mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80801 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1053 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1053 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the following classes:
 | |
| //  1. DominatorTree: Represent dominators as an explicit tree structure.
 | |
| //  2. DominanceFrontier: Calculate and hold the dominance frontier for a
 | |
| //     function.
 | |
| //
 | |
| //  These data structures are listed in increasing order of complexity.  It
 | |
| //  takes longer to calculate the dominator frontier, for example, than the
 | |
| //  DominatorTree mapping.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_ANALYSIS_DOMINATORS_H
 | |
| #define LLVM_ANALYSIS_DOMINATORS_H
 | |
| 
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/GraphTraits.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/Assembly/Writer.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <map>
 | |
| #include <set>
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// DominatorBase - Base class that other, more interesting dominator analyses
 | |
| /// inherit from.
 | |
| ///
 | |
| template <class NodeT>
 | |
| class DominatorBase {
 | |
| protected:
 | |
|   std::vector<NodeT*> Roots;
 | |
|   const bool IsPostDominators;
 | |
|   inline explicit DominatorBase(bool isPostDom) :
 | |
|     Roots(), IsPostDominators(isPostDom) {}
 | |
| public:
 | |
| 
 | |
|   /// getRoots -  Return the root blocks of the current CFG.  This may include
 | |
|   /// multiple blocks if we are computing post dominators.  For forward
 | |
|   /// dominators, this will always be a single block (the entry node).
 | |
|   ///
 | |
|   inline const std::vector<NodeT*> &getRoots() const { return Roots; }
 | |
| 
 | |
|   /// isPostDominator - Returns true if analysis based of postdoms
 | |
|   ///
 | |
|   bool isPostDominator() const { return IsPostDominators; }
 | |
| };
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // DomTreeNode - Dominator Tree Node
 | |
| template<class NodeT> class DominatorTreeBase;
 | |
| struct PostDominatorTree;
 | |
| class MachineBasicBlock;
 | |
| 
 | |
| template <class NodeT>
 | |
| class DomTreeNodeBase {
 | |
|   NodeT *TheBB;
 | |
|   DomTreeNodeBase<NodeT> *IDom;
 | |
|   std::vector<DomTreeNodeBase<NodeT> *> Children;
 | |
|   int DFSNumIn, DFSNumOut;
 | |
| 
 | |
|   template<class N> friend class DominatorTreeBase;
 | |
|   friend struct PostDominatorTree;
 | |
| public:
 | |
|   typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator;
 | |
|   typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator
 | |
|                    const_iterator;
 | |
| 
 | |
|   iterator begin()             { return Children.begin(); }
 | |
|   iterator end()               { return Children.end(); }
 | |
|   const_iterator begin() const { return Children.begin(); }
 | |
|   const_iterator end()   const { return Children.end(); }
 | |
| 
 | |
|   NodeT *getBlock() const { return TheBB; }
 | |
|   DomTreeNodeBase<NodeT> *getIDom() const { return IDom; }
 | |
|   const std::vector<DomTreeNodeBase<NodeT>*> &getChildren() const {
 | |
|     return Children;
 | |
|   }
 | |
| 
 | |
|   DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom)
 | |
|     : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { }
 | |
| 
 | |
|   DomTreeNodeBase<NodeT> *addChild(DomTreeNodeBase<NodeT> *C) {
 | |
|     Children.push_back(C);
 | |
|     return C;
 | |
|   }
 | |
| 
 | |
|   size_t getNumChildren() const {
 | |
|     return Children.size();
 | |
|   }
 | |
| 
 | |
|   void clearAllChildren() {
 | |
|     Children.clear();
 | |
|   }
 | |
| 
 | |
|   bool compare(DomTreeNodeBase<NodeT> *Other) {
 | |
|     if (getNumChildren() != Other->getNumChildren())
 | |
|       return true;
 | |
| 
 | |
|     SmallPtrSet<NodeT *, 4> OtherChildren;
 | |
|     for(iterator I = Other->begin(), E = Other->end(); I != E; ++I) {
 | |
|       NodeT *Nd = (*I)->getBlock();
 | |
|       OtherChildren.insert(Nd);
 | |
|     }
 | |
| 
 | |
|     for(iterator I = begin(), E = end(); I != E; ++I) {
 | |
|       NodeT *N = (*I)->getBlock();
 | |
|       if (OtherChildren.count(N) == 0)
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   void setIDom(DomTreeNodeBase<NodeT> *NewIDom) {
 | |
|     assert(IDom && "No immediate dominator?");
 | |
|     if (IDom != NewIDom) {
 | |
|       typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
 | |
|                   std::find(IDom->Children.begin(), IDom->Children.end(), this);
 | |
|       assert(I != IDom->Children.end() &&
 | |
|              "Not in immediate dominator children set!");
 | |
|       // I am no longer your child...
 | |
|       IDom->Children.erase(I);
 | |
| 
 | |
|       // Switch to new dominator
 | |
|       IDom = NewIDom;
 | |
|       IDom->Children.push_back(this);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
 | |
|   /// not call them.
 | |
|   unsigned getDFSNumIn() const { return DFSNumIn; }
 | |
|   unsigned getDFSNumOut() const { return DFSNumOut; }
 | |
| private:
 | |
|   // Return true if this node is dominated by other. Use this only if DFS info
 | |
|   // is valid.
