mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	No other format has this field. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240774 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1698 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1698 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Implementation of ELF support for the MC-JIT runtime dynamic linker.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "RuntimeDyldELF.h"
 | |
| #include "RuntimeDyldCheckerImpl.h"
 | |
| #include "llvm/ADT/IntervalMap.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/ADT/Triple.h"
 | |
| #include "llvm/MC/MCStreamer.h"
 | |
| #include "llvm/Object/ELFObjectFile.h"
 | |
| #include "llvm/Object/ObjectFile.h"
 | |
| #include "llvm/Support/ELF.h"
 | |
| #include "llvm/Support/Endian.h"
 | |
| #include "llvm/Support/MemoryBuffer.h"
 | |
| #include "llvm/Support/TargetRegistry.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace llvm::object;
 | |
| 
 | |
| #define DEBUG_TYPE "dyld"
 | |
| 
 | |
| static inline std::error_code check(std::error_code Err) {
 | |
|   if (Err) {
 | |
|     report_fatal_error(Err.message());
 | |
|   }
 | |
|   return Err;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
 | |
|   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
 | |
| 
 | |
|   typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
 | |
|   typedef Elf_Sym_Impl<ELFT> Elf_Sym;
 | |
|   typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
 | |
|   typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
 | |
| 
 | |
|   typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
 | |
| 
 | |
|   typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
 | |
| 
 | |
| public:
 | |
|   DyldELFObject(MemoryBufferRef Wrapper, std::error_code &ec);
 | |
| 
 | |
|   void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
 | |
| 
 | |
|   void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
 | |
| 
 | |
|   // Methods for type inquiry through isa, cast and dyn_cast
 | |
|   static inline bool classof(const Binary *v) {
 | |
|     return (isa<ELFObjectFile<ELFT>>(v) &&
 | |
|             classof(cast<ELFObjectFile<ELFT>>(v)));
 | |
|   }
 | |
|   static inline bool classof(const ELFObjectFile<ELFT> *v) {
 | |
|     return v->isDyldType();
 | |
|   }
 | |
| 
 | |
| };
 | |
| 
 | |
| 
 | |
| 
 | |
| // The MemoryBuffer passed into this constructor is just a wrapper around the
 | |
| // actual memory.  Ultimately, the Binary parent class will take ownership of
 | |
| // this MemoryBuffer object but not the underlying memory.
 | |
| template <class ELFT>
 | |
| DyldELFObject<ELFT>::DyldELFObject(MemoryBufferRef Wrapper, std::error_code &EC)
 | |
|     : ELFObjectFile<ELFT>(Wrapper, EC) {
 | |
|   this->isDyldELFObject = true;
 | |
| }
 | |
| 
 | |
| template <class ELFT>
 | |
| void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
 | |
|                                                uint64_t Addr) {
 | |
|   DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
 | |
|   Elf_Shdr *shdr =
 | |
|       const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
 | |
| 
 | |
|   // This assumes the address passed in matches the target address bitness
 | |
|   // The template-based type cast handles everything else.
 | |
|   shdr->sh_addr = static_cast<addr_type>(Addr);
 | |
| }
 | |
| 
 | |
| template <class ELFT>
 | |
| void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
 | |
|                                               uint64_t Addr) {
 | |
| 
 | |
|   Elf_Sym *sym = const_cast<Elf_Sym *>(
 | |
|       ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
 | |
| 
 | |
|   // This assumes the address passed in matches the target address bitness
 | |
|   // The template-based type cast handles everything else.
 | |
|   sym->st_value = static_cast<addr_type>(Addr);
 | |
| }
 | |
| 
 | |
| class LoadedELFObjectInfo
 | |
|     : public RuntimeDyld::LoadedObjectInfoHelper<LoadedELFObjectInfo> {
 | |
| public:
 | |
|   LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, unsigned BeginIdx,
 | |
|                       unsigned EndIdx)
 | |
|       : LoadedObjectInfoHelper(RTDyld, BeginIdx, EndIdx) {}
 | |
| 
 | |
|   OwningBinary<ObjectFile>
 | |
|   getObjectForDebug(const ObjectFile &Obj) const override;
 | |
| };
 | |
| 
 | |
| template <typename ELFT>
 | |
| std::unique_ptr<DyldELFObject<ELFT>>
 | |
| createRTDyldELFObject(MemoryBufferRef Buffer,
 | |
|                       const LoadedELFObjectInfo &L,
 | |
|                       std::error_code &ec) {
 | |
|   typedef typename ELFFile<ELFT>::Elf_Shdr Elf_Shdr;
 | |
|   typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
 | |
| 
 | |
|   std::unique_ptr<DyldELFObject<ELFT>> Obj =
 | |
|     llvm::make_unique<DyldELFObject<ELFT>>(Buffer, ec);
 | |
| 
 | |
|   // Iterate over all sections in the object.
 | |
|   for (const auto &Sec : Obj->sections()) {
 | |
|     StringRef SectionName;
 | |
|     Sec.getName(SectionName);
 | |
|     if (SectionName != "") {
 | |
|       DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
 | |
|       Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
 | |
|           reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
 | |
| 
 | |
|       if (uint64_t SecLoadAddr = L.getSectionLoadAddress(SectionName)) {
 | |
|         // This assumes that the address passed in matches the target address
 | |
|         // bitness. The template-based type cast handles everything else.
 | |
|         shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Obj;
 | |
| }
 | |
| 
 | |
| OwningBinary<ObjectFile> createELFDebugObject(const ObjectFile &Obj,
 | |
|                                               const LoadedELFObjectInfo &L) {
 | |
|   assert(Obj.isELF() && "Not an ELF object file.");
 | |
| 
 | |
|   std::unique_ptr<MemoryBuffer> Buffer =
 | |
|     MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
 | |
| 
 | |
|   std::error_code ec;
 | |
| 
 | |
|   std::unique_ptr<ObjectFile> DebugObj;
 | |
|   if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian()) {
 | |
|     typedef ELFType<support::little, false> ELF32LE;
 | |
|     DebugObj = createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), L, ec);
 | |
|   } else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian()) {
 | |
|     typedef ELFType<support::big, false> ELF32BE;
 | |
|     DebugObj = createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), L, ec);
 | |
|   } else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian()) {
 | |
|     typedef ELFType<support::big, true> ELF64BE;
 | |
|     DebugObj = createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), L, ec);
 | |
|   } else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian()) {
 | |
|     typedef ELFType<support::little, true> ELF64LE;
 | |
|     DebugObj = createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), L, ec);
 | |
|   } else
 | |
|     llvm_unreachable("Unexpected ELF format");
 | |
| 
 | |
|   assert(!ec && "Could not construct copy ELF object file");
 | |
| 
 | |
|   return OwningBinary<ObjectFile>(std::move(DebugObj), std::move(Buffer));
 | |
| }
 | |
| 
 | |
| OwningBinary<ObjectFile>
 | |
| LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
 | |
|   return createELFDebugObject(Obj, *this);
 | |
| }
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
 | |
|                                RuntimeDyld::SymbolResolver &Resolver)
 | |
|     : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
 | |
| RuntimeDyldELF::~RuntimeDyldELF() {}
 | |
| 
 | |
| void RuntimeDyldELF::registerEHFrames() {
 | |
|   for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
 | |
|     SID EHFrameSID = UnregisteredEHFrameSections[i];
 | |
|     uint8_t *EHFrameAddr = Sections[EHFrameSID].Address;
 | |
|     uint64_t EHFrameLoadAddr = Sections[EHFrameSID].LoadAddress;
 | |
|     size_t EHFrameSize = Sections[EHFrameSID].Size;
 | |
|     MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
 | |
|     RegisteredEHFrameSections.push_back(EHFrameSID);
 | |
|   }
 | |
|   UnregisteredEHFrameSections.clear();
 | |
| }
 | |
| 
 | |
| void RuntimeDyldELF::deregisterEHFrames() {
 | |
|   for (int i = 0, e = RegisteredEHFrameSections.size(); i != e; ++i) {
 | |
|     SID EHFrameSID = RegisteredEHFrameSections[i];
 | |
|     uint8_t *EHFrameAddr = Sections[EHFrameSID].Address;
 | |
|     uint64_t EHFrameLoadAddr = Sections[EHFrameSID].LoadAddress;
 | |
|     size_t EHFrameSize = Sections[EHFrameSID].Size;
 | |
|     MemMgr.deregisterEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
 | |
|   }
 | |
|   RegisteredEHFrameSections.clear();
 | |
| }
 | |
| 
 | |
| std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
 | |
| RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
 | |
|   unsigned SectionStartIdx, SectionEndIdx;
 | |
|   std::tie(SectionStartIdx, SectionEndIdx) = loadObjectImpl(O);
 | |
|   return llvm::make_unique<LoadedELFObjectInfo>(*this, SectionStartIdx,
 | |
|                                                 SectionEndIdx);
 | |
| }
 | |
| 
 | |
| void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
 | |
|                                              uint64_t Offset, uint64_t Value,
 | |
|                                              uint32_t Type, int64_t Addend,
 | |
|                                              uint64_t SymOffset) {
 | |
|   switch (Type) {
 | |
|   default:
 | |
|     llvm_unreachable("Relocation type not implemented yet!");
 | |
|     break;
 | |
|   case ELF::R_X86_64_64: {
 | |
|     support::ulittle64_t::ref(Section.Address + Offset) = Value + Addend;
 | |
|     DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
