mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-26 23:32:58 +00:00
f6a129a24b
great deal because we don't have to worry about maintaining SSA form. Unconditionally copy back to dupli when the register is live out of the split range, even if the live-out value was defined outside the range. Skipping the back-copy only makes sense when the live range is going to spill outside the split range, and we don't know that it will. Besides, this was a hack to avoid SSA update issues. Clear up some confusion about the end point of a half-open LiveRange. Methinks LiveRanges need to be closed so both start and end are included in the range. The low bits of a SlotIndex are symbolic, so a half-open range doesn't really make sense. This would be a pervasive change, though. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114043 91177308-0d34-0410-b5e6-96231b3b80d8
967 lines
34 KiB
C++
967 lines
34 KiB
C++
//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the SplitAnalysis class as well as mutator functions for
|
|
// live range splitting.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "splitter"
|
|
#include "SplitKit.h"
|
|
#include "VirtRegMap.h"
|
|
#include "llvm/CodeGen/CalcSpillWeights.h"
|
|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool>
|
|
AllowSplit("spiller-splits-edges",
|
|
cl::desc("Allow critical edge splitting during spilling"));
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Split Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SplitAnalysis::SplitAnalysis(const MachineFunction &mf,
|
|
const LiveIntervals &lis,
|
|
const MachineLoopInfo &mli)
|
|
: mf_(mf),
|
|
lis_(lis),
|
|
loops_(mli),
|
|
tii_(*mf.getTarget().getInstrInfo()),
|
|
curli_(0) {}
|
|
|
|
void SplitAnalysis::clear() {
|
|
usingInstrs_.clear();
|
|
usingBlocks_.clear();
|
|
usingLoops_.clear();
|
|
curli_ = 0;
|
|
}
|
|
|
|
bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) {
|
|
MachineBasicBlock *T, *F;
|
|
SmallVector<MachineOperand, 4> Cond;
|
|
return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond);
|
|
}
|
|
|
|
/// analyzeUses - Count instructions, basic blocks, and loops using curli.
|
|
void SplitAnalysis::analyzeUses() {
|
|
const MachineRegisterInfo &MRI = mf_.getRegInfo();
|
|
for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg);
|
|
MachineInstr *MI = I.skipInstruction();) {
|
|
if (MI->isDebugValue() || !usingInstrs_.insert(MI))
|
|
continue;
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
if (usingBlocks_[MBB]++)
|
|
continue;
|
|
if (MachineLoop *Loop = loops_.getLoopFor(MBB))
|
|
usingLoops_[Loop]++;
|
|
}
|
|
DEBUG(dbgs() << " counted "
|
|
<< usingInstrs_.size() << " instrs, "
|
|
<< usingBlocks_.size() << " blocks, "
|
|
<< usingLoops_.size() << " loops.\n");
|
|
}
|
|
|
|
/// removeUse - Update statistics by noting that MI no longer uses curli.
|
|
void SplitAnalysis::removeUse(const MachineInstr *MI) {
|
|
if (!usingInstrs_.erase(MI))
|
|
return;
|
|
|
|
// Decrement MBB count.
|
|
const MachineBasicBlock *MBB = MI->getParent();
|
|
BlockCountMap::iterator bi = usingBlocks_.find(MBB);
|
|
assert(bi != usingBlocks_.end() && "MBB missing");
|
|
assert(bi->second && "0 count in map");
|
|
if (--bi->second)
|
|
return;
|
|
// No more uses in MBB.
|
|
usingBlocks_.erase(bi);
|
|
|
|
// Decrement loop count.
|
|
MachineLoop *Loop = loops_.getLoopFor(MBB);
|
|
if (!Loop)
|
|
return;
|
|
LoopCountMap::iterator li = usingLoops_.find(Loop);
|
|
assert(li != usingLoops_.end() && "Loop missing");
|
|
assert(li->second && "0 count in map");
|
|
if (--li->second)
|
|
return;
|
|
// No more blocks in Loop.
|
|
usingLoops_.erase(li);
|
|
}
|
|
|
|
// Get three sets of basic blocks surrounding a loop: Blocks inside the loop,
|
|
// predecessor blocks, and exit blocks.
|
|
void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) {
|
|
Blocks.clear();
|
|
|
|
// Blocks in the loop.
|
|
Blocks.Loop.insert(Loop->block_begin(), Loop->block_end());
|
|
|
|
// Predecessor blocks.
|
|
const MachineBasicBlock *Header = Loop->getHeader();
|
|
for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(),
|
|
E = Header->pred_end(); I != E; ++I)
|
|
if (!Blocks.Loop.count(*I))
|
|
Blocks.Preds.insert(*I);
|
|
|
|
// Exit blocks.
|
|
for (MachineLoop::block_iterator I = Loop->block_begin(),
|
|
E = Loop->block_end(); I != E; ++I) {
|
|
const MachineBasicBlock *MBB = *I;
|
|
for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
|
|
SE = MBB->succ_end(); SI != SE; ++SI)
|
|
if (!Blocks.Loop.count(*SI))
|
|
Blocks.Exits.insert(*SI);
|
|
}
|
|
}
|
|
|
|
/// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in
|
|
/// and around the Loop.