 | |
|   bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const {
 | |
|     return this->DFSNumIn >= other->DFSNumIn &&
 | |
|       this->DFSNumOut <= other->DFSNumOut;
 | |
|   }
 | |
| };
 | |
| 
 | |
| EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<BasicBlock>);
 | |
| EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<MachineBasicBlock>);
 | |
| 
 | |
| template<class NodeT>
 | |
| static raw_ostream &operator<<(raw_ostream &o,
 | |
|                                const DomTreeNodeBase<NodeT> *Node) {
 | |
|   if (Node->getBlock())
 | |
|     WriteAsOperand(o, Node->getBlock(), false);
 | |
|   else
 | |
|     o << " <<exit node>>";
 | |
| 
 | |
|   o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
 | |
| 
 | |
|   return o << "\n";
 | |
| }
 | |
| 
 | |
| template<class NodeT>
 | |
| static void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &o,
 | |
|                          unsigned Lev) {
 | |
|   o.indent(2*Lev) << "[" << Lev << "] " << N;
 | |
|   for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
 | |
|        E = N->end(); I != E; ++I)
 | |
|     PrintDomTree<NodeT>(*I, o, Lev+1);
 | |
| }
 | |
| 
 | |
| typedef DomTreeNodeBase<BasicBlock> DomTreeNode;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// DominatorTree - Calculate the immediate dominator tree for a function.
 | |
| ///
 | |
| 
 | |
| template<class FuncT, class N>
 | |
| void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
 | |
|                FuncT& F);
 | |
| 
 | |
| template<class NodeT>
 | |
| class DominatorTreeBase : public DominatorBase<NodeT> {
 | |
| protected:
 | |
|   typedef DenseMap<NodeT*, DomTreeNodeBase<NodeT>*> DomTreeNodeMapType;
 | |
|   DomTreeNodeMapType DomTreeNodes;
 | |
|   DomTreeNodeBase<NodeT> *RootNode;
 | |
| 
 | |
|   bool DFSInfoValid;
 | |
|   unsigned int SlowQueries;
 | |
|   // Information record used during immediate dominators computation.
 | |
|   struct InfoRec {
 | |
|     unsigned DFSNum;
 | |
|     unsigned Semi;
 | |
|     unsigned Size;
 | |
|     NodeT *Label, *Child;
 | |
|     unsigned Parent, Ancestor;
 | |
| 
 | |
|     std::vector<NodeT*> Bucket;
 | |
| 
 | |
|     InfoRec() : DFSNum(0), Semi(0), Size(0), Label(0), Child(0), Parent(0),
 | |
|                 Ancestor(0) {}
 | |
|   };
 | |
| 
 | |
|   DenseMap<NodeT*, NodeT*> IDoms;
 | |
| 
 | |
|   // Vertex - Map the DFS number to the BasicBlock*
 | |
|   std::vector<NodeT*> Vertex;
 | |
| 
 | |
|   // Info - Collection of information used during the computation of idoms.
 | |
|   DenseMap<NodeT*, InfoRec> Info;
 | |
| 
 | |
|   void reset() {
 | |
|     for (typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.begin(), 
 | |
|            E = DomTreeNodes.end(); I != E; ++I)
 | |
|       delete I->second;
 | |
|     DomTreeNodes.clear();
 | |
|     IDoms.clear();
 | |
|     this->Roots.clear();
 | |
|     Vertex.clear();
 | |
|     RootNode = 0;
 | |
|   }
 | |
| 
 | |
|   // NewBB is split and now it has one successor. Update dominator tree to
 | |
|   // reflect this change.
 | |
|   template<class N, class GraphT>
 | |
|   void Split(DominatorTreeBase<typename GraphT::NodeType>& DT,
 | |
|              typename GraphT::NodeType* NewBB) {
 | |
|     assert(std::distance(GraphT::child_begin(NewBB), GraphT::child_end(NewBB)) == 1
 | |
|            && "NewBB should have a single successor!");
 | |
|     typename GraphT::NodeType* NewBBSucc = *GraphT::child_begin(NewBB);
 | |
| 
 | |
|     std::vector<typename GraphT::NodeType*> PredBlocks;
 | |
|     for (typename GraphTraits<Inverse<N> >::ChildIteratorType PI =
 | |
|          GraphTraits<Inverse<N> >::child_begin(NewBB),
 | |
|          PE = GraphTraits<Inverse<N> >::child_end(NewBB); PI != PE; ++PI)
 | |
|       PredBlocks.push_back(*PI);  
 | |
| 
 | |
|     assert(!PredBlocks.empty() && "No predblocks??");
 | |
| 
 | |
|     bool NewBBDominatesNewBBSucc = true;
 | |
|     for (typename GraphTraits<Inverse<N> >::ChildIteratorType PI =
 | |
|          GraphTraits<Inverse<N> >::child_begin(NewBBSucc),
 | |
|          E = GraphTraits<Inverse<N> >::child_end(NewBBSucc); PI != E; ++PI)
 | |
|       if (*PI != NewBB && !DT.dominates(NewBBSucc, *PI) &&
 | |
|           DT.isReachableFromEntry(*PI)) {
 | |
|         NewBBDominatesNewBBSucc = false;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|     // Find NewBB's immediate dominator and create new dominator tree node for
 | |
|     // NewBB.
 | |
|     NodeT *NewBBIDom = 0;
 | |
|     unsigned i = 0;
 | |
|     for (i = 0; i < PredBlocks.size(); ++i)
 | |
|       if (DT.isReachableFromEntry(PredBlocks[i])) {
 | |
|         NewBBIDom = PredBlocks[i];
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|     // It's possible that none of the predecessors of NewBB are reachable;
 | |
|     // in that case, NewBB itself is unreachable, so nothing needs to be
 | |
|     // changed.
 | |
|     if (!NewBBIDom)
 | |
|       return;
 | |
| 
 | |
|     for (i = i + 1; i < PredBlocks.size(); ++i) {
 | |
|       if (DT.isReachableFromEntry(PredBlocks[i]))
 | |
|         NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
 | |
|     }
 | |
| 
 | |
|     // Create the new dominator tree node... and set the idom of NewBB.
