mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-26 23:32:58 +00:00
e2d6f91d63
For some reason I never got around to adding these at the same time as the signed versions. No idea why. I'm not sure whether this SystemZII::BranchC* stuff is useful, or whether it should just be replaced with an "is normal" flag. I'll leave that for later though. There are some boundary conditions that can be tweaked, such as preferring unsigned comparisons for equality with [128, 256), and "<= 255" over "< 256", but again I'll leave those for a separate patch. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190930 91177308-0d34-0410-b5e6-96231b3b80d8
495 lines
18 KiB
TableGen
495 lines
18 KiB
TableGen
//===-- SystemZOperands.td - SystemZ instruction operands ----*- tblgen-*--===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Class definitions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class ImmediateAsmOperand<string name>
|
|
: AsmOperandClass {
|
|
let Name = name;
|
|
let RenderMethod = "addImmOperands";
|
|
}
|
|
|
|
// Constructs both a DAG pattern and instruction operand for an immediate
|
|
// of type VT. PRED returns true if a node is acceptable and XFORM returns
|
|
// the operand value associated with the node. ASMOP is the name of the
|
|
// associated asm operand, and also forms the basis of the asm print method.
|
|
class Immediate<ValueType vt, code pred, SDNodeXForm xform, string asmop>
|
|
: PatLeaf<(vt imm), pred, xform>, Operand<vt> {
|
|
let PrintMethod = "print"##asmop##"Operand";
|
|
let DecoderMethod = "decode"##asmop##"Operand";
|
|
let ParserMatchClass = !cast<AsmOperandClass>(asmop);
|
|
}
|
|
|
|
// Constructs an asm operand for a PC-relative address. SIZE says how
|
|
// many bits there are.
|
|
class PCRelAsmOperand<string size> : ImmediateAsmOperand<"PCRel"##size> {
|
|
let PredicateMethod = "isImm";
|
|
let ParserMethod = "parsePCRel"##size;
|
|
}
|
|
|
|
// Constructs an operand for a PC-relative address with address type VT.
|
|
// ASMOP is the associated asm operand.
|
|
class PCRelOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> {
|
|
let PrintMethod = "printPCRelOperand";
|
|
let ParserMatchClass = asmop;
|
|
}
|
|
|
|
// Constructs both a DAG pattern and instruction operand for a PC-relative
|
|
// address with address size VT. SELF is the name of the operand and
|
|
// ASMOP is the associated asm operand.
|
|
class PCRelAddress<ValueType vt, string self, AsmOperandClass asmop>
|
|
: ComplexPattern<vt, 1, "selectPCRelAddress", [z_pcrel_wrapper]>,
|
|
PCRelOperand<vt, asmop> {
|
|
let MIOperandInfo = (ops !cast<Operand>(self));
|
|
}
|
|
|
|
// Constructs an AsmOperandClass for addressing mode FORMAT, treating the
|
|
// registers as having BITSIZE bits and displacements as having DISPSIZE bits.
|
|
// LENGTH is "LenN" for addresses with an N-bit length field, otherwise it
|
|
// is "".
|
|
class AddressAsmOperand<string format, string bitsize, string dispsize,
|
|
string length = "">
|
|
: AsmOperandClass {
|
|
let Name = format##bitsize##"Disp"##dispsize##length;
|
|
let ParserMethod = "parse"##format##bitsize;
|
|
let RenderMethod = "add"##format##"Operands";
|
|
}
|
|
|
|
// Constructs both a DAG pattern and instruction operand for an addressing mode.
|
|
// FORMAT, BITSIZE, DISPSIZE and LENGTH are the parameters to an associated
|
|
// AddressAsmOperand. OPERANDS is a list of NUMOPS individual operands
|
|
// (base register, displacement, etc.). SELTYPE is the type of the memory
|
|
// operand for selection purposes; sometimes we want different selection
|
|
// choices for the same underlying addressing mode. SUFFIX is similarly
|
|
// a suffix appended to the displacement for selection purposes;
|
|
// e.g. we want to reject small 20-bit displacements if a 12-bit form
|
|
// also exists, but we want to accept them otherwise.