|
|
SplitAnalysis::LoopPeripheralUse SplitAnalysis::
|
|
analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) {
|
|
LoopPeripheralUse use = ContainedInLoop;
|
|
for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
|
|
I != E; ++I) {
|
|
const MachineBasicBlock *MBB = I->first;
|
|
// Is this a peripheral block?
|
|
if (use < MultiPeripheral &&
|
|
(Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) {
|
|
if (I->second > 1) use = MultiPeripheral;
|
|
else use = SinglePeripheral;
|
|
continue;
|
|
}
|
|
// Is it a loop block?
|
|
if (Blocks.Loop.count(MBB))
|
|
continue;
|
|
// It must be an unrelated block.
|
|
return OutsideLoop;
|
|
}
|
|
return use;
|
|
}
|
|
|
|
/// getCriticalExits - It may be necessary to partially break critical edges
|
|
/// leaving the loop if an exit block has phi uses of curli. Collect the exit
|
|
/// blocks that need special treatment into CriticalExits.
|
|
void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
|
|
BlockPtrSet &CriticalExits) {
|
|
CriticalExits.clear();
|
|
|
|
// A critical exit block contains a phi def of curli, and has a predecessor
|
|
// that is not in the loop nor a loop predecessor.
|
|
// For such an exit block, the edges carrying the new variable must be moved
|
|
// to a new pre-exit block.
|
|
for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end();
|
|
I != E; ++I) {
|
|
const MachineBasicBlock *Succ = *I;
|
|
SlotIndex SuccIdx = lis_.getMBBStartIdx(Succ);
|
|
VNInfo *SuccVNI = curli_->getVNInfoAt(SuccIdx);
|
|
// This exit may not have curli live in at all. No need to split.
|
|
if (!SuccVNI)
|
|
continue;
|
|
// If this is not a PHI def, it is either using a value from before the
|
|
// loop, or a value defined inside the loop. Both are safe.
|
|
if (!SuccVNI->isPHIDef() || SuccVNI->def.getBaseIndex() != SuccIdx)
|
|
continue;
|
|
// This exit block does have a PHI. Does it also have a predecessor that is
|
|
// not a loop block or loop predecessor?
|
|
for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(),
|
|
PE = Succ->pred_end(); PI != PE; ++PI) {
|
|
const MachineBasicBlock *Pred = *PI;
|
|
if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred))
|
|
continue;
|
|
// This is a critical exit block, and we need to split the exit edge.
|
|
CriticalExits.insert(Succ);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// canSplitCriticalExits - Return true if it is possible to insert new exit
|
|
/// blocks before the blocks in CriticalExits.
|
|
bool
|
|
SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
|
|
BlockPtrSet &CriticalExits) {
|
|
// If we don't allow critical edge splitting, require no critical exits.
|
|
if (!AllowSplit)
|
|
return CriticalExits.empty();
|
|
|
|
for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end();
|
|
I != E; ++I) {
|
|
const MachineBasicBlock *Succ = *I;
|
|
// We want to insert a new pre-exit MBB before Succ, and change all the
|
|
// in-loop blocks to branch to the pre-exit instead of Succ.
|
|
// Check that all the in-loop predecessors can be changed.
|
|
for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(),
|
|
PE = Succ->pred_end(); PI != PE; ++PI) {
|
|
const MachineBasicBlock *Pred = *PI;
|
|
// The external predecessors won't be altered.
|
|
if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred))
|
|
continue;
|
|
if (!canAnalyzeBranch(Pred))
|
|
return false;
|
|
}
|
|
|
|
// If Succ's layout predecessor falls through, that too must be analyzable.
|
|
// We need to insert the pre-exit block in the gap.
|
|
MachineFunction::const_iterator MFI = Succ;
|
|
if (MFI == mf_.begin())
|
|
continue;
|
|
if (!canAnalyzeBranch(--MFI))
|
|
return false;
|
|
}
|
|
// No problems found.
|
|
return true;
|
|
}
|
|
|
|
void SplitAnalysis::analyze(const LiveInterval *li) {
|
|
clear();
|
|
curli_ = li;
|
|
analyzeUses();
|
|
}
|
|
|
|
const MachineLoop *SplitAnalysis::getBestSplitLoop() {
|
|
assert(curli_ && "Call analyze() before getBestSplitLoop");
|
|
if (usingLoops_.empty())
|
|
return 0;
|
|
|
|
LoopPtrSet Loops, SecondLoops;
|
|
LoopBlocks Blocks;
|
|
BlockPtrSet CriticalExits;
|
|
|
|
// Find first-class and second class candidate loops.
|
|
// We prefer to split around loops where curli is used outside the periphery.
|
|
for (LoopCountMap::const_iterator I = usingLoops_.begin(),
|
|
E = usingLoops_.end(); I != E; ++I) {
|
|
const MachineLoop *Loop = I->first;
|
|
getLoopBlocks(Loop, Blocks);
|
|
|
|
// FIXME: We need an SSA updater to properly handle multiple exit blocks.
