mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-19 04:32:19 +00:00
fcdb2c2a7f
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11513 91177308-0d34-0410-b5e6-96231b3b80d8
390 lines
14 KiB
C++
390 lines
14 KiB
C++
//===-- llvm/Type.h - Classes for handling data types -----------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the declaration of the Type class. For more "Type" type
|
|
// stuff, look in DerivedTypes.h.
|
|
//
|
|
// Note that instances of the Type class are immutable: once they are created,
|
|
// they are never changed. Also note that only one instance of a particular
|
|
// type is ever created. Thus seeing if two types are equal is a matter of
|
|
// doing a trivial pointer comparison.
|
|
//
|
|
// Types, once allocated, are never free'd.
|
|
//
|
|
// Opaque types are simple derived types with no state. There may be many
|
|
// different Opaque type objects floating around, but two are only considered
|
|
// identical if they are pointer equals of each other. This allows us to have
|
|
// two opaque types that end up resolving to different concrete types later.
|
|
//
|
|
// Opaque types are also kinda wierd and scary and different because they have
|
|
// to keep a list of uses of the type. When, through linking, parsing, or
|
|
// bytecode reading, they become resolved, they need to find and update all
|
|
// users of the unknown type, causing them to reference a new, more concrete
|
|
// type. Opaque types are deleted when their use list dwindles to zero users.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_TYPE_H
|
|
#define LLVM_TYPE_H
|
|
|
|
#include "llvm/Value.h"
|
|
#include "Support/GraphTraits.h"
|
|
#include "Support/iterator"
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
|
|
class DerivedType;
|
|
class FunctionType;
|
|
class ArrayType;
|
|
class PointerType;
|
|
class StructType;
|
|
class OpaqueType;
|
|
|
|
struct Type : public Value {
|
|
///===-------------------------------------------------------------------===//
|
|
/// Definitions of all of the base types for the Type system. Based on this
|
|
/// value, you can cast to a "DerivedType" subclass (see DerivedTypes.h)
|
|
/// Note: If you add an element to this, you need to add an element to the
|
|
/// Type::getPrimitiveType function, or else things will break!
|
|
///
|
|
enum PrimitiveID {
|
|
VoidTyID = 0 , BoolTyID, // 0, 1: Basics...
|
|
UByteTyID , SByteTyID, // 2, 3: 8 bit types...
|
|
UShortTyID , ShortTyID, // 4, 5: 16 bit types...
|
|
UIntTyID , IntTyID, // 6, 7: 32 bit types...
|
|
ULongTyID , LongTyID, // 8, 9: 64 bit types...
|
|
|
|
FloatTyID , DoubleTyID, // 10,11: Floating point types...
|
|
|
|
TypeTyID, // 12 : Type definitions
|
|
LabelTyID , // 13 : Labels...
|
|
|
|
// Derived types... see DerivedTypes.h file...
|
|
// Make sure FirstDerivedTyID stays up to date!!!
|
|
FunctionTyID , StructTyID, // Functions... Structs...
|
|
ArrayTyID , PointerTyID, // Array... pointer...
|
|
OpaqueTyID, // Opaque type instances...
|
|
//PackedTyID , // SIMD 'packed' format... TODO
|
|
//...
|
|
|
|
NumPrimitiveIDs, // Must remain as last defined ID
|
|
FirstDerivedTyID = FunctionTyID,
|
|
};
|
|
|
|
private:
|
|
PrimitiveID ID; // The current base type of this type...
|
|
unsigned UID; // The unique ID number for this class
|
|
bool Abstract; // True if type contains an OpaqueType
|
|
|
|
/// RefCount - This counts the number of PATypeHolders that are pointing to
|
|
/// this type. When this number falls to zero, if the type is abstract and
|
|
/// has no AbstractTypeUsers, the type is deleted. This is only sensical for
|
|
/// derived types.
|
|
///
|
|
mutable unsigned RefCount;
|
|
|
|
const Type *getForwardedTypeInternal() const;
|
|
protected:
|
|
/// ctor is protected, so only subclasses can create Type objects...