|
|
class AddressingMode<string seltype, string bitsize, string dispsize,
|
|
string suffix, string length, int numops, string format,
|
|
dag operands>
|
|
: ComplexPattern<!cast<ValueType>("i"##bitsize), numops,
|
|
"select"##seltype##dispsize##suffix##length,
|
|
[add, sub, or, frameindex, z_adjdynalloc]>,
|
|
Operand<!cast<ValueType>("i"##bitsize)> {
|
|
let PrintMethod = "print"##format##"Operand";
|
|
let EncoderMethod = "get"##format##dispsize##length##"Encoding";
|
|
let DecoderMethod =
|
|
"decode"##format##bitsize##"Disp"##dispsize##length##"Operand";
|
|
let MIOperandInfo = operands;
|
|
let ParserMatchClass =
|
|
!cast<AddressAsmOperand>(format##bitsize##"Disp"##dispsize##length);
|
|
}
|
|
|
|
// An addressing mode with a base and displacement but no index.
|
|
class BDMode<string type, string bitsize, string dispsize, string suffix>
|
|
: AddressingMode<type, bitsize, dispsize, suffix, "", 2, "BDAddr",
|
|
(ops !cast<RegisterOperand>("ADDR"##bitsize),
|
|
!cast<Immediate>("disp"##dispsize##"imm"##bitsize))>;
|
|
|
|
// An addressing mode with a base, displacement and index.
|
|
class BDXMode<string type, string bitsize, string dispsize, string suffix>
|
|
: AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDXAddr",
|
|
(ops !cast<RegisterOperand>("ADDR"##bitsize),
|
|
!cast<Immediate>("disp"##dispsize##"imm"##bitsize),
|
|
!cast<RegisterOperand>("ADDR"##bitsize))>;
|
|
|
|
// A BDMode paired with an immediate length operand of LENSIZE bits.
|
|
class BDLMode<string type, string bitsize, string dispsize, string suffix,
|
|
string lensize>
|
|
: AddressingMode<type, bitsize, dispsize, suffix, "Len"##lensize, 3,
|
|
"BDLAddr",
|
|
(ops !cast<RegisterOperand>("ADDR"##bitsize),
|
|
!cast<Immediate>("disp"##dispsize##"imm"##bitsize),
|
|
!cast<Immediate>("imm"##bitsize))>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Extracting immediate operands from nodes
|
|
// These all create MVT::i64 nodes to ensure the value is not sign-extended
|
|
// when converted from an SDNode to a MachineOperand later on.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Bits 0-15 (counting from the lsb).
|
|
def LL16 : SDNodeXForm<imm, [{
|
|
uint64_t Value = N->getZExtValue() & 0x000000000000FFFFULL;
|
|
return CurDAG->getTargetConstant(Value, MVT::i64);
|
|
}]>;
|
|
|
|
// Bits 16-31 (counting from the lsb).
|
|
def LH16 : SDNodeXForm<imm, [{
|
|
uint64_t Value = (N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16;
|
|
return CurDAG->getTargetConstant(Value, MVT::i64);
|
|
}]>;
|
|
|
|
// Bits 32-47 (counting from the lsb).
|
|
def HL16 : SDNodeXForm<imm, [{
|
|
uint64_t Value = (N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32;
|
|
return CurDAG->getTargetConstant(Value, MVT::i64);
|
|
}]>;
|
|
|
|
// Bits 48-63 (counting from the lsb).
|
|
def HH16 : SDNodeXForm<imm, [{
|
|
uint64_t Value = (N->getZExtValue() & 0xFFFF000000000000ULL) >> 48;
|
|
return CurDAG->getTargetConstant(Value, MVT::i64);
|
|
}]>;
|
|
|
|
// Low 32 bits.
|
|
def LF32 : SDNodeXForm<imm, [{
|
|
uint64_t Value = N->getZExtValue() & 0x00000000FFFFFFFFULL;
|
|
return CurDAG->getTargetConstant(Value, MVT::i64);
|
|
}]>;
|
|
|
|
// High 32 bits.
|
|
def HF32 : SDNodeXForm<imm, [{
|
|
uint64_t Value = N->getZExtValue() >> 32;
|
|
return CurDAG->getTargetConstant(Value, MVT::i64);
|
|
}]>;
|
|
|
|
// Truncate an immediate to a 8-bit signed quantity.
