mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	This was discussed a while back and I left it optional for migration. Since it's been far more than the 'week or two' that was discussed, time to actually make this manditory. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233357 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			737 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			737 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- StatepointLowering.cpp - SDAGBuilder's statepoint code -----------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file includes support code use by SelectionDAGBuilder when lowering a
 | 
						|
// statepoint sequence in SelectionDAG IR.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "StatepointLowering.h"
 | 
						|
#include "SelectionDAGBuilder.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/CodeGen/FunctionLoweringInfo.h"
 | 
						|
#include "llvm/CodeGen/GCMetadata.h"
 | 
						|
#include "llvm/CodeGen/GCStrategy.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAG.h"
 | 
						|
#include "llvm/CodeGen/StackMaps.h"
 | 
						|
#include "llvm/IR/CallingConv.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/Statepoint.h"
 | 
						|
#include "llvm/Target/TargetLowering.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "statepoint-lowering"
 | 
						|
 | 
						|
STATISTIC(NumSlotsAllocatedForStatepoints,
 | 
						|
          "Number of stack slots allocated for statepoints");
 | 
						|
STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
 | 
						|
STATISTIC(StatepointMaxSlotsRequired,
 | 
						|
          "Maximum number of stack slots required for a singe statepoint");
 | 
						|
 | 
						|
void
 | 
						|
StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
 | 
						|
  // Consistency check
 | 
						|
  assert(PendingGCRelocateCalls.empty() &&
 | 
						|
         "Trying to visit statepoint before finished processing previous one");
 | 
						|
  Locations.clear();
 | 
						|
  RelocLocations.clear();
 | 
						|
  NextSlotToAllocate = 0;
 | 
						|
  // Need to resize this on each safepoint - we need the two to stay in
 | 
						|
  // sync and the clear patterns of a SelectionDAGBuilder have no relation
 | 
						|
  // to FunctionLoweringInfo.
 | 
						|
  AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
 | 
						|
  for (size_t i = 0; i < AllocatedStackSlots.size(); i++) {
 | 
						|
    AllocatedStackSlots[i] = false;
 | 
						|
  }
 | 
						|
}
 | 
						|
void StatepointLoweringState::clear() {
 | 
						|
  Locations.clear();
 | 
						|
  RelocLocations.clear();
 | 
						|
  AllocatedStackSlots.clear();
 | 
						|
  assert(PendingGCRelocateCalls.empty() &&
 | 
						|
         "cleared before statepoint sequence completed");
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
StatepointLoweringState::allocateStackSlot(EVT ValueType,
 | 
						|
                                           SelectionDAGBuilder &Builder) {
 | 
						|
 | 
						|
  NumSlotsAllocatedForStatepoints++;
 | 
						|
 | 
						|
  // The basic scheme here is to first look for a previously created stack slot
 | 
						|
  // which is not in use (accounting for the fact arbitrary slots may already
 | 
						|
  // be reserved), or to create a new stack slot and use it.
 | 
						|
 | 
						|
  // If this doesn't succeed in 40000 iterations, something is seriously wrong
 | 
						|
  for (int i = 0; i < 40000; i++) {
 | 
						|
    assert(Builder.FuncInfo.StatepointStackSlots.size() ==
 | 
						|
               AllocatedStackSlots.size() &&
 | 
						|
           "broken invariant");
 | 
						|
    const size_t NumSlots = AllocatedStackSlots.size();
 | 
						|
    assert(NextSlotToAllocate <= NumSlots && "broken invariant");
 | 
						|
 | 
						|
    if (NextSlotToAllocate >= NumSlots) {
 | 
						|
      assert(NextSlotToAllocate == NumSlots);
 | 
						|
      // record stats
 | 
						|
      if (NumSlots + 1 > StatepointMaxSlotsRequired) {
 | 
						|
        StatepointMaxSlotsRequired = NumSlots + 1;
 | 
						|
      }
 | 
						|
 | 
						|
      SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
 | 
						|
      const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
 | 
						|
      Builder.FuncInfo.StatepointStackSlots.push_back(FI);
 | 
						|
      AllocatedStackSlots.push_back(true);
 | 
						|
      return SpillSlot;
 | 
						|
    }
 | 
						|
    if (!AllocatedStackSlots[NextSlotToAllocate]) {
 | 
						|
      const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
 | 
						|
      AllocatedStackSlots[NextSlotToAllocate] = true;
 | 
						|
      return Builder.DAG.getFrameIndex(FI, ValueType);
 | 
						|
    }
 | 
						|
    // Note: We deliberately choose to advance this only on the failing path.