 | |
|                  << format("%p\n", Section.Address + Offset));
 | |
|     break;
 | |
|   }
 | |
|   case ELF::R_X86_64_32:
 | |
|   case ELF::R_X86_64_32S: {
 | |
|     Value += Addend;
 | |
|     assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
 | |
|            (Type == ELF::R_X86_64_32S &&
 | |
|             ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
 | |
|     uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
 | |
|     support::ulittle32_t::ref(Section.Address + Offset) = TruncatedAddr;
 | |
|     DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
 | |
|                  << format("%p\n", Section.Address + Offset));
 | |
|     break;
 | |
|   }
 | |
|   case ELF::R_X86_64_PC32: {
 | |
|     uint64_t FinalAddress = Section.LoadAddress + Offset;
 | |
|     int64_t RealOffset = Value + Addend - FinalAddress;
 | |
|     assert(isInt<32>(RealOffset));
 | |
|     int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
 | |
|     support::ulittle32_t::ref(Section.Address + Offset) = TruncOffset;
 | |
|     break;
 | |
|   }
 | |
|   case ELF::R_X86_64_PC64: {
 | |
|     uint64_t FinalAddress = Section.LoadAddress + Offset;
 | |
|     int64_t RealOffset = Value + Addend - FinalAddress;
 | |
|     support::ulittle64_t::ref(Section.Address + Offset) = RealOffset;
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
 | |
|                                           uint64_t Offset, uint32_t Value,
 | |
|                                           uint32_t Type, int32_t Addend) {
 | |
|   switch (Type) {
 | |
|   case ELF::R_386_32: {
 | |
|     support::ulittle32_t::ref(Section.Address + Offset) = Value + Addend;
 | |
|     break;
 | |
|   }
 | |
|   case ELF::R_386_PC32: {
 | |
|     uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
 | |
|     uint32_t RealOffset = Value + Addend - FinalAddress;
 | |
|     support::ulittle32_t::ref(Section.Address + Offset) = RealOffset;
 | |
|     break;
 | |
|   }
 | |
|   default:
 | |
|     // There are other relocation types, but it appears these are the
 | |
|     // only ones currently used by the LLVM ELF object writer
 | |
|     llvm_unreachable("Relocation type not implemented yet!");
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
 | |
|                                               uint64_t Offset, uint64_t Value,
 | |
|                                               uint32_t Type, int64_t Addend) {
 | |
|   uint32_t *TargetPtr = reinterpret_cast<uint32_t *>(Section.Address + Offset);
 | |
|   uint64_t FinalAddress = Section.LoadAddress + Offset;
 | |
| 
 | |
|   DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
 | |
|                << format("%llx", Section.Address + Offset)
 | |
|                << " FinalAddress: 0x" << format("%llx", FinalAddress)
 | |
|                << " Value: 0x" << format("%llx", Value) << " Type: 0x"
 | |
|                << format("%x", Type) << " Addend: 0x" << format("%llx", Addend)
 | |
|                << "\n");
 | |
| 
 | |
|   switch (Type) {
 | |
|   default:
 | |
|     llvm_unreachable("Relocation type not implemented yet!");
 | |
|     break;
 | |
|   case ELF::R_AARCH64_ABS64: {
 | |
|     uint64_t *TargetPtr =
 | |
|         reinterpret_cast<uint64_t *>(Section.Address + Offset);
 | |
|     *TargetPtr = Value + Addend;
 | |
|     break;
 | |
|   }
 | |
|   case ELF::R_AARCH64_PREL32: {
 | |
|     uint64_t Result = Value + Addend - FinalAddress;
 | |
|     assert(static_cast<int64_t>(Result) >= INT32_MIN &&
 | |
|            static_cast<int64_t>(Result) <= UINT32_MAX);
 | |
|     *TargetPtr = static_cast<uint32_t>(Result & 0xffffffffU);
 | |
|     break;
 | |
|   }
 | |
|   case ELF::R_AARCH64_CALL26: // fallthrough
 | |
|   case ELF::R_AARCH64_JUMP26: {
 | |
|     // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
 | |
|     // calculation.
 | |
|     uint64_t BranchImm = Value + Addend - FinalAddress;
 | |
| 
 | |
|     // "Check that -2^27 <= result < 2^27".
 | |
|     assert(isInt<28>(BranchImm));
 | |
| 
 | |
|     // AArch64 code is emitted with .rela relocations. The data already in any
 | |
|     // bits affected by the relocation on entry is garbage.
 | |
|     *TargetPtr &= 0xfc000000U;
 | |
|     // Immediate goes in bits 25:0 of B and BL.
 | |
|     *TargetPtr |= static_cast<uint32_t>(BranchImm & 0xffffffcU) >> 2;
 | |
|     break;
 | |
|   }
 | |
|   case ELF::R_AARCH64_MOVW_UABS_G3: {
 | |
|     uint64_t Result = Value + Addend;
 | |
| 
 | |
|     // AArch64 code is emitted with .rela relocations. The data already in any
 | |
|     // bits affected by the relocation on entry is garbage.
 | |
|     *TargetPtr &= 0xffe0001fU;
 | |
|     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
 | |
|     *TargetPtr |= Result >> (48 - 5);
 | |
|     // Shift must be "lsl #48", in bits 22:21
 | |
|     assert((*TargetPtr >> 21 & 0x3) == 3 && "invalid shift for relocation");
 | |
|     break;
 | |
|   }
 | |
|   case ELF::R_AARCH64_MOVW_UABS_G2_NC: {
 | |
|     uint64_t Result = Value + Addend;
 | |
| 
 | |
|     // AArch64 code is emitted with .rela relocations. The data already in any
 | |
|     // bits affected by the relocation on entry is garbage.
 | |
|     *TargetPtr &= 0xffe0001fU;
 | |
|     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
 | |
|     *TargetPtr |= ((Result & 0xffff00000000ULL) >> (32 - 5));
 | |
|     // Shift must be "lsl #32", in bits 22:21
 | |
|     assert((*TargetPtr >> 21 & 0x3) == 2 && "invalid shift for relocation");
 | |
|     break;
 | |
|   }
 | |
|   case ELF::R_AARCH64_MOVW_UABS_G1_NC: {
 | |
|     uint64_t Result = Value + Addend;
 | |
| 
 | |
|     // AArch64 code is emitted with .rela relocations. The data already in any
 | |
|     // bits affected by the relocation on entry is garbage.
 | |
|     *TargetPtr &= 0xffe0001fU;
 | |
|     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
 | |
|     *TargetPtr |= ((Result & 0xffff0000U) >> (16 - 5));
 | |
|     // Shift must be "lsl #16", in bits 22:2
 | |
|     assert((*TargetPtr >> 21 & 0x3) == 1 && "invalid shift for relocation");
 | |
|     break;
 | |
|   }
 | |
|   case ELF::R_AARCH64_MOVW_UABS_G0_NC: {
 | |
|     uint64_t Result = Value + Addend;
 | |
| 
 | |
|     // AArch64 code is emitted with .rela relocations. The data already in any
 | |
|     // bits affected by the relocation on entry is garbage.
 | |
|     *TargetPtr &= 0xffe0001fU;
 | |
|     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
 | |
|     *TargetPtr |= ((Result & 0xffffU) << 5);
 | |
|     // Shift must be "lsl #0", in bits 22:21.
 | |
|     assert((*TargetPtr >> 21 & 0x3) == 0 && "invalid shift for relocation");
 | |
|     break;
 | |
|   }
 | |
|   case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
 | |
|     // Operation: Page(S+A) - Page(P)
 | |
|     uint64_t Result =
 | |
|         ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
 | |
| 
 | |
|     // Check that -2^32 <= X < 2^32
 | |
|     assert(isInt<33>(Result) && "overflow check failed for relocation");
 | |
| 
 | |
|     // AArch64 code is emitted with .rela relocations. The data already in any
 | |
|     // bits affected by the relocation on entry is garbage.
 | |
|     *TargetPtr &= 0x9f00001fU;
 | |
|     // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
 | |
|     // from bits 32:12 of X.
 | |
|     *TargetPtr |= ((Result & 0x3000U) << (29 - 12));
 | |
|     *TargetPtr |= ((Result & 0x1ffffc000ULL) >> (14 - 5));
 | |
|     break;
 | |
|   }
 | |
|   case ELF::R_AARCH64_LDST32_ABS_LO12_NC: {
 | |
|     // Operation: S + A
 | |
|     uint64_t Result = Value + Addend;
 | |
| 
 | |
|     // AArch64 code is emitted with .rela relocations. The data already in any
 | |
|     // bits affected by the relocation on entry is garbage.
 | |
|     *TargetPtr &= 0xffc003ffU;
 | |
|     // Immediate goes in bits 21:10 of LD/ST instruction, taken
 | |
|     // from bits 11:2 of X
 | |
|     *TargetPtr |= ((Result & 0xffc) << (10 - 2));
 | |
|     break;
 | |
|   }
 | |
|   case ELF::R_AARCH64_LDST64_ABS_LO12_NC: {
 | |
|     // Operation: S + A
 | |
|     uint64_t Result = Value + Addend;
 | |
| 
 | |
|     // AArch64 code is emitted with .rela relocations. The data already in any
 | |
|     // bits affected by the relocation on entry is garbage.
 | |
|     *TargetPtr &= 0xffc003ffU;
 | |
|     // Immediate goes in bits 21:10 of LD/ST instruction, taken
 | |
|     // from bits 11:3 of X
 | |
|     *TargetPtr |= ((Result & 0xff8) << (10 - 3));
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
 | |
|                                           uint64_t Offset, uint32_t Value,
 | |
|                                           uint32_t Type, int32_t Addend) {
 | |
|   // TODO: Add Thumb relocations.
 | |
|   uint32_t *TargetPtr = (uint32_t *)(Section.Address + Offset);
 | |
|   uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
 | |
|   Value += Addend;
 | |
| 
 | |
|   DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
 | |
|                << Section.Address + Offset
 | |
|                << " FinalAddress: " << format("%p", FinalAddress) << " Value: "
 | |
|                << format("%x", Value) << " Type: " << format("%x", Type)
 | |
|                << " Addend: " << format("%x", Addend) << "\n");
 | |
| 
 | |
|   switch (Type) {
 | |
|   default:
 | |
|     llvm_unreachable("Not implemented relocation type!");
 | |
| 
 | |
|   case ELF::R_ARM_NONE:
 | |
|     break;
 | |
|   case ELF::R_ARM_PREL31:
 | |
|   case ELF::R_ARM_TARGET1:
 | |
|   case ELF::R_ARM_ABS32:
 | |
|     *TargetPtr = Value;
 | |
|     break;
 | |
|     // Write first 16 bit of 32 bit value to the mov instruction.
 | |
|     // Last 4 bit should be shifted.