|
|
if (Blocks.Exits.size() > 1) {
|
|
DEBUG(dbgs() << " multiple exits from " << *Loop);
|
|
continue;
|
|
}
|
|
|
|
LoopPtrSet *LPS = 0;
|
|
switch(analyzeLoopPeripheralUse(Blocks)) {
|
|
case OutsideLoop:
|
|
LPS = &Loops;
|
|
break;
|
|
case MultiPeripheral:
|
|
LPS = &SecondLoops;
|
|
break;
|
|
case ContainedInLoop:
|
|
DEBUG(dbgs() << " contained in " << *Loop);
|
|
continue;
|
|
case SinglePeripheral:
|
|
DEBUG(dbgs() << " single peripheral use in " << *Loop);
|
|
continue;
|
|
}
|
|
// Will it be possible to split around this loop?
|
|
getCriticalExits(Blocks, CriticalExits);
|
|
DEBUG(dbgs() << " " << CriticalExits.size() << " critical exits from "
|
|
<< *Loop);
|
|
if (!canSplitCriticalExits(Blocks, CriticalExits))
|
|
continue;
|
|
// This is a possible split.
|
|
assert(LPS);
|
|
LPS->insert(Loop);
|
|
}
|
|
|
|
DEBUG(dbgs() << " getBestSplitLoop found " << Loops.size() << " + "
|
|
<< SecondLoops.size() << " candidate loops.\n");
|
|
|
|
// If there are no first class loops available, look at second class loops.
|
|
if (Loops.empty())
|
|
Loops = SecondLoops;
|
|
|
|
if (Loops.empty())
|
|
return 0;
|
|
|
|
// Pick the earliest loop.
|
|
// FIXME: Are there other heuristics to consider?
|
|
const MachineLoop *Best = 0;
|
|
SlotIndex BestIdx;
|
|
for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E;
|
|
++I) {
|
|
SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader());
|
|
if (!Best || Idx < BestIdx)
|
|
Best = *I, BestIdx = Idx;
|
|
}
|
|
DEBUG(dbgs() << " getBestSplitLoop found " << *Best);
|
|
return Best;
|
|
}
|
|
|
|
/// getMultiUseBlocks - if curli has more than one use in a basic block, it
|
|
/// may be an advantage to split curli for the duration of the block.
|
|
bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
|
|
// If curli is local to one block, there is no point to splitting it.
|
|
if (usingBlocks_.size() <= 1)
|
|
return false;
|
|
// Add blocks with multiple uses.
|
|
for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
|
|
I != E; ++I)
|
|
switch (I->second) {
|
|
case 0:
|
|
case 1:
|
|
continue;
|
|
case 2: {
|
|
// It doesn't pay to split a 2-instr block if it redefines curli.
|
|
VNInfo *VN1 = curli_->getVNInfoAt(lis_.getMBBStartIdx(I->first));
|
|
VNInfo *VN2 =
|
|
curli_->getVNInfoAt(lis_.getMBBEndIdx(I->first).getPrevIndex());
|
|
// live-in and live-out with a different value.
|
|
if (VN1 && VN2 && VN1 != VN2)
|
|
continue;
|
|
} // Fall through.
|
|
default:
|
|
Blocks.insert(I->first);
|
|
}
|
|
return !Blocks.empty();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LiveIntervalMap
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Work around the fact that the std::pair constructors are broken for pointer
|
|
// pairs in some implementations. makeVV(x, 0) works.
|
|
static inline std::pair<const VNInfo*, VNInfo*>
|
|
makeVV(const VNInfo *a, VNInfo *b) {
|
|
return std::make_pair(a, b);
|
|
}
|
|
|
|
void LiveIntervalMap::reset(LiveInterval *li) {
|
|
li_ = li;
|
|
valueMap_.clear();
|
|
}
|
|
|
|
// defValue - Introduce a li_ def for ParentVNI that could be later than
|
|
// ParentVNI->def.
|
|
VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) {
|
|
assert(li_ && "call reset first");
|
|
assert(ParentVNI && "Mapping NULL value");
|
|
assert(Idx.isValid() && "Invalid SlotIndex");
|
|
assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
|
|
|
|
// Is this a simple 1-1 mapping? Not likely.
|
|
if (Idx == ParentVNI->def)
|
|
return mapValue(ParentVNI, Idx);
|
|
|
|
// This is now a complex def. Mark with a NULL in valueMap.
|
|
valueMap_[ParentVNI] = 0;
|
|
|
|
// Should we insert a minimal snippet of VNI LiveRange, or can we count on
|
|
// callers to do that? We need it for lookups of complex values.
|
|
VNInfo *VNI = li_->getNextValue(Idx, 0, true, lis_.getVNInfoAllocator());
|
|
return VNI;
|
|
}
|
|
|
|
// mapValue - Find the mapped value for ParentVNI at Idx.
|
|
// Potentially create phi-def values.
|
|
VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx) {
|
|
assert(li_ && "call reset first");
|
|
assert(ParentVNI && "Mapping NULL value");
|
|
assert(Idx.isValid() && "Invalid SlotIndex");
|
|
assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI");
|
|
|
|
// Use insert for lookup, so we can add missing values with a second lookup.
|
|
std::pair<ValueMap::iterator,bool> InsP =
|
|
valueMap_.insert(makeVV(ParentVNI, 0));
|
|
|
|
// This was an unknown value. Create a simple mapping.
