mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-26 18:20:39 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176316 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			643 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			643 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements the ScheduleDAG class, which is a base class used by
 | |
| // scheduling implementation classes.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "pre-RA-sched"
 | |
| #include "llvm/CodeGen/ScheduleDAG.h"
 | |
| #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
 | |
| #include "llvm/CodeGen/SelectionDAGNodes.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include <climits>
 | |
| using namespace llvm;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static cl::opt<bool> StressSchedOpt(
 | |
|   "stress-sched", cl::Hidden, cl::init(false),
 | |
|   cl::desc("Stress test instruction scheduling"));
 | |
| #endif
 | |
| 
 | |
| void SchedulingPriorityQueue::anchor() { }
 | |
| 
 | |
| ScheduleDAG::ScheduleDAG(MachineFunction &mf)
 | |
|   : TM(mf.getTarget()),
 | |
|     TII(TM.getInstrInfo()),
 | |
|     TRI(TM.getRegisterInfo()),
 | |
|     MF(mf), MRI(mf.getRegInfo()),
 | |
|     EntrySU(), ExitSU() {
 | |
| #ifndef NDEBUG
 | |
|   StressSched = StressSchedOpt;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| ScheduleDAG::~ScheduleDAG() {}
 | |
| 
 | |
| /// Clear the DAG state (e.g. between scheduling regions).
 | |
| void ScheduleDAG::clearDAG() {
 | |
|   SUnits.clear();
 | |
|   EntrySU = SUnit();
 | |
|   ExitSU = SUnit();
 | |
| }
 | |
| 
 | |
| /// getInstrDesc helper to handle SDNodes.
 | |
| const MCInstrDesc *ScheduleDAG::getNodeDesc(const SDNode *Node) const {
 | |
|   if (!Node || !Node->isMachineOpcode()) return NULL;
 | |
|   return &TII->get(Node->getMachineOpcode());
 | |
| }
 | |
| 
 | |
| /// addPred - This adds the specified edge as a pred of the current node if
 | |
| /// not already.  It also adds the current node as a successor of the
 | |
| /// specified node.
 | |
| bool SUnit::addPred(const SDep &D, bool Required) {
 | |
|   // If this node already has this depenence, don't add a redundant one.
 | |
|   for (SmallVector<SDep, 4>::iterator I = Preds.begin(), E = Preds.end();
 | |
|        I != E; ++I) {
 | |
|     // Zero-latency weak edges may be added purely for heuristic ordering. Don't
 | |
|     // add them if another kind of edge already exists.
 | |
|     if (!Required && I->getSUnit() == D.getSUnit())
 | |
|       return false;
 | |
|     if (I->overlaps(D)) {
 | |
|       // Extend the latency if needed. Equivalent to removePred(I) + addPred(D).
 | |
|       if (I->getLatency() < D.getLatency()) {
 | |
|         SUnit *PredSU = I->getSUnit();
 | |
|         // Find the corresponding successor in N.
 | |
|         SDep ForwardD = *I;
 | |
|         ForwardD.setSUnit(this);
 | |
|         for (SmallVector<SDep, 4>::iterator II = PredSU->Succs.begin(),
 | |
|                EE = PredSU->Succs.end(); II != EE; ++II) {
 | |
|           if (*II == ForwardD) {
 | |
|             II->setLatency(D.getLatency());
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         I->setLatency(D.getLatency());
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   // Now add a corresponding succ to N.
 | |
|   SDep P = D;
 | |
|   P.setSUnit(this);
 | |
|   SUnit *N = D.getSUnit();
 | |
|   // Update the bookkeeping.