 | |
|   case ELF::R_ARM_MOVW_ABS_NC:
 | |
|   case ELF::R_ARM_MOVT_ABS:
 | |
|     if (Type == ELF::R_ARM_MOVW_ABS_NC)
 | |
|       Value = Value & 0xFFFF;
 | |
|     else if (Type == ELF::R_ARM_MOVT_ABS)
 | |
|       Value = (Value >> 16) & 0xFFFF;
 | |
|     *TargetPtr &= ~0x000F0FFF;
 | |
|     *TargetPtr |= Value & 0xFFF;
 | |
|     *TargetPtr |= ((Value >> 12) & 0xF) << 16;
 | |
|     break;
 | |
|     // Write 24 bit relative value to the branch instruction.
 | |
|   case ELF::R_ARM_PC24: // Fall through.
 | |
|   case ELF::R_ARM_CALL: // Fall through.
 | |
|   case ELF::R_ARM_JUMP24:
 | |
|     int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
 | |
|     RelValue = (RelValue & 0x03FFFFFC) >> 2;
 | |
|     assert((*TargetPtr & 0xFFFFFF) == 0xFFFFFE);
 | |
|     *TargetPtr &= 0xFF000000;
 | |
|     *TargetPtr |= RelValue;
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section,
 | |
|                                            uint64_t Offset, uint32_t Value,
 | |
|                                            uint32_t Type, int32_t Addend) {
 | |
|   uint8_t *TargetPtr = Section.Address + Offset;
 | |
|   Value += Addend;
 | |
| 
 | |
|   DEBUG(dbgs() << "resolveMIPSRelocation, LocalAddress: "
 | |
|                << Section.Address + Offset << " FinalAddress: "
 | |
|                << format("%p", Section.LoadAddress + Offset) << " Value: "
 | |
|                << format("%x", Value) << " Type: " << format("%x", Type)
 | |
|                << " Addend: " << format("%x", Addend) << "\n");
 | |
| 
 | |
|   uint32_t Insn = readBytesUnaligned(TargetPtr, 4);
 | |
| 
 | |
|   switch (Type) {
 | |
|   default:
 | |
|     llvm_unreachable("Not implemented relocation type!");
 | |
|     break;
 | |
|   case ELF::R_MIPS_32:
 | |
|     writeBytesUnaligned(Value, TargetPtr, 4);
 | |
|     break;
 | |
|   case ELF::R_MIPS_26:
 | |
|     Insn &= 0xfc000000;
 | |
|     Insn |= (Value & 0x0fffffff) >> 2;
 | |
|     writeBytesUnaligned(Insn, TargetPtr, 4);
 | |
|     break;
 | |
|   case ELF::R_MIPS_HI16:
 | |
|     // Get the higher 16-bits. Also add 1 if bit 15 is 1.
 | |
|     Insn &= 0xffff0000;
 | |
|     Insn |= ((Value + 0x8000) >> 16) & 0xffff;
 | |
|     writeBytesUnaligned(Insn, TargetPtr, 4);
 | |
|     break;
 | |
|   case ELF::R_MIPS_LO16:
 | |
|     Insn &= 0xffff0000;
 | |
|     Insn |= Value & 0xffff;
 | |
|     writeBytesUnaligned(Insn, TargetPtr, 4);
 | |
|     break;
 | |
|   case ELF::R_MIPS_PC32:
 | |
|     uint32_t FinalAddress = (Section.LoadAddress + Offset);
 | |
|     writeBytesUnaligned(Value + Addend - FinalAddress, (uint8_t *)TargetPtr, 4);
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) {
 | |
|   if (Arch == Triple::UnknownArch ||
 | |
|       !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) {
 | |
|     IsMipsO32ABI = false;
 | |
|     IsMipsN64ABI = false;
 | |
|     return;
 | |
|   }
 | |
|   unsigned AbiVariant;
 | |
|   Obj.getPlatformFlags(AbiVariant);
 | |
|   IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32;
 | |
|   IsMipsN64ABI = Obj.getFileFormatName().equals("ELF64-mips");
 | |
|   if (AbiVariant & ELF::EF_MIPS_ABI2)
 | |
|     llvm_unreachable("Mips N32 ABI is not supported yet");
 | |
| }
 | |
| 
 | |
| void RuntimeDyldELF::resolveMIPS64Relocation(const SectionEntry &Section,
 | |
|                                              uint64_t Offset, uint64_t Value,
 | |
|                                              uint32_t Type, int64_t Addend,
 | |
|                                              uint64_t SymOffset,
 | |
|                                              SID SectionID) {
 | |
|   uint32_t r_type = Type & 0xff;
 | |
|   uint32_t r_type2 = (Type >> 8) & 0xff;
 | |
|   uint32_t r_type3 = (Type >> 16) & 0xff;
 | |
| 
 | |
|   // RelType is used to keep information for which relocation type we are
 | |
|   // applying relocation.
 | |
|   uint32_t RelType = r_type;
 | |
|   int64_t CalculatedValue = evaluateMIPS64Relocation(Section, Offset, Value,
 | |
|                                                      RelType, Addend,
 | |
|                                                      SymOffset, SectionID);
 | |
|   if (r_type2 != ELF::R_MIPS_NONE) {
 | |
|     RelType = r_type2;
 | |
|     CalculatedValue = evaluateMIPS64Relocation(Section, Offset, 0, RelType,
 | |
|                                                CalculatedValue, SymOffset,
 | |
|                                                SectionID);
 | |
|   }
 | |
|   if (r_type3 != ELF::R_MIPS_NONE) {
 | |
|     RelType = r_type3;
 | |
|     CalculatedValue = evaluateMIPS64Relocation(Section, Offset, 0, RelType,
 | |
|                                                CalculatedValue, SymOffset,
 | |
|                                                SectionID);
 | |
|   }
 | |
|   applyMIPS64Relocation(Section.Address + Offset, CalculatedValue, RelType);
 | |
| }
 | |
| 
 | |
| int64_t
 | |
| RuntimeDyldELF::evaluateMIPS64Relocation(const SectionEntry &Section,
 | |
|                                          uint64_t Offset, uint64_t Value,
 | |
|                                          uint32_t Type, int64_t Addend,
 | |
|                                          uint64_t SymOffset, SID SectionID) {
 | |
| 
 | |
|   DEBUG(dbgs() << "evaluateMIPS64Relocation, LocalAddress: 0x"
 | |
|                << format("%llx", Section.Address + Offset)
 | |
|                << " FinalAddress: 0x"
 | |
|                << format("%llx", Section.LoadAddress + Offset)
 | |
|                << " Value: 0x" << format("%llx", Value) << " Type: 0x"
 | |
|                << format("%x", Type) << " Addend: 0x" << format("%llx", Addend)
 | |
|                << " SymOffset: " << format("%x", SymOffset)
 | |
|                << "\n");
 | |
| 
 | |
|   switch (Type) {
 | |
|   default:
 | |
|     llvm_unreachable("Not implemented relocation type!");
 | |
|     break;
 | |
|   case ELF::R_MIPS_JALR:
 | |
|   case ELF::R_MIPS_NONE:
 | |
|     break;
 | |
|   case ELF::R_MIPS_32:
 | |
|   case ELF::R_MIPS_64:
 | |
|     return Value + Addend;
 | |
|   case ELF::R_MIPS_26:
 | |
|     return ((Value + Addend) >> 2) & 0x3ffffff;
 | |
|   case ELF::R_MIPS_GPREL16: {
 | |
|     uint64_t GOTAddr = getSectionLoadAddress(SectionToGOTMap[SectionID]);
 | |
|     return Value + Addend - (GOTAddr + 0x7ff0);
 | |
|   }
 | |
|   case ELF::R_MIPS_SUB:
 | |
|     return Value - Addend;
 | |
|   case ELF::R_MIPS_HI16:
 | |
|     // Get the higher 16-bits. Also add 1 if bit 15 is 1.
