mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	do it. This results in better code on X86 for floats (because if strict precision is not required, we can elide some more expensive double -> float conversions like the old isel did), and allows other targets to emit CopyFromRegs that are not legal for arguments. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@19668 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1049 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1049 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
 | 
						|
// 
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
// 
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This implements the SelectionDAGISel class.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "isel"
 | 
						|
#include "llvm/CodeGen/SelectionDAGISel.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Intrinsics.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAG.h"
 | 
						|
#include "llvm/CodeGen/SSARegMap.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Target/TargetFrameInfo.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetLowering.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include <map>
 | 
						|
#include <iostream>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#ifndef _NDEBUG
 | 
						|
static cl::opt<bool>
 | 
						|
ViewDAGs("view-isel-dags", cl::Hidden,
 | 
						|
         cl::desc("Pop up a window to show isel dags as they are selected"));
 | 
						|
#else
 | 
						|
static const bool ViewDAGS = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  /// FunctionLoweringInfo - This contains information that is global to a
 | 
						|
  /// function that is used when lowering a region of the function.
 | 
						|
  class FunctionLoweringInfo {
 | 
						|
  public:
 | 
						|
    TargetLowering &TLI;
 | 
						|
    Function &Fn;
 | 
						|
    MachineFunction &MF;
 | 
						|
    SSARegMap *RegMap;
 | 
						|
 | 
						|
    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
 | 
						|
 | 
						|
    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
 | 
						|
    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
 | 
						|
 | 
						|
    /// ValueMap - Since we emit code for the function a basic block at a time,
 | 
						|
    /// we must remember which virtual registers hold the values for
 | 
						|
    /// cross-basic-block values.
 | 
						|
    std::map<const Value*, unsigned> ValueMap;
 | 
						|
 | 
						|
    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
 | 
						|
    /// the entry block.  This allows the allocas to be efficiently referenced
 | 
						|
    /// anywhere in the function.
 | 
						|
    std::map<const AllocaInst*, int> StaticAllocaMap;
 | 
						|
 | 
						|
    /// BlockLocalArguments - If any arguments are only used in a single basic
 | 
						|
    /// block, and if the target can access the arguments without side-effects,
 | 
						|
    /// avoid emitting CopyToReg nodes for those arguments.  This map keeps
 | 
						|
    /// track of which arguments are local to each BB.
 | 
						|
    std::multimap<BasicBlock*, std::pair<Argument*,
 | 
						|
                                         unsigned> > BlockLocalArguments;
 | 
						|
 | 
						|
 | 
						|
    unsigned MakeReg(MVT::ValueType VT) {
 | 
						|
      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
 | 
						|
    }
 | 
						|
  
 | 
						|
    unsigned CreateRegForValue(const Value *V) {
 | 
						|
      MVT::ValueType VT = TLI.getValueType(V->getType());
 | 
						|
      // The common case is that we will only create one register for this
 | 
						|
      // value.  If we have that case, create and return the virtual register.
 | 
						|
      unsigned NV = TLI.getNumElements(VT);
 | 
						|
      if (NV == 1) {
 | 
						|
        // If we are promoting this value, pick the next largest supported type.
 | 
						|
        return MakeReg(TLI.getTypeToTransformTo(VT));
 | 
						|
      }
 | 
						|
    
 | 
						|
      // If this value is represented with multiple target registers, make sure
 | 
						|
      // to create enough consequtive registers of the right (smaller) type.
 | 
						|
      unsigned NT = VT-1;  // Find the type to use.
 | 
						|
      while (TLI.getNumElements((MVT::ValueType)NT) != 1)
 | 
						|
        --NT;
 | 
						|
    
 | 
						|
      unsigned R = MakeReg((MVT::ValueType)NT);
 | 
						|
      for (unsigned i = 1; i != NV; ++i)
 | 
						|
        MakeReg((MVT::ValueType)NT);
 | 
						|
      return R;
 | 
						|
    }
 | 
						|
  