 | |
|     DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom);
 | |
| 
 | |
|     // If NewBB strictly dominates other blocks, then it is now the immediate
 | |
|     // dominator of NewBBSucc.  Update the dominator tree as appropriate.
 | |
|     if (NewBBDominatesNewBBSucc) {
 | |
|       DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc);
 | |
|       DT.changeImmediateDominator(NewBBSuccNode, NewBBNode);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   explicit DominatorTreeBase(bool isPostDom)
 | |
|     : DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {}
 | |
|   virtual ~DominatorTreeBase() { reset(); }
 | |
| 
 | |
|   // FIXME: Should remove this
 | |
|   virtual bool runOnFunction(Function &F) { return false; }
 | |
| 
 | |
|   /// compare - Return false if the other dominator tree base matches this
 | |
|   /// dominator tree base. Otherwise return true.
 | |
|   bool compare(DominatorTreeBase &Other) const {
 | |
| 
 | |
|     const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
 | |
|     if (DomTreeNodes.size() != OtherDomTreeNodes.size())
 | |
|       return true;
 | |
| 
 | |
|     SmallPtrSet<const NodeT *,4> MyBBs;
 | |
|     for (typename DomTreeNodeMapType::const_iterator 
 | |
|            I = this->DomTreeNodes.begin(),
 | |
|            E = this->DomTreeNodes.end(); I != E; ++I) {
 | |
|       NodeT *BB = I->first;
 | |
|       typename DomTreeNodeMapType::const_iterator OI = OtherDomTreeNodes.find(BB);
 | |
|       if (OI == OtherDomTreeNodes.end())
 | |
|         return true;
 | |
| 
 | |
|       DomTreeNodeBase<NodeT>* MyNd = I->second;
 | |
|       DomTreeNodeBase<NodeT>* OtherNd = OI->second;
 | |
| 
 | |
|       if (MyNd->compare(OtherNd))
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   virtual void releaseMemory() { reset(); }
 | |
| 
 | |
|   /// getNode - return the (Post)DominatorTree node for the specified basic
 | |
|   /// block.  This is the same as using operator[] on this class.
 | |
|   ///
 | |
|   inline DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
 | |
|     typename DomTreeNodeMapType::const_iterator I = DomTreeNodes.find(BB);
 | |
|     return I != DomTreeNodes.end() ? I->second : 0;
 | |
|   }
 | |
| 
 | |
|   /// getRootNode - This returns the entry node for the CFG of the function.  If
 | |
|   /// this tree represents the post-dominance relations for a function, however,
 | |
|   /// this root may be a node with the block == NULL.  This is the case when
 | |
|   /// there are multiple exit nodes from a particular function.  Consumers of
 | |
|   /// post-dominance information must be capable of dealing with this
 | |
|   /// possibility.
 | |
|   ///
 | |
|   DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
 | |
|   const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
 | |
| 
 | |
|   /// properlyDominates - Returns true iff this dominates N and this != N.
 | |
|   /// Note that this is not a constant time operation!
 | |
|   ///
 | |
|   bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
 | |
|                          const DomTreeNodeBase<NodeT> *B) const {
 | |
|     if (A == 0 || B == 0) return false;
 | |
|     return dominatedBySlowTreeWalk(A, B);
 | |
|   }
 | |
| 
 | |
|   inline bool properlyDominates(NodeT *A, NodeT *B) {
 | |
|     return properlyDominates(getNode(A), getNode(B));
 | |
|   }
 | |
| 
 | |
|   bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A, 
 | |
|                                const DomTreeNodeBase<NodeT> *B) const {
 | |
|     const DomTreeNodeBase<NodeT> *IDom;
 | |
|     if (A == 0 || B == 0) return false;
 | |
|     while ((IDom = B->getIDom()) != 0 && IDom != A && IDom != B)
 | |
|       B = IDom;   // Walk up the tree
 | |
|     return IDom != 0;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /// isReachableFromEntry - Return true if A is dominated by the entry
 | |
|   /// block of the function containing it.
 | |
|   bool isReachableFromEntry(NodeT* A) {
 | |
|     assert (!this->isPostDominator() 
 | |
|             && "This is not implemented for post dominators");
 | |
|     return dominates(&A->getParent()->front(), A);
 | |
|   }
 | |
| 
 | |
|   /// dominates - Returns true iff A dominates B.  Note that this is not a
 | |
|   /// constant time operation!
 | |
|   ///
 | |
|   inline bool dominates(const DomTreeNodeBase<NodeT> *A,
 | |
|                         const DomTreeNodeBase<NodeT> *B) {
 | |
|     if (B == A) 
 | |
|       return true;  // A node trivially dominates itself.
 | |
| 
 | |
|     if (A == 0 || B == 0)
 | |
|       return false;
 | |
| 
 | |
|     if (DFSInfoValid)
 | |
|       return B->DominatedBy(A);
 | |
| 
 | |
|     // If we end up with too many slow queries, just update the
 | |
|     // DFS numbers on the theory that we are going to keep querying.
 | |
|     SlowQueries++;
 | |
|     if (SlowQueries > 32) {
 | |
|       updateDFSNumbers();
 | |
|       return B->DominatedBy(A);
 | |
|     }
 | |
| 
 | |
|     return dominatedBySlowTreeWalk(A, B);
 | |
|   }
 | |
| 
 | |
|   inline bool dominates(const NodeT *A, const NodeT *B) {
 | |
|     if (A == B) 
 | |
|       return true;
 | |
| 
 | |
|     // Cast away the const qualifiers here. This is ok since
 | |
|     // this function doesn't actually return the values returned
 | |
|     // from getNode.
