Chandler Carruth 3e29671cca Revert a series of commits to MCJIT to get the build working in CMake
(and hopefully on Windows). The bots have been down most of the day
because of this, and it's not clear to me what all will be required to
fix it.

The commits started with r153205, then r153207, r153208, and r153221.
The first commit seems to be the real culprit, but I couldn't revert
a smaller number of patches.

When resubmitting, r153207 and r153208 should be folded into r153205,
they were simple build fixes.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153241 91177308-0d34-0410-b5e6-96231b3b80d8
2012-03-22 05:44:06 +00:00

309 lines
11 KiB
C++

//===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implementation of ELF support for the MC-JIT runtime dynamic linker.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "dyld"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/IntervalMap.h"
#include "RuntimeDyldELF.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/ELF.h"
#include "llvm/ADT/Triple.h"
using namespace llvm;
using namespace llvm::object;
namespace llvm {
namespace {
// FIXME: this function should probably not live here...
//
// Returns the name and address of an unrelocated symbol in an ELF section
void getSymbolInfo(symbol_iterator Sym, uint64_t &Addr, StringRef &Name) {
//FIXME: error checking here required to catch corrupt ELF objects...
error_code Err = Sym->getName(Name);
uint64_t AddrInSection;
Err = Sym->getAddress(AddrInSection);
SectionRef empty_section;
section_iterator Section(empty_section);
Err = Sym->getSection(Section);
StringRef SectionContents;
Section->getContents(SectionContents);
Addr = reinterpret_cast<uint64_t>(SectionContents.data()) + AddrInSection;
}
}
bool RuntimeDyldELF::loadObject(MemoryBuffer *InputBuffer) {
if (!isCompatibleFormat(InputBuffer))
return true;
OwningPtr<ObjectFile> Obj(ObjectFile::createELFObjectFile(InputBuffer));
Arch = Obj->getArch();
// Map address in the Object file image to function names
IntervalMap<uint64_t, StringRef>::Allocator A;
IntervalMap<uint64_t, StringRef> FuncMap(A);
// This is a bit of a hack. The ObjectFile we've just loaded reports
// section addresses as 0 and doesn't provide access to the section
// offset (from which we could calculate the address. Instead,
// we're storing the address when it comes up in the ST_Debug case
// below.
//
StringMap<uint64_t> DebugSymbolMap;
symbol_iterator SymEnd = Obj->end_symbols();
error_code Err;
for (symbol_iterator Sym = Obj->begin_symbols();
Sym != SymEnd; Sym.increment(Err)) {
SymbolRef::Type Type;
Sym->getType(Type);
if (Type == SymbolRef::ST_Function) {
StringRef Name;
uint64_t Addr;
getSymbolInfo(Sym, Addr, Name);
uint64_t Size;
Err = Sym->getSize(Size);
uint8_t *Start;
uint8_t *End;
Start = reinterpret_cast<uint8_t*>(Addr);
End = reinterpret_cast<uint8_t*>(Addr + Size - 1);
extractFunction(Name, Start, End);
FuncMap.insert(Addr, Addr + Size - 1, Name);
} else if (Type == SymbolRef::ST_Debug) {
// This case helps us find section addresses
StringRef Name;
uint64_t Addr;
getSymbolInfo(Sym, Addr, Name);
DebugSymbolMap[Name] = Addr;
}
}
// Iterate through the relocations for this object
section_iterator SecEnd = Obj->end_sections();
for (section_iterator Sec = Obj->begin_sections();
Sec != SecEnd; Sec.increment(Err)) {
StringRef SecName;
uint64_t SecAddr;
Sec->getName(SecName);
// Ignore sections that aren't in our map
if (DebugSymbolMap.find(SecName) == DebugSymbolMap.end()) {
continue;
}
SecAddr = DebugSymbolMap[SecName];
relocation_iterator RelEnd = Sec->end_relocations();
for (relocation_iterator Rel = Sec->begin_relocations();
Rel != RelEnd; Rel.increment(Err)) {
uint64_t RelOffset;
uint64_t RelType;
int64_t RelAddend;
SymbolRef RelSym;
StringRef SymName;
uint64_t SymAddr;
uint64_t SymOffset;
Rel->getAddress(RelOffset);
Rel->getType(RelType);
Rel->getAdditionalInfo(RelAddend);
Rel->getSymbol(RelSym);
RelSym.getName(SymName);
RelSym.getAddress(SymAddr);
RelSym.getFileOffset(SymOffset);
// If this relocation is inside a function, we want to store the
// function name and a function-relative offset
IntervalMap<uint64_t, StringRef>::iterator ContainingFunc
= FuncMap.find(SecAddr + RelOffset);
if (ContainingFunc.valid()) {
// Re-base the relocation to make it relative to the target function
RelOffset = (SecAddr + RelOffset) - ContainingFunc.start();
Relocations[SymName].push_back(RelocationEntry(ContainingFunc.value(),
RelOffset,
RelType,
RelAddend,
true));
} else {
Relocations[SymName].push_back(RelocationEntry(SecName,
RelOffset,
RelType,
RelAddend,
false));
}
}
}
return false;
}
void RuntimeDyldELF::resolveRelocations() {
// FIXME: deprecated. should be changed to use the by-section
// allocation and relocation scheme.
// Just iterate over the symbols in our symbol table and assign their
// addresses.
StringMap<SymbolLoc>::iterator i = SymbolTable.begin();