|
|
def SIMM8 : SDNodeXForm<imm, [{
|
|
return CurDAG->getTargetConstant(int8_t(N->getZExtValue()), MVT::i64);
|
|
}]>;
|
|
|
|
// Truncate an immediate to a 8-bit unsigned quantity.
|
|
def UIMM8 : SDNodeXForm<imm, [{
|
|
return CurDAG->getTargetConstant(uint8_t(N->getZExtValue()), MVT::i64);
|
|
}]>;
|
|
|
|
// Truncate an immediate to a 16-bit signed quantity.
|
|
def SIMM16 : SDNodeXForm<imm, [{
|
|
return CurDAG->getTargetConstant(int16_t(N->getZExtValue()), MVT::i64);
|
|
}]>;
|
|
|
|
// Truncate an immediate to a 16-bit unsigned quantity.
|
|
def UIMM16 : SDNodeXForm<imm, [{
|
|
return CurDAG->getTargetConstant(uint16_t(N->getZExtValue()), MVT::i64);
|
|
}]>;
|
|
|
|
// Truncate an immediate to a 32-bit signed quantity.
|
|
def SIMM32 : SDNodeXForm<imm, [{
|
|
return CurDAG->getTargetConstant(int32_t(N->getZExtValue()), MVT::i64);
|
|
}]>;
|
|
|
|
// Truncate an immediate to a 32-bit unsigned quantity.
|
|
def UIMM32 : SDNodeXForm<imm, [{
|
|
return CurDAG->getTargetConstant(uint32_t(N->getZExtValue()), MVT::i64);
|
|
}]>;
|
|
|
|
// Negate and then truncate an immediate to a 32-bit unsigned quantity.
|
|
def NEGIMM32 : SDNodeXForm<imm, [{
|
|
return CurDAG->getTargetConstant(uint32_t(-N->getZExtValue()), MVT::i64);
|
|
}]>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Immediate asm operands.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def U4Imm : ImmediateAsmOperand<"U4Imm">;
|
|
def U6Imm : ImmediateAsmOperand<"U6Imm">;
|
|
def S8Imm : ImmediateAsmOperand<"S8Imm">;
|
|
def U8Imm : ImmediateAsmOperand<"U8Imm">;
|
|
def S16Imm : ImmediateAsmOperand<"S16Imm">;
|
|
def U16Imm : ImmediateAsmOperand<"U16Imm">;
|
|
def S32Imm : ImmediateAsmOperand<"S32Imm">;
|
|
def U32Imm : ImmediateAsmOperand<"U32Imm">;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// 8-bit immediates
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def uimm8zx4 : Immediate<i8, [{
|
|
return isUInt<4>(N->getZExtValue());
|
|
}], NOOP_SDNodeXForm, "U4Imm">;
|
|
|
|
def uimm8zx6 : Immediate<i8, [{
|
|
return isUInt<6>(N->getZExtValue());
|
|
}], NOOP_SDNodeXForm, "U6Imm">;
|
|
|
|
def simm8 : Immediate<i8, [{}], SIMM8, "S8Imm">;
|
|
def uimm8 : Immediate<i8, [{}], UIMM8, "U8Imm">;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// i32 immediates
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Immediates for the lower and upper 16 bits of an i32, with the other
|
|
// bits of the i32 being zero.
|
|
def imm32ll16 : Immediate<i32, [{
|
|
return SystemZ::isImmLL(N->getZExtValue());
|
|
}], LL16, "U16Imm">;
|
|
|
|
def imm32lh16 : Immediate<i32, [{
|
|
return SystemZ::isImmLH(N->getZExtValue());
|
|
}], LH16, "U16Imm">;
|
|
|
|
// Immediates for the lower and upper 16 bits of an i32, with the other
|
|
// bits of the i32 being one.