 | |
|     return dominates(getNode(const_cast<NodeT *>(A)),
 | |
|                      getNode(const_cast<NodeT *>(B)));
 | |
|   }
 | |
| 
 | |
|   NodeT *getRoot() const {
 | |
|     assert(this->Roots.size() == 1 && "Should always have entry node!");
 | |
|     return this->Roots[0];
 | |
|   }
 | |
| 
 | |
|   /// findNearestCommonDominator - Find nearest common dominator basic block
 | |
|   /// for basic block A and B. If there is no such block then return NULL.
 | |
|   NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) {
 | |
| 
 | |
|     assert (!this->isPostDominator() 
 | |
|             && "This is not implemented for post dominators");
 | |
|     assert (A->getParent() == B->getParent() 
 | |
|             && "Two blocks are not in same function");
 | |
| 
 | |
|     // If either A or B is a entry block then it is nearest common dominator.
 | |
|     NodeT &Entry  = A->getParent()->front();
 | |
|     if (A == &Entry || B == &Entry)
 | |
|       return &Entry;
 | |
| 
 | |
|     // If B dominates A then B is nearest common dominator.
 | |
|     if (dominates(B, A))
 | |
|       return B;
 | |
| 
 | |
|     // If A dominates B then A is nearest common dominator.
 | |
|     if (dominates(A, B))
 | |
|       return A;
 | |
| 
 | |
|     DomTreeNodeBase<NodeT> *NodeA = getNode(A);
 | |
|     DomTreeNodeBase<NodeT> *NodeB = getNode(B);
 | |
| 
 | |
|     // Collect NodeA dominators set.
 | |
|     SmallPtrSet<DomTreeNodeBase<NodeT>*, 16> NodeADoms;
 | |
|     NodeADoms.insert(NodeA);
 | |
|     DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
 | |
|     while (IDomA) {
 | |
|       NodeADoms.insert(IDomA);
 | |
|       IDomA = IDomA->getIDom();
 | |
|     }
 | |
| 
 | |
|     // Walk NodeB immediate dominators chain and find common dominator node.
 | |
|     DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom();
 | |
|     while(IDomB) {
 | |
|       if (NodeADoms.count(IDomB) != 0)
 | |
|         return IDomB->getBlock();
 | |
| 
 | |
|       IDomB = IDomB->getIDom();
 | |
|     }
 | |
| 
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // API to update (Post)DominatorTree information based on modifications to
 | |
|   // the CFG...
 | |
| 
 | |
|   /// addNewBlock - Add a new node to the dominator tree information.  This
 | |
|   /// creates a new node as a child of DomBB dominator node,linking it into 
 | |
|   /// the children list of the immediate dominator.
 | |
|   DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
 | |
|     assert(getNode(BB) == 0 && "Block already in dominator tree!");
 | |
|     DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
 | |
|     assert(IDomNode && "Not immediate dominator specified for block!");
 | |
|     DFSInfoValid = false;
 | |
|     return DomTreeNodes[BB] = 
 | |
|       IDomNode->addChild(new DomTreeNodeBase<NodeT>(BB, IDomNode));
 | |
|   }
 | |
| 
 | |
|   /// changeImmediateDominator - This method is used to update the dominator
 | |
|   /// tree information when a node's immediate dominator changes.
 | |
|   ///
 | |
|   void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
 | |
|                                 DomTreeNodeBase<NodeT> *NewIDom) {
 | |
|     assert(N && NewIDom && "Cannot change null node pointers!");
 | |
|     DFSInfoValid = false;
 | |
|     N->setIDom(NewIDom);
 | |
|   }
 | |
| 
 | |
|   void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
 | |
|     changeImmediateDominator(getNode(BB), getNode(NewBB));
 | |
|   }
 | |
| 
 | |
|   /// eraseNode - Removes a node from  the dominator tree. Block must not
 | |
|   /// domiante any other blocks. Removes node from its immediate dominator's
 | |
|   /// children list. Deletes dominator node associated with basic block BB.
 | |
|   void eraseNode(NodeT *BB) {
 | |
|     DomTreeNodeBase<NodeT> *Node = getNode(BB);
 | |
|     assert (Node && "Removing node that isn't in dominator tree.");
 | |
|     assert (Node->getChildren().empty() && "Node is not a leaf node.");
 | |
| 
 | |
|       // Remove node from immediate dominator's children list.
 | |
|     DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
 | |
|     if (IDom) {
 | |
|       typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
 | |
|         std::find(IDom->Children.begin(), IDom->Children.end(), Node);
 | |
|       assert(I != IDom->Children.end() &&
 | |
|              "Not in immediate dominator children set!");
 | |
|       // I am no longer your child...
 | |
|       IDom->Children.erase(I);
 | |
|     }
 | |
| 
 | |
|     DomTreeNodes.erase(BB);
 | |
|     delete Node;
 | |
|   }
 | |
| 
 | |
|   /// removeNode - Removes a node from the dominator tree.  Block must not
 | |
|   /// dominate any other blocks.  Invalidates any node pointing to removed
 | |
|   /// block.
 | |
|   void removeNode(NodeT *BB) {
 | |
|     assert(getNode(BB) && "Removing node that isn't in dominator tree.");
 | |
|     DomTreeNodes.erase(BB);
 | |
|   }
 | |
| 
 | |
|   /// splitBlock - BB is split and now it has one successor. Update dominator
 | |
|   /// tree to reflect this change.