 | 
						|
    unsigned InitializeRegForValue(const Value *V) {
 | 
						|
      unsigned &R = ValueMap[V];
 | 
						|
      assert(R == 0 && "Already initialized this value register!");
 | 
						|
      return R = CreateRegForValue(V);
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
 | 
						|
/// PHI nodes or outside of the basic block that defines it.
 | 
						|
static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
 | 
						|
  if (isa<PHINode>(I)) return true;
 | 
						|
  BasicBlock *BB = I->getParent();
 | 
						|
  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
 | 
						|
    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI))
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
 | 
						|
                                           Function &fn, MachineFunction &mf) 
 | 
						|
    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
 | 
						|
 | 
						|
  // Initialize the mapping of values to registers.  This is only set up for
 | 
						|
  // instruction values that are used outside of the block that defines
 | 
						|
  // them.
 | 
						|
  for (Function::aiterator AI = Fn.abegin(), E = Fn.aend(); AI != E; ++AI)
 | 
						|
    InitializeRegForValue(AI);
 | 
						|
 | 
						|
  Function::iterator BB = Fn.begin(), E = Fn.end();
 | 
						|
  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | 
						|
    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
 | 
						|
      if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(AI->getArraySize())) {
 | 
						|
        const Type *Ty = AI->getAllocatedType();
 | 
						|
        uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
 | 
						|
        unsigned Align = TLI.getTargetData().getTypeAlignment(Ty);
 | 
						|
        TySize *= CUI->getValue();   // Get total allocated size.
 | 
						|
        StaticAllocaMap[AI] =
 | 
						|
          MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
 | 
						|
      }
 | 
						|
 | 
						|
  for (; BB != E; ++BB)
 | 
						|
    for (BasicBlock::iterator I = BB->begin(), e = BB->end(); I != e; ++I)
 | 
						|
      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
 | 
						|
        if (!isa<AllocaInst>(I) ||
 | 
						|
            !StaticAllocaMap.count(cast<AllocaInst>(I)))
 | 
						|
          InitializeRegForValue(I);
 | 
						|
 | 
						|
  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
 | 
						|
  // also creates the initial PHI MachineInstrs, though none of the input
 | 
						|
  // operands are populated.
 | 
						|
  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
 | 
						|
    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
 | 
						|
    MBBMap[BB] = MBB;
 | 
						|
    MF.getBasicBlockList().push_back(MBB);
 | 
						|
 | 
						|
    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
 | 
						|
    // appropriate.
 | 
						|
    PHINode *PN;
 | 
						|
    for (BasicBlock::iterator I = BB->begin();
 | 
						|
         (PN = dyn_cast<PHINode>(I)); ++I)
 | 
						|
      if (!PN->use_empty()) {
 | 
						|
        unsigned NumElements =
 | 
						|
          TLI.getNumElements(TLI.getValueType(PN->getType()));
 | 
						|
        unsigned PHIReg = ValueMap[PN];
 | 
						|
        assert(PHIReg &&"PHI node does not have an assigned virtual register!");
 | 
						|
        for (unsigned i = 0; i != NumElements; ++i)
 | 
						|
          BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i);
 | 
						|
      }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// SelectionDAGLowering - This is the common target-independent lowering
 | 
						|
/// implementation that is parameterized by a TargetLowering object.
 | 
						|
/// Also, targets can overload any lowering method.
 | 
						|
///
 | 
						|
namespace llvm {
 | 
						|
class SelectionDAGLowering {
 | 
						|
  MachineBasicBlock *CurMBB;
 | 
						|
 | 
						|
  std::map<const Value*, SDOperand> NodeMap;
 | 
						|
 | 
						|
  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
 | 
						|
  /// them up and then emit token factor nodes when possible.  This allows us to
 | 
						|
  /// get simple disambiguation between loads without worrying about alias
 | 
						|
  /// analysis.
 | 
						|
  std::vector<SDOperand> PendingLoads;
 | 
						|
 | 
						|
public:
 | 
						|
  // TLI - This is information that describes the available target features we
 | 
						|
  // need for lowering.  This indicates when operations are unavailable,
 | 
						|
  // implemented with a libcall, etc.
 | 
						|
  TargetLowering &TLI;
 | 
						|
  SelectionDAG &DAG;
 | 
						|
  const TargetData &TD;
 | 
						|
 | 
						|
  /// FuncInfo - Information about the function as a whole.
 | 
						|
  ///
 | 
						|
  FunctionLoweringInfo &FuncInfo;
 | 
						|
 | 
						|
  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
 | 
						|
                       FunctionLoweringInfo &funcinfo) 
 | 
						|
    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
 | 
						|
      FuncInfo(funcinfo) {
 | 
						|
  }
 | 
						|
 | 
						|
  /// getRoot - Return the current virtual root of the Selection DAG.
 | 
						|
  ///
 | 
						|
  SDOperand getRoot() {
 | 
						|
    if (PendingLoads.empty())
 | 
						|
      return DAG.getRoot();
 | 
						|
    