 | |
|     return ((Value + Addend + 0x8000) >> 16) & 0xffff;
 | |
|   case ELF::R_MIPS_LO16:
 | |
|     return (Value + Addend) & 0xffff;
 | |
|   case ELF::R_MIPS_CALL16:
 | |
|   case ELF::R_MIPS_GOT_DISP:
 | |
|   case ELF::R_MIPS_GOT_PAGE: {
 | |
|     uint8_t *LocalGOTAddr =
 | |
|         getSectionAddress(SectionToGOTMap[SectionID]) + SymOffset;
 | |
|     uint64_t GOTEntry = readBytesUnaligned(LocalGOTAddr, 8);
 | |
| 
 | |
|     Value += Addend;
 | |
|     if (Type == ELF::R_MIPS_GOT_PAGE)
 | |
|       Value = (Value + 0x8000) & ~0xffff;
 | |
| 
 | |
|     if (GOTEntry)
 | |
|       assert(GOTEntry == Value &&
 | |
|                    "GOT entry has two different addresses.");
 | |
|     else
 | |
|       writeBytesUnaligned(Value, LocalGOTAddr, 8);
 | |
| 
 | |
|     return (SymOffset - 0x7ff0) & 0xffff;
 | |
|   }
 | |
|   case ELF::R_MIPS_GOT_OFST: {
 | |
|     int64_t page = (Value + Addend + 0x8000) & ~0xffff;
 | |
|     return (Value + Addend - page) & 0xffff;
 | |
|   }
 | |
|   case ELF::R_MIPS_GPREL32: {
 | |
|     uint64_t GOTAddr = getSectionLoadAddress(SectionToGOTMap[SectionID]);
 | |
|     return Value + Addend - (GOTAddr + 0x7ff0);
 | |
|   }
 | |
|   case ELF::R_MIPS_PC16: {
 | |
|     uint64_t FinalAddress = (Section.LoadAddress + Offset);
 | |
|     return ((Value + Addend - FinalAddress) >> 2) & 0xffff;
 | |
|   }
 | |
|   case ELF::R_MIPS_PC32: {
 | |
|     uint64_t FinalAddress = (Section.LoadAddress + Offset);
 | |
|     return Value + Addend - FinalAddress;
 | |
|   }
 | |
|   case ELF::R_MIPS_PC18_S3: {
 | |
|     uint64_t FinalAddress = (Section.LoadAddress + Offset);
 | |
|     return ((Value + Addend - ((FinalAddress | 7) ^ 7)) >> 3) & 0x3ffff;
 | |
|   }
 | |
|   case ELF::R_MIPS_PC19_S2: {
 | |
|     uint64_t FinalAddress = (Section.LoadAddress + Offset);
 | |
|     return ((Value + Addend - FinalAddress) >> 2) & 0x7ffff;
 | |
|   }
 | |
|   case ELF::R_MIPS_PC21_S2: {
 | |
|     uint64_t FinalAddress = (Section.LoadAddress + Offset);
 | |
|     return ((Value + Addend - FinalAddress) >> 2) & 0x1fffff;
 | |
|   }
 | |
|   case ELF::R_MIPS_PC26_S2: {
 | |
|     uint64_t FinalAddress = (Section.LoadAddress + Offset);
 | |
|     return ((Value + Addend - FinalAddress) >> 2) & 0x3ffffff;
 | |
|   }
 | |
|   case ELF::R_MIPS_PCHI16: {
 | |
|     uint64_t FinalAddress = (Section.LoadAddress + Offset);
 | |
|     return ((Value + Addend - FinalAddress + 0x8000) >> 16) & 0xffff;
 | |
|   }
 | |
|   case ELF::R_MIPS_PCLO16: {
 | |
|     uint64_t FinalAddress = (Section.LoadAddress + Offset);
 | |
|     return (Value + Addend - FinalAddress) & 0xffff;
 | |
|   }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void RuntimeDyldELF::applyMIPS64Relocation(uint8_t *TargetPtr,
 | |
|                                            int64_t CalculatedValue,
 | |
|                                            uint32_t Type) {
 | |
|   uint32_t Insn = readBytesUnaligned(TargetPtr, 4);
 | |
| 
 | |
|   switch (Type) {
 | |
|     default:
 | |
|       break;
 | |
|     case ELF::R_MIPS_32:
 | |
|     case ELF::R_MIPS_GPREL32:
 | |
|     case ELF::R_MIPS_PC32:
 | |
|       writeBytesUnaligned(CalculatedValue & 0xffffffff, TargetPtr, 4);
 | |
|       break;
 | |
|     case ELF::R_MIPS_64:
 | |
|     case ELF::R_MIPS_SUB:
 | |
|       writeBytesUnaligned(CalculatedValue, TargetPtr, 8);
 | |
|       break;
 | |
|     case ELF::R_MIPS_26:
 | |
|     case ELF::R_MIPS_PC26_S2:
 | |
|       Insn = (Insn & 0xfc000000) | CalculatedValue;
 | |
|       writeBytesUnaligned(Insn, TargetPtr, 4);
 | |
|       break;
 | |
|     case ELF::R_MIPS_GPREL16:
 | |
|       Insn = (Insn & 0xffff0000) | (CalculatedValue & 0xffff);
 | |
|       writeBytesUnaligned(Insn, TargetPtr, 4);
 | |
|       break;
 | |
|     case ELF::R_MIPS_HI16:
 | |
|     case ELF::R_MIPS_LO16:
 | |
|     case ELF::R_MIPS_PCHI16:
 | |
|     case ELF::R_MIPS_PCLO16:
 | |
|     case ELF::R_MIPS_PC16:
 | |
|     case ELF::R_MIPS_CALL16:
 | |
|     case ELF::R_MIPS_GOT_DISP:
 | |
|     case ELF::R_MIPS_GOT_PAGE:
 | |
|     case ELF::R_MIPS_GOT_OFST:
 | |
|       Insn = (Insn & 0xffff0000) | CalculatedValue;
 | |
|       writeBytesUnaligned(Insn, TargetPtr, 4);
 | |
|       break;
 | |
|     case ELF::R_MIPS_PC18_S3:
 | |
|       Insn = (Insn & 0xfffc0000) | CalculatedValue;
 | |
|       writeBytesUnaligned(Insn, TargetPtr, 4);
 | |
|       break;
 | |
|     case ELF::R_MIPS_PC19_S2:
 | |
|       Insn = (Insn & 0xfff80000) | CalculatedValue;
 | |
|       writeBytesUnaligned(Insn, TargetPtr, 4);
 | |
|       break;
 | |
|     case ELF::R_MIPS_PC21_S2:
 | |
|       Insn = (Insn & 0xffe00000) | CalculatedValue;
 | |
|       writeBytesUnaligned(Insn, TargetPtr, 4);
 | |
|       break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Return the .TOC. section and offset.
 | |
| void RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj,
 | |
|                                          ObjSectionToIDMap &LocalSections,
 | |
|                                          RelocationValueRef &Rel) {
 | |
|   // Set a default SectionID in case we do not find a TOC section below.
 | |
|   // This may happen for references to TOC base base (sym@toc, .odp
 | |
|   // relocation) without a .toc directive.  In this case just use the
 | |
|   // first section (which is usually the .odp) since the code won't
 | |
|   // reference the .toc base directly.
 | |
|   Rel.SymbolName = NULL;
 | |
|   Rel.SectionID = 0;
 | |
| 
 | |
|   // The TOC consists of sections .got, .toc, .tocbss, .plt in that
 | |
|   // order. The TOC starts where the first of these sections starts.
 | |
|   for (auto &Section: Obj.sections()) {
 | |
|     StringRef SectionName;
 | |
|     check(Section.getName(SectionName));
 | |
| 
 | |
|     if (SectionName == ".got"
 | |
|         || SectionName == ".toc"
 | |
|         || SectionName == ".tocbss"
 | |
|         || SectionName == ".plt") {
 | |
|       Rel.SectionID = findOrEmitSection(Obj, Section, false, LocalSections);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
 | |
|   // thus permitting a full 64 Kbytes segment.
 | |
|   Rel.Addend = 0x8000;
 | |
| }
 | |
| 
 | |
| // Returns the sections and offset associated with the ODP entry referenced
 | |
| // by Symbol.
 | |
| void RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj,
 | |
|                                          ObjSectionToIDMap &LocalSections,
 | |
|                                          RelocationValueRef &Rel) {
 | |
|   // Get the ELF symbol value (st_value) to compare with Relocation offset in
 | |
|   // .opd entries
 | |
|   for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
 | |
|        si != se; ++si) {
 | |
|     section_iterator RelSecI = si->getRelocatedSection();
 | |
|     if (RelSecI == Obj.section_end())
 | |
|       continue;
 | |
| 
 | |
|     StringRef RelSectionName;
 | |
|     check(RelSecI->getName(RelSectionName));
 | |
|     if (RelSectionName != ".opd")
 | |
|       continue;
 | |
| 
 | |
|     for (relocation_iterator i = si->relocation_begin(),
 | |
|                              e = si->relocation_end();
 | |
|          i != e;) {
 | |
|       // The R_PPC64_ADDR64 relocation indicates the first field
 | |
|       // of a .opd entry
 | |
|       uint64_t TypeFunc;
 | |
|       check(i->getType(TypeFunc));
 | |
|       if (TypeFunc != ELF::R_PPC64_ADDR64) {
 | |
|         ++i;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       uint64_t TargetSymbolOffset;
 | |
|       symbol_iterator TargetSymbol = i->getSymbol();
 | |
|       check(i->getOffset(TargetSymbolOffset));
 | |
|       ErrorOr<int64_t> AddendOrErr =
 | |
|           Obj.getRelocationAddend(i->getRawDataRefImpl());
 | |
|       Check(AddendOrErr.getError());
 | |
|       int64_t Addend = *AddendOrErr;
 | |
| 
 | |
|       ++i;
 | |
|       if (i == e)
 | |
|         break;
 | |
| 
 | |
|       // Just check if following relocation is a R_PPC64_TOC
 | |
|       uint64_t TypeTOC;
 | |
|       check(i->getType(TypeTOC));
 | |
|       if (TypeTOC != ELF::R_PPC64_TOC)
 | |
|         continue;
 | |
| 
 | |
|       // Finally compares the Symbol value and the target symbol offset
 | |
|       // to check if this .opd entry refers to the symbol the relocation
 | |
|       // points to.
 | |
|       if (Rel.Addend != (int64_t)TargetSymbolOffset)
 | |
|         continue;
 | |
| 
 | |
|       section_iterator tsi(Obj.section_end());
 | |
|       check(TargetSymbol->getSection(tsi));
 | |
|       bool IsCode = tsi->isText();
 | |
|       Rel.SectionID = findOrEmitSection(Obj, (*tsi), IsCode, LocalSections);
 | |
|       Rel.Addend = (intptr_t)Addend;
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   llvm_unreachable("Attempting to get address of ODP entry!");
 | |
| }
 | |
| 
 | |
| // Relocation masks following the #lo(value), #hi(value), #ha(value),
 | |
| // #higher(value), #highera(value), #highest(value), and #highesta(value)
 | |
| // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
 | |
| // document.