 | |
|   void splitBlock(NodeT* NewBB) {
 | |
|     if (this->IsPostDominators)
 | |
|       this->Split<Inverse<NodeT*>, GraphTraits<Inverse<NodeT*> > >(*this, NewBB);
 | |
|     else
 | |
|       this->Split<NodeT*, GraphTraits<NodeT*> >(*this, NewBB);
 | |
|   }
 | |
| 
 | |
|   /// print - Convert to human readable form
 | |
|   ///
 | |
|   void print(raw_ostream &o) const {
 | |
|     o << "=============================--------------------------------\n";
 | |
|     if (this->isPostDominator())
 | |
|       o << "Inorder PostDominator Tree: ";
 | |
|     else
 | |
|       o << "Inorder Dominator Tree: ";
 | |
|     if (this->DFSInfoValid)
 | |
|       o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
 | |
|     o << "\n";
 | |
| 
 | |
|     PrintDomTree<NodeT>(getRootNode(), o, 1);
 | |
|   }
 | |
| 
 | |
| protected:
 | |
|   template<class GraphT>
 | |
|   friend void Compress(DominatorTreeBase<typename GraphT::NodeType>& DT,
 | |
|                        typename GraphT::NodeType* VIn);
 | |
| 
 | |
|   template<class GraphT>
 | |
|   friend typename GraphT::NodeType* Eval(
 | |
|                                DominatorTreeBase<typename GraphT::NodeType>& DT,
 | |
|                                          typename GraphT::NodeType* V);
 | |
| 
 | |
|   template<class GraphT>
 | |
|   friend void Link(DominatorTreeBase<typename GraphT::NodeType>& DT,
 | |
|                    unsigned DFSNumV, typename GraphT::NodeType* W,
 | |
|          typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo);
 | |
| 
 | |
|   template<class GraphT>
 | |
|   friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
 | |
|                           typename GraphT::NodeType* V,
 | |
|                           unsigned N);
 | |
| 
 | |
|   template<class FuncT, class N>
 | |
|   friend void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
 | |
|                         FuncT& F);
 | |
| 
 | |
|   /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
 | |
|   /// dominator tree in dfs order.
 | |
|   void updateDFSNumbers() {
 | |
|     unsigned DFSNum = 0;
 | |
| 
 | |
|     SmallVector<std::pair<DomTreeNodeBase<NodeT>*,
 | |
|                 typename DomTreeNodeBase<NodeT>::iterator>, 32> WorkStack;
 | |
| 
 | |
|     for (unsigned i = 0, e = (unsigned)this->Roots.size(); i != e; ++i) {
 | |
|       DomTreeNodeBase<NodeT> *ThisRoot = getNode(this->Roots[i]);
 | |
|       WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
 | |
|       ThisRoot->DFSNumIn = DFSNum++;
 | |
| 
 | |
|       while (!WorkStack.empty()) {
 | |
|         DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
 | |
|         typename DomTreeNodeBase<NodeT>::iterator ChildIt =
 | |
|                                                         WorkStack.back().second;
 | |
| 
 | |
|         // If we visited all of the children of this node, "recurse" back up the
 | |
|         // stack setting the DFOutNum.
 | |
|         if (ChildIt == Node->end()) {
 | |
|           Node->DFSNumOut = DFSNum++;
 | |
|           WorkStack.pop_back();
 | |
|         } else {
 | |
|           // Otherwise, recursively visit this child.
 | |
|           DomTreeNodeBase<NodeT> *Child = *ChildIt;
 | |
|           ++WorkStack.back().second;
 | |
| 
 | |
|           WorkStack.push_back(std::make_pair(Child, Child->begin()));
 | |
|           Child->DFSNumIn = DFSNum++;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     SlowQueries = 0;
 | |
|     DFSInfoValid = true;
 | |
|   }
 | |
| 
 | |
|   DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) {
 | |
|     typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.find(BB);
 | |
|     if (I != this->DomTreeNodes.end() && I->second)
 | |
|       return I->second;
 | |
| 
 | |
|     // Haven't calculated this node yet?  Get or calculate the node for the
 | |
|     // immediate dominator.
 | |
|     NodeT *IDom = getIDom(BB);
 | |
| 
 | |
|     assert(IDom || this->DomTreeNodes[NULL]);
 | |
|     DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);
 | |
| 
 | |
|     // Add a new tree node for this BasicBlock, and link it as a child of
 | |
|     // IDomNode
 | |
|     DomTreeNodeBase<NodeT> *C = new DomTreeNodeBase<NodeT>(BB, IDomNode);
 | |
|     return this->DomTreeNodes[BB] = IDomNode->addChild(C);
 | |
|   }
 | |
| 
 | |
|   inline NodeT *getIDom(NodeT *BB) const {
 | |
|     typename DenseMap<NodeT*, NodeT*>::const_iterator I = IDoms.find(BB);
 | |
|     return I != IDoms.end() ? I->second : 0;
 | |
|   }
 | |
| 
 | |
|   inline void addRoot(NodeT* BB) {
 | |
|     this->Roots.push_back(BB);
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   /// recalculate - compute a dominator tree for the given function
 | |
|   template<class FT>
 | |
|   void recalculate(FT& F) {
 | |
|     if (!this->IsPostDominators) {
 | |
|       reset();
 | |
| 
 | |
|       // Initialize roots
 | |
|       this->Roots.push_back(&F.front());
 | |
|       this->IDoms[&F.front()] = 0;
 | |
|       this->DomTreeNodes[&F.front()] = 0;
 | |
|       this->Vertex.push_back(0);
 | |
| 
 | |
|       Calculate<FT, NodeT*>(*this, F);
 | |
| 
 | |
|       updateDFSNumbers();
 | |
|     } else {
 | |
|       reset();     // Reset from the last time we were run...
 | |
| 
 | |
|       // Initialize the roots list
 | |
|       for (typename FT::iterator I = F.begin(), E = F.end(); I != E; ++I) {
 | |
|         if (std::distance(GraphTraits<FT*>::child_begin(I),
 | |
|                           GraphTraits<FT*>::child_end(I)) == 0)
 | |
|           addRoot(I);
 | |
| 
 | |
|         // Prepopulate maps so that we don't get iterator invalidation issues later.