|
|
def imm32ll16c : Immediate<i32, [{
|
|
return SystemZ::isImmLL(uint32_t(~N->getZExtValue()));
|
|
}], LL16, "U16Imm">;
|
|
|
|
def imm32lh16c : Immediate<i32, [{
|
|
return SystemZ::isImmLH(uint32_t(~N->getZExtValue()));
|
|
}], LH16, "U16Imm">;
|
|
|
|
// Short immediates
|
|
def imm32sx8 : Immediate<i32, [{
|
|
return isInt<8>(N->getSExtValue());
|
|
}], SIMM8, "S8Imm">;
|
|
|
|
def imm32zx8 : Immediate<i32, [{
|
|
return isUInt<8>(N->getZExtValue());
|
|
}], UIMM8, "U8Imm">;
|
|
|
|
def imm32zx8trunc : Immediate<i32, [{}], UIMM8, "U8Imm">;
|
|
|
|
def imm32sx16 : Immediate<i32, [{
|
|
return isInt<16>(N->getSExtValue());
|
|
}], SIMM16, "S16Imm">;
|
|
|
|
def imm32zx16 : Immediate<i32, [{
|
|
return isUInt<16>(N->getZExtValue());
|
|
}], UIMM16, "U16Imm">;
|
|
|
|
def imm32sx16trunc : Immediate<i32, [{}], SIMM16, "S16Imm">;
|
|
|
|
// Full 32-bit immediates. we need both signed and unsigned versions
|
|
// because the assembler is picky. E.g. AFI requires signed operands
|
|
// while NILF requires unsigned ones.
|
|
def simm32 : Immediate<i32, [{}], SIMM32, "S32Imm">;
|
|
def uimm32 : Immediate<i32, [{}], UIMM32, "U32Imm">;
|
|
|
|
def imm32 : ImmLeaf<i32, [{}]>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// 64-bit immediates
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Immediates for 16-bit chunks of an i64, with the other bits of the
|
|
// i32 being zero.
|
|
def imm64ll16 : Immediate<i64, [{
|
|
return SystemZ::isImmLL(N->getZExtValue());
|
|
}], LL16, "U16Imm">;
|
|
|
|
def imm64lh16 : Immediate<i64, [{
|
|
return SystemZ::isImmLH(N->getZExtValue());
|
|
}], LH16, "U16Imm">;
|
|
|
|
def imm64hl16 : Immediate<i64, [{
|
|
return SystemZ::isImmHL(N->getZExtValue());
|
|
}], HL16, "U16Imm">;
|
|
|
|
def imm64hh16 : Immediate<i64, [{
|
|
return SystemZ::isImmHH(N->getZExtValue());
|
|
}], HH16, "U16Imm">;
|
|
|
|
// Immediates for 16-bit chunks of an i64, with the other bits of the
|
|
// i32 being one.
|
|
def imm64ll16c : Immediate<i64, [{
|
|
return SystemZ::isImmLL(uint64_t(~N->getZExtValue()));
|
|
}], LL16, "U16Imm">;
|
|
|
|
def imm64lh16c : Immediate<i64, [{
|
|
return SystemZ::isImmLH(uint64_t(~N->getZExtValue()));
|
|
}], LH16, "U16Imm">;
|
|
|
|
def imm64hl16c : Immediate<i64, [{
|
|
return SystemZ::isImmHL(uint64_t(~N->getZExtValue()));
|
|
}], HL16, "U16Imm">;
|
|
|
|
def imm64hh16c : Immediate<i64, [{
|
|
return SystemZ::isImmHH(uint64_t(~N->getZExtValue()));
|
|
}], HH16, "U16Imm">;
|
|
|
|
// Immediates for the lower and upper 32 bits of an i64, with the other
|
|
// bits of the i32 being zero.
|
|
def imm64lf32 : Immediate<i64, [{
|
|
return SystemZ::isImmLF(N->getZExtValue());
|
|
}], LF32, "U32Imm">;
|
|
|
|
def imm64hf32 : Immediate<i64, [{
|
|
return SystemZ::isImmHF(N->getZExtValue());
|
|
}], HF32, "U32Imm">;
|
|
|
|
// Immediates for the lower and upper 32 bits of an i64, with the other
|
|
// bits of the i32 being one.
|
|
def imm64lf32c : Immediate<i64, [{
|
|
return SystemZ::isImmLF(uint64_t(~N->getZExtValue()));
|
|
}], LF32, "U32Imm">;
|
|
|
|
def imm64hf32c : Immediate<i64, [{
|
|
return SystemZ::isImmHF(uint64_t(~N->getZExtValue()));
|
|
}], HF32, "U32Imm">;
|
|
|
|
// Short immediates.