 | 
						|
    // Doing so on the suceeding path involes a bit of complexity that caused a
 | 
						|
    // minor bug previously.  Unless performance shows this matters, please
 | 
						|
    // keep this code as simple as possible.
 | 
						|
    NextSlotToAllocate++;
 | 
						|
  }
 | 
						|
  llvm_unreachable("infinite loop?");
 | 
						|
}
 | 
						|
 | 
						|
/// Try to find existing copies of the incoming values in stack slots used for
 | 
						|
/// statepoint spilling.  If we can find a spill slot for the incoming value,
 | 
						|
/// mark that slot as allocated, and reuse the same slot for this safepoint.
 | 
						|
/// This helps to avoid series of loads and stores that only serve to resuffle
 | 
						|
/// values on the stack between calls.
 | 
						|
static void reservePreviousStackSlotForValue(SDValue Incoming,
 | 
						|
                                             SelectionDAGBuilder &Builder) {
 | 
						|
 | 
						|
  if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) {
 | 
						|
    // We won't need to spill this, so no need to check for previously
 | 
						|
    // allocated stack slots
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
 | 
						|
  if (Loc.getNode()) {
 | 
						|
    // duplicates in input
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Search back for the load from a stack slot pattern to find the original
 | 
						|
  // slot we allocated for this value.  We could extend this to deal with
 | 
						|
  // simple modification patterns, but simple dealing with trivial load/store
 | 
						|
  // sequences helps a lot already.
 | 
						|
  if (LoadSDNode *Load = dyn_cast<LoadSDNode>(Incoming)) {
 | 
						|
    if (auto *FI = dyn_cast<FrameIndexSDNode>(Load->getBasePtr())) {
 | 
						|
      const int Index = FI->getIndex();
 | 
						|
      auto Itr = std::find(Builder.FuncInfo.StatepointStackSlots.begin(),
 | 
						|
                           Builder.FuncInfo.StatepointStackSlots.end(), Index);
 | 
						|
      if (Itr == Builder.FuncInfo.StatepointStackSlots.end()) {
 | 
						|
        // not one of the lowering stack slots, can't reuse!
 | 
						|
        // TODO: Actually, we probably could reuse the stack slot if the value
 | 
						|
        // hasn't changed at all, but we'd need to look for intervening writes
 | 
						|
        return;
 | 
						|
      } else {
 | 
						|
        // This is one of our dedicated lowering slots
 | 
						|
        const int Offset =
 | 
						|
            std::distance(Builder.FuncInfo.StatepointStackSlots.begin(), Itr);
 | 
						|
        if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
 | 
						|
          // stack slot already assigned to someone else, can't use it!
 | 
						|
          // TODO: currently we reserve space for gc arguments after doing
 | 
						|
          // normal allocation for deopt arguments.  We should reserve for
 | 
						|
          // _all_ deopt and gc arguments, then start allocating.  This
 | 
						|
          // will prevent some moves being inserted when vm state changes,
 | 
						|
          // but gc state doesn't between two calls.
 | 
						|
          return;
 | 
						|
        }
 | 
						|
        // Reserve this stack slot
 | 
						|
        Builder.StatepointLowering.reserveStackSlot(Offset);
 | 
						|
      }
 | 
						|
 | 
						|
      // Cache this slot so we find it when going through the normal
 | 
						|
      // assignment loop.
 | 
						|
      SDValue Loc =
 | 
						|
          Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType());
 | 
						|
 | 
						|
      Builder.StatepointLowering.setLocation(Incoming, Loc);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: handle case where a reloaded value flows through a phi to
 | 
						|
  // another safepoint.  e.g.
 | 
						|
  // bb1:
 | 
						|
  //  a' = relocated...
 | 
						|
  // bb2: % pred: bb1, bb3, bb4, etc.
 | 
						|
  //  a_phi = phi(a', ...)
 | 
						|
  // statepoint ... a_phi
 | 
						|
  // NOTE: This will require reasoning about cross basic block values.  This is
 | 
						|
  // decidedly non trivial and this might not be the right place to do it.  We
 | 
						|
  // don't really have the information we need here...
 | 
						|
 | 
						|
  // TODO: handle simple updates.  If a value is modified and the original
 | 
						|
  // value is no longer live, it would be nice to put the modified value in the
 | 
						|
  // same slot.  This allows folding of the memory accesses for some
 | 
						|
  // instructions types (like an increment).
 | 
						|
  // statepoint (i)
 | 
						|
  // i1 = i+1
 | 
						|
  // statepoint (i1)
 | 
						|
}
 | 
						|
 | 
						|
/// Remove any duplicate (as SDValues) from the derived pointer pairs.  This
 | 
						|
/// is not required for correctness.  It's purpose is to reduce the size of
 | 
						|
/// StackMap section.  It has no effect on the number of spill slots required
 | 
						|
/// or the actual lowering.