 | 
						|
    if (PendingLoads.size() == 1) {
 | 
						|
      SDOperand Root = PendingLoads[0];
 | 
						|
      DAG.setRoot(Root);
 | 
						|
      PendingLoads.clear();
 | 
						|
      return Root;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, we have to make a token factor node.
 | 
						|
    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other, PendingLoads);
 | 
						|
    PendingLoads.clear();
 | 
						|
    DAG.setRoot(Root);
 | 
						|
    return Root;
 | 
						|
  }
 | 
						|
 | 
						|
  void visit(Instruction &I) { visit(I.getOpcode(), I); }
 | 
						|
 | 
						|
  void visit(unsigned Opcode, User &I) {
 | 
						|
    switch (Opcode) {
 | 
						|
    default: assert(0 && "Unknown instruction type encountered!");
 | 
						|
             abort();
 | 
						|
      // Build the switch statement using the Instruction.def file.
 | 
						|
#define HANDLE_INST(NUM, OPCODE, CLASS) \
 | 
						|
    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
 | 
						|
#include "llvm/Instruction.def"
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
 | 
						|
 | 
						|
 | 
						|
  SDOperand getIntPtrConstant(uint64_t Val) {
 | 
						|
    return DAG.getConstant(Val, TLI.getPointerTy());
 | 
						|
  }
 | 
						|
 | 
						|
  SDOperand getValue(const Value *V) {
 | 
						|
    SDOperand &N = NodeMap[V];
 | 
						|
    if (N.Val) return N;
 | 
						|
 | 
						|
    MVT::ValueType VT = TLI.getValueType(V->getType());
 | 
						|
    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)))
 | 
						|
      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | 
						|
        visit(CE->getOpcode(), *CE);
 | 
						|
        assert(N.Val && "visit didn't populate the ValueMap!");
 | 
						|
        return N;
 | 
						|
      } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
 | 
						|
        return N = DAG.getGlobalAddress(GV, VT);
 | 
						|
      } else if (isa<ConstantPointerNull>(C)) {
 | 
						|
        return N = DAG.getConstant(0, TLI.getPointerTy());
 | 
						|
      } else if (isa<UndefValue>(C)) {
 | 
						|
	/// FIXME: Implement UNDEFVALUE better.
 | 
						|
        if (MVT::isInteger(VT))
 | 
						|
          return N = DAG.getConstant(0, VT);
 | 
						|
        else if (MVT::isFloatingPoint(VT))
 | 
						|
          return N = DAG.getConstantFP(0, VT);
 | 
						|
        else
 | 
						|
          assert(0 && "Unknown value type!");
 | 
						|
 | 
						|
      } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
 | 
						|
        return N = DAG.getConstantFP(CFP->getValue(), VT);
 | 
						|
      } else {
 | 
						|
        // Canonicalize all constant ints to be unsigned.
 | 
						|
        return N = DAG.getConstant(cast<ConstantIntegral>(C)->getRawValue(),VT);
 | 
						|
      }
 | 
						|
 | 
						|
    if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
 | 
						|
      std::map<const AllocaInst*, int>::iterator SI =
 | 
						|
        FuncInfo.StaticAllocaMap.find(AI);
 | 
						|
      if (SI != FuncInfo.StaticAllocaMap.end())
 | 
						|
        return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
 | 
						|
    }
 | 
						|
 | 
						|
    std::map<const Value*, unsigned>::const_iterator VMI =
 | 
						|
      FuncInfo.ValueMap.find(V);
 | 
						|
    assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");
 | 
						|
 | 
						|
    return N = DAG.getCopyFromReg(VMI->second, VT, DAG.getEntryNode());
 | 
						|
  }
 | 
						|
 | 
						|
  const SDOperand &setValue(const Value *V, SDOperand NewN) {
 | 
						|
    SDOperand &N = NodeMap[V];
 | 
						|
    assert(N.Val == 0 && "Already set a value for this node!");
 | 
						|
    return N = NewN;
 | 
						|
  }
 | 
						|
 | 
						|
  // Terminator instructions.
 | 
						|
  void visitRet(ReturnInst &I);
 | 
						|
  void visitBr(BranchInst &I);
 | 
						|
  void visitUnreachable(UnreachableInst &I) { /* noop */ }
 | 
						|
 | 
						|
  // These all get lowered before this pass.
 | 
						|
  void visitSwitch(SwitchInst &I) { assert(0 && "TODO"); }
 | 
						|
  void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
 | 
						|
  void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }
 | 
						|
 | 
						|
  //
 | 
						|
  void visitBinary(User &I, unsigned Opcode);
 | 
						|
  void visitAdd(User &I) { visitBinary(I, ISD::ADD); }
 | 
						|
  void visitSub(User &I) { visitBinary(I, ISD::SUB); }
 | 
						|
  void visitMul(User &I) { visitBinary(I, ISD::MUL); }
 | 
						|
  void visitDiv(User &I) {
 | 
						|
    visitBinary(I, I.getType()->isUnsigned() ? ISD::UDIV : ISD::SDIV);
 | 
						|
  }
 | 
						|
  void visitRem(User &I) {
 | 
						|
    visitBinary(I, I.getType()->isUnsigned() ? ISD::UREM : ISD::SREM);
 | 
						|
  }
 | 
						|
  void visitAnd(User &I) { visitBinary(I, ISD::AND); }
 | 
						|
  void visitOr (User &I) { visitBinary(I, ISD::OR); }
 | 
						|
  void visitXor(User &I) { visitBinary(I, ISD::XOR); }
 | 
						|
  void visitShl(User &I) { visitBinary(I, ISD::SHL); }
 | 
						|
  void visitShr(User &I) {
 | 
						|
    visitBinary(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA);
 | 
						|
  }
 | 
						|
 | 
						|
  void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc);
 | 
						|
  void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ); }
 | 
						|
  void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE); }
 | 
						|
  void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE); }
 | 
						|
  void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE); }
 | 
						|
  void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT); }
 | 
						|
  void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT); }
 | 
						|
 | 
						|
  void visitGetElementPtr(User &I);
 | 
						|
  void visitCast(User &I);
 | 
						|
  void visitSelect(User &I);
 | 
						|
  //
 | 
						|
 | 
						|
  void visitMalloc(MallocInst &I);
 | 
						|
  void visitFree(FreeInst &I);
 | 
						|
  void visitAlloca(AllocaInst &I);
 | 
						|
  void visitLoad(LoadInst &I);
 | 
						|
  void visitStore(StoreInst &I);
 | 
						|
  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
 | 
						|
  void visitCall(CallInst &I);
 | 
						|
 | 
						|
  void visitVAStart(CallInst &I);
 | 
						|
  void visitVANext(VANextInst &I);
 | 
						|
  void visitVAArg(VAArgInst &I);
 | 
						|
  void visitVAEnd(CallInst &I);
 | 
						|
  void visitVACopy(CallInst &I);
 | 
						|
  void visitFrameReturnAddress(CallInst &I, bool isFrameAddress);
 | 
						|
 | 
						|
  void visitMemIntrinsic(CallInst &I, unsigned Op);
 | 
						|
 | 
						|
  void visitUserOp1(Instruction &I) {
 | 
						|
    assert(0 && "UserOp1 should not exist at instruction selection time!");
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
  void visitUserOp2(Instruction &I) {
 | 
						|
    assert(0 && "UserOp2 should not exist at instruction selection time!");
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
};
 | 
						|
} // end namespace llvm
 | 
						|
 | 
						|
void SelectionDAGLowering::visitRet(ReturnInst &I) {
 | 
						|
  if (I.getNumOperands() == 0) {
 | 
						|
    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  SDOperand Op1 = getValue(I.getOperand(0));
 | 
						|
  switch (Op1.getValueType()) {
 | 
						|
  default: assert(0 && "Unknown value type!");
 | 
						|
  case MVT::i1:
 | 
						|
  case MVT::i8:
 | 
						|
  case MVT::i16:
 | 
						|
    // Extend integer types to 32-bits.
 | 
						|
    if (I.getOperand(0)->getType()->isSigned())
 | 
						|
      Op1 = DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Op1);
 | 
						|
    else
 | 
						|
      Op1 = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op1);
 | 
						|
    break;
 | 
						|
  case MVT::f32:
 | 
						|
    // Extend float to double.
 | 
						|
    Op1 = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Op1);
 | 
						|
    break;
 | 
						|
  case MVT::i32:
 | 
						|
  case MVT::i64:
 | 
						|
  case MVT::f64:
 | 
						|
    break; // No extension needed!
 | 
						|
  }
 | 
						|
 | 
						|
  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot(), Op1));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitBr(BranchInst &I) {
 | 
						|
  // Update machine-CFG edges.
 | 
						|
  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
 | 
						|
  CurMBB->addSuccessor(Succ0MBB);
 | 
						|
 | 
						|
  // Figure out which block is immediately after the current one.
 | 
						|
  MachineBasicBlock *NextBlock = 0;
 | 
						|
  MachineFunction::iterator BBI = CurMBB;
 | 
						|
  if (++BBI != CurMBB->getParent()->end())
 | 
						|
    NextBlock = BBI;
 | 
						|
 | 
						|
  if (I.isUnconditional()) {
 | 
						|
    // If this is not a fall-through branch, emit the branch.
 | 
						|
    if (Succ0MBB != NextBlock)
 | 
						|
      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
 | 
						|
			      DAG.getBasicBlock(Succ0MBB)));
 | 
						|
  } else {
 | 
						|
    MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
 | 
						|
    CurMBB->addSuccessor(Succ1MBB);
 | 
						|
 | 
						|
    SDOperand Cond = getValue(I.getCondition());
 | 
						|
 | 
						|
    if (Succ1MBB == NextBlock) {
 | 
						|
      // If the condition is false, fall through.  This means we should branch
 | 
						|
      // if the condition is true to Succ #0.
 | 
						|
      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
 | 
						|
			      Cond, DAG.getBasicBlock(Succ0MBB)));
 | 
						|
    } else if (Succ0MBB == NextBlock) {
 | 
						|
      // If the condition is true, fall through.  This means we should branch if
 | 
						|
      // the condition is false to Succ #1.  Invert the condition first.
 | 
						|
      SDOperand True = DAG.getConstant(1, Cond.getValueType());
 | 
						|
      Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
 | 
						|
      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
 | 
						|
			      Cond, DAG.getBasicBlock(Succ1MBB)));
 | 
						|
    } else {
 | 
						|
      // Neither edge is a fall through.  If the comparison is true, jump to
 | 
						|
      // Succ#0, otherwise branch unconditionally to succ #1.
 | 
						|
      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
 | 
						|
			      Cond, DAG.getBasicBlock(Succ0MBB)));
 | 
						|
      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
 | 
						|
			      DAG.getBasicBlock(Succ1MBB)));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitBinary(User &I, unsigned Opcode) {
 | 
						|
  SDOperand Op1 = getValue(I.getOperand(0));
 | 
						|
  SDOperand Op2 = getValue(I.getOperand(1));
 | 
						|
  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode,
 | 
						|
                                      ISD::CondCode UnsignedOpcode) {
 | 
						|
  SDOperand Op1 = getValue(I.getOperand(0));
 | 
						|
  SDOperand Op2 = getValue(I.getOperand(1));
 | 
						|
  ISD::CondCode Opcode = SignedOpcode;
 | 
						|
  if (I.getOperand(0)->getType()->isUnsigned())
 | 
						|
    Opcode = UnsignedOpcode;
 | 
						|
  setValue(&I, DAG.getSetCC(Opcode, MVT::i1, Op1, Op2));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitSelect(User &I) {
 | 
						|
  SDOperand Cond     = getValue(I.getOperand(0));
 | 
						|
  SDOperand TrueVal  = getValue(I.getOperand(1));
 | 
						|
  SDOperand FalseVal = getValue(I.getOperand(2));
 | 
						|
  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
 | 
						|
                           TrueVal, FalseVal));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitCast(User &I) {
 | 
						|
  SDOperand N = getValue(I.getOperand(0));
 | 
						|
  MVT::ValueType SrcTy = TLI.getValueType(I.getOperand(0)->getType());
 | 
						|
  MVT::ValueType DestTy = TLI.getValueType(I.getType());
 | 
						|
 | 
						|
  if (N.getValueType() == DestTy) {
 | 
						|
    setValue(&I, N);  // noop cast.
 | 
						|
  } else if (isInteger(SrcTy)) {
 | 
						|
    if (isInteger(DestTy)) {        // Int -> Int cast
 | 
						|
      if (DestTy < SrcTy)   // Truncating cast?
 | 
						|
        setValue(&I, DAG.getNode(ISD::TRUNCATE, DestTy, N));
 | 
						|
      else if (I.getOperand(0)->getType()->isSigned())
 | 
						|
        setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestTy, N));
 | 
						|
      else
 | 
						|
        setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestTy, N));
 | 
						|
    } else {                        // Int -> FP cast
 | 
						|
      if (I.getOperand(0)->getType()->isSigned())
 | 
						|
        setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestTy, N));
 | 
						|
      else
 | 
						|
        setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestTy, N));
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    assert(isFloatingPoint(SrcTy) && "Unknown value type!");
 | 
						|
    if (isFloatingPoint(DestTy)) {  // FP -> FP cast
 | 
						|
      if (DestTy < SrcTy)   // Rounding cast?
 | 
						|
        setValue(&I, DAG.getNode(ISD::FP_ROUND, DestTy, N));
 | 
						|
      else
 | 
						|
        setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestTy, N));
 | 
						|
    } else {                        // FP -> Int cast.
 | 
						|
      if (I.getType()->isSigned())
 | 
						|
        setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestTy, N));
 | 
						|
      else
 | 
						|
        setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestTy, N));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitGetElementPtr(User &I) {
 | 
						|
  SDOperand N = getValue(I.getOperand(0));
 | 
						|
  const Type *Ty = I.getOperand(0)->getType();
 | 
						|
  const Type *UIntPtrTy = TD.getIntPtrType();
 | 
						|
 | 
						|
  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
 | 
						|
       OI != E; ++OI) {
 | 
						|
    Value *Idx = *OI;
 | 
						|
    if (const StructType *StTy = dyn_cast<StructType> (Ty)) {
 | 
						|
      unsigned Field = cast<ConstantUInt>(Idx)->getValue();
 | 
						|
      if (Field) {
 | 
						|
        // N = N + Offset
 | 
						|
        uint64_t Offset = TD.getStructLayout(StTy)->MemberOffsets[Field];
 | 
						|
        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
 | 
						|
			getIntPtrConstant(Offset));
 | 
						|
      }
 | 
						|
      Ty = StTy->getElementType(Field);
 | 
						|
    } else {
 | 
						|
      Ty = cast<SequentialType>(Ty)->getElementType();
 | 
						|
      if (!isa<Constant>(Idx) || !cast<Constant>(Idx)->isNullValue()) {
 | 
						|
        // N = N + Idx * ElementSize;
 | 
						|
        uint64_t ElementSize = TD.getTypeSize(Ty);
 | 
						|
        SDOperand IdxN = getValue(Idx), Scale = getIntPtrConstant(ElementSize);
 | 
						|
 | 
						|
        // If the index is smaller or larger than intptr_t, truncate or extend
 | 
						|
        // it.
 | 
						|
        if (IdxN.getValueType() < Scale.getValueType()) {
 | 
						|
          if (Idx->getType()->isSigned())
 | 
						|
            IdxN = DAG.getNode(ISD::SIGN_EXTEND, Scale.getValueType(), IdxN);
 | 
						|
          else
 | 
						|
            IdxN = DAG.getNode(ISD::ZERO_EXTEND, Scale.getValueType(), IdxN);
 | 
						|
        } else if (IdxN.getValueType() > Scale.getValueType())
 | 
						|
          IdxN = DAG.getNode(ISD::TRUNCATE, Scale.getValueType(), IdxN);
 | 
						|
 | 
						|
        IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
 | 
						|
			   