 | |
|   if (D.getKind() == SDep::Data) {
 | |
|     assert(NumPreds < UINT_MAX && "NumPreds will overflow!");
 | |
|     assert(N->NumSuccs < UINT_MAX && "NumSuccs will overflow!");
 | |
|     ++NumPreds;
 | |
|     ++N->NumSuccs;
 | |
|   }
 | |
|   if (!N->isScheduled) {
 | |
|     if (D.isWeak()) {
 | |
|       ++WeakPredsLeft;
 | |
|     }
 | |
|     else {
 | |
|       assert(NumPredsLeft < UINT_MAX && "NumPredsLeft will overflow!");
 | |
|       ++NumPredsLeft;
 | |
|     }
 | |
|   }
 | |
|   if (!isScheduled) {
 | |
|     if (D.isWeak()) {
 | |
|       ++N->WeakSuccsLeft;
 | |
|     }
 | |
|     else {
 | |
|       assert(N->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!");
 | |
|       ++N->NumSuccsLeft;
 | |
|     }
 | |
|   }
 | |
|   Preds.push_back(D);
 | |
|   N->Succs.push_back(P);
 | |
|   if (P.getLatency() != 0) {
 | |
|     this->setDepthDirty();
 | |
|     N->setHeightDirty();
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// removePred - This removes the specified edge as a pred of the current
 | |
| /// node if it exists.  It also removes the current node as a successor of
 | |
| /// the specified node.
 | |
| void SUnit::removePred(const SDep &D) {
 | |
|   // Find the matching predecessor.
 | |
|   for (SmallVector<SDep, 4>::iterator I = Preds.begin(), E = Preds.end();
 | |
|        I != E; ++I)
 | |
|     if (*I == D) {
 | |
|       // Find the corresponding successor in N.
 | |
|       SDep P = D;
 | |
|       P.setSUnit(this);
 | |
|       SUnit *N = D.getSUnit();
 | |
|       SmallVectorImpl<SDep>::iterator Succ = std::find(N->Succs.begin(),
 | |
|                                                        N->Succs.end(), P);
 | |
|       assert(Succ != N->Succs.end() && "Mismatching preds / succs lists!");
 | |
|       N->Succs.erase(Succ);
 | |
|       Preds.erase(I);
 | |
|       // Update the bookkeeping.
 | |
|       if (P.getKind() == SDep::Data) {
 | |
|         assert(NumPreds > 0 && "NumPreds will underflow!");
 | |
|         assert(N->NumSuccs > 0 && "NumSuccs will underflow!");
 | |
|         --NumPreds;
 | |
|         --N->NumSuccs;
 | |
|       }
 | |
|       if (!N->isScheduled) {
 | |
|         if (D.isWeak())
 | |
|           --WeakPredsLeft;
 | |
|         else {
 | |
|           assert(NumPredsLeft > 0 && "NumPredsLeft will underflow!");
 | |
|           --NumPredsLeft;
 | |
|         }
 | |
|       }
 | |
|       if (!isScheduled) {
 | |
|         if (D.isWeak())
 | |
|           --N->WeakSuccsLeft;
 | |
|         else {
 | |
|           assert(N->NumSuccsLeft > 0 && "NumSuccsLeft will underflow!");
 | |
|           --N->NumSuccsLeft;
 | |
|         }
 | |
|       }
 | |
|       if (P.getLatency() != 0) {
 | |
|         this->setDepthDirty();
 | |
|         N->setHeightDirty();
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void SUnit::setDepthDirty() {
 | |
|   if (!isDepthCurrent) return;
 | |
|   SmallVector<SUnit*, 8> WorkList;
 | |
|   WorkList.push_back(this);
 | |
|   do {
 | |
|     SUnit *SU = WorkList.pop_back_val();
 | |
|     SU->isDepthCurrent = false;
 | |
|     for (SUnit::const_succ_iterator I = SU->Succs.begin(),
 | |
|          E = SU->Succs.end(); I != E; ++I) {
 | |
|       SUnit *SuccSU = I->getSUnit();
 | |
|       if (SuccSU->isDepthCurrent)
 | |
|         WorkList.push_back(SuccSU);
 | |
|     }
 | |
|   } while (!WorkList.empty());
 | |
| }
 | |
| 
 | |
| void SUnit::setHeightDirty() {
 | |
|   if (!isHeightCurrent) return;
 | |
|   SmallVector<SUnit*, 8> WorkList;
 | |
|   WorkList.push_back(this);
 | |
|   do {
 | |
|     SUnit *SU = WorkList.pop_back_val();
 | |
|     SU->isHeightCurrent = false;
 | |
|     for (SUnit::const_pred_iterator I = SU->Preds.begin(),
 | |
|          E = SU->Preds.end(); I != E; ++I) {
 | |
|       SUnit *PredSU = I->getSUnit();
 | |
|       if (PredSU->isHeightCurrent)
 | |
|         WorkList.push_back(PredSU);
 | |
|     }
 | |
|   } while (!WorkList.empty());
 | |
| }
 | |
| 
 | |
| /// setDepthToAtLeast - Update this node's successors to reflect the
 | |
| /// fact that this node's depth just increased.