|
|
if (InsP.second)
|
|
return InsP.first->second = li_->createValueCopy(ParentVNI,
|
|
lis_.getVNInfoAllocator());
|
|
// This was a simple mapped value.
|
|
if (InsP.first->second)
|
|
return InsP.first->second;
|
|
|
|
// This is a complex mapped value. There may be multiple defs, and we may need
|
|
// to create phi-defs.
|
|
MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx);
|
|
assert(IdxMBB && "No MBB at Idx");
|
|
|
|
// Is there a def in the same MBB we can extend?
|
|
if (VNInfo *VNI = extendTo(IdxMBB, Idx))
|
|
return VNI;
|
|
|
|
// Now for the fun part. We know that ParentVNI potentially has multiple defs,
|
|
// and we may need to create even more phi-defs to preserve VNInfo SSA form.
|
|
// Perform a depth-first search for predecessor blocks where we know the
|
|
// dominating VNInfo. Insert phi-def VNInfos along the path back to IdxMBB.
|
|
|
|
// Track MBBs where we have created or learned the dominating value.
|
|
// This may change during the DFS as we create new phi-defs.
|
|
typedef DenseMap<MachineBasicBlock*, VNInfo*> MBBValueMap;
|
|
MBBValueMap DomValue;
|
|
|
|
for (idf_iterator<MachineBasicBlock*>
|
|
IDFI = idf_begin(IdxMBB),
|
|
IDFE = idf_end(IdxMBB); IDFI != IDFE;) {
|
|
MachineBasicBlock *MBB = *IDFI;
|
|
SlotIndex End = lis_.getMBBEndIdx(MBB).getPrevSlot();
|
|
|
|
// We are operating on the restricted CFG where ParentVNI is live.
|
|
if (parentli_.getVNInfoAt(End) != ParentVNI) {
|
|
IDFI.skipChildren();
|
|
continue;
|
|
}
|
|
|
|
// Do we have a dominating value in this block?
|
|
VNInfo *VNI = extendTo(MBB, End);
|
|
if (!VNI) {
|
|
++IDFI;
|
|
continue;
|
|
}
|
|
|
|
// Yes, VNI dominates MBB. Track the path back to IdxMBB, creating phi-defs
|
|
// as needed along the way.
|
|
for (unsigned PI = IDFI.getPathLength()-1; PI != 0; --PI) {
|
|
// Start from MBB's immediate successor. End at IdxMBB.
|
|
MachineBasicBlock *Succ = IDFI.getPath(PI-1);
|
|
std::pair<MBBValueMap::iterator, bool> InsP =
|
|
DomValue.insert(MBBValueMap::value_type(Succ, VNI));
|
|
|
|
// This is the first time we backtrack to Succ.
|
|
if (InsP.second)
|
|
continue;
|
|
|
|
// We reached Succ again with the same VNI. Nothing is going to change.
|
|
VNInfo *OVNI = InsP.first->second;
|
|
if (OVNI == VNI)
|
|
break;
|
|
|
|
// Succ already has a phi-def. No need to continue.
|
|
SlotIndex Start = lis_.getMBBStartIdx(Succ);
|
|
if (OVNI->def == Start)
|
|
break;
|
|
|
|
// We have a collision between the old and new VNI at Succ. That means
|
|
// neither dominates and we need a new phi-def.
|
|
VNI = li_->getNextValue(Start, 0, true, lis_.getVNInfoAllocator());
|
|
VNI->setIsPHIDef(true);
|
|
InsP.first->second = VNI;
|
|
|
|
// Replace OVNI with VNI in the remaining path.
|
|
for (; PI > 1 ; --PI) {
|
|
MBBValueMap::iterator I = DomValue.find(IDFI.getPath(PI-2));
|
|
if (I == DomValue.end() || I->second != OVNI)
|
|
break;
|
|
I->second = VNI;
|
|
}
|
|
}
|
|
|
|
// No need to search the children, we found a dominating value.
|
|
IDFI.skipChildren();
|
|
}
|
|
|
|
// The search should at least find a dominating value for IdxMBB.
|
|
assert(!DomValue.empty() && "Couldn't find a reaching definition");
|
|
|
|
// Since we went through the trouble of a full DFS visiting all reaching defs,
|
|
// the values in DomValue are now accurate. No more phi-defs are needed for
|
|
// these blocks, so we can color the live ranges.
|
|
// This makes the next mapValue call much faster.
|
|
VNInfo *IdxVNI = 0;
|
|
for (MBBValueMap::iterator I = DomValue.begin(), E = DomValue.end(); I != E;
|
|
++I) {
|
|
MachineBasicBlock *MBB = I->first;
|
|
VNInfo *VNI = I->second;
|
|
SlotIndex Start = lis_.getMBBStartIdx(MBB);
|
|
if (MBB == IdxMBB) {
|
|
// Don't add full liveness to IdxMBB, stop at Idx.
|
|
if (Start != Idx)
|
|
li_->addRange(LiveRange(Start, Idx.getNextSlot(), VNI));
|
|
// The caller had better add some liveness to IdxVNI, or it leaks.