|
|
def imm64sx8 : Immediate<i64, [{
|
|
return isInt<8>(N->getSExtValue());
|
|
}], SIMM8, "S8Imm">;
|
|
|
|
def imm64zx8 : Immediate<i64, [{
|
|
return isUInt<8>(N->getSExtValue());
|
|
}], UIMM8, "U8Imm">;
|
|
|
|
def imm64sx16 : Immediate<i64, [{
|
|
return isInt<16>(N->getSExtValue());
|
|
}], SIMM16, "S16Imm">;
|
|
|
|
def imm64zx16 : Immediate<i64, [{
|
|
return isUInt<16>(N->getZExtValue());
|
|
}], UIMM16, "U16Imm">;
|
|
|
|
def imm64sx32 : Immediate<i64, [{
|
|
return isInt<32>(N->getSExtValue());
|
|
}], SIMM32, "S32Imm">;
|
|
|
|
def imm64zx32 : Immediate<i64, [{
|
|
return isUInt<32>(N->getZExtValue());
|
|
}], UIMM32, "U32Imm">;
|
|
|
|
def imm64zx32n : Immediate<i64, [{
|
|
return isUInt<32>(-N->getSExtValue());
|
|
}], NEGIMM32, "U32Imm">;
|
|
|
|
def imm64 : ImmLeaf<i64, [{}]>, Operand<i64>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Floating-point immediates
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Floating-point zero.
|
|
def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>;
|
|
|
|
// Floating point negative zero.
|
|
def fpimmneg0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(-0.0); }]>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Symbolic address operands
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// PC-relative asm operands.
|
|
def PCRel16 : PCRelAsmOperand<"16">;
|
|
def PCRel32 : PCRelAsmOperand<"32">;
|
|
|
|
// PC-relative offsets of a basic block. The offset is sign-extended
|
|
// and multiplied by 2.
|
|
def brtarget16 : PCRelOperand<OtherVT, PCRel16> {
|
|
let EncoderMethod = "getPC16DBLEncoding";
|
|
let DecoderMethod = "decodePC16DBLOperand";
|
|
}
|
|
def brtarget32 : PCRelOperand<OtherVT, PCRel32> {
|
|
let EncoderMethod = "getPC32DBLEncoding";
|
|
let DecoderMethod = "decodePC32DBLOperand";
|
|
}
|
|
|
|
// A PC-relative offset of a global value. The offset is sign-extended
|
|
// and multiplied by 2.
|
|
def pcrel32 : PCRelAddress<i64, "pcrel32", PCRel32> {
|
|
let EncoderMethod = "getPC32DBLEncoding";
|
|
let DecoderMethod = "decodePC32DBLOperand";
|
|
}
|
|
|
|
// A PC-relative offset of a global value when the value is used as a
|
|
// call target. The offset is sign-extended and multiplied by 2.
|
|
def pcrel16call : PCRelAddress<i64, "pcrel16call", PCRel16> {
|
|
let PrintMethod = "printCallOperand";
|
|
let EncoderMethod = "getPLT16DBLEncoding";
|
|
let DecoderMethod = "decodePC16DBLOperand";
|
|
}
|
|
def pcrel32call : PCRelAddress<i64, "pcrel32call", PCRel32> {
|
|
let PrintMethod = "printCallOperand";
|
|
let EncoderMethod = "getPLT32DBLEncoding";
|
|
let DecoderMethod = "decodePC32DBLOperand";
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Addressing modes
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// 12-bit displacement operands.
|
|
def disp12imm32 : Operand<i32>;
|
|
def disp12imm64 : Operand<i64>;
|
|
|
|
// 20-bit displacement operands.