 | |
| ///
 | |
| void SUnit::setDepthToAtLeast(unsigned NewDepth) {
 | |
|   if (NewDepth <= getDepth())
 | |
|     return;
 | |
|   setDepthDirty();
 | |
|   Depth = NewDepth;
 | |
|   isDepthCurrent = true;
 | |
| }
 | |
| 
 | |
| /// setHeightToAtLeast - Update this node's predecessors to reflect the
 | |
| /// fact that this node's height just increased.
 | |
| ///
 | |
| void SUnit::setHeightToAtLeast(unsigned NewHeight) {
 | |
|   if (NewHeight <= getHeight())
 | |
|     return;
 | |
|   setHeightDirty();
 | |
|   Height = NewHeight;
 | |
|   isHeightCurrent = true;
 | |
| }
 | |
| 
 | |
| /// ComputeDepth - Calculate the maximal path from the node to the exit.
 | |
| ///
 | |
| void SUnit::ComputeDepth() {
 | |
|   SmallVector<SUnit*, 8> WorkList;
 | |
|   WorkList.push_back(this);
 | |
|   do {
 | |
|     SUnit *Cur = WorkList.back();
 | |
| 
 | |
|     bool Done = true;
 | |
|     unsigned MaxPredDepth = 0;
 | |
|     for (SUnit::const_pred_iterator I = Cur->Preds.begin(),
 | |
|          E = Cur->Preds.end(); I != E; ++I) {
 | |
|       SUnit *PredSU = I->getSUnit();
 | |
|       if (PredSU->isDepthCurrent)
 | |
|         MaxPredDepth = std::max(MaxPredDepth,
 | |
|                                 PredSU->Depth + I->getLatency());
 | |
|       else {
 | |
|         Done = false;
 | |
|         WorkList.push_back(PredSU);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Done) {
 | |
|       WorkList.pop_back();
 | |
|       if (MaxPredDepth != Cur->Depth) {
 | |
|         Cur->setDepthDirty();
 | |
|         Cur->Depth = MaxPredDepth;
 | |
|       }
 | |
|       Cur->isDepthCurrent = true;
 | |
|     }
 | |
|   } while (!WorkList.empty());
 | |
| }
 | |
| 
 | |
| /// ComputeHeight - Calculate the maximal path from the node to the entry.