|
|
Type(const std::string &Name, PrimitiveID id);
|
|
virtual ~Type() {}
|
|
|
|
/// setName - Associate the name with this type in the symbol table, but don't
|
|
/// set the local name to be equal specified name.
|
|
///
|
|
virtual void setName(const std::string &Name, SymbolTable *ST = 0);
|
|
|
|
/// Types can become nonabstract later, if they are refined.
|
|
///
|
|
inline void setAbstract(bool Val) { Abstract = Val; }
|
|
|
|
/// isTypeAbstract - This method is used to calculate the Abstract bit.
|
|
///
|
|
bool isTypeAbstract();
|
|
|
|
unsigned getRefCount() const { return RefCount; }
|
|
|
|
/// ForwardType - This field is used to implement the union find scheme for
|
|
/// abstract types. When types are refined to other types, this field is set
|
|
/// to the more refined type. Only abstract types can be forwarded.
|
|
mutable const Type *ForwardType;
|
|
|
|
/// ContainedTys - The list of types contained by this one. For example, this
|
|
/// includes the arguments of a function type, the elements of the structure,
|
|
/// the pointee of a pointer, etc. Note that keeping this vector in the Type
|
|
/// class wastes some space for types that do not contain anything (such as
|
|
/// primitive types). However, keeping it here allows the subtype_* members
|
|
/// to be implemented MUCH more efficiently, and dynamically very few types do
|
|
/// not contain any elements (most are derived).
|
|
std::vector<PATypeHandle> ContainedTys;
|
|
|
|
public:
|
|
virtual void print(std::ostream &O) const;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Property accessors for dealing with types... Some of these virtual methods
|
|
// are defined in private classes defined in Type.cpp for primitive types.
|
|
//
|
|
|
|
/// getPrimitiveID - Return the base type of the type. This will return one
|
|
/// of the PrimitiveID enum elements defined above.
|
|
///
|
|
inline PrimitiveID getPrimitiveID() const { return ID; }
|
|
|
|
/// getUniqueID - Returns the UID of the type. This can be thought of as a
|
|
/// small integer version of the pointer to the type class. Two types that
|
|
/// are structurally different have different UIDs. This can be used for
|
|
/// indexing types into an array.
|
|
///
|
|
inline unsigned getUniqueID() const { return UID; }
|
|
|
|
/// getDescription - Return the string representation of the type...
|
|
const std::string &getDescription() const;
|
|
|
|
/// isSigned - Return whether an integral numeric type is signed. This is
|
|
/// true for SByteTy, ShortTy, IntTy, LongTy. Note that this is not true for
|
|
/// Float and Double.
|
|
///
|
|
virtual bool isSigned() const { return 0; }
|
|
|
|
/// isUnsigned - Return whether a numeric type is unsigned. This is not quite
|
|
/// the complement of isSigned... nonnumeric types return false as they do
|
|
/// with isSigned. This returns true for UByteTy, UShortTy, UIntTy, and
|
|
/// ULongTy
|
|
///
|
|
virtual bool isUnsigned() const { return 0; }
|
|
|
|
/// isInteger - Equilivent to isSigned() || isUnsigned(), but with only a
|
|
/// single virtual function invocation.
|
|
///
|
|
virtual bool isInteger() const { return 0; }
|
|
|
|
/// isIntegral - Returns true if this is an integral type, which is either
|
|
/// BoolTy or one of the Integer types.
|
|
///
|
|
bool isIntegral() const { return isInteger() || this == BoolTy; }
|
|
|
|
/// isFloatingPoint - Return true if this is one of the two floating point
|
|
/// types
|
|
bool isFloatingPoint() const { return ID == FloatTyID || ID == DoubleTyID; }
|
|
|
|
/// isAbstract - True if the type is either an Opaque type, or is a derived
|
|
/// type that includes an opaque type somewhere in it.
|
|
///
|
|
inline bool isAbstract() const { return Abstract; }
|
|
|
|
/// isLosslesslyConvertibleTo - Return true if this type can be converted to
|
|
/// 'Ty' without any reinterpretation of bits. For example, uint to int.
