0;
case PPCISD::FSEL: return "PPCISD::FSEL";
case PPCISD::FCFID: return "PPCISD::FCFID";
case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
case PPCISD::STFIWX: return "PPCISD::STFIWX";
case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
case PPCISD::VPERM: return "PPCISD::VPERM";
case PPCISD::Hi: return "PPCISD::Hi";
case PPCISD::Lo: return "PPCISD::Lo";
case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
case PPCISD::SRL: return "PPCISD::SRL";
case PPCISD::SRA: return "PPCISD::SRA";
case PPCISD::SHL: return "PPCISD::SHL";
case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32";
case PPCISD::STD_32: return "PPCISD::STD_32";
case PPCISD::CALL: return "PPCISD::CALL";
case PPCISD::MTCTR: return "PPCISD::MTCTR";
case PPCISD::BCTRL: return "PPCISD::BCTRL";
case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
case PPCISD::MFCR: return "PPCISD::MFCR";
case PPCISD::VCMP: return "PPCISD::VCMP";
case PPCISD::VCMPo: return "PPCISD::VCMPo";
case PPCISD::LBRX: return "PPCISD::LBRX";
case PPCISD::STBRX: return "PPCISD::STBRX";
case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH";
}
}
//===----------------------------------------------------------------------===//
// Node matching predicates, for use by the tblgen matching code.
//===----------------------------------------------------------------------===//
/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
static bool isFloatingPointZero(SDOperand Op) {
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
else if (ISD::isEXTLoad(Op.Val) || Op.getOpcode() == ISD::LOAD) {
// Maybe this has already been legalized into the constant pool?
if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
}
return false;
}
/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
/// true if Op is undef or if it matches the specified value.
static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
return Op.getOpcode() == ISD::UNDEF ||
cast<ConstantSDNode>(Op)->getValue() == Val;
}
/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
/// VPKUHUM instruction.
bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
if (!isUnary) {
for (unsigned i = 0; i != 16; ++i)
if (!isConstantOrUndef(N->getOperand(i), i*2+1))
return false;
} else {
for (unsigned i = 0; i != 8; ++i)
if (!isConstantOrUndef(N->getOperand(i), i*2+1) ||
!isConstantOrUndef(N->getOperand(i+8), i*2+1))
return false;
}
return true;
}
/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
/// VPKUWUM instruction.
bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
if (!isUnary) {
for (unsigned i = 0; i != 16; i += 2)
if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
!isConstantOrUndef(N->getOperand(i+1), i*2+3))
return false;
} else {
for (unsigned i = 0; i != 8; i += 2)
if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
!isConstantOrUndef(N->getOperand(i+1), i*2+3) ||
!isConstantOrUndef(N->getOperand(i+8), i*2+2) ||
!isConstantOrUndef(N->getOperand(i+9), i*2+3))
return false;
}
return true;
}
/// isVMerge - Common function, used to match vmrg* shuffles.
///
static bool isVMerge(SDNode *N, unsigned UnitSize,
unsigned LHSStart, unsigned RHSStart) {
assert(N->getOpcode() == ISD::BUILD_VECTOR &&
N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
"Unsupported merge size!");
for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
LHSStart+j+i*UnitSize) ||
!isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
RHSStart+j+i*UnitSize))
return false;
}
return true;
}
/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
if (!isUnary)
return isVMerge(N, UnitSize, 8, 24);
return isVMerge(N, UnitSize, 8, 8);
}
/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
if (!isUnary)
return isVMerge(N, UnitSize, 0, 16);
return isVMerge(N, UnitSize, 0, 0);
}
/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
/// amount, otherwise return -1.
int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
assert(N->getOpcode() == ISD::BUILD_VECTOR &&
N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
// Find the first non-undef value in the shuffle mask.
unsigned i;
for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
/*search*/;
if (i == 16) return -1; // all undef.
// Otherwise, check to see if the rest of the elements are consequtively
// numbered from this value.
unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
if (ShiftAmt < i) return -1;
ShiftAmt -= i;
if (!isUnary) {
// Check the rest of the elements to see if they are consequtive.
for (++i; i != 16; ++i)
if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
return -1;
} else {
// Check the rest of the elements to see if they are consequtive.
for (++i; i != 16; ++i)
if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
return -1;
}
return ShiftAmt;
}
/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a splat of a single element that is suitable for input to
/// VSPLTB/VSPLTH/VSPLTW.
bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
assert(N->getOpcode() == ISD::BUILD_VECTOR &&
N->getNumOperands() == 16 &&
(EltSize == 1 || EltSize == 2 || EltSize == 4));
// This is a splat operation if each element of the permute is the same, and
// if the value doesn't reference the second vector.
unsigned ElementBase = 0;
SDOperand Elt = N->getOperand(0);
if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
ElementBase = EltV->getValue();
else
return false; // FIXME: Handle UNDEF elements too!
if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
return false;
// Check that they are consequtive.
for (unsigned i = 1; i != EltSize; ++i) {
if (!isa<ConstantSDNode>(N->getOperand(i)) ||
cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
return false;
}
assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
assert(isa<ConstantSDNode>(N->getOperand(i)) &&
"Invalid VECTOR_SHUFFLE mask!");
for (unsigned j = 0; j != EltSize; ++j)
if (N->getOperand(i+j) != N->getOperand(j))
return false;
}
return true;
}
/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
assert(isSplatShuffleMask(N, EltSize));
return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
}
/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
/// by using a vspltis[bhw] instruction of the specified element size, return
/// the constant being splatted. The ByteSize field indicates the number of
/// bytes of each element [124] -> [bhw].
SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
SDOperand OpVal(0, 0);
// If ByteSize of the splat is bigger than the element size of the
// build_vector, then we have a case where we are checking for a splat where
// multiple elements of the buildvector are folded together into a single
// logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
unsigned EltSize = 16/N->getNumOperands();
if (EltSize < ByteSize) {
unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
SDOperand UniquedVals[4];
assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
// See if all of the elements in the buildvector agree across.
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
// If the element isn't a constant, bail fully out.
if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
if (UniquedVals[i&(Multiple-1)].Val == 0)
UniquedVals[i&(Multiple-1)] = N->getOperand(i);
else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
return SDOperand(); // no match.
}
// Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
// either constant or undef values that are identical for each chunk. See
// if these chunks can form into a larger vspltis*.
// Check to see if all of the leading entries are either 0 or -1. If
// neither, then this won't fit into the immediate field.
bool LeadingZero = true;
bool LeadingOnes = true;
for (unsigned i = 0; i != Multiple-1; ++i) {
if (UniquedVals[i].Val == 0) continue; // Must have been undefs.
LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
}
// Finally, check the least significant entry.
if (LeadingZero) {
if (UniquedVals[Multiple-1].Val == 0)
return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef
int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
if (Val < 16)
return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4)
}
if (LeadingOnes) {
if (UniquedVals[Multiple-1].Val == 0)
return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef
int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
return DAG.getTargetConstant(Val, MVT::i32);
}
return SDOperand();
}
// Check to see if this buildvec has a single non-undef value in its elements.
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
if (OpVal.Val == 0)
OpVal = N->getOperand(i);
else if (OpVal != N->getOperand(i))
return SDOperand();
}
if (OpVal.Val == 0) return SDOperand(); // All UNDEF: use implicit def.
unsigned ValSizeInBytes = 0;
uint64_t Value = 0;
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
Value = CN->getValue();
ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
} else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
Value = FloatToBits(CN->getValue());
ValSizeInBytes = 4;
}
// If the splat value is larger than the element value, then we can never do
// this splat. The only case that we could fit the replicated bits into our
// immediate field for would be zero, and we prefer to use vxor for it.
if (ValSizeInBytes < ByteSize) return SDOperand();
// If the element value is larger than the splat value, cut it in half and
// check to see if the two halves are equal. Continue doing this until we
// get to ByteSize. This allows us to handle 0x01010101 as 0x01.
while (ValSizeInBytes > ByteSize) {
ValSizeInBytes >>= 1;
// If the top half equals the bottom half, we're still ok.
if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
(Value & ((1 << (8*ValSizeInBytes))-1)))
return SDOperand();
}
// Properly sign extend the value.
int ShAmt = (4-ByteSize)*8;
int MaskVal = ((int)Value << ShAmt) >> ShAmt;
// If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
if (MaskVal == 0) return SDOperand();
// Finally, if this value fits in a 5 bit sext field, return it
if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
return DAG.getTargetConstant(MaskVal, MVT::i32);
return SDOperand();
}
//===----------------------------------------------------------------------===//
// LowerOperation implementation
//===----------------------------------------------------------------------===//
static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
MVT::ValueType PtrVT = Op.getValueType();
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
Constant *C = CP->getConstVal();
SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
SDOperand Zero = DAG.getConstant(0, PtrVT);
const TargetMachine &TM = DAG.getTarget();
SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
// If this is a non-darwin platform, we don't support non-static relo models
// yet.
if (TM.getRelocationModel() == Reloc::Static ||
!TM.getSubtarget<PPCSubtarget>().isDarwin()) {
// Generate non-pic code that has direct accesses to the constant pool.