 | |
| ///
 | |
| void SUnit::ComputeHeight() {
 | |
|   SmallVector<SUnit*, 8> WorkList;
 | |
|   WorkList.push_back(this);
 | |
|   do {
 | |
|     SUnit *Cur = WorkList.back();
 | |
| 
 | |
|     bool Done = true;
 | |
|     unsigned MaxSuccHeight = 0;
 | |
|     for (SUnit::const_succ_iterator I = Cur->Succs.begin(),
 | |
|          E = Cur->Succs.end(); I != E; ++I) {
 | |
|       SUnit *SuccSU = I->getSUnit();
 | |
|       if (SuccSU->isHeightCurrent)
 | |
|         MaxSuccHeight = std::max(MaxSuccHeight,
 | |
|                                  SuccSU->Height + I->getLatency());
 | |
|       else {
 | |
|         Done = false;
 | |
|         WorkList.push_back(SuccSU);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Done) {
 | |
|       WorkList.pop_back();
 | |
|       if (MaxSuccHeight != Cur->Height) {
 | |
|         Cur->setHeightDirty();
 | |
|         Cur->Height = MaxSuccHeight;
 | |
|       }
 | |
|       Cur->isHeightCurrent = true;
 | |
|     }
 | |
|   } while (!WorkList.empty());
 | |
| }
 | |
| 
 | |
| void SUnit::biasCriticalPath() {
 | |
|   if (NumPreds < 2)
 | |
|     return;
 | |
| 
 | |
|   SUnit::pred_iterator BestI = Preds.begin();
 | |
|   unsigned MaxDepth = BestI->getSUnit()->getDepth();
 | |
|   for (SUnit::pred_iterator
 | |
|          I = llvm::next(BestI), E = Preds.end(); I != E; ++I) {
 | |
|     if (I->getKind() == SDep::Data && I->getSUnit()->getDepth() > MaxDepth)
 | |
|       BestI = I;
 | |
|   }
 | |
|   if (BestI != Preds.begin())
 | |
|     std::swap(*Preds.begin(), *BestI);
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
 | |
| /// a group of nodes flagged together.
 | |
| void SUnit::dump(const ScheduleDAG *G) const {
 | |
|   dbgs() << "SU(" << NodeNum << "): ";
 | |
|   G->dumpNode(this);
 | |
| }
 | |
| 
 | |
| void SUnit::dumpAll(const ScheduleDAG *G) const {
 | |
|   dump(G);
 | |
| 
 | |
|   dbgs() << "  # preds left       : " << NumPredsLeft << "\n";
 | |
|   dbgs() << "  # succs left       : " << NumSuccsLeft << "\n";
 | |
|   if (WeakPredsLeft)
 | |
|     dbgs() << "  # weak preds left  : " << WeakPredsLeft << "\n";
 | |
|   if (WeakSuccsLeft)
 | |
|     dbgs() << "  # weak succs left  : " << WeakSuccsLeft << "\n";
 | |
|   dbgs() << "  # rdefs left       : " << NumRegDefsLeft << "\n";
 | |
|   dbgs() << "  Latency            : " << Latency << "\n";
 | |
|   dbgs() << "  Depth              : " << getDepth() << "\n";
 | |
|   dbgs() << "  Height             : " << getHeight() << "\n";
 | |
| 
 | |
|   if (Preds.size() != 0) {
 | |
|     dbgs() << "  Predecessors:\n";
 | |
|     for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end();
 | |
|          I != E; ++I) {
 | |
|       dbgs() << "   ";
 | |
|       switch (I->getKind()) {
 | |
|       case SDep::Data:        dbgs() << "val "; break;
 | |
|       case SDep::Anti:        dbgs() << "anti"; break;
 | |
|       case SDep::Output:      dbgs() << "out "; break;
 | |
|       case SDep::Order:       dbgs() << "ch  "; break;
 | |
|       }
 | |
|       dbgs() << "SU(" << I->getSUnit()->NodeNum << ")";
 | |
|       if (I->isArtificial())
 | |
|         dbgs() << " *";
 | |
|       dbgs() << ": Latency=" << I->getLatency();
 | |
|       if (I->isAssignedRegDep())
 | |
|         dbgs() << " Reg=" << PrintReg(I->getReg(), G->TRI);
 | |
|       dbgs() << "\n";
 | |
|     }
 | |
|   }
 | |
|   if (Succs.size() != 0) {
 | |
|     dbgs() << "  Successors:\n";
 | |
|     for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end();
 | |
|          I != E; ++I) {
 | |
|       dbgs() << "   ";
 | |
|       switch (I->getKind()) {
 | |
|       case SDep::Data:        dbgs() << "val "; break;
 | |
|       case SDep::Anti:        dbgs() << "anti"; break;
 | |
|       case SDep::Output:      dbgs() << "out "; break;
 | |
|       case SDep::Order:       dbgs() << "ch  "; break;
 | |
|       }
 | |
|       dbgs() << "SU(" << I->getSUnit()->NodeNum << ")";
 | |
|       if (I->isArtificial())
 | |
|         dbgs() << " *";
 | |
|       dbgs() << ": Latency=" << I->getLatency();
 | |
|       if (I->isAssignedRegDep())
 | |
|         dbgs() << " Reg=" << PrintReg(I->getReg(), G->TRI);
 | |
|       dbgs() << "\n";
 | |
|     }
 | |
|   }
 | |
|   dbgs() << "\n";
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| /// VerifyScheduledDAG - Verify that all SUnits were scheduled and that
 | |
| /// their state is consistent. Return the number of scheduled nodes.