 | 
						|
static void removeDuplicatesGCPtrs(SmallVectorImpl<const Value *> &Bases,
 | 
						|
                                   SmallVectorImpl<const Value *> &Ptrs,
 | 
						|
                                   SmallVectorImpl<const Value *> &Relocs,
 | 
						|
                                   SelectionDAGBuilder &Builder) {
 | 
						|
 | 
						|
  // This is horribly ineffecient, but I don't care right now
 | 
						|
  SmallSet<SDValue, 64> Seen;
 | 
						|
 | 
						|
  SmallVector<const Value *, 64> NewBases, NewPtrs, NewRelocs;
 | 
						|
  for (size_t i = 0; i < Ptrs.size(); i++) {
 | 
						|
    SDValue SD = Builder.getValue(Ptrs[i]);
 | 
						|
    // Only add non-duplicates
 | 
						|
    if (Seen.count(SD) == 0) {
 | 
						|
      NewBases.push_back(Bases[i]);
 | 
						|
      NewPtrs.push_back(Ptrs[i]);
 | 
						|
      NewRelocs.push_back(Relocs[i]);
 | 
						|
    }
 | 
						|
    Seen.insert(SD);
 | 
						|
  }
 | 
						|
  assert(Bases.size() >= NewBases.size());
 | 
						|
  assert(Ptrs.size() >= NewPtrs.size());
 | 
						|
  assert(Relocs.size() >= NewRelocs.size());
 | 
						|
  Bases = NewBases;
 | 
						|
  Ptrs = NewPtrs;
 | 
						|
  Relocs = NewRelocs;
 | 
						|
  assert(Ptrs.size() == Bases.size());
 | 
						|
  assert(Ptrs.size() == Relocs.size());
 | 
						|
}
 | 
						|
 | 
						|
/// Extract call from statepoint, lower it and return pointer to the
 | 
						|
/// call node. Also update NodeMap so that getValue(statepoint) will
 | 
						|
/// reference lowered call result
 | 
						|
static SDNode *lowerCallFromStatepoint(ImmutableStatepoint StatepointSite,
 | 
						|
                                       MachineBasicBlock *LandingPad,
 | 
						|
                                       SelectionDAGBuilder &Builder) {
 | 
						|
 | 
						|
  ImmutableCallSite CS(StatepointSite.getCallSite());
 | 
						|
 | 
						|
  // Lower the actual call itself - This is a bit of a hack, but we want to
 | 
						|
  // avoid modifying the actual lowering code.  This is similiar in intent to
 | 
						|
  // the LowerCallOperands mechanism used by PATCHPOINT, but is structured
 | 
						|
  // differently.  Hopefully, this is slightly more robust w.r.t. calling
 | 
						|
  // convention, return values, and other function attributes.
 | 
						|
  Value *ActualCallee = const_cast<Value *>(StatepointSite.actualCallee());
 | 
						|
 | 
						|
  std::vector<Value *> Args;
 | 
						|
  CallInst::const_op_iterator arg_begin = StatepointSite.call_args_begin();
 | 
						|
  CallInst::const_op_iterator arg_end = StatepointSite.call_args_end();
 | 
						|
  Args.insert(Args.end(), arg_begin, arg_end);
 | 
						|
  // TODO: remove the creation of a new instruction!  We should not be
 | 
						|
  // modifying the IR (even temporarily) at this point.
 | 
						|
  CallInst *Tmp = CallInst::Create(ActualCallee, Args);
 | 
						|
  Tmp->setTailCall(CS.isTailCall());
 | 
						|
  Tmp->setCallingConv(CS.getCallingConv());
 | 
						|
  Tmp->setAttributes(CS.getAttributes());
 | 
						|
  Builder.LowerCallTo(Tmp, Builder.getValue(ActualCallee), false, LandingPad);
 | 
						|
 | 
						|
  // Handle the return value of the call iff any.
 | 
						|
  const bool HasDef = !Tmp->getType()->isVoidTy();
 | 
						|
  if (HasDef) {
 | 
						|
    if (CS.isInvoke()) {
 | 
						|
      // Result value will be used in different basic block for invokes
 | 
						|
      // so we need to export it now. But statepoint call has a different type
 | 
						|
      // than the actuall call. It means that standart exporting mechanism will
 | 
						|
      // create register of the wrong type. So instead we need to create
 | 
						|
      // register with correct type and save value into it manually.
 | 
						|
      // TODO: To eliminate this problem we can remove gc.result intrinsics
 | 
						|
      //       completelly and make statepoint call to return a tuple.