// The address of the global is just (hi(&g)+lo(&g)).
return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
}
if (TM.getRelocationModel() == Reloc::PIC_) {
// With PIC, the first instruction is actually "GR+hi(&G)".
Hi = DAG.getNode(ISD::ADD, PtrVT,
DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
}
Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
return Lo;
}
static SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
MVT::ValueType PtrVT = Op.getValueType();
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
SDOperand Zero = DAG.getConstant(0, PtrVT);
const TargetMachine &TM = DAG.getTarget();
SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
// If this is a non-darwin platform, we don't support non-static relo models
// yet.
if (TM.getRelocationModel() == Reloc::Static ||
!TM.getSubtarget<PPCSubtarget>().isDarwin()) {
// Generate non-pic code that has direct accesses to the constant pool.
// The address of the global is just (hi(&g)+lo(&g)).
return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
}
if (TM.getRelocationModel() == Reloc::PIC_) {
// With PIC, the first instruction is actually "GR+hi(&G)".
Hi = DAG.getNode(ISD::ADD, PtrVT,
DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
}
Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
return Lo;
}
static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
MVT::ValueType PtrVT = Op.getValueType();
GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
GlobalValue *GV = GSDN->getGlobal();
SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
SDOperand Zero = DAG.getConstant(0, PtrVT);
const TargetMachine &TM = DAG.getTarget();
SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
// If this is a non-darwin platform, we don't support non-static relo models
// yet.
if (TM.getRelocationModel() == Reloc::Static ||
!TM.getSubtarget<PPCSubtarget>().isDarwin()) {
// Generate non-pic code that has direct accesses to globals.
// The address of the global is just (hi(&g)+lo(&g)).
return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
}
if (TM.getRelocationModel() == Reloc::PIC_) {
// With PIC, the first instruction is actually "GR+hi(&G)".
Hi = DAG.getNode(ISD::ADD, PtrVT,
DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
}
Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
if (!GV->hasWeakLinkage() && !GV->hasLinkOnceLinkage() &&
(!GV->isExternal() || GV->hasNotBeenReadFromBytecode()))
return Lo;
// If the global is weak or external, we have to go through the lazy
// resolution stub.
return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, DAG.getSrcValue(0));
}
static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
// If we're comparing for equality to zero, expose the fact that this is
// implented as a ctlz/srl pair on ppc, so that the dag combiner can
// fold the new nodes.
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
if (C->isNullValue() && CC == ISD::SETEQ) {
MVT::ValueType VT = Op.getOperand(0).getValueType();
SDOperand Zext = Op.getOperand(0);
if (VT < MVT::i32) {
VT = MVT::i32;
Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
}
unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
DAG.getConstant(Log2b, MVT::i32));
return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
}
// Leave comparisons against 0 and -1 alone for now, since they're usually
// optimized. FIXME: revisit this when we can custom lower all setcc
// optimizations.
if (C->isAllOnesValue() || C->isNullValue())
return SDOperand();
}
// If we have an integer seteq/setne, turn it into a compare against zero
// by subtracting the rhs from the lhs, which is faster than setting a
// condition register, reading it back out, and masking the correct bit.
MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
MVT::ValueType VT = Op.getValueType();
SDOperand Sub = DAG.getNode(ISD::SUB, LHSVT, Op.getOperand(0),
Op.getOperand(1));
return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
}
return SDOperand();
}
static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
unsigned VarArgsFrameIndex) {
// vastart just stores the address of the VarArgsFrameIndex slot into the
// memory location argument.
MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), Op.getOperand(2));
}
static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG,
int &VarArgsFrameIndex) {
// TODO: add description of PPC stack frame format, or at least some docs.
//
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
SSARegMap *RegMap = MF.getSSARegMap();
SmallVector<SDOperand, 8> ArgValues;
SDOperand Root = Op.getOperand(0);
unsigned ArgOffset = 24;
const unsigned Num_GPR_Regs = 8;
const unsigned Num_FPR_Regs = 13;
const unsigned Num_VR_Regs = 12;
unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
static const unsigned GPR_32[] = { // 32-bit registers.
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
};
static const unsigned GPR_64[] = { // 64-bit registers.
PPC::X3, PPC::X4, PPC::X5, PPC::X6,
PPC::X7, PPC::X8, PPC::X9, PPC::X10,
};
static const unsigned FPR[] = {
PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
};
static const unsigned VR[] = {
PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
};
MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
bool isPPC64 = PtrVT == MVT::i64;
const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
// Add DAG nodes to load the arguments or copy them out of registers. On
// entry to a function on PPC, the arguments start at offset 24, although the
// first ones are often in registers.
for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
SDOperand ArgVal;
bool needsLoad = false;
MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
unsigned CurArgOffset = ArgOffset;
switch (ObjectVT) {
default: assert(0 && "Unhandled argument type!");
case MVT::i32:
// All int arguments reserve stack space.
ArgOffset += isPPC64 ? 8 : 4;
if (GPR_idx != Num_GPR_Regs) {
unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
MF.addLiveIn(GPR[GPR_idx], VReg);
ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
++GPR_idx;
} else {
needsLoad = true;
}
break;
case MVT::i64: // PPC64
// All int arguments reserve stack space.
ArgOffset += 8;
if (GPR_idx != Num_GPR_Regs) {
unsigned VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass);
MF.addLiveIn(GPR[GPR_idx], VReg);
ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
++GPR_idx;
} else {
needsLoad = true;
}
break;
case MVT::f32:
case MVT::f64:
// All FP arguments reserve stack space.
ArgOffset += ObjSize;
// Every 4 bytes of argument space consumes one of the GPRs available for
// argument passing.
if (GPR_idx != Num_GPR_Regs) {
++GPR_idx;
if (ObjSize == 8 && GPR_idx != Num_GPR_Regs)
++GPR_idx;
}
if (FPR_idx != Num_FPR_Regs) {
unsigned VReg;
if (ObjectVT == MVT::f32)
VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass);
else
VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
MF.addLiveIn(FPR[FPR_idx], VReg);
ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
++FPR_idx;
} else {
needsLoad = true;
}
break;
case MVT::v4f32:
case MVT::v4i32:
case MVT::v8i16:
case MVT::v16i8:
// Note that vector arguments in registers don't reserve stack space.
if (VR_idx != Num_VR_Regs) {
unsigned VReg = RegMap->createVirtualRegister(&PPC::VRRCRegClass);
MF.addLiveIn(VR[VR_idx], VReg);
ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
++VR_idx;
} else {
// This should be simple, but requires getting 16-byte aligned stack
// values.
assert(0 && "Loading VR argument not implemented yet!");
needsLoad = true;
}
break;
}
// We need to load the argument to a virtual register if we determined above
// that we ran out of physical registers of the appropriate type
if (needsLoad) {
// If the argument is actually used, emit a load from the right stack
// slot.
if (!Op.Val->hasNUsesOfValue(0, ArgNo)) {
int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
ArgVal = DAG.getLoad(ObjectVT, Root, FIN,
DAG.getSrcValue(NULL));
} else {
// Don't emit a dead load.