 | |
| ///
 | |
| unsigned ScheduleDAG::VerifyScheduledDAG(bool isBottomUp) {
 | |
|   bool AnyNotSched = false;
 | |
|   unsigned DeadNodes = 0;
 | |
|   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | |
|     if (!SUnits[i].isScheduled) {
 | |
|       if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
 | |
|         ++DeadNodes;
 | |
|         continue;
 | |
|       }
 | |
|       if (!AnyNotSched)
 | |
|         dbgs() << "*** Scheduling failed! ***\n";
 | |
|       SUnits[i].dump(this);
 | |
|       dbgs() << "has not been scheduled!\n";
 | |
|       AnyNotSched = true;
 | |
|     }
 | |
|     if (SUnits[i].isScheduled &&
 | |
|         (isBottomUp ? SUnits[i].getHeight() : SUnits[i].getDepth()) >
 | |
|           unsigned(INT_MAX)) {
 | |
|       if (!AnyNotSched)
 | |
|         dbgs() << "*** Scheduling failed! ***\n";
 | |
|       SUnits[i].dump(this);
 | |
|       dbgs() << "has an unexpected "
 | |
|            << (isBottomUp ? "Height" : "Depth") << " value!\n";
 | |
|       AnyNotSched = true;
 | |
|     }
 | |
|     if (isBottomUp) {
 | |
|       if (SUnits[i].NumSuccsLeft != 0) {
 | |
|         if (!AnyNotSched)
 | |
|           dbgs() << "*** Scheduling failed! ***\n";
 | |
|         SUnits[i].dump(this);
 | |
|         dbgs() << "has successors left!\n";
 | |
|         AnyNotSched = true;
 | |
|       }
 | |
|     } else {
 | |
|       if (SUnits[i].NumPredsLeft != 0) {
 | |
|         if (!AnyNotSched)
 | |
|           dbgs() << "*** Scheduling failed! ***\n";
 | |
|         SUnits[i].dump(this);
 | |
|         dbgs() << "has predecessors left!\n";
 | |
|         AnyNotSched = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   assert(!AnyNotSched);
 | |
|   return SUnits.size() - DeadNodes;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /// InitDAGTopologicalSorting - create the initial topological
 | |
| /// ordering from the DAG to be scheduled.
 | |
| ///
 | |
| /// The idea of the algorithm is taken from
 | |
| /// "Online algorithms for managing the topological order of
 | |
| /// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
 | |
| /// This is the MNR algorithm, which was first introduced by
 | |
| /// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
 | |
| /// "Maintaining a topological order under edge insertions".
 | |
| ///
 | |
| /// Short description of the algorithm:
 | |
| ///
 | |
| /// Topological ordering, ord, of a DAG maps each node to a topological
 | |
| /// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
 | |
| ///
 | |
| /// This means that if there is a path from the node X to the node Z,
 | |
| /// then ord(X) < ord(Z).
 | |
| ///
 | |
| /// This property can be used to check for reachability of nodes:
 | |
| /// if Z is reachable from X, then an insertion of the edge Z->X would
 | |
| /// create a cycle.
 | |
| ///
 | |
| /// The algorithm first computes a topological ordering for the DAG by
 | |
| /// initializing the Index2Node and Node2Index arrays and then tries to keep
 | |
| /// the ordering up-to-date after edge insertions by reordering the DAG.