 | 
						|
        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  setValue(&I, N);
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
 | 
						|
  // If this is a fixed sized alloca in the entry block of the function,
 | 
						|
  // allocate it statically on the stack.
 | 
						|
  if (FuncInfo.StaticAllocaMap.count(&I))
 | 
						|
    return;   // getValue will auto-populate this.
 | 
						|
 | 
						|
  const Type *Ty = I.getAllocatedType();
 | 
						|
  uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
 | 
						|
  unsigned Align = TLI.getTargetData().getTypeAlignment(Ty);
 | 
						|
 | 
						|
  SDOperand AllocSize = getValue(I.getArraySize());
 | 
						|
 | 
						|
  assert(AllocSize.getValueType() == TLI.getPointerTy() &&
 | 
						|
         "FIXME: should extend or truncate to pointer size!");
 | 
						|
 | 
						|
  AllocSize = DAG.getNode(ISD::MUL, TLI.getPointerTy(), AllocSize,
 | 
						|
                          getIntPtrConstant(TySize));
 | 
						|
 | 
						|
  // Handle alignment.  If the requested alignment is less than or equal to the
 | 
						|
  // stack alignment, ignore it and round the size of the allocation up to the
 | 
						|
  // stack alignment size.  If the size is greater than the stack alignment, we
 | 
						|
  // note this in the DYNAMIC_STACKALLOC node.
 | 
						|
  unsigned StackAlign =
 | 
						|
    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
 | 
						|
  if (Align <= StackAlign) {
 | 
						|
    Align = 0;
 | 
						|
    // Add SA-1 to the size.
 | 
						|
    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
 | 
						|
                            getIntPtrConstant(StackAlign-1));
 | 
						|
    // Mask out the low bits for alignment purposes.
 | 
						|
    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
 | 
						|
                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
 | 
						|
  }
 | 
						|
 | 
						|
  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, AllocSize.getValueType(),
 | 
						|
                              getRoot(), AllocSize,
 | 
						|
                              getIntPtrConstant(Align));
 | 
						|
  DAG.setRoot(setValue(&I, DSA).getValue(1));
 | 
						|
 | 
						|
  // Inform the Frame Information that we have just allocated a variable-sized
 | 
						|
  // object.
 | 
						|
  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void SelectionDAGLowering::visitLoad(LoadInst &I) {
 | 
						|
  SDOperand Ptr = getValue(I.getOperand(0));
 | 
						|
  