ArgVal = DAG.getNode(ISD::UNDEF, ObjectVT);
}
}
ArgValues.push_back(ArgVal);
}
// If the function takes variable number of arguments, make a frame index for
// the start of the first vararg value... for expansion of llvm.va_start.
bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
if (isVarArg) {
VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
ArgOffset);
SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
// If this function is vararg, store any remaining integer argument regs
// to their spots on the stack so that they may be loaded by deferencing the
// result of va_next.
SmallVector<SDOperand, 8> MemOps;
for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
MF.addLiveIn(GPR[GPR_idx], VReg);
SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN,
DAG.getSrcValue(NULL));
MemOps.push_back(Store);
// Increment the address by four for the next argument to store
SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
}
if (!MemOps.empty())
Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
}
ArgValues.push_back(Root);
// Return the new list of results.
std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
Op.Val->value_end());
return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
}
/// isCallCompatibleAddress - Return the immediate to use if the specified
/// 32-bit value is representable in the immediate field of a BxA instruction.
static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
if (!C) return 0;
int Addr = C->getValue();
if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero.
(Addr << 6 >> 6) != Addr)
return 0; // Top 6 bits have to be sext of immediate.
return DAG.getConstant((int)C->getValue() >> 2, MVT::i32).Val;
}
static SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG) {
SDOperand Chain = Op.getOperand(0);
unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
SDOperand Callee = Op.getOperand(4);
unsigned NumOps = (Op.getNumOperands() - 5) / 2;
MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
bool isPPC64 = PtrVT == MVT::i64;
unsigned PtrByteSize = isPPC64 ? 8 : 4;
// args_to_use will accumulate outgoing args for the PPCISD::CALL case in
// SelectExpr to use to put the arguments in the appropriate registers.
std::vector<SDOperand> args_to_use;
// Count how many bytes are to be pushed on the stack, including the linkage
// area, and parameter passing area. We start with 24/48 bytes, which is
// prereserved space for [SP][CR][LR][3 x unused].
unsigned NumBytes = 6*PtrByteSize;
// Add up all the space actually used.
for (unsigned i = 0; i != NumOps; ++i)
NumBytes += MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
// The prolog code of the callee may store up to 8 GPR argument registers to
// the stack, allowing va_start to index over them in memory if its varargs.
// Because we cannot tell if this is needed on the caller side, we have to
// conservatively assume that it is needed. As such, make sure we have at
// least enough stack space for the caller to store the 8 GPRs.
if (NumBytes < 6*PtrByteSize+8*PtrByteSize)
NumBytes = 6*PtrByteSize+8*PtrByteSize;
// Adjust the stack pointer for the new arguments...
// These operations are automatically eliminated by the prolog/epilog pass
Chain = DAG.getCALLSEQ_START(Chain,
DAG.getConstant(NumBytes, PtrVT));
// Set up a copy of the stack pointer for use loading and storing any
// arguments that may not fit in the registers available for argument
// passing.
SDOperand StackPtr;
if (isPPC64)
StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
else
StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
// Figure out which arguments are going to go in registers, and which in
// memory. Also, if this is a vararg function, floating point operations
// must be stored to our stack, and loaded into integer regs as well, if
// any integer regs are available for argument passing.
unsigned ArgOffset = 6*PtrByteSize;
unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
static const unsigned GPR_32[] = { // 32-bit registers.
PPC::R3, PPC::R4, PPC::R5, PPC::R6,
PPC::R7, PPC::R8, PPC::R9, PPC::R10,
};
static const unsigned GPR_64[] = { // 64-bit registers.
PPC::X3, PPC::X4, PPC::X5, PPC::X6,
PPC::X7, PPC::X8, PPC::X9, PPC::X10,
};
static const unsigned FPR[] = {
PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
};
static const unsigned VR[] = {
PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
};
const unsigned NumGPRs = sizeof(GPR_32)/sizeof(GPR_32[0]);
const unsigned NumFPRs = sizeof(FPR)/sizeof(FPR[0]);
const unsigned NumVRs = sizeof( VR)/sizeof( VR[0]);
const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
SmallVector<SDOperand, 8> MemOpChains;
for (unsigned i = 0; i != NumOps; ++i) {
SDOperand Arg = Op.getOperand(5+2*i);
// PtrOff will be used to store the current argument to the stack if a
// register cannot be found for it.
SDOperand PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
// On PPC64, promote integers to 64-bit values.
if (isPPC64 && Arg.getValueType() == MVT::i32) {
unsigned ExtOp = ISD::ZERO_EXTEND;
if (cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue())
ExtOp = ISD::SIGN_EXTEND;
Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
}
switch (Arg.getValueType()) {
default: assert(0 && "Unexpected ValueType for argument!");
case MVT::i32:
case MVT::i64:
if (GPR_idx != NumGPRs) {
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
} else {
MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff,
DAG.getSrcValue(NULL)));
}
ArgOffset += PtrByteSize;
break;
case MVT::f32:
case MVT::f64:
if (FPR_idx != NumFPRs) {
RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
if (isVarArg) {
SDOperand Store = DAG.getStore(Chain, Arg, PtrOff,
DAG.getSrcValue(NULL));
MemOpChains.push_back(Store);
// Float varargs are always shadowed in available integer registers
if (GPR_idx != NumGPRs) {
SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff,
DAG.getSrcValue(NULL));
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
}
if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64) {
SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff,
DAG.getSrcValue(NULL));
MemOpChains.push_back(Load.getValue(1));
RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
}
} else {
// If we have any FPRs remaining, we may also have GPRs remaining.
// Args passed in FPRs consume either 1 (f32) or 2 (f64) available
// GPRs.
if (GPR_idx != NumGPRs)
++GPR_idx;
if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64)
++GPR_idx;
}
} else {
MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff,
DAG.getSrcValue(NULL)));
}
if (isPPC64)
ArgOffset += 8;
else
ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
break;
case MVT::v4f32:
case MVT::v4i32:
case MVT::v8i16:
case MVT::v16i8:
assert(!isVarArg && "Don't support passing vectors to varargs yet!");
assert(VR_idx != NumVRs &&
"Don't support passing more than 12 vector args yet!");
RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
break;
}
}
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
&MemOpChains[0], MemOpChains.size());
// Build a sequence of copy-to-reg nodes chained together with token chain
// and flag operands which copy the outgoing args into the appropriate regs.
SDOperand InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
InFlag);
InFlag = Chain.getValue(1);
}
std::vector<MVT::ValueType> NodeTys;
NodeTys.push_back(MVT::Other); // Returns a chain
NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
SmallVector<SDOperand, 8> Ops;
unsigned CallOpc = PPCISD::CALL;
// If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
// direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
// node so that legalize doesn't hack it.
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
// If this is an absolute destination address, use the munged value.
Callee = SDOperand(Dest, 0);
else {
// Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair
// to do the call, we can't use PPCISD::CALL.
SDOperand MTCTROps[] = {Chain, Callee, InFlag};
Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
InFlag = Chain.getValue(1);
// Copy the callee address into R12 on darwin.