 | |
| ///
 | |
| /// On insertion of the edge X->Y, the algorithm first marks by calling DFS
 | |
| /// the nodes reachable from Y, and then shifts them using Shift to lie
 | |
| /// immediately after X in Index2Node.
 | |
| void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
 | |
|   unsigned DAGSize = SUnits.size();
 | |
|   std::vector<SUnit*> WorkList;
 | |
|   WorkList.reserve(DAGSize);
 | |
| 
 | |
|   Index2Node.resize(DAGSize);
 | |
|   Node2Index.resize(DAGSize);
 | |
| 
 | |
|   // Initialize the data structures.
 | |
|   if (ExitSU)
 | |
|     WorkList.push_back(ExitSU);
 | |
|   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
 | |
|     SUnit *SU = &SUnits[i];
 | |
|     int NodeNum = SU->NodeNum;
 | |
|     unsigned Degree = SU->Succs.size();
 | |
|     // Temporarily use the Node2Index array as scratch space for degree counts.
 | |
|     Node2Index[NodeNum] = Degree;
 | |
| 
 | |
|     // Is it a node without dependencies?
 | |
|     if (Degree == 0) {
 | |
|       assert(SU->Succs.empty() && "SUnit should have no successors");
 | |
|       // Collect leaf nodes.
 | |
|       WorkList.push_back(SU);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   int Id = DAGSize;
 | |
|   while (!WorkList.empty()) {
 | |
|     SUnit *SU = WorkList.back();
 | |
|     WorkList.pop_back();
 | |
|     if (SU->NodeNum < DAGSize)
 | |
|       Allocate(SU->NodeNum, --Id);
 | |
|     for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|          I != E; ++I) {
 | |
|       SUnit *SU = I->getSUnit();
 | |
|       if (SU->NodeNum < DAGSize && !--Node2Index[SU->NodeNum])
 | |
|         // If all dependencies of the node are processed already,
 | |
|         // then the node can be computed now.
 | |
|         WorkList.push_back(SU);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Visited.resize(DAGSize);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // Check correctness of the ordering
 | |
|   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
 | |
|     SUnit *SU = &SUnits[i];
 | |
|     for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|          I != E; ++I) {
 | |
|       assert(Node2Index[SU->NodeNum] > Node2Index[I->getSUnit()->NodeNum] &&
 | |
|       "Wrong topological sorting");
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// AddPred - Updates the topological ordering to accommodate an edge
 | |
| /// to be added from SUnit X to SUnit Y.
 | |
| void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) {
 | |
|   int UpperBound, LowerBound;
 | |
|   LowerBound = Node2Index[Y->NodeNum];
 | |
|   UpperBound = Node2Index[X->NodeNum];
 | |
|   bool HasLoop = false;
 | |
|   // Is Ord(X) < Ord(Y) ?
 | |
|   if (LowerBound < UpperBound) {
 | |
|     // Update the topological order.
 | |
|     Visited.reset();
 | |
|     DFS(Y, UpperBound, HasLoop);
 | |
|     assert(!HasLoop && "Inserted edge creates a loop!");
 | |
|     // Recompute topological indexes.
 | |
|     Shift(Visited, LowerBound, UpperBound);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// RemovePred - Updates the topological ordering to accommodate an
 | |
| /// an edge to be removed from the specified node N from the predecessors
 | |
| /// of the current node M.
 | |
| void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) {
 | |
|   // InitDAGTopologicalSorting();
 | |
| }
 | |
| 
 | |
| /// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
 | |
| /// all nodes affected by the edge insertion. These nodes will later get new
 | |
| /// topological indexes by means of the Shift method.
 | |
| void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound,
 | |
|                                      bool &HasLoop) {
 | |
|   std::vector<const SUnit*> WorkList;
 | |
|   WorkList.reserve(SUnits.size());
 | |
| 
 | |
|   WorkList.push_back(SU);
 | |
|   do {
 | |
|     SU = WorkList.back();
 | |
|     WorkList.pop_back();
 | |
|     Visited.set(SU->NodeNum);
 | |
|     for (int I = SU->Succs.size()-1; I >= 0; --I) {
 | |
|       unsigned s = SU->Succs[I].getSUnit()->NodeNum;
 | |
|       // Edges to non-SUnits are allowed but ignored (e.g. ExitSU).