 | 
						|
  SDOperand Root;
 | 
						|
  if (I.isVolatile())
 | 
						|
    Root = getRoot();
 | 
						|
  else {
 | 
						|
    // Do not serialize non-volatile loads against each other.
 | 
						|
    Root = DAG.getRoot();
 | 
						|
  }
 | 
						|
 | 
						|
  SDOperand L = DAG.getLoad(TLI.getValueType(I.getType()), Root, Ptr);
 | 
						|
  setValue(&I, L);
 | 
						|
 | 
						|
  if (I.isVolatile())
 | 
						|
    DAG.setRoot(L.getValue(1));
 | 
						|
  else
 | 
						|
    PendingLoads.push_back(L.getValue(1));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void SelectionDAGLowering::visitStore(StoreInst &I) {
 | 
						|
  Value *SrcV = I.getOperand(0);
 | 
						|
  SDOperand Src = getValue(SrcV);
 | 
						|
  SDOperand Ptr = getValue(I.getOperand(1));
 | 
						|
  DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, getRoot(), Src, Ptr));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitCall(CallInst &I) {
 | 
						|
  const char *RenameFn = 0;
 | 
						|
  if (Function *F = I.getCalledFunction())
 | 
						|
    switch (F->getIntrinsicID()) {
 | 
						|
    case 0: break;  // Not an intrinsic.
 | 
						|
    case Intrinsic::vastart:  visitVAStart(I); return;
 | 
						|
    case Intrinsic::vaend:    visitVAEnd(I); return;
 | 
						|
    case Intrinsic::vacopy:   visitVACopy(I); return;
 | 
						|
    case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return;
 | 
						|
    case Intrinsic::frameaddress:  visitFrameReturnAddress(I, true); return;
 | 
						|
    default:
 | 
						|
      // FIXME: IMPLEMENT THESE.
 | 
						|
      // readport, writeport, readio, writeio
 | 
						|
      assert(0 && "This intrinsic is not implemented yet!");
 | 
						|
      return;
 | 
						|
    case Intrinsic::setjmp:  RenameFn = "setjmp"; break;
 | 
						|
    case Intrinsic::longjmp: RenameFn = "longjmp"; break;
 | 
						|
    case Intrinsic::memcpy:  visitMemIntrinsic(I, ISD::MEMCPY); return;
 | 
						|
    case Intrinsic::memset:  visitMemIntrinsic(I, ISD::MEMSET); return;
 | 
						|
    case Intrinsic::memmove: visitMemIntrinsic(I, ISD::MEMMOVE); return;
 | 
						|
      
 | 
						|
    case Intrinsic::isunordered:
 | 
						|
      setValue(&I, DAG.getSetCC(ISD::SETUO, MVT::i1, getValue(I.getOperand(1)),
 | 
						|
                                getValue(I.getOperand(2))));
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  
 | 
						|
  SDOperand Callee;
 | 
						|
  if (!RenameFn)
 | 
						|
    Callee = getValue(I.getOperand(0));
 | 
						|
  else
 | 
						|
    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
 | 
						|
  std::vector<std::pair<SDOperand, const Type*> > Args;
 | 
						|
  
 | 
						|
  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
 | 
						|
    Value *Arg = I.getOperand(i);
 | 
						|
    SDOperand ArgNode = getValue(Arg);
 | 
						|
    Args.push_back(std::make_pair(ArgNode, Arg->getType()));
 | 
						|
  }
 | 
						|
  