Chain = DAG.getCopyToReg(Chain, PPC::R12, Callee, InFlag);
InFlag = Chain.getValue(1);
NodeTys.clear();
NodeTys.push_back(MVT::Other);
NodeTys.push_back(MVT::Flag);
Ops.push_back(Chain);
CallOpc = PPCISD::BCTRL;
Callee.Val = 0;
}
// If this is a direct call, pass the chain and the callee.
if (Callee.Val) {
Ops.push_back(Chain);
Ops.push_back(Callee);
}
// Add argument registers to the end of the list so that they are known live
// into the call.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
if (InFlag.Val)
Ops.push_back(InFlag);
Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
InFlag = Chain.getValue(1);
SDOperand ResultVals[3];
unsigned NumResults = 0;
NodeTys.clear();
// If the call has results, copy the values out of the ret val registers.
switch (Op.Val->getValueType(0)) {
default: assert(0 && "Unexpected ret value!");
case MVT::Other: break;
case MVT::i32:
if (Op.Val->getValueType(1) == MVT::i32) {
Chain = DAG.getCopyFromReg(Chain, PPC::R4, MVT::i32, InFlag).getValue(1);
ResultVals[0] = Chain.getValue(0);
Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32,
Chain.getValue(2)).getValue(1);
ResultVals[1] = Chain.getValue(0);
NumResults = 2;
NodeTys.push_back(MVT::i32);
} else {
Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
ResultVals[0] = Chain.getValue(0);
NumResults = 1;
}
NodeTys.push_back(MVT::i32);
break;
case MVT::i64:
Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1);
ResultVals[0] = Chain.getValue(0);
NumResults = 1;
NodeTys.push_back(MVT::i64);
break;
case MVT::f32:
case MVT::f64:
Chain = DAG.getCopyFromReg(Chain, PPC::F1, Op.Val->getValueType(0),
InFlag).getValue(1);
ResultVals[0] = Chain.getValue(0);
NumResults = 1;
NodeTys.push_back(Op.Val->getValueType(0));
break;
case MVT::v4f32:
case MVT::v4i32:
case MVT::v8i16:
case MVT::v16i8:
Chain = DAG.getCopyFromReg(Chain, PPC::V2, Op.Val->getValueType(0),
InFlag).getValue(1);
ResultVals[0] = Chain.getValue(0);
NumResults = 1;
NodeTys.push_back(Op.Val->getValueType(0));
break;
}
Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
DAG.getConstant(NumBytes, PtrVT));
NodeTys.push_back(MVT::Other);
// If the function returns void, just return the chain.
if (NumResults == 0)
return Chain;
// Otherwise, merge everything together with a MERGE_VALUES node.
ResultVals[NumResults++] = Chain;
SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
ResultVals, NumResults);
return Res.getValue(Op.ResNo);
}
static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG) {
SDOperand Copy;
switch(Op.getNumOperands()) {
default:
assert(0 && "Do not know how to return this many arguments!");
abort();
case 1:
return SDOperand(); // ret void is legal
case 3: {
MVT::ValueType ArgVT = Op.getOperand(1).getValueType();
unsigned ArgReg;
if (ArgVT == MVT::i32) {
ArgReg = PPC::R3;
} else if (ArgVT == MVT::i64) {
ArgReg = PPC::X3;
} else if (MVT::isVector(ArgVT)) {
ArgReg = PPC::V2;
} else {
assert(MVT::isFloatingPoint(ArgVT));
ArgReg = PPC::F1;
}
Copy = DAG.getCopyToReg(Op.getOperand(0), ArgReg, Op.getOperand(1),
SDOperand());
// If we haven't noted the R3/F1 are live out, do so now.
if (DAG.getMachineFunction().liveout_empty())
DAG.getMachineFunction().addLiveOut(ArgReg);
break;
}
case 5:
Copy = DAG.getCopyToReg(Op.getOperand(0), PPC::R3, Op.getOperand(3),
SDOperand());
Copy = DAG.getCopyToReg(Copy, PPC::R4, Op.getOperand(1),Copy.getValue(1));
// If we haven't noted the R3+R4 are live out, do so now.
if (DAG.getMachineFunction().liveout_empty()) {
DAG.getMachineFunction().addLiveOut(PPC::R3);
DAG.getMachineFunction().addLiveOut(PPC::R4);
}
break;
}
return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Copy, Copy.getValue(1));
}
/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
/// possible.
static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
// Not FP? Not a fsel.
if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
!MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
return SDOperand();
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
// Cannot handle SETEQ/SETNE.
if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
MVT::ValueType ResVT = Op.getValueType();
MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
SDOperand TV = Op.getOperand(2), FV = Op.getOperand(3);
// If the RHS of the comparison is a 0.0, we don't need to do the
// subtraction at all.
if (isFloatingPointZero(RHS))
switch (CC) {
default: break; // SETUO etc aren't handled by fsel.
case ISD::SETULT:
case ISD::SETOLT:
case ISD::SETLT:
std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
case ISD::SETUGE:
case ISD::SETOGE:
case ISD::SETGE:
if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
case ISD::SETUGT:
case ISD::SETOGT:
case ISD::SETGT:
std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
case ISD::SETULE:
case ISD::SETOLE:
case ISD::SETLE:
if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
return DAG.getNode(PPCISD::FSEL, ResVT,
DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
}
SDOperand Cmp;
switch (CC) {
default: break; // SETUO etc aren't handled by fsel.
case ISD::SETULT:
case ISD::SETOLT:
case ISD::SETLT:
Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
case ISD::SETUGE:
case ISD::SETOGE:
case ISD::SETGE:
Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
case ISD::SETUGT:
case ISD::SETOGT:
case ISD::SETGT:
Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
case ISD::SETULE:
case ISD::SETOLE:
case ISD::SETLE:
Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
}
return SDOperand();
}
static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
SDOperand Src = Op.getOperand(0);
if (Src.getValueType() == MVT::f32)
Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
SDOperand Tmp;
switch (Op.getValueType()) {
default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
case MVT::i32:
Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
break;
case MVT::i64:
Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
break;
}
// Convert the FP value to an int value through memory.
SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Tmp);
if (Op.getValueType() == MVT::i32)
Bits = DAG.getNode(ISD::TRUNCATE, MVT::i32, Bits);
return Bits;
}
static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
if (Op.getOperand(0).getValueType() == MVT::i64) {
SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
if (Op.getValueType() == MVT::f32)
FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
return FP;
}
assert(Op.getOperand(0).getValueType() == MVT::i32 &&
"Unhandled SINT_TO_FP type in custom expander!");
// Since we only generate this in 64-bit mode, we can take advantage of
// 64-bit registers. In particular, sign extend the input value into the
// 64-bit register with extsw, store the WHOLE 64-bit value into the stack
// then lfd it and fcfid it.
MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
int FrameIdx = FrameInfo->CreateStackObject(8, 8);
MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
Op.getOperand(0));
// STD the extended value into the stack slot.
SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
DAG.getEntryNode(), Ext64, FIdx,
DAG.getSrcValue(NULL));
// Load the value as a double.
SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, DAG.getSrcValue(NULL));
// FCFID it and return it.
SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
if (Op.getValueType() == MVT::f32)
FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
return FP;
}
static SDOperand LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) {
assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
// Expand into a bunch of logical ops. Note that these ops
// depend on the PPC behavior for oversized shift amounts.
SDOperand Lo = Op.getOperand(0);
SDOperand Hi = Op.getOperand(1);
SDOperand Amt = Op.getOperand(2);
SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
DAG.getConstant(32, MVT::i32), Amt);
SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
DAG.getConstant(-32U, MVT::i32));
SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
SDOperand OutOps[] = { OutLo, OutHi };
return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
OutOps, 2);
}
static SDOperand LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) {
assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRL!");
// Otherwise, expand into a bunch of logical ops. Note that these ops
// depend on the PPC behavior for oversized shift amounts.
SDOperand Lo = Op.getOperand(0);
SDOperand Hi = Op.getOperand(1);
SDOperand Amt = Op.getOperand(2);
SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
DAG.getConstant(32, MVT::i32), Amt);
SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
DAG.getConstant(-32U, MVT::i32));
SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
SDOperand OutOps[] = { OutLo, OutHi };
return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
OutOps, 2);
}
static SDOperand LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) {
assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
// Otherwise, expand into a bunch of logical ops, followed by a select_cc.
SDOperand Lo = Op.getOperand(0);
SDOperand Hi = Op.getOperand(1);
SDOperand Amt = Op.getOperand(2);
SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
DAG.getConstant(32, MVT::i32), Amt);
SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
DAG.getConstant(-32U, MVT::i32));
SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
Tmp4, Tmp6, ISD::SETLE);
SDOperand OutOps[] = { OutLo, OutHi };
return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
OutOps, 2);
}
//===----------------------------------------------------------------------===//
// Vector related lowering.
//
// If this is a vector of constants or undefs, get the bits. A bit in
// UndefBits is set if the corresponding element of the vector is an
// ISD::UNDEF value. For undefs, the corresponding VectorBits values are
// zero. Return true if this is not an array of constants, false if it is.
//
static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
uint64_t UndefBits[2]) {
// Start with zero'd results.
VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
SDOperand OpVal = BV->getOperand(i);
unsigned PartNo = i >= e/2; // In the upper 128 bits?
unsigned SlotNo = e/2 - (i & (e/2-1))-1; // Which subpiece of the uint64_t.
uint64_t EltBits = 0;
if (OpVal.getOpcode() == ISD::UNDEF) {
uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
continue;
} else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
} else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
assert(CN->getValueType(0) == MVT::f32 &&
"Only one legal FP vector type!");
EltBits = FloatToBits(CN->getValue());
} else {
// Nonconstant element.
return true;
}
VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
}
//printf("%llx %llx %llx %llx\n",
// VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
return false;
}
// If this is a splat (repetition) of a value across the whole vector, return
// the smallest size that splats it. For example, "0x01010101010101..." is a
// splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
// SplatSize = 1 byte.
static bool isConstantSplat(const uint64_t Bits128[2],
const uint64_t Undef128[2],
unsigned &SplatBits, unsigned &SplatUndef,
unsigned &SplatSize) {
// Don't let undefs prevent splats from matching. See if the top 64-bits are
// the same as the lower 64-bits, ignoring undefs.
if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
return false; // Can't be a splat if two pieces don't match.
uint64_t Bits64 = Bits128[0] | Bits128[1];
uint64_t Undef64 = Undef128[0] & Undef128[1];
// Check that the top 32-bits are the same as the lower 32-bits, ignoring
// undefs.
if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
return false; // Can't be a splat if two pieces don't match.
uint32_t Bits32 = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
// If the top 16-bits are different than the lower 16-bits, ignoring
// undefs, we have an i32 splat.
if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
SplatBits = Bits32;
SplatUndef = Undef32;
SplatSize = 4;
return true;
}
uint16_t Bits16 = uint16_t(Bits32) | uint16_t(Bits32 >> 16);
uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
// If the top 8-bits are different than the lower 8-bits, ignoring
// undefs, we have an i16 splat.
if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
SplatBits = Bits16;
SplatUndef = Undef16;
SplatSize = 2;
return true;
}
// Otherwise, we have an 8-bit splat.
SplatBits = uint8_t(Bits16) | uint8_t(Bits16 >> 8);
SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
SplatSize = 1;
return true;
}
/// BuildSplatI - Build a canonical splati of Val with an element size of
/// SplatSize. Cast the result to VT.
static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
SelectionDAG &DAG) {
assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
// Force vspltis[hw] -1 to vspltisb -1.
if (Val == -1) SplatSize = 1;
static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
};
MVT::ValueType CanonicalVT = VTys[SplatSize-1];
// Build a canonical splat for this value.
SDOperand Elt = DAG.getConstant(Val, MVT::getVectorBaseType(CanonicalVT));
SmallVector<SDOperand, 8> Ops;
Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt);
SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
&Ops[0], Ops.size());
return DAG.getNode(ISD::BIT_CONVERT, VT, Res);
}
/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
/// specified intrinsic ID.
static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
SelectionDAG &DAG,
MVT::ValueType DestVT = MVT::Other) {
if (DestVT == MVT::Other) DestVT = LHS.getValueType();
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
DAG.getConstant(IID, MVT::i32), LHS, RHS);
}
/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
/// specified intrinsic ID.
static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
SDOperand Op2, SelectionDAG &DAG,
MVT::ValueType DestVT = MVT::Other) {
if (DestVT == MVT::Other) DestVT = Op0.getValueType();
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
}
/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
/// amount. The result has the specified value type.
static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
MVT::ValueType VT, SelectionDAG &DAG) {
// Force LHS/RHS to be the right type.
LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
SDOperand Ops[16];
for (unsigned i = 0; i != 16; ++i)
Ops[i] = DAG.getConstant(i+Amt, MVT::i32);
SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
return DAG.getNode(ISD::BIT_CONVERT, VT, T);
}
// If this is a case we can't handle, return null and let the default
// expansion code take care of it. If we CAN select this case, and if it
// selects to a single instruction, return Op. Otherwise, if we can codegen
// this case more efficiently than a constant pool load, lower it to the
// sequence of ops that should be used.
static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
// If this is a vector of constants or undefs, get the bits. A bit in
// UndefBits is set if the corresponding element of the vector is an
// ISD::UNDEF value. For undefs, the corresponding VectorBits values are
// zero.
uint64_t VectorBits[2];
uint64_t UndefBits[2];
if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
return SDOperand(); // Not a constant vector.
// If this is a splat (repetition) of a value across the whole vector, return
// the smallest size that splats it. For example, "0x01010101010101..." is a
// splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
// SplatSize = 1 byte.
unsigned SplatBits, SplatUndef, SplatSize;
if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
// First, handle single instruction cases.
// All zeros?
if (SplatBits == 0) {
// Canonicalize all zero vectors to be v4i32.
if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
SDOperand Z = DAG.getConstant(0, MVT::i32);
Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
}
return Op;
}
// If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
if (SextVal >= -16 && SextVal <= 15)
return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
// Two instruction sequences.
// If this value is in the range [-32,30] and is even, use:
// tmp = VSPLTI[bhw], result = add tmp, tmp
if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
}
// If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
// 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
// for fneg/fabs.
if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
// Make -1 and vspltisw -1:
SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
// Make the VSLW intrinsic, computing 0x8000_0000.
SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
OnesV, DAG);
// xor by OnesV to invert it.
Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
}
// Check to see if this is a wide variety of vsplti*, binop self cases.
unsigned SplatBitSize = SplatSize*8;
static const char SplatCsts[] = {
-1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
-8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
};
for (unsigned idx = 0; idx < sizeof(SplatCsts)/sizeof(SplatCsts[0]); ++idx){
// Indirect through the SplatCsts array so that we favor 'vsplti -1' for
// cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
int i = SplatCsts[idx];
// Figure out what shift amount will be used by altivec if shifted by i in
// this splat size.
unsigned TypeShiftAmt = i & (SplatBitSize-1);
// vsplti + shl self.
if (SextVal == (i << (int)TypeShiftAmt)) {
Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
static const unsigned IIDs[] = { // Intrinsic to use for each size.
Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
Intrinsic::ppc_altivec_vslw
};
return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
}
// vsplti + srl self.
if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
static const unsigned IIDs[] = { // Intrinsic to use for each size.
Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
Intrinsic::ppc_altivec_vsrw
};
return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
}
// vsplti + sra self.
if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
static const unsigned IIDs[] = { // Intrinsic to use for each size.
Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
Intrinsic::ppc_altivec_vsraw
};
return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
}
// vsplti + rol self.
if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
static const unsigned IIDs[] = { // Intrinsic to use for each size.
Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
Intrinsic::ppc_altivec_vrlw
};
return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
}
// t = vsplti c, result = vsldoi t, t, 1
if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
}
// t = vsplti c, result = vsldoi t, t, 2
if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
}
// t = vsplti c, result = vsldoi t, t, 3
if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
}
}
// Three instruction sequences.
// Odd, in range [17,31]: (vsplti C)-(vsplti -16).
if (SextVal >= 0 && SextVal <= 31) {
SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, Op.getValueType(),DAG);
SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG);
return DAG.getNode(ISD::SUB, Op.getValueType(), LHS, RHS);
}
// Odd, in range [-31,-17]: (vsplti C)+(vsplti -16).
if (SextVal >= -31 && SextVal <= 0) {
SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, Op.getValueType(),DAG);
SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG);
return DAG.getNode(ISD::ADD, Op.getValueType(), LHS, RHS);
}
}
return SDOperand();
}
/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
/// the specified operations to build the shuffle.