 | |
|         this->IDoms[I] = 0;
 | |
|         this->DomTreeNodes[I] = 0;
 | |
|       }
 | |
| 
 | |
|       this->Vertex.push_back(0);
 | |
| 
 | |
|       Calculate<FT, Inverse<NodeT*> >(*this, F);
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase<BasicBlock>);
 | |
| 
 | |
| //===-------------------------------------
 | |
| /// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
 | |
| /// compute a normal dominator tree.
 | |
| ///
 | |
| class DominatorTree : public FunctionPass {
 | |
| public:
 | |
|   static char ID; // Pass ID, replacement for typeid
 | |
|   DominatorTreeBase<BasicBlock>* DT;
 | |
| 
 | |
|   DominatorTree() : FunctionPass(&ID) {
 | |
|     DT = new DominatorTreeBase<BasicBlock>(false);
 | |
|   }
 | |
| 
 | |
|   ~DominatorTree() {
 | |
|     DT->releaseMemory();
 | |
|     delete DT;
 | |
|   }
 | |
| 
 | |
|   DominatorTreeBase<BasicBlock>& getBase() { return *DT; }
 | |
| 
 | |
|   /// getRoots -  Return the root blocks of the current CFG.  This may include
 | |
|   /// multiple blocks if we are computing post dominators.  For forward
 | |
|   /// dominators, this will always be a single block (the entry node).
 | |
|   ///
 | |
|   inline const std::vector<BasicBlock*> &getRoots() const {
 | |
|     return DT->getRoots();
 | |
|   }
 | |
| 
 | |
|   inline BasicBlock *getRoot() const {
 | |
|     return DT->getRoot();
 | |
|   }
 | |
| 
 | |
|   inline DomTreeNode *getRootNode() const {
 | |
|     return DT->getRootNode();
 | |
|   }
 | |
| 
 | |
|   /// compare - Return false if the other dominator tree matches this
 | |
|   /// dominator tree. Otherwise return true.
 | |
|   inline bool compare(DominatorTree &Other) const {
 | |
|     DomTreeNode *R = getRootNode();
 | |
|     DomTreeNode *OtherR = Other.getRootNode();
 | |
| 
 | |
|     if (!R || !OtherR || R->getBlock() != OtherR->getBlock())
 | |
|       return true;
 | |
| 
 | |
|     if (DT->compare(Other.getBase()))
 | |
|       return true;
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   virtual bool runOnFunction(Function &F);
 | |
| 
 | |
|   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|     AU.setPreservesAll();
 | |
|   }
 | |
| 
 | |
|   inline bool dominates(DomTreeNode* A, DomTreeNode* B) const {
 | |
|     return DT->dominates(A, B);
 | |
|   }
 | |
| 
 | |
|   inline bool dominates(const BasicBlock* A, const BasicBlock* B) const {
 | |
|     return DT->dominates(A, B);
 | |
|   }
 | |
| 
 | |
|   // dominates - Return true if A dominates B. This performs the
 | |
|   // special checks necessary if A and B are in the same basic block.
 | |
|   bool dominates(const Instruction *A, const Instruction *B) const {
 | |
|     const BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
 | |
|     if (BBA != BBB) return dominates(BBA, BBB);
 | |
| 
 | |
|     // It is not possible to determine dominance between two PHI nodes 
 | |
|     // based on their ordering.
 | |
|     if (isa<PHINode>(A) && isa<PHINode>(B)) 
 | |
|       return false;
 | |
| 
 | |
|     // Loop through the basic block until we find A or B.
 | |
|     BasicBlock::const_iterator I = BBA->begin();
 | |
|     for (; &*I != A && &*I != B; ++I) /*empty*/;
 | |
| 
 | |
|     //if(!DT.IsPostDominators) {
 | |
|       // A dominates B if it is found first in the basic block.
 | |
|       return &*I == A;
 | |
|     //} else {
 | |
|     //  // A post-dominates B if B is found first in the basic block.
 | |
|     //  return &*I == B;
 | |
|     //}
 | |
|   }
 | |
| 
 | |
|   inline bool properlyDominates(const DomTreeNode* A,
 | |
|                                 const DomTreeNode* B) const {
 | |
|     return DT->properlyDominates(A, B);
 | |
|   }
 | |
| 
 | |
|   inline bool properlyDominates(BasicBlock* A, BasicBlock* B) const {
 | |
|     return DT->properlyDominates(A, B);
 | |
|   }
 | |
| 
 | |
|   /// findNearestCommonDominator - Find nearest common dominator basic block
 | |
|   /// for basic block A and B. If there is no such block then return NULL.
 | |
|   inline BasicBlock *findNearestCommonDominator(BasicBlock *A, BasicBlock *B) {
 | |
|     return DT->findNearestCommonDominator(A, B);
 | |
|   }
 | |
| 
 | |
|   inline DomTreeNode *operator[](BasicBlock *BB) const {
 | |
|     return DT->getNode(BB);
 | |
|   }
 | |
| 
 | |
|   /// getNode - return the (Post)DominatorTree node for the specified basic
 | |
|   /// block.  This is the same as using operator[] on this class.
 | |
|   ///
 | |
|   inline DomTreeNode *getNode(BasicBlock *BB) const {
 | |
|     return DT->getNode(BB);
 | |
|   }
 | |
| 
 | |
|   /// addNewBlock - Add a new node to the dominator tree information.  This
 | |
|   /// creates a new node as a child of DomBB dominator node,linking it into 
 | |
|   /// the children list of the immediate dominator.