 | 
						|
  std::pair<SDOperand,SDOperand> Result =
 | 
						|
    TLI.LowerCallTo(getRoot(), I.getType(), Callee, Args, DAG);
 | 
						|
  if (I.getType() != Type::VoidTy)
 | 
						|
    setValue(&I, Result.first);
 | 
						|
  DAG.setRoot(Result.second);
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitMalloc(MallocInst &I) {
 | 
						|
  SDOperand Src = getValue(I.getOperand(0));
 | 
						|
 | 
						|
  MVT::ValueType IntPtr = TLI.getPointerTy();
 | 
						|
  // FIXME: Extend or truncate to the intptr size.
 | 
						|
  assert(Src.getValueType() == IntPtr && "Need to adjust the amount!");
 | 
						|
 | 
						|
  // Scale the source by the type size.
 | 
						|
  uint64_t ElementSize = TD.getTypeSize(I.getType()->getElementType());
 | 
						|
  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
 | 
						|
                    Src, getIntPtrConstant(ElementSize));
 | 
						|
 | 
						|
  std::vector<std::pair<SDOperand, const Type*> > Args;
 | 
						|
  Args.push_back(std::make_pair(Src, TLI.getTargetData().getIntPtrType()));
 | 
						|
 | 
						|
  std::pair<SDOperand,SDOperand> Result =
 | 
						|
    TLI.LowerCallTo(getRoot(), I.getType(),
 | 
						|
                    DAG.getExternalSymbol("malloc", IntPtr),
 | 
						|
                    Args, DAG);
 | 
						|
  setValue(&I, Result.first);  // Pointers always fit in registers
 | 
						|
  DAG.setRoot(Result.second);
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitFree(FreeInst &I) {
 | 
						|
  std::vector<std::pair<SDOperand, const Type*> > Args;
 | 
						|
  Args.push_back(std::make_pair(getValue(I.getOperand(0)),
 | 
						|
                                TLI.getTargetData().getIntPtrType()));
 | 
						|
  MVT::ValueType IntPtr = TLI.getPointerTy();
 | 
						|
  std::pair<SDOperand,SDOperand> Result =
 | 
						|
    TLI.LowerCallTo(getRoot(), Type::VoidTy,
 | 
						|
                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
 | 
						|
  DAG.setRoot(Result.second);
 | 
						|
}
 | 
						|
 | 
						|
std::pair<SDOperand, SDOperand>
 | 
						|
TargetLowering::LowerVAStart(SDOperand Chain, SelectionDAG &DAG) {
 | 
						|
  // We have no sane default behavior, just emit a useful error message and bail
 | 
						|
  // out.
 | 
						|
  std::cerr << "Variable arguments handling not implemented on this target!\n";
 | 
						|
  abort();
 | 
						|
}
 | 
						|
 | 
						|
SDOperand TargetLowering::LowerVAEnd(SDOperand Chain, SDOperand L,
 | 
						|
                                     SelectionDAG &DAG) {
 | 
						|
  // Default to a noop.
 | 
						|
  return Chain;
 | 
						|
}
 | 
						|
 | 
						|
std::pair<SDOperand,SDOperand>
 | 
						|
TargetLowering::LowerVACopy(SDOperand Chain, SDOperand L, SelectionDAG &DAG) {
 | 
						|
  // Default to returning the input list.
 | 
						|
  return std::make_pair(L, Chain);
 | 
						|
}
 | 
						|
 | 
						|
std::pair<SDOperand,SDOperand>
 | 
						|
TargetLowering::LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList,
 | 
						|
                               const Type *ArgTy, SelectionDAG &DAG) {
 | 
						|
  // We have no sane default behavior, just emit a useful error message and bail
 | 
						|
  // out.
 | 
						|
  std::cerr << "Variable arguments handling not implemented on this target!\n";
 | 
						|
  abort();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void SelectionDAGLowering::visitVAStart(CallInst &I) {
 | 
						|
  std::pair<SDOperand,SDOperand> Result = TLI.LowerVAStart(getRoot(), DAG);
 | 
						|
  setValue(&I, Result.first);
 | 
						|
  DAG.setRoot(Result.second);
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
 | 
						|
  std::pair<SDOperand,SDOperand> Result =
 | 
						|
    TLI.LowerVAArgNext(false, getRoot(), getValue(I.getOperand(0)), 
 | 
						|
                       I.getType(), DAG);
 | 
						|
  setValue(&I, Result.first);
 | 
						|
  DAG.setRoot(Result.second);
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitVANext(VANextInst &I) {
 | 
						|
  std::pair<SDOperand,SDOperand> Result =
 | 
						|
    TLI.LowerVAArgNext(true, getRoot(), getValue(I.getOperand(0)), 
 | 
						|
                       I.getArgType(), DAG);
 | 
						|
  setValue(&I, Result.first);
 | 
						|
  DAG.setRoot(Result.second);
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitVAEnd(CallInst &I) {
 | 
						|
  DAG.setRoot(TLI.LowerVAEnd(getRoot(), getValue(I.getOperand(1)), DAG));
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitVACopy(CallInst &I) {
 | 
						|
  std::pair<SDOperand,SDOperand> Result =
 | 
						|
    TLI.LowerVACopy(getRoot(), getValue(I.getOperand(1)), DAG);
 | 
						|
  setValue(&I, Result.first);
 | 
						|
  DAG.setRoot(Result.second);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// It is always conservatively correct for llvm.returnaddress and
 | 
						|
// llvm.frameaddress to return 0.
 | 
						|
std::pair<SDOperand, SDOperand>
 | 
						|
TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain,
 | 
						|
                                        unsigned Depth, SelectionDAG &DAG) {
 | 
						|
  return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain);
 | 
						|
}
 | 
						|
 | 
						|
SDOperand TargetLowering::LowerOperation(SDOperand Op) {
 | 
						|
  assert(0 && "LowerOperation not implemented for this target!");
 | 
						|
  abort();
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) {
 | 
						|
  unsigned Depth = (unsigned)cast<ConstantUInt>(I.getOperand(1))->getValue();
 | 
						|
  std::pair<SDOperand,SDOperand> Result =
 | 
						|
    TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG);
 | 
						|
  setValue(&I, Result.first);
 | 
						|
  DAG.setRoot(Result.second);
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
 | 
						|
  std::vector<SDOperand> Ops;
 | 
						|
  Ops.push_back(getRoot());
 | 
						|
  Ops.push_back(getValue(I.getOperand(1)));
 | 
						|
  Ops.push_back(getValue(I.getOperand(2)));
 | 
						|
  Ops.push_back(getValue(I.getOperand(3)));
 | 
						|
  Ops.push_back(getValue(I.getOperand(4)));
 | 
						|
  DAG.setRoot(DAG.getNode(Op, MVT::Other, Ops));
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// SelectionDAGISel code
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
 | 
						|
  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
bool SelectionDAGISel::runOnFunction(Function &Fn) {
 | 
						|
  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
 | 
						|
  RegMap = MF.getSSARegMap();
 | 
						|
  DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n");
 | 
						|
 | 
						|
  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
 | 
						|
 | 
						|
  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
 | 
						|
    SelectBasicBlock(I, MF, FuncInfo);
 | 
						|
  