static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
SDOperand RHS, SelectionDAG &DAG) {
unsigned OpNum = (PFEntry >> 26) & 0x0F;
unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
enum {
OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
OP_VMRGHW,
OP_VMRGLW,
OP_VSPLTISW0,
OP_VSPLTISW1,
OP_VSPLTISW2,
OP_VSPLTISW3,
OP_VSLDOI4,
OP_VSLDOI8,
OP_VSLDOI12
};
if (OpNum == OP_COPY) {
if (LHSID == (1*9+2)*9+3) return LHS;
assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
return RHS;
}
SDOperand OpLHS, OpRHS;
OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
unsigned ShufIdxs[16];
switch (OpNum) {
default: assert(0 && "Unknown i32 permute!");
case OP_VMRGHW:
ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
break;
case OP_VMRGLW:
ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
break;
case OP_VSPLTISW0:
for (unsigned i = 0; i != 16; ++i)
ShufIdxs[i] = (i&3)+0;
break;
case OP_VSPLTISW1:
for (unsigned i = 0; i != 16; ++i)
ShufIdxs[i] = (i&3)+4;
break;
case OP_VSPLTISW2:
for (unsigned i = 0; i != 16; ++i)
ShufIdxs[i] = (i&3)+8;
break;
case OP_VSPLTISW3:
for (unsigned i = 0; i != 16; ++i)
ShufIdxs[i] = (i&3)+12;
break;
case OP_VSLDOI4:
return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
case OP_VSLDOI8:
return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
case OP_VSLDOI12:
return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
}
SDOperand Ops[16];
for (unsigned i = 0; i != 16; ++i)
Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32);
return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
}
/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
/// is a shuffle we can handle in a single instruction, return it. Otherwise,
/// return the code it can be lowered into. Worst case, it can always be
/// lowered into a vperm.
static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
SDOperand V1 = Op.getOperand(0);
SDOperand V2 = Op.getOperand(1);
SDOperand PermMask = Op.getOperand(2);
// Cases that are handled by instructions that take permute immediates
// (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
// selected by the instruction selector.
if (V2.getOpcode() == ISD::UNDEF) {
if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
PPC::isSplatShuffleMask(PermMask.Val, 2) ||
PPC::isSplatShuffleMask(PermMask.Val, 4) ||
PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
return Op;
}
}
// Altivec has a variety of "shuffle immediates" that take two vector inputs
// and produce a fixed permutation. If any of these match, do not lower to
// VPERM.
if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
return Op;
// Check to see if this is a shuffle of 4-byte values. If so, we can use our
// perfect shuffle table to emit an optimal matching sequence.
unsigned PFIndexes[4];
bool isFourElementShuffle = true;
for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
unsigned EltNo = 8; // Start out undef.
for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
continue; // Undef, ignore it.
unsigned ByteSource =
cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
if ((ByteSource & 3) != j) {
isFourElementShuffle = false;
break;
}
if (EltNo == 8) {
EltNo = ByteSource/4;
} else if (EltNo != ByteSource/4) {
isFourElementShuffle = false;
break;
}
}
PFIndexes[i] = EltNo;
}
// If this shuffle can be expressed as a shuffle of 4-byte elements, use the
// perfect shuffle vector to determine if it is cost effective to do this as
// discrete instructions, or whether we should use a vperm.
if (isFourElementShuffle) {
// Compute the index in the perfect shuffle table.
unsigned PFTableIndex =
PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
unsigned Cost = (PFEntry >> 30);
// Determining when to avoid vperm is tricky. Many things affect the cost
// of vperm, particularly how many times the perm mask needs to be computed.
// For example, if the perm mask can be hoisted out of a loop or is already
// used (perhaps because there are multiple permutes with the same shuffle
// mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
// the loop requires an extra register.
//
// As a compromise, we only emit discrete instructions if the shuffle can be
// generated in 3 or fewer operations. When we have loop information
// available, if this block is within a loop, we should avoid using vperm
// for 3-operation perms and use a constant pool load instead.
if (Cost < 3)
return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
}
// Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
// vector that will get spilled to the constant pool.
if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
// The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
// that it is in input element units, not in bytes. Convert now.
MVT::ValueType EltVT = MVT::getVectorBaseType(V1.getValueType());
unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
SmallVector<SDOperand, 16> ResultMask;
for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
unsigned SrcElt;
if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
SrcElt = 0;
else
SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
for (unsigned j = 0; j != BytesPerElement; ++j)
ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
MVT::i8));
}
SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
&ResultMask[0], ResultMask.size());
return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
}
/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
/// altivec comparison. If it is, return true and fill in Opc/isDot with
/// information about the intrinsic.
static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
bool &isDot) {
unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
CompareOpc = -1;
isDot = false;
switch (IntrinsicID) {
default: return false;
// Comparison predicates.
case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
// Normal Comparisons.
case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break;
case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break;
case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break;
case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break;
case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break;
case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break;
case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break;
case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break;
case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break;
case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break;
case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break;
case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break;
case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break;
}
return true;
}
/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
/// lower, do it, otherwise return null.
static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
// If this is a lowered altivec predicate compare, CompareOpc is set to the
// opcode number of the comparison.
int CompareOpc;
bool isDot;
if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
return SDOperand(); // Don't custom lower most intrinsics.
// If this is a non-dot comparison, make the VCMP node and we are done.
if (!isDot) {
SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
Op.getOperand(1), Op.getOperand(2),
DAG.getConstant(CompareOpc, MVT::i32));
return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
}
// Create the PPCISD altivec 'dot' comparison node.
SDOperand Ops[] = {
Op.getOperand(2), // LHS
Op.getOperand(3), // RHS
DAG.getConstant(CompareOpc, MVT::i32)
};
std::vector<MVT::ValueType> VTs;
VTs.push_back(Op.getOperand(2).getValueType());
VTs.push_back(MVT::Flag);
SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
// Now that we have the comparison, emit a copy from the CR to a GPR.
// This is flagged to the above dot comparison.
SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
DAG.getRegister(PPC::CR6, MVT::i32),
CompNode.getValue(1));
// Unpack the result based on how the target uses it.
unsigned BitNo; // Bit # of CR6.
bool InvertBit; // Invert result?
switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
default: // Can't happen, don't crash on invalid number though.
case 0: // Return the value of the EQ bit of CR6.
BitNo = 0; InvertBit = false;
break;
case 1: // Return the inverted value of the EQ bit of CR6.
BitNo = 0; InvertBit = true;
break;
case 2: // Return the value of the LT bit of CR6.
BitNo = 2; InvertBit = false;
break;
case 3: // Return the inverted value of the LT bit of CR6.
BitNo = 2; InvertBit = true;
break;
}
// Shift the bit into the low position.
Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
DAG.getConstant(8-(3-BitNo), MVT::i32));
// Isolate the bit.
Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
DAG.getConstant(1, MVT::i32));
// If we are supposed to, toggle the bit.
if (InvertBit)
Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
DAG.getConstant(1, MVT::i32));
return Flags;
}
static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
// Create a stack slot that is 16-byte aligned.
MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
int FrameIdx = FrameInfo->CreateStackObject(16, 16);
MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
// Store the input value into Value#0 of the stack slot.
SDOperand Store = DAG.getStore(DAG.getEntryNode(),
Op.getOperand(0), FIdx,DAG.getSrcValue(NULL));
// Load it out.
return DAG.getLoad(Op.getValueType(), Store, FIdx, DAG.getSrcValue(NULL));
}
static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
if (Op.getValueType() == MVT::v4i32) {
SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
SDOperand Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG);
SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
SDOperand RHSSwap = // = vrlw RHS, 16
BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
// Shrinkify inputs to v8i16.
LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
// Low parts multiplied together, generating 32-bit results (we ignore the
// top parts).
SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
LHS, RHS, DAG, MVT::v4i32);
SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
LHS, RHSSwap, Zero, DAG, MVT::v4i32);
// Shift the high parts up 16 bits.
HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
} else if (Op.getValueType() == MVT::v8i16) {
SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
LHS, RHS, Zero, DAG);
} else if (Op.getValueType() == MVT::v16i8) {
SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
// Multiply the even 8-bit parts, producing 16-bit sums.
SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
LHS, RHS, DAG, MVT::v8i16);
EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
// Multiply the odd 8-bit parts, producing 16-bit sums.
SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
LHS, RHS, DAG, MVT::v8i16);
OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
// Merge the results together.
SDOperand Ops[16];
for (unsigned i = 0; i != 8; ++i) {
Ops[i*2 ] = DAG.getConstant(2*i+1, MVT::i8);
Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
}
return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
} else {
assert(0 && "Unknown mul to lower!");
abort();
}
}
/// LowerOperation - Provide custom lowering hooks for some operations.