 | |
| 
 | |
| static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
 | |
| 
 | |
| static inline uint16_t applyPPChi(uint64_t value) {
 | |
|   return (value >> 16) & 0xffff;
 | |
| }
 | |
| 
 | |
| static inline uint16_t applyPPCha (uint64_t value) {
 | |
|   return ((value + 0x8000) >> 16) & 0xffff;
 | |
| }
 | |
| 
 | |
| static inline uint16_t applyPPChigher(uint64_t value) {
 | |
|   return (value >> 32) & 0xffff;
 | |
| }
 | |
| 
 | |
| static inline uint16_t applyPPChighera (uint64_t value) {
 | |
|   return ((value + 0x8000) >> 32) & 0xffff;
 | |
| }
 | |
| 
 | |
| static inline uint16_t applyPPChighest(uint64_t value) {
 | |
|   return (value >> 48) & 0xffff;
 | |
| }
 | |
| 
 | |
| static inline uint16_t applyPPChighesta (uint64_t value) {
 | |
|   return ((value + 0x8000) >> 48) & 0xffff;
 | |
| }
 | |
| 
 | |
| void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
 | |
|                                             uint64_t Offset, uint64_t Value,
 | |
|                                             uint32_t Type, int64_t Addend) {
 | |
|   uint8_t *LocalAddress = Section.Address + Offset;
 | |
|   switch (Type) {
 | |
|   default:
 | |
|     llvm_unreachable("Relocation type not implemented yet!");
 | |
|     break;
 | |
|   case ELF::R_PPC64_ADDR16:
 | |
|     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
 | |
|     break;
 | |
|   case ELF::R_PPC64_ADDR16_DS:
 | |
|     writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
 | |
|     break;
 | |
|   case ELF::R_PPC64_ADDR16_LO:
 | |
|     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
 | |
|     break;
 | |
|   case ELF::R_PPC64_ADDR16_LO_DS:
 | |
|     writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
 | |
|     break;
 | |
|   case ELF::R_PPC64_ADDR16_HI:
 | |
|     writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
 | |
|     break;
 | |
|   case ELF::R_PPC64_ADDR16_HA:
 | |
|     writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
 | |
|     break;
 | |
|   case ELF::R_PPC64_ADDR16_HIGHER:
 | |
|     writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
 | |
|     break;
 | |
|   case ELF::R_PPC64_ADDR16_HIGHERA:
 | |
|     writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
 | |
|     break;
 | |
|   case ELF::R_PPC64_ADDR16_HIGHEST:
 | |
|     writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
 | |
|     break;
 | |
|   case ELF::R_PPC64_ADDR16_HIGHESTA:
 | |
|     writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
 | |
|     break;
 | |
|   case ELF::R_PPC64_ADDR14: {
 | |
|     assert(((Value + Addend) & 3) == 0);
 | |
|     // Preserve the AA/LK bits in the branch instruction
 | |
|     uint8_t aalk = *(LocalAddress + 3);
 | |
|     writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
 | |
|   } break;
 | |
|   case ELF::R_PPC64_REL16_LO: {
 | |
|     uint64_t FinalAddress = (Section.LoadAddress + Offset);
 | |
|     uint64_t Delta = Value - FinalAddress + Addend;
 | |
|     writeInt16BE(LocalAddress, applyPPClo(Delta));
 | |
|   } break;
 | |
|   case ELF::R_PPC64_REL16_HI: {
 | |
|     uint64_t FinalAddress = (Section.LoadAddress + Offset);
 | |
|     uint64_t Delta = Value - FinalAddress + Addend;
 | |
|     writeInt16BE(LocalAddress, applyPPChi(Delta));
 | |
|   } break;
 | |
|   case ELF::R_PPC64_REL16_HA: {
 | |
|     uint64_t FinalAddress = (Section.LoadAddress + Offset);
 | |
|     uint64_t Delta = Value - FinalAddress + Addend;
 | |
|     writeInt16BE(LocalAddress, applyPPCha(Delta));
 | |
|   } break;
 | |
|   case ELF::R_PPC64_ADDR32: {
 | |
|     int32_t Result = static_cast<int32_t>(Value + Addend);
 | |
|     if (SignExtend32<32>(Result) != Result)
 | |
|       llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
 | |
|     writeInt32BE(LocalAddress, Result);
 | |
|   } break;
 | |
|   case ELF::R_PPC64_REL24: {
 | |
|     uint64_t FinalAddress = (Section.LoadAddress + Offset);
 | |
|     int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
 | |
|     if (SignExtend32<24>(delta) != delta)
 | |
|       llvm_unreachable("Relocation R_PPC64_REL24 overflow");
 | |
|     // Generates a 'bl <address>' instruction
 | |
|     writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC));
 | |
|   } break;
 | |
|   case ELF::R_PPC64_REL32: {
 | |
|     uint64_t FinalAddress = (Section.LoadAddress + Offset);
 | |
|     int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
 | |
|     if (SignExtend32<32>(delta) != delta)
 | |
|       llvm_unreachable("Relocation R_PPC64_REL32 overflow");
 | |
|     writeInt32BE(LocalAddress, delta);
 | |
|   } break;
 | |
|   case ELF::R_PPC64_REL64: {
 | |
|     uint64_t FinalAddress = (Section.LoadAddress + Offset);
 | |
|     uint64_t Delta = Value - FinalAddress + Addend;
 | |
|     writeInt64BE(LocalAddress, Delta);
 | |
|   } break;
 | |
|   case ELF::R_PPC64_ADDR64:
 | |
|     writeInt64BE(LocalAddress, Value + Addend);
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
 | |
|                                               uint64_t Offset, uint64_t Value,
 | |
|                                               uint32_t Type, int64_t Addend) {
 | |
|   uint8_t *LocalAddress = Section.Address + Offset;
 | |
|   switch (Type) {
 | |
|   default:
 | |
|     llvm_unreachable("Relocation type not implemented yet!");
 | |
|     break;
 | |
|   case ELF::R_390_PC16DBL:
 | |
|   case ELF::R_390_PLT16DBL: {
 | |
|     int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
 | |
|     assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
 | |
|     writeInt16BE(LocalAddress, Delta / 2);
 | |
|     break;
 | |
|   }
 | |
|   case ELF::R_390_PC32DBL:
 | |
|   case ELF::R_390_PLT32DBL: {
 | |
|     int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
 | |
|     assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
 | |
|     writeInt32BE(LocalAddress, Delta / 2);
 | |
|     break;
 | |
|   }
 | |
|   case ELF::R_390_PC32: {
 | |
|     int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
 | |
|     assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
 | |
|     writeInt32BE(LocalAddress, Delta);
 | |
|     break;
 | |
|   }
 | |
|   case ELF::R_390_64:
 | |
|     writeInt64BE(LocalAddress, Value + Addend);
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // The target location for the relocation is described by RE.SectionID and
 | |
| // RE.Offset.  RE.SectionID can be used to find the SectionEntry.  Each
 | |
| // SectionEntry has three members describing its location.
 | |
| // SectionEntry::Address is the address at which the section has been loaded
 | |
| // into memory in the current (host) process.  SectionEntry::LoadAddress is the
 | |
| // address that the section will have in the target process.
 | |
| // SectionEntry::ObjAddress is the address of the bits for this section in the
 | |
| // original emitted object image (also in the current address space).
 | |
| //
 | |
| // Relocations will be applied as if the section were loaded at
 | |
| // SectionEntry::LoadAddress, but they will be applied at an address based
 | |
| // on SectionEntry::Address.  SectionEntry::ObjAddress will be used to refer to
 | |
| // Target memory contents if they are required for value calculations.
 | |
| //
 | |
| // The Value parameter here is the load address of the symbol for the
 | |
| // relocation to be applied.  For relocations which refer to symbols in the
 | |
| // current object Value will be the LoadAddress of the section in which
 | |
| // the symbol resides (RE.Addend provides additional information about the
 | |
| // symbol location).  For external symbols, Value will be the address of the
 | |
| // symbol in the target address space.
 | |
| void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
 | |
|                                        uint64_t Value) {
 | |
|   const SectionEntry &Section = Sections[RE.SectionID];
 | |
|   return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
 | |
|                            RE.SymOffset, RE.SectionID);
 | |
| }
 | |
| 
 | |
| void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
 | |
|                                        uint64_t Offset, uint64_t Value,
 | |
|                                        uint32_t Type, int64_t Addend,
 | |
|                                        uint64_t SymOffset, SID SectionID) {
 | |
|   switch (Arch) {
 | |
|   case Triple::x86_64:
 | |
|     resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
 | |
|     break;
 | |
|   case Triple::x86:
 | |
|     resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
 | |
|                          (uint32_t)(Addend & 0xffffffffL));
 | |
|     break;
 | |
|   case Triple::aarch64:
 | |
|   case Triple::aarch64_be:
 | |
|     resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
 | |
|     break;
 | |
|   case Triple::arm: // Fall through.
 | |
|   case Triple::armeb:
 | |
|   case Triple::thumb:
 | |
|   case Triple::thumbeb:
 | |
|     resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
 | |
|                          (uint32_t)(Addend & 0xffffffffL));
 | |
|     break;
 | |
|   case Triple::mips: // Fall through.
 | |
|   case Triple::mipsel:
 | |
|   case Triple::mips64:
 | |
|   case Triple::mips64el:
 | |
|     if (IsMipsO32ABI)
 | |
|       resolveMIPSRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL),
 | |
|                             Type, (uint32_t)(Addend & 0xffffffffL));
 | |
|     else if (IsMipsN64ABI)
 | |
|       resolveMIPS64Relocation(Section, Offset, Value, Type, Addend, SymOffset,
 | |
|                               SectionID);
 | |
|     else
 | |
|       llvm_unreachable("Mips ABI not handled");
 | |
|     break;
 | |
|   case Triple::ppc64: // Fall through.
 | |
|   case Triple::ppc64le:
 | |
|     resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
 | |
|     break;
 | |
|   case Triple::systemz:
 | |
|     resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
 | |
|     break;
 | |
|   default:
 | |
|     llvm_unreachable("Unsupported CPU type!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const {
 | |
|   return (void*)(Sections[SectionID].ObjAddress + Offset);
 | |
| }
 | |
| 
 | |
| void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
 | |
|   RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
 | |
|   if (Value.SymbolName)
 | |
|     addRelocationForSymbol(RE, Value.SymbolName);
 | |
|   else
 | |
|     addRelocationForSection(RE, Value.SectionID);
 | |
| }
 | |
| 
 | |
| relocation_iterator RuntimeDyldELF::processRelocationRef(
 | |
|     unsigned SectionID, relocation_iterator RelI, const ObjectFile &O,
 | |
|     ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
 | |
|   const auto &Obj = cast<ELFObjectFileBase>(O);
 | |
|   uint64_t RelType;
 | |
|   Check(RelI->getType(RelType));
 | |
|   int64_t Addend = 0;
 | |
|   if (Obj.hasRelocationAddend(RelI->getRawDataRefImpl()))
 | |
|     Addend = *Obj.getRelocationAddend(RelI->getRawDataRefImpl());
 | |
|   elf_symbol_iterator Symbol = RelI->getSymbol();
 | |
| 
 | |
|   // Obtain the symbol name which is referenced in the relocation
 | |
|   StringRef TargetName;
 | |
|   if (Symbol != Obj.symbol_end())
 | |
|     Symbol->getName(TargetName);
 | |
|   DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
 | |
|                << " TargetName: " << TargetName << "\n");
 | |
|   RelocationValueRef Value;
 | |
|   // First search for the symbol in the local symbol table
 | |
|   SymbolRef::Type SymType = SymbolRef::ST_Unknown;
 | |
| 
 | |
|   // Search for the symbol in the global symbol table
 | |
|   RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
 | |
|   if (Symbol != Obj.symbol_end()) {
 | |
|     gsi = GlobalSymbolTable.find(TargetName.data());
 | |
|     Symbol->getType(SymType);
 | |
|   }
 | |
|   if (gsi != GlobalSymbolTable.end()) {
 | |
|     const auto &SymInfo = gsi->second;
 | |
|     Value.SectionID = SymInfo.getSectionID();
 | |
|     Value.Offset = SymInfo.getOffset();
 | |
|     Value.Addend = SymInfo.getOffset() + Addend;
 | |
|   } else {
 | |
|     switch (SymType) {
 | |
|     case SymbolRef::ST_Debug: {
 | |
|       // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
 | |
|       // and can be changed by another developers. Maybe best way is add
 | |
|       // a new symbol type ST_Section to SymbolRef and use it.