|
|
def disp20imm32 : Operand<i32>;
|
|
def disp20imm64 : Operand<i64>;
|
|
|
|
def BDAddr32Disp12 : AddressAsmOperand<"BDAddr", "32", "12">;
|
|
def BDAddr32Disp20 : AddressAsmOperand<"BDAddr", "32", "20">;
|
|
def BDAddr64Disp12 : AddressAsmOperand<"BDAddr", "64", "12">;
|
|
def BDAddr64Disp20 : AddressAsmOperand<"BDAddr", "64", "20">;
|
|
def BDXAddr64Disp12 : AddressAsmOperand<"BDXAddr", "64", "12">;
|
|
def BDXAddr64Disp20 : AddressAsmOperand<"BDXAddr", "64", "20">;
|
|
def BDLAddr64Disp12Len8 : AddressAsmOperand<"BDLAddr", "64", "12", "Len8">;
|
|
|
|
// DAG patterns and operands for addressing modes. Each mode has
|
|
// the form <type><range><group>[<len>] where:
|
|
//
|
|
// <type> is one of:
|
|
// shift : base + displacement (32-bit)
|
|
// bdaddr : base + displacement
|
|
// mviaddr : like bdaddr, but reject cases with a natural index
|
|
// bdxaddr : base + displacement + index
|
|
// laaddr : like bdxaddr, but used for Load Address operations
|
|
// dynalloc : base + displacement + index + ADJDYNALLOC
|
|
// bdladdr : base + displacement with a length field
|
|
//
|
|
// <range> is one of:
|
|
// 12 : the displacement is an unsigned 12-bit value
|
|
// 20 : the displacement is a signed 20-bit value
|
|
//
|
|
// <group> is one of:
|
|
// pair : used when there is an equivalent instruction with the opposite
|
|
// range value (12 or 20)
|
|
// only : used when there is no equivalent instruction with the opposite
|
|
// range value
|
|
//
|
|
// <len> is one of:
|
|
//
|
|
// <empty> : there is no length field
|
|
// len8 : the length field is 8 bits, with a range of [1, 0x100].
|
|
def shift12only : BDMode <"BDAddr", "32", "12", "Only">;
|
|
def shift20only : BDMode <"BDAddr", "32", "20", "Only">;
|
|
def bdaddr12only : BDMode <"BDAddr", "64", "12", "Only">;
|
|
def bdaddr12pair : BDMode <"BDAddr", "64", "12", "Pair">;
|
|
def bdaddr20only : BDMode <"BDAddr", "64", "20", "Only">;
|
|
def bdaddr20pair : BDMode <"BDAddr", "64", "20", "Pair">;
|
|
def mviaddr12pair : BDMode <"MVIAddr", "64", "12", "Pair">;
|
|
def mviaddr20pair : BDMode <"MVIAddr", "64", "20", "Pair">;
|
|
def bdxaddr12only : BDXMode<"BDXAddr", "64", "12", "Only">;
|
|
def bdxaddr12pair : BDXMode<"BDXAddr", "64", "12", "Pair">;
|
|
def bdxaddr20only : BDXMode<"BDXAddr", "64", "20", "Only">;
|
|
def bdxaddr20only128 : BDXMode<"BDXAddr", "64", "20", "Only128">;
|
|
def bdxaddr20pair : BDXMode<"BDXAddr", "64", "20", "Pair">;
|
|
def dynalloc12only : BDXMode<"DynAlloc", "64", "12", "Only">;
|
|
def laaddr12pair : BDXMode<"LAAddr", "64", "12", "Pair">;
|
|
def laaddr20pair : BDXMode<"LAAddr", "64", "20", "Pair">;
|
|
def bdladdr12onlylen8 : BDLMode<"BDLAddr", "64", "12", "Only", "8">;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Miscellaneous
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Access registers. At present we just use them for accessing the thread
|
|
// pointer, so we don't expose them as register to LLVM.
|
|
def AccessReg : AsmOperandClass {
|
|
let Name = "AccessReg";
|
|
let ParserMethod = "parseAccessReg";
|
|
}
|
|
def access_reg : Immediate<i8, [{ return N->getZExtValue() < 16; }],
|
|
NOOP_SDNodeXForm, "AccessReg"> {
|
|
let ParserMatchClass = AccessReg;
|
|
}
|
|
|
|
// A 4-bit condition-code mask.
|
|
def cond4 : PatLeaf<(i8 imm), [{ return (N->getZExtValue() < 16); }]>,
|
|
Operand<i8> {
|
|
let PrintMethod = "printCond4Operand";
|
|
}
|