StringMap<SymbolLoc>::iterator e = SymbolTable.end();
for (;i != e; ++i) {
assert (i->getValue().second == 0 && "non-zero offset in by-function sym!");
reassignSymbolAddress(i->getKey(),
(uint8_t*)Sections[i->getValue().first].base());
}
}
void RuntimeDyldELF::resolveX86_64Relocation(StringRef Name,
uint8_t *Addr,
const RelocationEntry &RE) {
uint8_t *TargetAddr;
if (RE.IsFunctionRelative) {
StringMap<SymbolLoc>::const_iterator Loc = SymbolTable.find(RE.Target);
assert(Loc != SymbolTable.end() && "Function for relocation not found");
TargetAddr =
reinterpret_cast<uint8_t*>(Sections[Loc->second.first].base()) +
Loc->second.second + RE.Offset;
} else {
// FIXME: Get the address of the target section and add that to RE.Offset
llvm_unreachable("Non-function relocation not implemented yet!");
}
switch (RE.Type) {
default: llvm_unreachable("Relocation type not implemented yet!");
case ELF::R_X86_64_64: {
uint8_t **Target = reinterpret_cast<uint8_t**>(TargetAddr);
*Target = Addr + RE.Addend;
break;
}
case ELF::R_X86_64_32:
case ELF::R_X86_64_32S: {
uint64_t Value = reinterpret_cast<uint64_t>(Addr) + RE.Addend;
// FIXME: Handle the possibility of this assertion failing
assert((RE.Type == ELF::R_X86_64_32 && !(Value & 0xFFFFFFFF00000000ULL)) ||
(RE.Type == ELF::R_X86_64_32S &&
(Value & 0xFFFFFFFF00000000ULL) == 0xFFFFFFFF00000000ULL));
uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
uint32_t *Target = reinterpret_cast<uint32_t*>(TargetAddr);
*Target = TruncatedAddr;
break;
}
case ELF::R_X86_64_PC32: {
uint32_t *Placeholder = reinterpret_cast<uint32_t*>(TargetAddr);
uint64_t RealOffset = *Placeholder +
reinterpret_cast<uint64_t>(Addr) +
RE.Addend - reinterpret_cast<uint64_t>(TargetAddr);
assert((RealOffset & 0xFFFFFFFF) == RealOffset);
uint32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
*Placeholder = TruncOffset;
break;
}
}
}
void RuntimeDyldELF::resolveX86Relocation(StringRef Name,
uint8_t *Addr,
const RelocationEntry &RE) {
uint8_t *TargetAddr;
if (RE.IsFunctionRelative) {
StringMap<SymbolLoc>::const_iterator Loc = SymbolTable.find(RE.Target);
assert(Loc != SymbolTable.end() && "Function for relocation not found");
TargetAddr =
reinterpret_cast<uint8_t*>(Sections[Loc->second.first].base()) +
Loc->second.second + RE.Offset;
} else {
// FIXME: Get the address of the target section and add that to RE.Offset
llvm_unreachable("Non-function relocation not implemented yet!");
}
switch (RE.Type) {
case ELF::R_386_32: {
uint8_t **Target = reinterpret_cast<uint8_t**>(TargetAddr);
*Target = Addr + RE.Addend;
break;
}
case ELF::R_386_PC32: {
uint32_t *Placeholder = reinterpret_cast<uint32_t*>(TargetAddr);
uint32_t RealOffset = *Placeholder + reinterpret_cast<uintptr_t>(Addr) +
RE.Addend - reinterpret_cast<uintptr_t>(TargetAddr);
*Placeholder = RealOffset;
break;
}
default:
// There are other relocation types, but it appears these are the
// only ones currently used by the LLVM ELF object writer
llvm_unreachable("Relocation type not implemented yet!");
}
}
void RuntimeDyldELF::resolveArmRelocation(StringRef Name,
uint8_t *Addr,
const RelocationEntry &RE) {
}
void RuntimeDyldELF::resolveRelocation(StringRef Name,
uint8_t *Addr,
const RelocationEntry &RE) {
switch (Arch) {
case Triple::x86_64:
resolveX86_64Relocation(Name, Addr, RE);
break;
case Triple::x86:
resolveX86Relocation(Name, Addr, RE);
break;
case Triple::arm:
resolveArmRelocation(Name, Addr, RE);
break;
default: llvm_unreachable("Unsupported CPU type!");
}
}
void RuntimeDyldELF::reassignSymbolAddress(StringRef Name, uint8_t *Addr) {
// FIXME: deprecated. switch to reassignSectionAddress() instead.
//
// Actually moving the symbol address requires by-section mapping.
assert(Sections[SymbolTable.lookup(Name).first].base() == (void*)Addr &&
"Unable to relocate section in by-function JIT allocation model!");
RelocationList &Relocs = Relocations[Name];
for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
RelocationEntry &RE = Relocs[i];
resolveRelocation(Name, Addr, RE);
}
}
// Assign an address to a symbol name and resolve all the relocations
// associated with it.
void RuntimeDyldELF::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
// The address to use for relocation resolution is not
// the address of the local section buffer. We must be doing
// a remote execution environment of some sort. Re-apply any
// relocations referencing this section with the given address.
//
// Addr is a uint64_t because we can't assume the pointer width
// of the target is the same as that of the host. Just use a generic
// "big enough" type.
assert(0);
}
bool RuntimeDyldELF::isCompatibleFormat(const MemoryBuffer *InputBuffer) const {
StringRef Magic = InputBuffer->getBuffer().slice(0, ELF::EI_NIDENT);
return (memcmp(Magic.data(), ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
}
} // namespace llvm