 | |
|   inline DomTreeNode *addNewBlock(BasicBlock *BB, BasicBlock *DomBB) {
 | |
|     return DT->addNewBlock(BB, DomBB);
 | |
|   }
 | |
| 
 | |
|   /// changeImmediateDominator - This method is used to update the dominator
 | |
|   /// tree information when a node's immediate dominator changes.
 | |
|   ///
 | |
|   inline void changeImmediateDominator(BasicBlock *N, BasicBlock* NewIDom) {
 | |
|     DT->changeImmediateDominator(N, NewIDom);
 | |
|   }
 | |
| 
 | |
|   inline void changeImmediateDominator(DomTreeNode *N, DomTreeNode* NewIDom) {
 | |
|     DT->changeImmediateDominator(N, NewIDom);
 | |
|   }
 | |
| 
 | |
|   /// eraseNode - Removes a node from  the dominator tree. Block must not
 | |
|   /// domiante any other blocks. Removes node from its immediate dominator's
 | |
|   /// children list. Deletes dominator node associated with basic block BB.
 | |
|   inline void eraseNode(BasicBlock *BB) {
 | |
|     DT->eraseNode(BB);
 | |
|   }
 | |
| 
 | |
|   /// splitBlock - BB is split and now it has one successor. Update dominator
 | |
|   /// tree to reflect this change.
 | |
|   inline void splitBlock(BasicBlock* NewBB) {
 | |
|     DT->splitBlock(NewBB);
 | |
|   }
 | |
| 
 | |
|   bool isReachableFromEntry(BasicBlock* A) {
 | |
|     return DT->isReachableFromEntry(A);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   virtual void releaseMemory() { 
 | |
|     DT->releaseMemory();
 | |
|   }
 | |
| 
 | |
|   virtual void print(raw_ostream &OS, const Module* M= 0) const;
 | |
| };
 | |
| 
 | |
| //===-------------------------------------
 | |
| /// DominatorTree GraphTraits specialization so the DominatorTree can be
 | |
| /// iterable by generic graph iterators.
 | |
| ///
 | |
| template <> struct GraphTraits<DomTreeNode *> {
 | |
|   typedef DomTreeNode NodeType;
 | |
|   typedef NodeType::iterator  ChildIteratorType;
 | |
| 
 | |
|   static NodeType *getEntryNode(NodeType *N) {
 | |
|     return N;
 | |
|   }
 | |
|   static inline ChildIteratorType child_begin(NodeType* N) {
 | |
|     return N->begin();
 | |
|   }
 | |
|   static inline ChildIteratorType child_end(NodeType* N) {
 | |
|     return N->end();
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <> struct GraphTraits<DominatorTree*>
 | |
|   : public GraphTraits<DomTreeNode *> {
 | |
|   static NodeType *getEntryNode(DominatorTree *DT) {
 | |
|     return DT->getRootNode();
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// DominanceFrontierBase - Common base class for computing forward and inverse
 | |
| /// dominance frontiers for a function.
 | |
| ///
 | |
| class DominanceFrontierBase : public FunctionPass {
 | |
| public:
 | |
|   typedef std::set<BasicBlock*>             DomSetType;    // Dom set for a bb
 | |
|   typedef std::map<BasicBlock*, DomSetType> DomSetMapType; // Dom set map
 | |
| protected:
 | |
|   DomSetMapType Frontiers;
 | |
|   std::vector<BasicBlock*> Roots;
 | |
|   const bool IsPostDominators;
 | |
| 
 | |
| public:
 | |
|   DominanceFrontierBase(void *ID, bool isPostDom) 
 | |
|     : FunctionPass(ID), IsPostDominators(isPostDom) {}
 | |
| 
 | |
|   /// getRoots -  Return the root blocks of the current CFG.  This may include
 | |
|   /// multiple blocks if we are computing post dominators.  For forward
 | |
|   /// dominators, this will always be a single block (the entry node).
 | |
|   ///
 | |
|   inline const std::vector<BasicBlock*> &getRoots() const { return Roots; }
 | |
| 
 | |
|   /// isPostDominator - Returns true if analysis based of postdoms
 | |
|   ///
 | |
|   bool isPostDominator() const { return IsPostDominators; }
 | |
| 
 | |
|   virtual void releaseMemory() { Frontiers.clear(); }
 | |
| 
 | |
|   // Accessor interface:
 | |
|   typedef DomSetMapType::iterator iterator;
 | |
|   typedef DomSetMapType::const_iterator const_iterator;
 | |
|   iterator       begin()       { return Frontiers.begin(); }
 | |
|   const_iterator begin() const { return Frontiers.begin(); }
 | |
|   iterator       end()         { return Frontiers.end(); }
 | |
|   const_iterator end()   const { return Frontiers.end(); }
 | |
|   iterator       find(BasicBlock *B)       { return Frontiers.find(B); }
 | |
|   const_iterator find(BasicBlock *B) const { return Frontiers.find(B); }
 | |
| 
 | |
|   void addBasicBlock(BasicBlock *BB, const DomSetType &frontier) {
 | |
|     assert(find(BB) == end() && "Block already in DominanceFrontier!");
 | |
|     Frontiers.insert(std::make_pair(BB, frontier));
 | |
|   }
 | |
| 
 | |
|   /// removeBlock - Remove basic block BB's frontier.