|
|
///
|
|
bool isLosslesslyConvertibleTo(const Type *Ty) const;
|
|
|
|
|
|
/// Here are some useful little methods to query what type derived types are
|
|
/// Note that all other types can just compare to see if this == Type::xxxTy;
|
|
///
|
|
inline bool isPrimitiveType() const { return ID < FirstDerivedTyID; }
|
|
inline bool isDerivedType() const { return ID >= FirstDerivedTyID; }
|
|
|
|
/// isFirstClassType - Return true if the value is holdable in a register.
|
|
inline bool isFirstClassType() const {
|
|
return (ID != VoidTyID && ID < TypeTyID) || ID == PointerTyID;
|
|
}
|
|
|
|
/// isSized - Return true if it makes sense to take the size of this type. To
|
|
/// get the actual size for a particular target, it is reasonable to use the
|
|
/// TargetData subsystem to do this.
|
|
///
|
|
bool isSized() const {
|
|
return ID != VoidTyID && ID != TypeTyID &&
|
|
ID != FunctionTyID && ID != LabelTyID && ID != OpaqueTyID;
|
|
}
|
|
|
|
/// getPrimitiveSize - Return the basic size of this type if it is a primative
|
|
/// type. These are fixed by LLVM and are not target dependent. This will
|
|
/// return zero if the type does not have a size or is not a primitive type.
|
|
///
|
|
unsigned getPrimitiveSize() const;
|
|
|
|
/// getForwaredType - Return the type that this type has been resolved to if
|
|
/// it has been resolved to anything. This is used to implement the
|
|
/// union-find algorithm for type resolution.
|
|
const Type *getForwardedType() const {
|
|
if (!ForwardType) return 0;
|
|
return getForwardedTypeInternal();
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Type Iteration support
|
|
//
|
|
typedef std::vector<PATypeHandle>::const_iterator subtype_iterator;
|
|
subtype_iterator subtype_begin() const { return ContainedTys.begin(); }
|
|
subtype_iterator subtype_end() const { return ContainedTys.end(); }
|
|
|
|
/// getContainedType - This method is used to implement the type iterator
|
|
/// (defined a the end of the file). For derived types, this returns the
|
|
/// types 'contained' in the derived type.
|
|
///
|
|
const Type *getContainedType(unsigned i) const {
|
|
assert(i < ContainedTys.size() && "Index out of range!");
|
|
return ContainedTys[i];
|
|
}
|
|
|
|
/// getNumContainedTypes - Return the number of types in the derived type.
|
|
///
|
|
unsigned getNumContainedTypes() const { return ContainedTys.size(); }
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Static members exported by the Type class itself. Useful for getting
|
|
// instances of Type.
|
|
//
|
|
|
|
/// getPrimitiveType/getUniqueIDType - Return a type based on an identifier.
|
|
static const Type *getPrimitiveType(PrimitiveID IDNumber);
|
|
static const Type *getUniqueIDType(unsigned UID);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// These are the builtin types that are always available...
|
|
//
|
|
static Type *VoidTy , *BoolTy;
|
|
static Type *SByteTy, *UByteTy,
|
|
*ShortTy, *UShortTy,
|
|
*IntTy , *UIntTy,
|
|
*LongTy , *ULongTy;
|
|
static Type *FloatTy, *DoubleTy;
|
|
|
|
static Type *TypeTy , *LabelTy;
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Type *T) { return true; }
|
|
static inline bool classof(const Value *V) {
|
|
return V->getValueType() == Value::TypeVal;
|
|
}
|
|
|
|
#include "llvm/Type.def"
|
|
|
|
// Virtual methods used by callbacks below. These should only be implemented
|
|
// in the DerivedType class.
|
|
virtual void addAbstractTypeUser(AbstractTypeUser *U) const {
|
|
abort(); // Only on derived types!
|
|
}
|
|
virtual void removeAbstractTypeUser(AbstractTypeUser *U) const {
|
|
abort(); // Only on derived types!