 | |
|       section_iterator si(Obj.section_end());
 | |
|       Symbol->getSection(si);
 | |
|       if (si == Obj.section_end())
 | |
|         llvm_unreachable("Symbol section not found, bad object file format!");
 | |
|       DEBUG(dbgs() << "\t\tThis is section symbol\n");
 | |
|       bool isCode = si->isText();
 | |
|       Value.SectionID = findOrEmitSection(Obj, (*si), isCode, ObjSectionToID);
 | |
|       Value.Addend = Addend;
 | |
|       break;
 | |
|     }
 | |
|     case SymbolRef::ST_Data:
 | |
|     case SymbolRef::ST_Unknown: {
 | |
|       Value.SymbolName = TargetName.data();
 | |
|       Value.Addend = Addend;
 | |
| 
 | |
|       // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
 | |
|       // will manifest here as a NULL symbol name.
 | |
|       // We can set this as a valid (but empty) symbol name, and rely
 | |
|       // on addRelocationForSymbol to handle this.
 | |
|       if (!Value.SymbolName)
 | |
|         Value.SymbolName = "";
 | |
|       break;
 | |
|     }
 | |
|     default:
 | |
|       llvm_unreachable("Unresolved symbol type!");
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   uint64_t Offset;
 | |
|   Check(RelI->getOffset(Offset));
 | |
| 
 | |
|   DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
 | |
|                << "\n");
 | |
|   if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be) &&
 | |
|       (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26)) {
 | |
|     // This is an AArch64 branch relocation, need to use a stub function.
 | |
|     DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
 | |
|     SectionEntry &Section = Sections[SectionID];
 | |
| 
 | |
|     // Look for an existing stub.
 | |
|     StubMap::const_iterator i = Stubs.find(Value);
 | |
|     if (i != Stubs.end()) {
 | |
|       resolveRelocation(Section, Offset, (uint64_t)Section.Address + i->second,
 | |
|                         RelType, 0);
 | |
|       DEBUG(dbgs() << " Stub function found\n");
 | |
|     } else {
 | |
|       // Create a new stub function.
 | |
|       DEBUG(dbgs() << " Create a new stub function\n");
 | |
|       Stubs[Value] = Section.StubOffset;
 | |
|       uint8_t *StubTargetAddr =
 | |
|           createStubFunction(Section.Address + Section.StubOffset);
 | |
| 
 | |
|       RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.Address,
 | |
|                                 ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
 | |
|       RelocationEntry REmovk_g2(SectionID, StubTargetAddr - Section.Address + 4,
 | |
|                                 ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
 | |
|       RelocationEntry REmovk_g1(SectionID, StubTargetAddr - Section.Address + 8,
 | |
|                                 ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
 | |
|       RelocationEntry REmovk_g0(SectionID,
 | |
|                                 StubTargetAddr - Section.Address + 12,
 | |
|                                 ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
 | |
| 
 | |
|       if (Value.SymbolName) {
 | |
|         addRelocationForSymbol(REmovz_g3, Value.SymbolName);
 | |
|         addRelocationForSymbol(REmovk_g2, Value.SymbolName);
 | |
|         addRelocationForSymbol(REmovk_g1, Value.SymbolName);
 | |
|         addRelocationForSymbol(REmovk_g0, Value.SymbolName);
 | |
|       } else {
 | |
|         addRelocationForSection(REmovz_g3, Value.SectionID);
 | |
|         addRelocationForSection(REmovk_g2, Value.SectionID);
 | |
|         addRelocationForSection(REmovk_g1, Value.SectionID);
 | |
|         addRelocationForSection(REmovk_g0, Value.SectionID);
 | |
|       }
 | |
|       resolveRelocation(Section, Offset,
 | |
|                         (uint64_t)Section.Address + Section.StubOffset, RelType,
 | |
|                         0);
 | |
|       Section.StubOffset += getMaxStubSize();
 | |
|     }
 | |
|   } else if (Arch == Triple::arm) {
 | |
|     if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
 | |
|       RelType == ELF::R_ARM_JUMP24) {
 | |
|       // This is an ARM branch relocation, need to use a stub function.
 | |
|       DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.");
 | |
|       SectionEntry &Section = Sections[SectionID];
 | |
| 
 | |
|       // Look for an existing stub.
 | |
|       StubMap::const_iterator i = Stubs.find(Value);
 | |
|       if (i != Stubs.end()) {
 | |
|         resolveRelocation(Section, Offset, (uint64_t)Section.Address + i->second,
 | |
|           RelType, 0);
 | |
|         DEBUG(dbgs() << " Stub function found\n");
 | |
|       } else {
 | |
|         // Create a new stub function.
 | |
|         DEBUG(dbgs() << " Create a new stub function\n");
 | |
|         Stubs[Value] = Section.StubOffset;
 | |
|         uint8_t *StubTargetAddr =
 | |
|           createStubFunction(Section.Address + Section.StubOffset);
 | |
|         RelocationEntry RE(SectionID, StubTargetAddr - Section.Address,
 | |
|           ELF::R_ARM_ABS32, Value.Addend);
 | |
|         if (Value.SymbolName)
 | |
|           addRelocationForSymbol(RE, Value.SymbolName);
 | |
|         else
 | |
|           addRelocationForSection(RE, Value.SectionID);
 | |
| 
 | |
|         resolveRelocation(Section, Offset,
 | |
|           (uint64_t)Section.Address + Section.StubOffset, RelType,
 | |
|           0);
 | |
|         Section.StubOffset += getMaxStubSize();
 | |
|       }
 | |
|     } else {
 | |
|       uint32_t *Placeholder =
 | |
|         reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
 | |
|       if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
 | |
|           RelType == ELF::R_ARM_ABS32) {
 | |
|         Value.Addend += *Placeholder;
 | |
|       } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
 | |
|         // See ELF for ARM documentation
 | |
|         Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
 | |
|       }
 | |
|       processSimpleRelocation(SectionID, Offset, RelType, Value);
 | |
|     }
 | |
|   } else if (IsMipsO32ABI) {
 | |
|     uint8_t *Placeholder = reinterpret_cast<uint8_t *>(
 | |
|         computePlaceholderAddress(SectionID, Offset));
 | |
|     uint32_t Opcode = readBytesUnaligned(Placeholder, 4);
 | |
|     if (RelType == ELF::R_MIPS_26) {
 | |
|       // This is an Mips branch relocation, need to use a stub function.
 | |
|       DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
 | |
|       SectionEntry &Section = Sections[SectionID];
 | |
| 
 | |
|       // Extract the addend from the instruction.
 | |
|       // We shift up by two since the Value will be down shifted again
 | |
|       // when applying the relocation.
 | |
|       uint32_t Addend = (Opcode & 0x03ffffff) << 2;
 | |
| 
 | |
|       Value.Addend += Addend;
 | |
| 
 | |
|       //  Look up for existing stub.
 | |
|       StubMap::const_iterator i = Stubs.find(Value);
 | |
|       if (i != Stubs.end()) {
 | |
|         RelocationEntry RE(SectionID, Offset, RelType, i->second);
 | |
|         addRelocationForSection(RE, SectionID);
 | |
|         DEBUG(dbgs() << " Stub function found\n");
 | |
|       } else {
 | |
|         // Create a new stub function.
 | |
|         DEBUG(dbgs() << " Create a new stub function\n");
 | |
|         Stubs[Value] = Section.StubOffset;
 | |
|         uint8_t *StubTargetAddr =
 | |
|           createStubFunction(Section.Address + Section.StubOffset);
 | |
| 
 | |
|         // Creating Hi and Lo relocations for the filled stub instructions.
 | |
|         RelocationEntry REHi(SectionID, StubTargetAddr - Section.Address,
 | |
|           ELF::R_MIPS_HI16, Value.Addend);
 | |
|         RelocationEntry RELo(SectionID, StubTargetAddr - Section.Address + 4,
 | |
|           ELF::R_MIPS_LO16, Value.Addend);
 | |
| 
 | |
|         if (Value.SymbolName) {
 | |
|           addRelocationForSymbol(REHi, Value.SymbolName);
 | |
|           addRelocationForSymbol(RELo, Value.SymbolName);
 | |
|         }
 | |
|         else {
 | |
|           addRelocationForSection(REHi, Value.SectionID);
 | |
|           addRelocationForSection(RELo, Value.SectionID);
 | |
|         }
 | |
| 
 | |
|         RelocationEntry RE(SectionID, Offset, RelType, Section.StubOffset);
 | |
|         addRelocationForSection(RE, SectionID);
 | |
|         Section.StubOffset += getMaxStubSize();
 | |
|       }
 | |
|     } else {
 | |
|       if (RelType == ELF::R_MIPS_HI16)
 | |
|         Value.Addend += (Opcode & 0x0000ffff) << 16;
 | |
|       else if (RelType == ELF::R_MIPS_LO16)
 | |
|         Value.Addend += (Opcode & 0x0000ffff);
 | |
|       else if (RelType == ELF::R_MIPS_32)
 | |
|         Value.Addend += Opcode;
 | |
|       processSimpleRelocation(SectionID, Offset, RelType, Value);
 | |
|     }
 | |
|   } else if (IsMipsN64ABI) {
 | |
|     uint32_t r_type = RelType & 0xff;
 | |
|     RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
 | |
|     if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
 | |
|         || r_type == ELF::R_MIPS_GOT_DISP) {
 | |
|       StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName);
 | |
|       if (i != GOTSymbolOffsets.end())
 | |
|         RE.SymOffset = i->second;
 | |
|       else {
 | |
|         RE.SymOffset = allocateGOTEntries(SectionID, 1);
 | |
|         GOTSymbolOffsets[TargetName] = RE.SymOffset;
 | |
|       }
 | |
|     }
 | |
|     if (Value.SymbolName)
 | |
|       addRelocationForSymbol(RE, Value.SymbolName);
 | |
|     else
 | |
|       addRelocationForSection(RE, Value.SectionID);
 | |
|   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
 | |
|     if (RelType == ELF::R_PPC64_REL24) {
 | |
|       // Determine ABI variant in use for this object.