 | |
|   void removeBlock(BasicBlock *BB) {
 | |
|     assert(find(BB) != end() && "Block is not in DominanceFrontier!");
 | |
|     for (iterator I = begin(), E = end(); I != E; ++I)
 | |
|       I->second.erase(BB);
 | |
|     Frontiers.erase(BB);
 | |
|   }
 | |
| 
 | |
|   void addToFrontier(iterator I, BasicBlock *Node) {
 | |
|     assert(I != end() && "BB is not in DominanceFrontier!");
 | |
|     I->second.insert(Node);
 | |
|   }
 | |
| 
 | |
|   void removeFromFrontier(iterator I, BasicBlock *Node) {
 | |
|     assert(I != end() && "BB is not in DominanceFrontier!");
 | |
|     assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB");
 | |
|     I->second.erase(Node);
 | |
|   }
 | |
| 
 | |
|   /// compareDomSet - Return false if two domsets match. Otherwise
 | |
|   /// return true;
 | |
|   bool compareDomSet(DomSetType &DS1, const DomSetType &DS2) const {
 | |
|     std::set<BasicBlock *> tmpSet;
 | |
|     for (DomSetType::const_iterator I = DS2.begin(),
 | |
|            E = DS2.end(); I != E; ++I) 
 | |
|       tmpSet.insert(*I);
 | |
| 
 | |
|     for (DomSetType::const_iterator I = DS1.begin(),
 | |
|            E = DS1.end(); I != E; ) {
 | |
|       BasicBlock *Node = *I++;
 | |
| 
 | |
|       if (tmpSet.erase(Node) == 0)
 | |
|         // Node is in DS1 but not in DS2.
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     if(!tmpSet.empty())
 | |
|       // There are nodes that are in DS2 but not in DS1.
 | |
|       return true;
 | |
| 
 | |
|     // DS1 and DS2 matches.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// compare - Return true if the other dominance frontier base matches
 | |
|   /// this dominance frontier base. Otherwise return false.
 | |
|   bool compare(DominanceFrontierBase &Other) const {
 | |
|     DomSetMapType tmpFrontiers;
 | |
|     for (DomSetMapType::const_iterator I = Other.begin(),
 | |
|            E = Other.end(); I != E; ++I) 
 | |
|       tmpFrontiers.insert(std::make_pair(I->first, I->second));
 | |
| 
 | |
|     for (DomSetMapType::iterator I = tmpFrontiers.begin(),
 | |
|            E = tmpFrontiers.end(); I != E; ) {
 | |
|       BasicBlock *Node = I->first;
 | |
|       const_iterator DFI = find(Node);
 | |
|       if (DFI == end()) 
 | |
|         return true;
 | |
| 
 | |
|       if (compareDomSet(I->second, DFI->second))
 | |
|         return true;
 | |
| 
 | |
|       ++I;
 | |
|       tmpFrontiers.erase(Node);
 | |
|     }
 | |
| 
 | |
|     if (!tmpFrontiers.empty())
 | |
|       return true;
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// print - Convert to human readable form
 | |
|   ///
 | |
|   virtual void print(raw_ostream &OS, const Module* = 0) const;
 | |
| };
 | |
| 
 | |
| 
 | |
| //===-------------------------------------
 | |
| /// DominanceFrontier Class - Concrete subclass of DominanceFrontierBase that is
 | |
| /// used to compute a forward dominator frontiers.
 | |
| ///
 | |
| class DominanceFrontier : public DominanceFrontierBase {
 | |
| public:
 | |
|   static char ID; // Pass ID, replacement for typeid
 | |
|   DominanceFrontier() : 
 | |
|     DominanceFrontierBase(&ID, false) {}
 | |
| 
 | |
|   BasicBlock *getRoot() const {
 | |
|     assert(Roots.size() == 1 && "Should always have entry node!");
 | |
|     return Roots[0];
 | |
|   }
 | |
| 
 | |
|   virtual bool runOnFunction(Function &) {
 | |
|     Frontiers.clear();
 | |
|     DominatorTree &DT = getAnalysis<DominatorTree>();
 | |
|     Roots = DT.getRoots();
 | |
|     assert(Roots.size() == 1 && "Only one entry block for forward domfronts!");
 | |
|     calculate(DT, DT[Roots[0]]);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|     AU.setPreservesAll();
 | |
|     AU.addRequired<DominatorTree>();
 | |
|   }
 | |
| 
 | |
|   /// splitBlock - BB is split and now it has one successor. Update dominance
 | |
|   /// frontier to reflect this change.
 | |
|   void splitBlock(BasicBlock *BB);
 | |
| 
 | |
|   /// BasicBlock BB's new dominator is NewBB. Update BB's dominance frontier
 | |
|   /// to reflect this change.
 | |
|   void changeImmediateDominator(BasicBlock *BB, BasicBlock *NewBB,
 | |
|                                 DominatorTree *DT) {
 | |
|     // NewBB is now  dominating BB. Which means BB's dominance
 | |
|     // frontier is now part of NewBB's dominance frontier. However, BB
 | |
|     // itself is not member of NewBB's dominance frontier.
 | |
|     DominanceFrontier::iterator NewDFI = find(NewBB);
 | |
|     DominanceFrontier::iterator DFI = find(BB);
 | |
|     // If BB was an entry block then its frontier is empty.
 | |
|     if (DFI == end())
 | |
|       return;
 | |
|     DominanceFrontier::DomSetType BBSet = DFI->second;
 | |
|     for (DominanceFrontier::DomSetType::iterator BBSetI = BBSet.begin(),
 | |
|            BBSetE = BBSet.end(); BBSetI != BBSetE; ++BBSetI) {
 | |
|       BasicBlock *DFMember = *BBSetI;
 | |
|       // Insert only if NewBB dominates DFMember.
 | |
|       if (!DT->dominates(NewBB, DFMember))
 | |
|         NewDFI->second.insert(DFMember);
 | |
|     }
 | |
|     NewDFI->second.erase(BB);
 | |
|   }
 | |
| 
 | |
|   const DomSetType &calculate(const DominatorTree &DT,
 | |
|                               const DomTreeNode *Node);
 | |
| };
 | |
| 
 | |
| 
 | |
| } // End llvm namespace
 | |
| 
 | |
| #endif
 |