///
SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
switch (Op.getOpcode()) {
default: assert(0 && "Wasn't expecting to be able to lower this!");
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
case ISD::JumpTable: return LowerJumpTable(Op, DAG);
case ISD::SETCC: return LowerSETCC(Op, DAG);
case ISD::VASTART: return LowerVASTART(Op, DAG, VarArgsFrameIndex);
case ISD::FORMAL_ARGUMENTS:
return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex);
case ISD::CALL: return LowerCALL(Op, DAG);
case ISD::RET: return LowerRET(Op, DAG);
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
// Lower 64-bit shifts.
case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG);
case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG);
case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG);
// Vector-related lowering.
case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
case ISD::MUL: return LowerMUL(Op, DAG);
}
return SDOperand();
}
//===----------------------------------------------------------------------===//
// Other Lowering Code
//===----------------------------------------------------------------------===//
MachineBasicBlock *
PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
MachineBasicBlock *BB) {
assert((MI->getOpcode() == PPC::SELECT_CC_I4 ||
MI->getOpcode() == PPC::SELECT_CC_I8 ||
MI->getOpcode() == PPC::SELECT_CC_F4 ||
MI->getOpcode() == PPC::SELECT_CC_F8 ||
MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
"Unexpected instr type to insert");
// To "insert" a SELECT_CC instruction, we actually have to insert the diamond
// control-flow pattern. The incoming instruction knows the destination vreg
// to set, the condition code register to branch on, the true/false values to
// select between, and a branch opcode to use.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
ilist<MachineBasicBlock>::iterator It = BB;
++It;
// thisMBB:
// ...
// TrueVal = ...
// cmpTY ccX, r1, r2
// bCC copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
BuildMI(BB, MI->getOperand(4).getImmedValue(), 2)
.addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
MachineFunction *F = BB->getParent();
F->getBasicBlockList().insert(It, copy0MBB);
F->getBasicBlockList().insert(It, sinkMBB);
// Update machine-CFG edges by first adding all successors of the current
// block to the new block which will contain the Phi node for the select.
for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
e = BB->succ_end(); i != e; ++i)
sinkMBB->addSuccessor(*i);
// Next, remove all successors of the current block, and add the true
// and fallthrough blocks as its successors.
while(!BB->succ_empty())
BB->removeSuccessor(BB->succ_begin());
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
// ...
BB = sinkMBB;
BuildMI(BB, PPC::PHI, 4, MI->getOperand(0).getReg())
.addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
.addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
delete MI; // The pseudo instruction is gone now.
return BB;
}
//===----------------------------------------------------------------------===//
// Target Optimization Hooks
//===----------------------------------------------------------------------===//
SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
TargetMachine &TM = getTargetMachine();
SelectionDAG &DAG = DCI.DAG;
switch (N->getOpcode()) {
default: break;
case PPCISD::SHL:
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
if (C->getValue() == 0) // 0 << V -> 0.
return N->getOperand(0);
}
break;
case PPCISD::SRL:
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
if (C->getValue() == 0) // 0 >>u V -> 0.
return N->getOperand(0);
}
break;
case PPCISD::SRA:
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
if (C->getValue() == 0 || // 0 >>s V -> 0.
C->isAllOnesValue()) // -1 >>s V -> -1.
return N->getOperand(0);
}
break;
case ISD::SINT_TO_FP:
if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
// Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
// We allow the src/dst to be either f32/f64, but the intermediate
// type must be i64.
if (N->getOperand(0).getValueType() == MVT::i64) {
SDOperand Val = N->getOperand(0).getOperand(0);
if (Val.getValueType() == MVT::f32) {
Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
DCI.AddToWorklist(Val.Val);
}
Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
DCI.AddToWorklist(Val.Val);
Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
DCI.AddToWorklist(Val.Val);
if (N->getValueType(0) == MVT::f32) {
Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val);
DCI.AddToWorklist(Val.Val);
}
return Val;
} else if (N->getOperand(0).getValueType() == MVT::i32) {
// If the intermediate type is i32, we can avoid the load/store here
// too.
}
}
}
break;
case ISD::STORE:
// Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
N->getOperand(1).getValueType() == MVT::i32) {
SDOperand Val = N->getOperand(1).getOperand(0);
if (Val.getValueType() == MVT::f32) {
Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
DCI.AddToWorklist(Val.Val);
}
Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
DCI.AddToWorklist(Val.Val);
Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
N->getOperand(2), N->getOperand(3));
DCI.AddToWorklist(Val.Val);
return Val;
}
// Turn STORE (BSWAP) -> sthbrx/stwbrx.
if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
N->getOperand(1).Val->hasOneUse() &&
(N->getOperand(1).getValueType() == MVT::i32 ||
N->getOperand(1).getValueType() == MVT::i16)) {
SDOperand BSwapOp = N->getOperand(1).getOperand(0);
// Do an any-extend to 32-bits if this is a half-word input.
if (BSwapOp.getValueType() == MVT::i16)
BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
N->getOperand(2), N->getOperand(3),
DAG.getValueType(N->getOperand(1).getValueType()));
}
break;
case ISD::BSWAP:
// Turn BSWAP (LOAD) -> lhbrx/lwbrx.
if (N->getOperand(0).getOpcode() == ISD::LOAD &&
N->getOperand(0).hasOneUse() &&
(N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
SDOperand Load = N->getOperand(0);
// Create the byte-swapping load.
std::vector<MVT::ValueType> VTs;
VTs.push_back(MVT::i32);
VTs.push_back(MVT::Other);
SDOperand Ops[] = {
Load.getOperand(0), // Chain
Load.getOperand(1), // Ptr
Load.getOperand(2), // SrcValue
DAG.getValueType(N->getValueType(0)) // VT
};
SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
// If this is an i16 load, insert the truncate.
SDOperand ResVal = BSLoad;
if (N->getValueType(0) == MVT::i16)
ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
// First, combine the bswap away. This makes the value produced by the
// load dead.
DCI.CombineTo(N, ResVal);
// Next, combine the load away, we give it a bogus result value but a real
// chain result. The result value is dead because the bswap is dead.
DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
// Return N so it doesn't get rechecked!
return SDOperand(N, 0);
}
break;
case PPCISD::VCMP: {
// If a VCMPo node already exists with exactly the same operands as this
// node, use its result instead of this node (VCMPo computes both a CR6 and
// a normal output).
//
if (!N->getOperand(0).hasOneUse() &&
!N->getOperand(1).hasOneUse() &&
!N->getOperand(2).hasOneUse()) {
// Scan all of the users of the LHS, looking for VCMPo's that match.
SDNode *VCMPoNode = 0;
SDNode *LHSN = N->getOperand(0).Val;
for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
UI != E; ++UI)
if ((*UI)->getOpcode() == PPCISD::VCMPo &&
(*UI)->getOperand(1) == N->getOperand(1) &&
(*UI)->getOperand(2) == N->getOperand(2) &&
(*UI)->getOperand(0) == N->getOperand(0)) {
VCMPoNode = *UI;
break;
}
// If there is no VCMPo node, or if the flag value has a single use, don't
// transform this.
if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
break;
// Look at the (necessarily single) use of the flag value. If it has a
// chain, this transformation is more complex. Note that multiple things
// could use the value result, which we should ignore.
SDNode *FlagUser = 0;
for (SDNode::use_iterator UI = VCMPoNode->use_begin();
FlagUser == 0; ++UI) {
assert(UI != VCMPoNode->use_end() && "Didn't find user!");
SDNode *User = *UI;
for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
FlagUser = User;
break;
}
}
}
// If the user is a MFCR instruction, we know this is safe. Otherwise we
// give up for right now.
if (FlagUser->getOpcode() == PPCISD::MFCR)
return SDOperand(VCMPoNode, 0);
}
break;
}
case ISD::BR_CC: {
// If this is a branch on an altivec predicate comparison, lower this so
// that we don't have to do a MFCR: instead, branch directly on CR6. This
// lowering is done pre-legalize, because the legalizer lowers the predicate
// compare down to code that is difficult to reassemble.