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
SDOperand SelectionDAGISel::
 | 
						|
CopyValueToVirtualRegister(SelectionDAGLowering &SDL, Value *V, unsigned Reg) {
 | 
						|
  SelectionDAG &DAG = SDL.DAG;
 | 
						|
  SDOperand Op = SDL.getValue(V);
 | 
						|
  assert((Op.getOpcode() != ISD::CopyFromReg ||
 | 
						|
          cast<RegSDNode>(Op)->getReg() != Reg) &&
 | 
						|
         "Copy from a reg to the same reg!");
 | 
						|
  return DAG.getCopyToReg(SDL.getRoot(), Op, Reg);
 | 
						|
}
 | 
						|
 | 
						|
/// IsOnlyUsedInOneBasicBlock - If the specified argument is only used in a
 | 
						|
/// single basic block, return that block.  Otherwise, return a null pointer.
 | 
						|
static BasicBlock *IsOnlyUsedInOneBasicBlock(Argument *A) {
 | 
						|
  if (A->use_empty()) return 0;
 | 
						|
  BasicBlock *BB = cast<Instruction>(A->use_back())->getParent();
 | 
						|
  for (Argument::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E;
 | 
						|
       ++UI)
 | 
						|
    if (isa<PHINode>(*UI) || cast<Instruction>(*UI)->getParent() != BB)
 | 
						|
      return 0;  // Disagreement among the users?
 | 
						|
  return BB;
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGISel::
 | 
						|
LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL,
 | 
						|
               std::vector<SDOperand> &UnorderedChains) {
 | 
						|
  // If this is the entry block, emit arguments.
 | 
						|
  Function &F = *BB->getParent();
 | 
						|
  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
 | 
						|
 | 
						|
  if (BB == &F.front()) {
 | 
						|
    SDOperand OldRoot = SDL.DAG.getRoot();
 | 
						|
 | 
						|
    std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
 | 
						|
 | 
						|
    // If there were side effects accessing the argument list, do not do
 | 
						|
    // anything special.
 | 
						|
    if (OldRoot != SDL.DAG.getRoot()) {
 | 
						|
      unsigned a = 0;
 | 
						|
      for (Function::aiterator AI = F.abegin(), E = F.aend(); AI != E; ++AI,++a)
 | 
						|
        if (!AI->use_empty()) {
 | 
						|
          SDL.setValue(AI, Args[a]);
 | 
						|
          SDOperand Copy = 
 | 
						|
            CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
 | 
						|
          UnorderedChains.push_back(Copy);
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
      // Otherwise, if any argument is only accessed in a single basic block,
 | 
						|
      // emit that argument only to that basic block.
 | 
						|
      unsigned a = 0;
 | 
						|
      for (Function::aiterator AI = F.abegin(), E = F.aend(); AI != E; ++AI,++a)
 | 
						|
        if (!AI->use_empty()) {
 | 
						|
          if (BasicBlock *BBU = IsOnlyUsedInOneBasicBlock(AI)) {
 | 
						|
            FuncInfo.BlockLocalArguments.insert(std::make_pair(BBU,
 | 
						|
                                                      std::make_pair(AI, a)));
 | 
						|
          } else {
 | 
						|
            SDL.setValue(AI, Args[a]);
 | 
						|
            SDOperand Copy = 
 | 
						|
              CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
 | 
						|
            UnorderedChains.push_back(Copy);
 | 
						|
          }
 | 
						|
        }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // See if there are any block-local arguments that need to be emitted in this
 | 
						|
  // block.
 | 
						|
 | 
						|
  if (!FuncInfo.BlockLocalArguments.empty()) {
 | 
						|
    std::multimap<BasicBlock*, std::pair<Argument*, unsigned> >::iterator BLAI =
 | 
						|
      FuncInfo.BlockLocalArguments.lower_bound(BB);
 | 
						|
    if (BLAI != FuncInfo.BlockLocalArguments.end() && BLAI->first == BB) {
 | 
						|
      // Lower the arguments into this block.
 | 
						|
      std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
 | 
						|
      
 | 
						|
      // Set up the value mapping for the local arguments.
 | 
						|
      for (; BLAI != FuncInfo.BlockLocalArguments.end() && BLAI->first == BB;
 | 
						|
           ++BLAI)
 | 
						|
        SDL.setValue(BLAI->second.first, Args[BLAI->second.second]);
 | 
						|
      
 | 
						|
      // Any dead arguments will just be ignored here.
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
 | 
						|
       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
 | 
						|
                                    FunctionLoweringInfo &FuncInfo) {
 | 
						|
  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
 | 
						|
 | 
						|
  std::vector<SDOperand> UnorderedChains;
 | 
						|
  