 | |
|       unsigned AbiVariant;
 | |
|       Obj.getPlatformFlags(AbiVariant);
 | |
|       AbiVariant &= ELF::EF_PPC64_ABI;
 | |
|       // A PPC branch relocation will need a stub function if the target is
 | |
|       // an external symbol (Symbol::ST_Unknown) or if the target address
 | |
|       // is not within the signed 24-bits branch address.
 | |
|       SectionEntry &Section = Sections[SectionID];
 | |
|       uint8_t *Target = Section.Address + Offset;
 | |
|       bool RangeOverflow = false;
 | |
|       if (SymType != SymbolRef::ST_Unknown) {
 | |
|         if (AbiVariant != 2) {
 | |
|           // In the ELFv1 ABI, a function call may point to the .opd entry,
 | |
|           // so the final symbol value is calculated based on the relocation
 | |
|           // values in the .opd section.
 | |
|           findOPDEntrySection(Obj, ObjSectionToID, Value);
 | |
|         } else {
 | |
|           // In the ELFv2 ABI, a function symbol may provide a local entry
 | |
|           // point, which must be used for direct calls.
 | |
|           uint8_t SymOther = Symbol->getOther();
 | |
|           Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
 | |
|         }
 | |
|         uint8_t *RelocTarget = Sections[Value.SectionID].Address + Value.Addend;
 | |
|         int32_t delta = static_cast<int32_t>(Target - RelocTarget);
 | |
|         // If it is within 24-bits branch range, just set the branch target
 | |
|         if (SignExtend32<24>(delta) == delta) {
 | |
|           RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
 | |
|           if (Value.SymbolName)
 | |
|             addRelocationForSymbol(RE, Value.SymbolName);
 | |
|           else
 | |
|             addRelocationForSection(RE, Value.SectionID);
 | |
|         } else {
 | |
|           RangeOverflow = true;
 | |
|         }
 | |
|       }
 | |
|       if (SymType == SymbolRef::ST_Unknown || RangeOverflow) {
 | |
|         // It is an external symbol (SymbolRef::ST_Unknown) or within a range
 | |
|         // larger than 24-bits.
 | |
|         StubMap::const_iterator i = Stubs.find(Value);
 | |
|         if (i != Stubs.end()) {
 | |
|           // Symbol function stub already created, just relocate to it
 | |
|           resolveRelocation(Section, Offset,
 | |
|                             (uint64_t)Section.Address + i->second, RelType, 0);
 | |
|           DEBUG(dbgs() << " Stub function found\n");
 | |
|         } else {
 | |
|           // Create a new stub function.
 | |
|           DEBUG(dbgs() << " Create a new stub function\n");
 | |
|           Stubs[Value] = Section.StubOffset;
 | |
|           uint8_t *StubTargetAddr =
 | |
|               createStubFunction(Section.Address + Section.StubOffset,
 | |
|                                  AbiVariant);
 | |
|           RelocationEntry RE(SectionID, StubTargetAddr - Section.Address,
 | |
|                              ELF::R_PPC64_ADDR64, Value.Addend);
 | |
| 
 | |
|           // Generates the 64-bits address loads as exemplified in section
 | |
|           // 4.5.1 in PPC64 ELF ABI.  Note that the relocations need to
 | |
|           // apply to the low part of the instructions, so we have to update
 | |
|           // the offset according to the target endianness.
 | |
|           uint64_t StubRelocOffset = StubTargetAddr - Section.Address;
 | |
|           if (!IsTargetLittleEndian)
 | |
|             StubRelocOffset += 2;
 | |
| 
 | |
|           RelocationEntry REhst(SectionID, StubRelocOffset + 0,
 | |
|                                 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
 | |
|           RelocationEntry REhr(SectionID, StubRelocOffset + 4,
 | |
|                                ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
 | |
|           RelocationEntry REh(SectionID, StubRelocOffset + 12,
 | |
|                               ELF::R_PPC64_ADDR16_HI, Value.Addend);
 | |
|           RelocationEntry REl(SectionID, StubRelocOffset + 16,
 | |
|                               ELF::R_PPC64_ADDR16_LO, Value.Addend);
 | |
| 
 | |
|           if (Value.SymbolName) {
 | |
|             addRelocationForSymbol(REhst, Value.SymbolName);
 | |
|             addRelocationForSymbol(REhr, Value.SymbolName);
 | |
|             addRelocationForSymbol(REh, Value.SymbolName);
 | |
|             addRelocationForSymbol(REl, Value.SymbolName);
 | |
|           } else {
 | |
|             addRelocationForSection(REhst, Value.SectionID);
 | |
|             addRelocationForSection(REhr, Value.SectionID);
 | |
|             addRelocationForSection(REh, Value.SectionID);
 | |
|             addRelocationForSection(REl, Value.SectionID);
 | |
|           }
 | |
| 
 | |
|           resolveRelocation(Section, Offset,
 | |
|                             (uint64_t)Section.Address + Section.StubOffset,
 | |
|                             RelType, 0);
 | |
|           Section.StubOffset += getMaxStubSize();
 | |
|         }
 | |
|         if (SymType == SymbolRef::ST_Unknown) {
 | |
|           // Restore the TOC for external calls
 | |
|           if (AbiVariant == 2)
 | |
|             writeInt32BE(Target + 4, 0xE8410018); // ld r2,28(r1)
 | |
|           else
 | |
|             writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
 | |
|         }
 | |
|       }
 | |
|     } else if (RelType == ELF::R_PPC64_TOC16 ||
 | |
|                RelType == ELF::R_PPC64_TOC16_DS ||
 | |
|                RelType == ELF::R_PPC64_TOC16_LO ||
 | |
|                RelType == ELF::R_PPC64_TOC16_LO_DS ||
 | |
|                RelType == ELF::R_PPC64_TOC16_HI ||
 | |
|                RelType == ELF::R_PPC64_TOC16_HA) {
 | |
|       // These relocations are supposed to subtract the TOC address from
 | |
|       // the final value.  This does not fit cleanly into the RuntimeDyld
 | |
|       // scheme, since there may be *two* sections involved in determining
 | |
|       // the relocation value (the section of the symbol refered to by the
 | |
|       // relocation, and the TOC section associated with the current module).
 | |
|       //
 | |
|       // Fortunately, these relocations are currently only ever generated
 | |
|       // refering to symbols that themselves reside in the TOC, which means
 | |
|       // that the two sections are actually the same.  Thus they cancel out
 | |
|       // and we can immediately resolve the relocation right now.
 | |
|       switch (RelType) {
 | |
|       case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
 | |
|       case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
 | |
|       case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
 | |
|       case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
 | |
|       case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
 | |
|       case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
 | |
|       default: llvm_unreachable("Wrong relocation type.");
 | |
|       }
 | |
| 
 | |
|       RelocationValueRef TOCValue;
 | |
|       findPPC64TOCSection(Obj, ObjSectionToID, TOCValue);
 | |
|       if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
 | |
|         llvm_unreachable("Unsupported TOC relocation.");
 | |
|       Value.Addend -= TOCValue.Addend;
 | |
|       resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
 | |
|     } else {
 | |
|       // There are two ways to refer to the TOC address directly: either
 | |
|       // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
 | |
|       // ignored), or via any relocation that refers to the magic ".TOC."
 | |
|       // symbols (in which case the addend is respected).
 | |
|       if (RelType == ELF::R_PPC64_TOC) {
 | |
|         RelType = ELF::R_PPC64_ADDR64;
 | |
|         findPPC64TOCSection(Obj, ObjSectionToID, Value);
 | |
|       } else if (TargetName == ".TOC.") {
 | |
|         findPPC64TOCSection(Obj, ObjSectionToID, Value);
 | |
|         Value.Addend += Addend;
 | |
|       }
 | |
| 
 | |
|       RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
 | |
| 
 | |
|       if (Value.SymbolName)
 | |
|         addRelocationForSymbol(RE, Value.SymbolName);
 | |
|       else
 | |
|         addRelocationForSection(RE, Value.SectionID);
 | |
|     }
 | |
|   } else if (Arch == Triple::systemz &&
 | |
|              (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
 | |
|     // Create function stubs for both PLT and GOT references, regardless of
 | |
|     // whether the GOT reference is to data or code.  The stub contains the
 | |
|     // full address of the symbol, as needed by GOT references, and the
 | |
|     // executable part only adds an overhead of 8 bytes.
 | |
|     //
 | |
|     // We could try to conserve space by allocating the code and data
 | |
|     // parts of the stub separately.  However, as things stand, we allocate
 | |
|     // a stub for every relocation, so using a GOT in JIT code should be
 | |
|     // no less space efficient than using an explicit constant pool.
 | |
|     DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
 | |
|     SectionEntry &Section = Sections[SectionID];
 | |
| 
 | |
|     // Look for an existing stub.
 | |
|     StubMap::const_iterator i = Stubs.find(Value);
 | |
|     uintptr_t StubAddress;
 | |
|     if (i != Stubs.end()) {
 | |
|       StubAddress = uintptr_t(Section.Address) + i->second;
 | |
|       DEBUG(dbgs() << " Stub function found\n");
 | |
|     } else {
 | |
|       // Create a new stub function.