|
|
IdxVNI = VNI;
|
|
} else
|
|
li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
|
|
}
|
|
|
|
assert(IdxVNI && "Didn't find value for Idx");
|
|
return IdxVNI;
|
|
}
|
|
|
|
// extendTo - Find the last li_ value defined in MBB at or before Idx. The
|
|
// parentli_ is assumed to be live at Idx. Extend the live range to Idx.
|
|
// Return the found VNInfo, or NULL.
|
|
VNInfo *LiveIntervalMap::extendTo(MachineBasicBlock *MBB, SlotIndex Idx) {
|
|
assert(li_ && "call reset first");
|
|
LiveInterval::iterator I = std::upper_bound(li_->begin(), li_->end(), Idx);
|
|
if (I == li_->begin())
|
|
return 0;
|
|
--I;
|
|
if (I->start < lis_.getMBBStartIdx(MBB))
|
|
return 0;
|
|
if (I->end <= Idx)
|
|
I->end = Idx.getNextSlot();
|
|
return I->valno;
|
|
}
|
|
|
|
// addSimpleRange - Add a simple range from parentli_ to li_.
|
|
// ParentVNI must be live in the [Start;End) interval.
|
|
void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End,
|
|
const VNInfo *ParentVNI) {
|
|
assert(li_ && "call reset first");
|
|
VNInfo *VNI = mapValue(ParentVNI, Start);
|
|
// A simple mappoing is easy.
|
|
if (VNI->def == ParentVNI->def) {
|
|
li_->addRange(LiveRange(Start, End, VNI));
|
|
return;
|
|
}
|
|
|
|
// ParentVNI is a complex value. We must map per MBB.
|
|
MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start);
|
|
MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End);
|
|
|
|
if (MBB == MBBE) {
|
|
li_->addRange(LiveRange(Start, End, VNI));
|
|
return;
|
|
}
|
|
|
|
// First block.
|
|
li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI));
|
|
|
|
// Run sequence of full blocks.
|
|
for (++MBB; MBB != MBBE; ++MBB) {
|
|
Start = lis_.getMBBStartIdx(MBB);
|
|
li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB),
|
|
mapValue(ParentVNI, Start)));
|
|
}
|
|
|
|
// Final block.
|
|
Start = lis_.getMBBStartIdx(MBB);
|
|
if (Start != End)
|
|
li_->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start)));
|
|
}
|
|
|
|
/// addRange - Add live ranges to li_ where [Start;End) intersects parentli_.
|
|
/// All needed values whose def is not inside [Start;End) must be defined
|
|
/// beforehand so mapValue will work.
|
|
void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) {
|
|
assert(li_ && "call reset first");
|
|
LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end();
|
|
LiveInterval::const_iterator I = std::lower_bound(B, E, Start);
|
|
|
|
// Check if --I begins before Start and overlaps.
|
|
if (I != B) {
|
|
--I;
|
|
if (I->end > Start)
|
|
addSimpleRange(Start, std::min(End, I->end), I->valno);
|
|
++I;
|
|
}
|
|
|
|
// The remaining ranges begin after Start.
|
|
for (;I != E && I->start < End; ++I)
|
|
addSimpleRange(I->start, std::min(End, I->end), I->valno);
|
|
}
|
|
|
|
VNInfo *LiveIntervalMap::defByCopyFrom(unsigned Reg,
|
|
const VNInfo *ParentVNI,
|
|
MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I) {
|
|
const TargetInstrDesc &TID = MBB.getParent()->getTarget().getInstrInfo()->
|
|
get(TargetOpcode::COPY);
|
|
MachineInstr *MI = BuildMI(MBB, I, DebugLoc(), TID, li_->reg).addReg(Reg);
|
|
SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex();
|
|
VNInfo *VNI = defValue(ParentVNI, DefIdx);
|
|
VNI->setCopy(MI);
|
|
li_->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), VNI));
|
|
return VNI;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Split Editor
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
|
|
SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm,
|
|
SmallVectorImpl<LiveInterval*> &intervals)
|
|
: sa_(sa), lis_(lis), vrm_(vrm),
|
|
mri_(vrm.getMachineFunction().getRegInfo()),
|
|
tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()),
|
|
curli_(sa_.getCurLI()),
|
|
dupli_(lis_, *curli_),
|
|
openli_(lis_, *curli_),
|
|
intervals_(intervals),
|
|
firstInterval(intervals_.size())
|
|
{
|
|
assert(curli_ && "SplitEditor created from empty SplitAnalysis");
|
|
|
|
// Make sure curli_ is assigned a stack slot, so all our intervals get the
|
|
// same slot as curli_.
|
|
if (vrm_.getStackSlot(curli_->reg) == VirtRegMap::NO_STACK_SLOT)
|
|
vrm_.assignVirt2StackSlot(curli_->reg);
|
|
|
|
}
|
|
|
|
LiveInterval *SplitEditor::createInterval() {
|
|
unsigned Reg = mri_.createVirtualRegister(mri_.getRegClass(curli_->reg));
|
|
LiveInterval &Intv = lis_.getOrCreateInterval(Reg);
|
|
vrm_.grow();
|
|
vrm_.assignVirt2StackSlot(Reg, vrm_.getStackSlot(curli_->reg));
|
|
return &Intv;
|
|
}
|
|
|
|
/// Create a new virtual register and live interval.