|
|
}
|
|
|
|
void addRef() const {
|
|
assert(isAbstract() && "Cannot add a reference to a non-abstract type!");
|
|
++RefCount;
|
|
}
|
|
|
|
void dropRef() const {
|
|
assert(isAbstract() && "Cannot drop a refernce to a non-abstract type!");
|
|
assert(RefCount && "No objects are currently referencing this object!");
|
|
|
|
// If this is the last PATypeHolder using this object, and there are no
|
|
// PATypeHandles using it, the type is dead, delete it now.
|
|
if (--RefCount == 0)
|
|
RefCountIsZero();
|
|
}
|
|
private:
|
|
virtual void RefCountIsZero() const {
|
|
abort(); // only on derived types!
|
|
}
|
|
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Define some inline methods for the AbstractTypeUser.h:PATypeHandle class.
|
|
// These are defined here because they MUST be inlined, yet are dependent on
|
|
// the definition of the Type class. Of course Type derives from Value, which
|
|
// contains an AbstractTypeUser instance, so there is no good way to factor out
|
|
// the code. Hence this bit of uglyness.
|
|
//
|
|
// In the long term, Type should not derive from Value, allowing
|
|
// AbstractTypeUser.h to #include Type.h, allowing us to eliminate this
|
|
// nastyness entirely.
|
|
//
|
|
inline void PATypeHandle::addUser() {
|
|
assert(Ty && "Type Handle has a null type!");
|
|
if (Ty->isAbstract())
|
|
Ty->addAbstractTypeUser(User);
|
|
}
|
|
inline void PATypeHandle::removeUser() {
|
|
if (Ty->isAbstract())
|
|
Ty->removeAbstractTypeUser(User);
|
|
}
|
|
|
|
inline void PATypeHandle::removeUserFromConcrete() {
|
|
if (!Ty->isAbstract())
|
|
Ty->removeAbstractTypeUser(User);
|
|
}
|
|
|
|
// Define inline methods for PATypeHolder...
|
|
|
|
inline void PATypeHolder::addRef() {
|
|
if (Ty->isAbstract())
|
|
Ty->addRef();
|
|
}
|
|
|
|
inline void PATypeHolder::dropRef() {
|
|
if (Ty->isAbstract())
|
|
Ty->dropRef();
|
|
}
|
|
|
|
/// get - This implements the forwarding part of the union-find algorithm for
|
|
/// abstract types. Before every access to the Type*, we check to see if the
|
|
/// type we are pointing to is forwarding to a new type. If so, we drop our
|
|
/// reference to the type.
|
|
///
|
|
inline const Type* PATypeHolder::get() const {
|
|
const Type *NewTy = Ty->getForwardedType();
|
|
if (!NewTy) return Ty;
|
|
return *const_cast<PATypeHolder*>(this) = NewTy;
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Provide specializations of GraphTraits to be able to treat a type as a
|
|
// graph of sub types...
|
|
|
|
template <> struct GraphTraits<Type*> {
|
|
typedef Type NodeType;
|
|
typedef Type::subtype_iterator ChildIteratorType;
|
|
|
|
static inline NodeType *getEntryNode(Type *T) { return T; }
|
|
static inline ChildIteratorType child_begin(NodeType *N) {
|
|
return N->subtype_begin();
|
|
}
|
|
static inline ChildIteratorType child_end(NodeType *N) {
|
|
return N->subtype_end();
|
|
}
|
|
};
|
|
|
|
template <> struct GraphTraits<const Type*> {
|
|
typedef const Type NodeType;
|
|
typedef Type::subtype_iterator ChildIteratorType;
|
|
|
|
static inline NodeType *getEntryNode(const Type *T) { return T; }
|
|
static inline ChildIteratorType child_begin(NodeType *N) {
|
|
return N->subtype_begin();
|
|
}
|
|
static inline ChildIteratorType child_end(NodeType *N) {
|
|
return N->subtype_end();
|
|
}
|
|
};
|
|
|
|
template <> inline bool isa_impl<PointerType, Type>(const Type &Ty) {
|
|
return Ty.getPrimitiveID() == Type::PointerTyID;
|
|
}
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|