 | |
|       if (s >= Node2Index.size())
 | |
|         continue;
 | |
|       if (Node2Index[s] == UpperBound) {
 | |
|         HasLoop = true;
 | |
|         return;
 | |
|       }
 | |
|       // Visit successors if not already and in affected region.
 | |
|       if (!Visited.test(s) && Node2Index[s] < UpperBound) {
 | |
|         WorkList.push_back(SU->Succs[I].getSUnit());
 | |
|       }
 | |
|     }
 | |
|   } while (!WorkList.empty());
 | |
| }
 | |
| 
 | |
| /// Shift - Renumber the nodes so that the topological ordering is
 | |
| /// preserved.
 | |
| void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound,
 | |
|                                        int UpperBound) {
 | |
|   std::vector<int> L;
 | |
|   int shift = 0;
 | |
|   int i;
 | |
| 
 | |
|   for (i = LowerBound; i <= UpperBound; ++i) {
 | |
|     // w is node at topological index i.
 | |
|     int w = Index2Node[i];
 | |
|     if (Visited.test(w)) {
 | |
|       // Unmark.
 | |
|       Visited.reset(w);
 | |
|       L.push_back(w);
 | |
|       shift = shift + 1;
 | |
|     } else {
 | |
|       Allocate(w, i - shift);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned j = 0; j < L.size(); ++j) {
 | |
|     Allocate(L[j], i - shift);
 | |
|     i = i + 1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// WillCreateCycle - Returns true if adding an edge to TargetSU from SU will
 | |
| /// create a cycle. If so, it is not safe to call AddPred(TargetSU, SU).
 | |
| bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *TargetSU, SUnit *SU) {
 | |
|   // Is SU reachable from TargetSU via successor edges?
 | |
|   if (IsReachable(SU, TargetSU))
 | |
|     return true;
 | |
|   for (SUnit::pred_iterator
 | |
|          I = TargetSU->Preds.begin(), E = TargetSU->Preds.end(); I != E; ++I)
 | |
|     if (I->isAssignedRegDep() &&
 | |
|         IsReachable(SU, I->getSUnit()))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// IsReachable - Checks if SU is reachable from TargetSU.
 | |
| bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU,
 | |
|                                              const SUnit *TargetSU) {
 | |
|   // If insertion of the edge SU->TargetSU would create a cycle
 | |
|   // then there is a path from TargetSU to SU.
 | |
|   int UpperBound, LowerBound;
 | |
|   LowerBound = Node2Index[TargetSU->NodeNum];
 | |
|   UpperBound = Node2Index[SU->NodeNum];
 | |
|   bool HasLoop = false;
 | |
|   // Is Ord(TargetSU) < Ord(SU) ?
 | |
|   if (LowerBound < UpperBound) {
 | |
|     Visited.reset();
 | |
|     // There may be a path from TargetSU to SU. Check for it.
 | |
|     DFS(TargetSU, UpperBound, HasLoop);
 | |
|   }
 | |
|   return HasLoop;
 | |
| }
 | |
| 
 | |
| /// Allocate - assign the topological index to the node n.
 | |
| void ScheduleDAGTopologicalSort::Allocate(int n, int index) {
 | |
|   Node2Index[n] = index;
 | |
|   Index2Node[index] = n;
 | |
| }
 | |
| 
 | |
| ScheduleDAGTopologicalSort::
 | |
| ScheduleDAGTopologicalSort(std::vector<SUnit> &sunits, SUnit *exitsu)
 | |
|   : SUnits(sunits), ExitSU(exitsu) {}
 | |
| 
 | |
| ScheduleHazardRecognizer::~ScheduleHazardRecognizer() {}
 |