|
|
void SplitEditor::openIntv() {
|
|
assert(!openli_.getLI() && "Previous LI not closed before openIntv");
|
|
|
|
if (!dupli_.getLI()) {
|
|
// Create an interval for dupli that is a copy of curli.
|
|
dupli_.reset(createInterval());
|
|
dupli_.getLI()->Copy(*curli_, &mri_, lis_.getVNInfoAllocator());
|
|
}
|
|
|
|
openli_.reset(createInterval());
|
|
intervals_.push_back(openli_.getLI());
|
|
}
|
|
|
|
/// enterIntvBefore - Enter openli before the instruction at Idx. If curli is
|
|
/// not live before Idx, a COPY is not inserted.
|
|
void SplitEditor::enterIntvBefore(SlotIndex Idx) {
|
|
assert(openli_.getLI() && "openIntv not called before enterIntvBefore");
|
|
VNInfo *ParentVNI = curli_->getVNInfoAt(Idx.getUseIndex());
|
|
if (!ParentVNI) {
|
|
DEBUG(dbgs() << " enterIntvBefore " << Idx << ": not live\n");
|
|
return;
|
|
}
|
|
MachineInstr *MI = lis_.getInstructionFromIndex(Idx);
|
|
assert(MI && "enterIntvBefore called with invalid index");
|
|
openli_.defByCopyFrom(curli_->reg, ParentVNI, *MI->getParent(), MI);
|
|
DEBUG(dbgs() << " enterIntvBefore " << Idx << ": " << *openli_.getLI()
|
|
<< '\n');
|
|
}
|
|
|
|
/// enterIntvAtEnd - Enter openli at the end of MBB.
|
|
void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
|
|
assert(openli_.getLI() && "openIntv not called before enterIntvAtEnd");
|
|
SlotIndex End = lis_.getMBBEndIdx(&MBB);
|
|
VNInfo *ParentVNI = curli_->getVNInfoAt(End.getPrevSlot());
|
|
if (!ParentVNI) {
|
|
DEBUG(dbgs() << " enterIntvAtEnd " << End << ": not live\n");
|
|
return;
|
|
}
|
|
VNInfo *VNI = openli_.defByCopyFrom(curli_->reg, ParentVNI,
|
|
MBB, MBB.getFirstTerminator());
|
|
// Make sure openli is live out of MBB.
|
|
openli_.getLI()->addRange(LiveRange(VNI->def, End, VNI));
|
|
DEBUG(dbgs() << " enterIntvAtEnd: " << *openli_.getLI() << '\n');
|
|
}
|
|
|
|
/// useIntv - indicate that all instructions in MBB should use openli.
|
|
void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
|
|
useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB));
|
|
}
|
|
|
|
void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
|
|
assert(openli_.getLI() && "openIntv not called before useIntv");
|
|
openli_.addRange(Start, End);
|
|
DEBUG(dbgs() << " use [" << Start << ';' << End << "): "
|
|
<< *openli_.getLI() << '\n');
|
|
}
|
|
|
|
/// leaveIntvAfter - Leave openli after the instruction at Idx.
|
|
void SplitEditor::leaveIntvAfter(SlotIndex Idx) {
|
|
assert(openli_.getLI() && "openIntv not called before leaveIntvAfter");
|
|
|
|
// The interval must be live beyond the instruction at Idx.
|
|
SlotIndex EndIdx = Idx.getNextIndex().getBaseIndex();
|
|
VNInfo *ParentVNI = curli_->getVNInfoAt(EndIdx);
|
|
if (!ParentVNI) {
|
|
DEBUG(dbgs() << " leaveIntvAfter " << Idx << ": not live\n");
|
|
return;
|
|
}
|
|
|
|
MachineInstr *MI = lis_.getInstructionFromIndex(Idx);
|
|
assert(MI && "leaveIntvAfter called with invalid index");
|
|
|
|
VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI,
|
|
*MI->getParent(), MI);
|
|
|
|
// Finally we must make sure that openli is properly extended from Idx to the
|
|
// new copy.
|
|
openli_.mapValue(ParentVNI, VNI->def.getUseIndex());
|
|
|
|
DEBUG(dbgs() << " leaveIntvAfter " << Idx << ": " << *openli_.getLI()
|
|
<< '\n');
|
|
}
|
|
|
|
/// leaveIntvAtTop - Leave the interval at the top of MBB.
|
|
/// Currently, only one value can leave the interval.
|
|
void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
|
|
assert(openli_.getLI() && "openIntv not called before leaveIntvAtTop");
|
|
|
|
SlotIndex Start = lis_.getMBBStartIdx(&MBB);
|
|
VNInfo *ParentVNI = curli_->getVNInfoAt(Start);
|
|
|
|
// Is curli even live-in to MBB?
|
|
if (!ParentVNI) {
|
|
DEBUG(dbgs() << " leaveIntvAtTop at " << Start << ": not live\n");
|
|
return;
|
|
}
|
|
|
|
// We are going to insert a back copy, so we must have a dupli_.
|
|
VNInfo *VNI = dupli_.defByCopyFrom(openli_.getLI()->reg, ParentVNI,
|
|
MBB, MBB.begin());
|
|
|
|
// Finally we must make sure that openli is properly extended from Start to
|
|
// the new copy.