 | 
						|
  // Lower any arguments needed in this block.
 | 
						|
  LowerArguments(LLVMBB, SDL, UnorderedChains);
 | 
						|
 | 
						|
  BB = FuncInfo.MBBMap[LLVMBB];
 | 
						|
  SDL.setCurrentBasicBlock(BB);
 | 
						|
 | 
						|
  // Lower all of the non-terminator instructions.
 | 
						|
  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
 | 
						|
       I != E; ++I)
 | 
						|
    SDL.visit(*I);
 | 
						|
 | 
						|
  // Ensure that all instructions which are used outside of their defining
 | 
						|
  // blocks are available as virtual registers.
 | 
						|
  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
 | 
						|
    if (!I->use_empty() && !isa<PHINode>(I)) {
 | 
						|
      std::map<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
 | 
						|
      if (VMI != FuncInfo.ValueMap.end())
 | 
						|
        UnorderedChains.push_back(
 | 
						|
                           CopyValueToVirtualRegister(SDL, I, VMI->second));
 | 
						|
    }
 | 
						|
 | 
						|
  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
 | 
						|
  // ensure constants are generated when needed.  Remember the virtual registers
 | 
						|
  // that need to be added to the Machine PHI nodes as input.  We cannot just
 | 
						|
  // directly add them, because expansion might result in multiple MBB's for one
 | 
						|
  // BB.  As such, the start of the BB might correspond to a different MBB than
 | 
						|
  // the end.
 | 
						|
  // 
 | 
						|
 | 
						|
  // Emit constants only once even if used by multiple PHI nodes.
 | 
						|
  std::map<Constant*, unsigned> ConstantsOut;
 | 
						|
 | 
						|
  // Check successor nodes PHI nodes that expect a constant to be available from
 | 
						|
  // this block.
 | 
						|
  TerminatorInst *TI = LLVMBB->getTerminator();
 | 
						|
  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
 | 
						|
    BasicBlock *SuccBB = TI->getSuccessor(succ);
 | 
						|
    MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin();
 | 
						|
    PHINode *PN;
 | 
						|
 | 
						|
    // At this point we know that there is a 1-1 correspondence between LLVM PHI
 | 
						|
    // nodes and Machine PHI nodes, but the incoming operands have not been
 | 
						|
    // emitted yet.
 | 
						|
    for (BasicBlock::iterator I = SuccBB->begin();
 | 
						|
         (PN = dyn_cast<PHINode>(I)); ++I)
 | 
						|
      if (!PN->use_empty()) {
 | 
						|
        unsigned Reg;
 | 
						|
        Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
 | 
						|
        if (Constant *C = dyn_cast<Constant>(PHIOp)) {
 | 
						|
          unsigned &RegOut = ConstantsOut[C];
 | 
						|
          if (RegOut == 0) {
 | 
						|
            RegOut = FuncInfo.CreateRegForValue(C);
 | 
						|
            UnorderedChains.push_back(
 | 
						|
                             CopyValueToVirtualRegister(SDL, C, RegOut));
 | 
						|
          }
 | 
						|
          Reg = RegOut;
 | 
						|
        } else {
 | 
						|
          Reg = FuncInfo.ValueMap[PHIOp];
 | 
						|
          if (Reg == 0) {
 | 
						|
            assert(isa<AllocaInst>(PHIOp) && 
 | 
						|
                   FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
 | 
						|
                   "Didn't codegen value into a register!??");
 | 
						|
            Reg = FuncInfo.CreateRegForValue(PHIOp);
 | 
						|
            UnorderedChains.push_back(
 | 
						|
                             CopyValueToVirtualRegister(SDL, PHIOp, Reg));
 | 
						|
          }
 | 
						|
        }
 | 
						|
        
 | 
						|
        // Remember that this register needs to added to the machine PHI node as
 | 
						|
        // the input for this MBB.
 | 
						|
        unsigned NumElements =
 | 
						|
          TLI.getNumElements(TLI.getValueType(PN->getType()));
 | 
						|
        for (unsigned i = 0, e = NumElements; i != e; ++i)
 | 
						|
          PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
 | 
						|
      }
 | 
						|
  }
 | 
						|
  ConstantsOut.clear();
 | 
						|
 | 
						|
  // Turn all of the unordered chains into one factored node.
 | 
						|
  if (!UnorderedChains.empty()) {
 | 
						|
    UnorderedChains.push_back(SDL.getRoot());
 | 
						|
    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, UnorderedChains));
 | 
						|
  }
 | 
						|
 | 
						|
  // Lower the terminator after the copies are emitted.
 | 
						|
  SDL.visit(*LLVMBB->getTerminator());
 | 
						|
 | 
						|
  // Make sure the root of the DAG is up-to-date.
 | 
						|
  DAG.setRoot(SDL.getRoot());
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
 | 
						|
                                        FunctionLoweringInfo &FuncInfo) {
 | 
						|
  SelectionDAG DAG(TLI.getTargetMachine(), MF);
 | 
						|
  CurDAG = &DAG;
 | 
						|
  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
 | 
						|
 | 
						|
  // First step, lower LLVM code to some DAG.  This DAG may use operations and
 | 
						|
  // types that are not supported by the target.
 | 
						|
  BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
 | 
						|
 | 
						|
  DEBUG(std::cerr << "Lowered selection DAG:\n");
 | 
						|
  DEBUG(DAG.dump());
 | 
						|
 | 
						|
  // Second step, hack on the DAG until it only uses operations and types that
 | 
						|
  // the target supports.
 | 
						|
  DAG.Legalize(TLI);
 | 
						|
 | 
						|
  DEBUG(std::cerr << "Legalized selection DAG:\n");
 | 
						|
  DEBUG(DAG.dump());
 | 
						|
 | 
						|
  // Finally, instruction select all of the operations to machine code, adding
 | 
						|
  // the code to the MachineBasicBlock.
 | 
						|
  InstructionSelectBasicBlock(DAG);
 | 
						|
 | 
						|
  if (ViewDAGs) DAG.viewGraph();
 | 
						|
 | 
						|
  DEBUG(std::cerr << "Selected machine code:\n");
 | 
						|
  DEBUG(BB->dump());
 | 
						|
 | 
						|
  // Finally, now that we know what the last MBB the LLVM BB expanded is, update
 | 
						|
  // PHI nodes in successors.
 | 
						|
  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
 | 
						|
    MachineInstr *PHI = PHINodesToUpdate[i].first;
 | 
						|
    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
 | 
						|
           "This is not a machine PHI node that we are updating!");
 | 
						|
    PHI->addRegOperand(PHINodesToUpdate[i].second);
 | 
						|
    PHI->addMachineBasicBlockOperand(BB);
 | 
						|
  }
 | 
						|
}
 |