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
int CompareOpc;
bool isDot;
if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
assert(isDot && "Can't compare against a vector result!");
// If this is a comparison against something other than 0/1, then we know
// that the condition is never/always true.
unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
if (Val != 0 && Val != 1) {
if (CC == ISD::SETEQ) // Cond never true, remove branch.
return N->getOperand(0);
// Always !=, turn it into an unconditional branch.
return DAG.getNode(ISD::BR, MVT::Other,
N->getOperand(0), N->getOperand(4));
}
bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
// Create the PPCISD altivec 'dot' comparison node.
std::vector<MVT::ValueType> VTs;
SDOperand Ops[] = {
LHS.getOperand(2), // LHS of compare
LHS.getOperand(3), // RHS of compare
DAG.getConstant(CompareOpc, MVT::i32)
};
VTs.push_back(LHS.getOperand(2).getValueType());
VTs.push_back(MVT::Flag);
SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
// Unpack the result based on how the target uses it.
unsigned CompOpc;
switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
default: // Can't happen, don't crash on invalid number though.
case 0: // Branch on the value of the EQ bit of CR6.
CompOpc = BranchOnWhenPredTrue ? PPC::BEQ : PPC::BNE;
break;
case 1: // Branch on the inverted value of the EQ bit of CR6.
CompOpc = BranchOnWhenPredTrue ? PPC::BNE : PPC::BEQ;
break;
case 2: // Branch on the value of the LT bit of CR6.
CompOpc = BranchOnWhenPredTrue ? PPC::BLT : PPC::BGE;
break;
case 3: // Branch on the inverted value of the LT bit of CR6.
CompOpc = BranchOnWhenPredTrue ? PPC::BGE : PPC::BLT;
break;
}
return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
DAG.getRegister(PPC::CR6, MVT::i32),
DAG.getConstant(CompOpc, MVT::i32),
N->getOperand(4), CompNode.getValue(1));
}
break;
}
}
return SDOperand();
}
//===----------------------------------------------------------------------===//
// Inline Assembly Support
//===----------------------------------------------------------------------===//
void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
uint64_t Mask,
uint64_t &KnownZero,
uint64_t &KnownOne,
unsigned Depth) const {
KnownZero = 0;
KnownOne = 0;
switch (Op.getOpcode()) {
default: break;
case PPCISD::LBRX: {
// lhbrx is known to have the top bits cleared out.
if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
KnownZero = 0xFFFF0000;
break;
}
case ISD::INTRINSIC_WO_CHAIN: {
switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
default: break;
case Intrinsic::ppc_altivec_vcmpbfp_p:
case Intrinsic::ppc_altivec_vcmpeqfp_p:
case Intrinsic::ppc_altivec_vcmpequb_p:
case Intrinsic::ppc_altivec_vcmpequh_p:
case Intrinsic::ppc_altivec_vcmpequw_p:
case Intrinsic::ppc_altivec_vcmpgefp_p:
case Intrinsic::ppc_altivec_vcmpgtfp_p:
case Intrinsic::ppc_altivec_vcmpgtsb_p:
case Intrinsic::ppc_altivec_vcmpgtsh_p:
case Intrinsic::ppc_altivec_vcmpgtsw_p:
case Intrinsic::ppc_altivec_vcmpgtub_p:
case Intrinsic::ppc_altivec_vcmpgtuh_p:
case Intrinsic::ppc_altivec_vcmpgtuw_p:
KnownZero = ~1U; // All bits but the low one are known to be zero.
break;
}
}
}
}
/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
PPCTargetLowering::ConstraintType
PPCTargetLowering::getConstraintType(char ConstraintLetter) const {
switch (ConstraintLetter) {
default: break;
case 'b':
case 'r':
case 'f':
case 'v':
case 'y':
return C_RegisterClass;
}
return TargetLowering::getConstraintType(ConstraintLetter);
}
std::vector<unsigned> PPCTargetLowering::
getRegClassForInlineAsmConstraint(const std::string &Constraint,
MVT::ValueType VT) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) { // GCC RS6000 Constraint Letters
default: break; // Unknown constriant letter
case 'b':
return make_vector<unsigned>(/*no R0*/ PPC::R1 , PPC::R2 , PPC::R3 ,
PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 ,
PPC::R8 , PPC::R9 , PPC::R10, PPC::R11,
PPC::R12, PPC::R13, PPC::R14, PPC::R15,
PPC::R16, PPC::R17, PPC::R18, PPC::R19,
PPC::R20, PPC::R21, PPC::R22, PPC::R23,
PPC::R24, PPC::R25, PPC::R26, PPC::R27,
PPC::R28, PPC::R29, PPC::R30, PPC::R31,
0);
case 'r':
return make_vector<unsigned>(PPC::R0 , PPC::R1 , PPC::R2 , PPC::R3 ,
PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 ,
PPC::R8 , PPC::R9 , PPC::R10, PPC::R11,
PPC::R12, PPC::R13, PPC::R14, PPC::R15,
PPC::R16, PPC::R17, PPC::R18, PPC::R19,
PPC::R20, PPC::R21, PPC::R22, PPC::R23,
PPC::R24, PPC::R25, PPC::R26, PPC::R27,
PPC::R28, PPC::R29, PPC::R30, PPC::R31,
0);
case 'f':
return make_vector<unsigned>(PPC::F0 , PPC::F1 , PPC::F2 , PPC::F3 ,
PPC::F4 , PPC::F5 , PPC::F6 , PPC::F7 ,
PPC::F8 , PPC::F9 , PPC::F10, PPC::F11,
PPC::F12, PPC::F13, PPC::F14, PPC::F15,
PPC::F16, PPC::F17, PPC::F18, PPC::F19,
PPC::F20, PPC::F21, PPC::F22, PPC::F23,
PPC::F24, PPC::F25, PPC::F26, PPC::F27,
PPC::F28, PPC::F29, PPC::F30, PPC::F31,
0);
case 'v':
return make_vector<unsigned>(PPC::V0 , PPC::V1 , PPC::V2 , PPC::V3 ,
PPC::V4 , PPC::V5 , PPC::V6 , PPC::V7 ,
PPC::V8 , PPC::V9 , PPC::V10, PPC::V11,
PPC::V12, PPC::V13, PPC::V14, PPC::V15,
PPC::V16, PPC::V17, PPC::V18, PPC::V19,
PPC::V20, PPC::V21, PPC::V22, PPC::V23,
PPC::V24, PPC::V25, PPC::V26, PPC::V27,
PPC::V28, PPC::V29, PPC::V30, PPC::V31,
0);
case 'y':
return make_vector<unsigned>(PPC::CR0, PPC::CR1, PPC::CR2, PPC::CR3,
PPC::CR4, PPC::CR5, PPC::CR6, PPC::CR7,
0);
}
}
return std::vector<unsigned>();
}
// isOperandValidForConstraint
bool PPCTargetLowering::
isOperandValidForConstraint(SDOperand Op, char Letter) {
switch (Letter) {
default: break;
case 'I':
case 'J':
case 'K':
case 'L':
case 'M':
case 'N':
case 'O':
case 'P': {
if (!isa<ConstantSDNode>(Op)) return false; // Must be an immediate.
unsigned Value = cast<ConstantSDNode>(Op)->getValue();
switch (Letter) {
default: assert(0 && "Unknown constraint letter!");
case 'I': // "I" is a signed 16-bit constant.
return (short)Value == (int)Value;
case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
return (short)Value == 0;
case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
return (Value >> 16) == 0;
case 'M': // "M" is a constant that is greater than 31.
return Value > 31;
case 'N': // "N" is a positive constant that is an exact power of two.
return (int)Value > 0 && isPowerOf2_32(Value);
case 'O': // "O" is the constant zero.
return Value == 0;
case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
return (short)-Value == (int)-Value;
}
break;
}
}
// Handle standard constraint letters.
return TargetLowering::isOperandValidForConstraint(Op, Letter);
}
/// isLegalAddressImmediate - Return true if the integer value can be used
/// as the offset of the target addressing mode.
bool PPCTargetLowering::isLegalAddressImmediate(int64_t V) const {
// PPC allows a sign-extended 16-bit immediate field.
return (V > -(1 << 16) && V < (1 << 16)-1);
}
bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
return TargetLowering::isLegalAddressImmediate(GV);
}