|
|
openli_.mapValue(ParentVNI, VNI->def.getUseIndex());
|
|
|
|
DEBUG(dbgs() << " leaveIntvAtTop at " << Start << ": " << *openli_.getLI()
|
|
<< '\n');
|
|
}
|
|
|
|
/// closeIntv - Indicate that we are done editing the currently open
|
|
/// LiveInterval, and ranges can be trimmed.
|
|
void SplitEditor::closeIntv() {
|
|
assert(openli_.getLI() && "openIntv not called before closeIntv");
|
|
|
|
DEBUG(dbgs() << " closeIntv cleaning up\n");
|
|
DEBUG(dbgs() << " open " << *openli_.getLI() << '\n');
|
|
|
|
for (LiveInterval::iterator I = openli_.getLI()->begin(),
|
|
E = openli_.getLI()->end(); I != E; ++I) {
|
|
dupli_.getLI()->removeRange(I->start, I->end);
|
|
}
|
|
// FIXME: A block branching to the entry block may also branch elsewhere
|
|
// curli is live. We need both openli and curli to be live in that case.
|
|
DEBUG(dbgs() << " dup2 " << *dupli_.getLI() << '\n');
|
|
openli_.reset(0);
|
|
}
|
|
|
|
/// rewrite - after all the new live ranges have been created, rewrite
|
|
/// instructions using curli to use the new intervals.
|
|
bool SplitEditor::rewrite() {
|
|
assert(!openli_.getLI() && "Previous LI not closed before rewrite");
|
|
const LiveInterval *curli = sa_.getCurLI();
|
|
for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(curli->reg),
|
|
RE = mri_.reg_end(); RI != RE;) {
|
|
MachineOperand &MO = RI.getOperand();
|
|
MachineInstr *MI = MO.getParent();
|
|
++RI;
|
|
if (MI->isDebugValue()) {
|
|
DEBUG(dbgs() << "Zapping " << *MI);
|
|
// FIXME: We can do much better with debug values.
|
|
MO.setReg(0);
|
|
continue;
|
|
}
|
|
SlotIndex Idx = lis_.getInstructionIndex(MI);
|
|
Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
|
|
LiveInterval *LI = dupli_.getLI();
|
|
for (unsigned i = firstInterval, e = intervals_.size(); i != e; ++i) {
|
|
LiveInterval *testli = intervals_[i];
|
|
if (testli->liveAt(Idx)) {
|
|
LI = testli;
|
|
break;
|
|
}
|
|
}
|
|
if (LI) {
|
|
MO.setReg(LI->reg);
|
|
sa_.removeUse(MI);
|
|
DEBUG(dbgs() << " rewrite " << Idx << '\t' << *MI);
|
|
}
|
|
}
|
|
|
|
// dupli_ goes in last, after rewriting.
|
|
if (dupli_.getLI()) {
|
|
if (dupli_.getLI()->empty()) {
|
|
DEBUG(dbgs() << " dupli became empty?\n");
|
|
lis_.removeInterval(dupli_.getLI()->reg);
|
|
dupli_.reset(0);
|
|
} else {
|
|
dupli_.getLI()->RenumberValues(lis_);
|
|
intervals_.push_back(dupli_.getLI());
|
|
}
|
|
}
|
|
|
|
// Calculate spill weight and allocation hints for new intervals.
|
|
VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_);
|
|
for (unsigned i = firstInterval, e = intervals_.size(); i != e; ++i) {
|
|
LiveInterval &li = *intervals_[i];
|
|
vrai.CalculateRegClass(li.reg);
|
|
vrai.CalculateWeightAndHint(li);
|
|
DEBUG(dbgs() << " new interval " << mri_.getRegClass(li.reg)->getName()
|
|
<< ":" << li << '\n');
|
|
}
|
|
return dupli_.getLI();
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Loop Splitting
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool SplitEditor::splitAroundLoop(const MachineLoop *Loop) {
|
|
SplitAnalysis::LoopBlocks Blocks;
|
|
sa_.getLoopBlocks(Loop, Blocks);
|
|
|
|
// Break critical edges as needed.
|
|
SplitAnalysis::BlockPtrSet CriticalExits;
|
|
sa_.getCriticalExits(Blocks, CriticalExits);
|
|
assert(CriticalExits.empty() && "Cannot break critical exits yet");
|
|
|
|
// Create new live interval for the loop.
|
|
openIntv();
|
|
|
|
// Insert copies in the predecessors.
|
|
for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(),
|
|
E = Blocks.Preds.end(); I != E; ++I) {
|
|
MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
|
|
enterIntvAtEnd(MBB);
|
|
}
|
|
|
|
// Switch all loop blocks.
|
|
for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(),
|
|
E = Blocks.Loop.end(); I != E; ++I)
|
|
useIntv(**I);
|
|
|
|
// Insert back copies in the exit blocks.
|
|
for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(),
|
|
E = Blocks.Exits.end(); I != E; ++I) {
|
|
MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
|
|
leaveIntvAtTop(MBB);
|
|
}
|
|
|
|
// Done.