 | |
|       DEBUG(dbgs() << " Create a new stub function\n");
 | |
| 
 | |
|       uintptr_t BaseAddress = uintptr_t(Section.Address);
 | |
|       uintptr_t StubAlignment = getStubAlignment();
 | |
|       StubAddress = (BaseAddress + Section.StubOffset + StubAlignment - 1) &
 | |
|                     -StubAlignment;
 | |
|       unsigned StubOffset = StubAddress - BaseAddress;
 | |
| 
 | |
|       Stubs[Value] = StubOffset;
 | |
|       createStubFunction((uint8_t *)StubAddress);
 | |
|       RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
 | |
|                          Value.Offset);
 | |
|       if (Value.SymbolName)
 | |
|         addRelocationForSymbol(RE, Value.SymbolName);
 | |
|       else
 | |
|         addRelocationForSection(RE, Value.SectionID);
 | |
|       Section.StubOffset = StubOffset + getMaxStubSize();
 | |
|     }
 | |
| 
 | |
|     if (RelType == ELF::R_390_GOTENT)
 | |
|       resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
 | |
|                         Addend);
 | |
|     else
 | |
|       resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
 | |
|   } else if (Arch == Triple::x86_64) {
 | |
|     if (RelType == ELF::R_X86_64_PLT32) {
 | |
|       // The way the PLT relocations normally work is that the linker allocates
 | |
|       // the
 | |
|       // PLT and this relocation makes a PC-relative call into the PLT.  The PLT
 | |
|       // entry will then jump to an address provided by the GOT.  On first call,
 | |
|       // the
 | |
|       // GOT address will point back into PLT code that resolves the symbol. After
 | |
|       // the first call, the GOT entry points to the actual function.
 | |
|       //
 | |
|       // For local functions we're ignoring all of that here and just replacing
 | |
|       // the PLT32 relocation type with PC32, which will translate the relocation
 | |
|       // into a PC-relative call directly to the function. For external symbols we
 | |
|       // can't be sure the function will be within 2^32 bytes of the call site, so
 | |
|       // we need to create a stub, which calls into the GOT.  This case is
 | |
|       // equivalent to the usual PLT implementation except that we use the stub
 | |
|       // mechanism in RuntimeDyld (which puts stubs at the end of the section)
 | |
|       // rather than allocating a PLT section.
 | |
|       if (Value.SymbolName) {
 | |
|         // This is a call to an external function.
 | |
|         // Look for an existing stub.
 | |
|         SectionEntry &Section = Sections[SectionID];
 | |
|         StubMap::const_iterator i = Stubs.find(Value);
 | |
|         uintptr_t StubAddress;
 | |
|         if (i != Stubs.end()) {
 | |
|         StubAddress = uintptr_t(Section.Address) + i->second;
 | |
|         DEBUG(dbgs() << " Stub function found\n");
 | |
|         } else {
 | |
|         // Create a new stub function (equivalent to a PLT entry).
 | |
|         DEBUG(dbgs() << " Create a new stub function\n");
 | |
| 
 | |
|         uintptr_t BaseAddress = uintptr_t(Section.Address);
 | |
|         uintptr_t StubAlignment = getStubAlignment();
 | |
|         StubAddress = (BaseAddress + Section.StubOffset + StubAlignment - 1) &
 | |
|                 -StubAlignment;
 | |
|         unsigned StubOffset = StubAddress - BaseAddress;
 | |
|         Stubs[Value] = StubOffset;
 | |
|         createStubFunction((uint8_t *)StubAddress);
 | |
| 
 | |
|         // Bump our stub offset counter
 | |
|         Section.StubOffset = StubOffset + getMaxStubSize();
 | |
| 
 | |
|         // Allocate a GOT Entry
 | |
|         uint64_t GOTOffset = allocateGOTEntries(SectionID, 1);
 | |
| 
 | |
|         // The load of the GOT address has an addend of -4
 | |
|         resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4);
 | |
| 
 | |
|         // Fill in the value of the symbol we're targeting into the GOT
 | |
|         addRelocationForSymbol(computeGOTOffsetRE(SectionID,GOTOffset,0,ELF::R_X86_64_64),
 | |
|           Value.SymbolName);
 | |
|         }
 | |
| 
 | |
|         // Make the target call a call into the stub table.
 | |
|         resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32,
 | |
|                 Addend);
 | |
|       } else {
 | |
|         RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend,
 | |
|                   Value.Offset);
 | |
|         addRelocationForSection(RE, Value.SectionID);
 | |
|       }
 | |
|     } else if (RelType == ELF::R_X86_64_GOTPCREL) {
 | |
|       uint64_t GOTOffset = allocateGOTEntries(SectionID, 1);
 | |
|       resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend);
 | |
| 
 | |
|       // Fill in the value of the symbol we're targeting into the GOT
 | |
|       RelocationEntry RE = computeGOTOffsetRE(SectionID, GOTOffset, Value.Offset, ELF::R_X86_64_64);
 | |
|       if (Value.SymbolName)
 | |
|         addRelocationForSymbol(RE, Value.SymbolName);
 | |
|       else
 | |
|         addRelocationForSection(RE, Value.SectionID);
 | |
|     } else if (RelType == ELF::R_X86_64_PC32) {
 | |
|       Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
 | |
|       processSimpleRelocation(SectionID, Offset, RelType, Value);
 | |
|     } else if (RelType == ELF::R_X86_64_PC64) {
 | |
|       Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset));
 | |
|       processSimpleRelocation(SectionID, Offset, RelType, Value);
 | |
|     } else {
 | |
|       processSimpleRelocation(SectionID, Offset, RelType, Value);
 | |
|     }
 | |
|   } else {
 | |
|     if (Arch == Triple::x86) {
 | |
|       Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
 | |
|     }
 | |
|     processSimpleRelocation(SectionID, Offset, RelType, Value);
 | |
|   }
 | |
|   return ++RelI;
 | |
| }
 | |
| 
 | |
| size_t RuntimeDyldELF::getGOTEntrySize() {
 | |
|   // We don't use the GOT in all of these cases, but it's essentially free
 | |
|   // to put them all here.
 | |
|   size_t Result = 0;
 | |
|   switch (Arch) {
 | |
|   case Triple::x86_64:
 | |
|   case Triple::aarch64:
 | |
|   case Triple::aarch64_be:
 | |
|   case Triple::ppc64:
 | |
|   case Triple::ppc64le:
 | |
|   case Triple::systemz:
 | |
|     Result = sizeof(uint64_t);
 | |
|     break;
 | |
|   case Triple::x86:
 | |
|   case Triple::arm:
 | |
|   case Triple::thumb:
 | |
|     Result = sizeof(uint32_t);
 | |
|     break;
 | |
|   case Triple::mips:
 | |
|   case Triple::mipsel:
 | |
|   case Triple::mips64:
 | |
|   case Triple::mips64el:
 | |
|     if (IsMipsO32ABI)
 | |
|       Result = sizeof(uint32_t);
 | |
|     else if (IsMipsN64ABI)
 | |
|       Result = sizeof(uint64_t);
 | |
|     else
 | |
|       llvm_unreachable("Mips ABI not handled");
 | |
|     break;
 | |
|   default:
 | |
|     llvm_unreachable("Unsupported CPU type!");
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned SectionID, unsigned no)
 | |
| {
 | |
|   (void)SectionID; // The GOT Section is the same for all section in the object file
 | |
|   if (GOTSectionID == 0) {
 | |
|     GOTSectionID = Sections.size();
 | |
|     // Reserve a section id. We'll allocate the section later
 | |
|     // once we know the total size
 | |
|     Sections.push_back(SectionEntry(".got", 0, 0, 0));
 | |
|   }
 | |
|   uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
 | |
|   CurrentGOTIndex += no;
 | |
|   return StartOffset;
 | |
| }
 | |
| 
 | |
| void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID, uint64_t Offset, uint64_t GOTOffset)
 | |
| {
 | |
|   // Fill in the relative address of the GOT Entry into the stub
 | |
|   RelocationEntry GOTRE(SectionID, Offset, ELF::R_X86_64_PC32, GOTOffset);
 | |
|   addRelocationForSection(GOTRE, GOTSectionID);
 | |
| }
 | |
| 
 | |
| RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(unsigned SectionID, uint64_t GOTOffset, uint64_t SymbolOffset,
 | |
|                                                    uint32_t Type)
 | |
| {
 | |
|   (void)SectionID; // The GOT Section is the same for all section in the object file
 | |
|   return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
 | |
| }
 | |
| 
 | |
| void RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
 | |
|                                   ObjSectionToIDMap &SectionMap) {
 | |
|   // If necessary, allocate the global offset table
 | |
|   if (GOTSectionID != 0) {
 | |
|     // Allocate memory for the section
 | |
|     size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
 | |
|     uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
 | |
|                                                 GOTSectionID, ".got", false);
 | |
|     if (!Addr)
 | |
|       report_fatal_error("Unable to allocate memory for GOT!");
 | |
| 
 | |
|     Sections[GOTSectionID] = SectionEntry(".got", Addr, TotalSize, 0);
 | |
| 
 | |
|     if (Checker)
 | |
|       Checker->registerSection(Obj.getFileName(), GOTSectionID);
 | |
| 
 | |
|     // For now, initialize all GOT entries to zero.  We'll fill them in as
 | |
|     // needed when GOT-based relocations are applied.
 | |
|     memset(Addr, 0, TotalSize);
 | |
|     if (IsMipsN64ABI) {
 | |
|       // To correctly resolve Mips GOT relocations, we need a mapping from
 | |
|       // object's sections to GOTs.
 | |
|       for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
 | |
|            SI != SE; ++SI) {
 | |
|         if (SI->relocation_begin() != SI->relocation_end()) {
 | |
|           section_iterator RelocatedSection = SI->getRelocatedSection();
 | |
|           ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
 | |
|           assert (i != SectionMap.end());
 | |
|           SectionToGOTMap[i->second] = GOTSectionID;
 | |
|         }
 | |
|       }
 | |
|       GOTSymbolOffsets.clear();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Look for and record the EH frame section.
 | |
|   ObjSectionToIDMap::iterator i, e;
 | |
|   for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
 | |
|     const SectionRef &Section = i->first;
 | |
|     StringRef Name;
 | |
|     Section.getName(Name);
 | |
|     if (Name == ".eh_frame") {
 | |
|       UnregisteredEHFrameSections.push_back(i->second);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   GOTSectionID = 0;
 | |
|   CurrentGOTIndex = 0;
 | |
| }
 | |
| 
 | |
| bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
 | |
|   return Obj.isELF();
 | |
| }
 | |
| 
 | |
| } // namespace llvm
 |