|
|
closeIntv();
|
|
return rewrite();
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Single Block Splitting
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// splitSingleBlocks - Split curli into a separate live interval inside each
|
|
/// basic block in Blocks. Return true if curli has been completely replaced,
|
|
/// false if curli is still intact, and needs to be spilled or split further.
|
|
bool SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
|
|
DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n");
|
|
// Determine the first and last instruction using curli in each block.
|
|
typedef std::pair<SlotIndex,SlotIndex> IndexPair;
|
|
typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap;
|
|
IndexPairMap MBBRange;
|
|
for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(),
|
|
E = sa_.usingInstrs_.end(); I != E; ++I) {
|
|
const MachineBasicBlock *MBB = (*I)->getParent();
|
|
if (!Blocks.count(MBB))
|
|
continue;
|
|
SlotIndex Idx = lis_.getInstructionIndex(*I);
|
|
DEBUG(dbgs() << " BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I);
|
|
IndexPair &IP = MBBRange[MBB];
|
|
if (!IP.first.isValid() || Idx < IP.first)
|
|
IP.first = Idx;
|
|
if (!IP.second.isValid() || Idx > IP.second)
|
|
IP.second = Idx;
|
|
}
|
|
|
|
// Create a new interval for each block.
|
|
for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(),
|
|
E = Blocks.end(); I != E; ++I) {
|
|
IndexPair &IP = MBBRange[*I];
|
|
DEBUG(dbgs() << " splitting for BB#" << (*I)->getNumber() << ": ["
|
|
<< IP.first << ';' << IP.second << ")\n");
|
|
assert(IP.first.isValid() && IP.second.isValid());
|
|
|
|
openIntv();
|
|
enterIntvBefore(IP.first);
|
|
useIntv(IP.first.getBaseIndex(), IP.second.getBoundaryIndex());
|
|
leaveIntvAfter(IP.second);
|
|
closeIntv();
|
|
}
|
|
return rewrite();
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Sub Block Splitting
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// getBlockForInsideSplit - If curli is contained inside a single basic block,
|
|
/// and it wou pay to subdivide the interval inside that block, return it.
|
|
/// Otherwise return NULL. The returned block can be passed to
|
|
/// SplitEditor::splitInsideBlock.
|
|
const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() {
|
|
// The interval must be exclusive to one block.
|
|
if (usingBlocks_.size() != 1)
|
|
return 0;
|
|
// Don't to this for less than 4 instructions. We want to be sure that
|
|
// splitting actually reduces the instruction count per interval.
|
|
if (usingInstrs_.size() < 4)
|
|
return 0;
|
|
return usingBlocks_.begin()->first;
|
|
}
|
|
|
|
/// splitInsideBlock - Split curli into multiple intervals inside MBB. Return
|
|
/// true if curli has been completely replaced, false if curli is still
|
|
/// intact, and needs to be spilled or split further.
|
|
bool SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) {
|
|
SmallVector<SlotIndex, 32> Uses;
|
|
Uses.reserve(sa_.usingInstrs_.size());
|
|
for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(),
|
|
E = sa_.usingInstrs_.end(); I != E; ++I)
|
|
if ((*I)->getParent() == MBB)
|
|
Uses.push_back(lis_.getInstructionIndex(*I));
|
|
DEBUG(dbgs() << " splitInsideBlock BB#" << MBB->getNumber() << " for "
|
|
<< Uses.size() << " instructions.\n");
|
|
assert(Uses.size() >= 3 && "Need at least 3 instructions");
|
|
array_pod_sort(Uses.begin(), Uses.end());
|
|
|
|
// Simple algorithm: Find the largest gap between uses as determined by slot
|
|
// indices. Create new intervals for instructions before the gap and after the
|
|
// gap.
|
|
unsigned bestPos = 0;
|
|
int bestGap = 0;
|
|
DEBUG(dbgs() << " dist (" << Uses[0]);
|
|
for (unsigned i = 1, e = Uses.size(); i != e; ++i) {
|
|
int g = Uses[i-1].distance(Uses[i]);
|
|
DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]);
|
|
if (g > bestGap)
|
|
bestPos = i, bestGap = g;
|
|
}
|
|
DEBUG(dbgs() << "), best: -" << bestGap << "-\n");
|
|
|
|
// bestPos points to the first use after the best gap.
|
|
assert(bestPos > 0 && "Invalid gap");
|
|
|
|
// FIXME: Don't create intervals for low densities.
|
|
|
|
// First interval before the gap. Don't create single-instr intervals.
|
|
if (bestPos > 1) {
|
|
openIntv();
|
|
enterIntvBefore(Uses.front());
|
|
useIntv(Uses.front().getBaseIndex(), Uses[bestPos-1].getBoundaryIndex());
|
|
leaveIntvAfter(Uses[bestPos-1]);
|
|
closeIntv();
|
|
}
|
|
|
|
// Second interval after the gap.
|
|
if (bestPos < Uses.size()-1) {
|
|
openIntv();
|
|
enterIntvBefore(Uses[bestPos]);
|
|
useIntv(Uses[bestPos].getBaseIndex(), Uses.back().getBoundaryIndex());
|
|
leaveIntvAfter(Uses.back());
|
|
closeIntv();
|
|
}
|
|
|
|
return rewrite();
|
|
}
|