 | 
						|
      unsigned reg = Builder.FuncInfo.CreateRegs(Tmp->getType());
 | 
						|
      Builder.CopyValueToVirtualRegister(Tmp, reg);
 | 
						|
      Builder.FuncInfo.ValueMap[CS.getInstruction()] = reg;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      // The value of the statepoint itself will be the value of call itself.
 | 
						|
      // We'll replace the actually call node shortly.  gc_result will grab
 | 
						|
      // this value.
 | 
						|
      Builder.setValue(CS.getInstruction(), Builder.getValue(Tmp));
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // The token value is never used from here on, just generate a poison value
 | 
						|
    Builder.setValue(CS.getInstruction(), Builder.DAG.getIntPtrConstant(-1));
 | 
						|
  }
 | 
						|
  // Remove the fake entry we created so we don't have a hanging reference
 | 
						|
  // after we delete this node.
 | 
						|
  Builder.removeValue(Tmp);
 | 
						|
  delete Tmp;
 | 
						|
  Tmp = nullptr;
 | 
						|
 | 
						|
  // Search for the call node
 | 
						|
  // The following code is essentially reverse engineering X86's
 | 
						|
  // LowerCallTo.
 | 
						|
  // We are expecting DAG to have the following form:
 | 
						|
  // ch = eh_label (only in case of invoke statepoint)
 | 
						|
  //   ch, glue = callseq_start ch
 | 
						|
  //   ch, glue = X86::Call ch, glue
 | 
						|
  //   ch, glue = callseq_end ch, glue
 | 
						|
  // ch = eh_label ch (only in case of invoke statepoint)
 | 
						|
  //
 | 
						|
  // DAG root will be either last eh_label or callseq_end.
 | 
						|
    
 | 
						|
  SDNode *CallNode = nullptr;
 | 
						|
 | 
						|
  // We just emitted a call, so it should be last thing generated
 | 
						|
  SDValue Chain = Builder.DAG.getRoot();
 | 
						|
 | 
						|
  // Find closest CALLSEQ_END walking back through lowered nodes if needed
 | 
						|
  SDNode *CallEnd = Chain.getNode();
 | 
						|
  int Sanity = 0;
 | 
						|
  while (CallEnd->getOpcode() != ISD::CALLSEQ_END) {
 | 
						|
    assert(CallEnd->getNumOperands() >= 1 &&
 | 
						|
           CallEnd->getOperand(0).getValueType() == MVT::Other);
 | 
						|
 | 
						|
    CallEnd = CallEnd->getOperand(0).getNode();
 | 
						|
 | 
						|
    assert(Sanity < 20 && "should have found call end already");
 | 
						|
    Sanity++;
 | 
						|
  }
 | 
						|
  assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
 | 
						|
         "Expected a callseq node.");
 | 
						|
  assert(CallEnd->getGluedNode());
 | 
						|
 | 
						|
  // Step back inside the CALLSEQ
 | 
						|
  CallNode = CallEnd->getGluedNode();
 | 
						|
  return CallNode;
 | 
						|
}
 | 
						|
 | 
						|
/// Callect all gc pointers coming into statepoint intrinsic, clean them up,
 | 
						|
/// and return two arrays:
 | 
						|
///   Bases - base pointers incoming to this statepoint
 | 
						|
///   Ptrs - derived pointers incoming to this statepoint
 | 
						|
///   Relocs - the gc_relocate corresponding to each base/ptr pair
 | 
						|
/// Elements of this arrays should be in one-to-one correspondence with each
 | 
						|
/// other i.e Bases[i], Ptrs[i] are from the same gcrelocate call
 | 
						|
static void
 | 
						|
getIncomingStatepointGCValues(SmallVectorImpl<const Value *> &Bases,
 | 
						|
                              SmallVectorImpl<const Value *> &Ptrs,
 | 
						|
                              SmallVectorImpl<const Value *> &Relocs,
 | 
						|
                              ImmutableStatepoint StatepointSite,
 | 
						|
                              SelectionDAGBuilder &Builder) {
 | 
						|
  for (GCRelocateOperands relocateOpers :
 | 
						|
         StatepointSite.getRelocates(StatepointSite)) {
 | 
						|
    Relocs.push_back(relocateOpers.getUnderlyingCallSite().getInstruction());
 | 
						|
    Bases.push_back(relocateOpers.basePtr());
 | 
						|
    Ptrs.push_back(relocateOpers.derivedPtr());
 | 
						|
  }
 | 
						|
 | 
						|
  // Remove any redundant llvm::Values which map to the same SDValue as another
 | 
						|
  // input.  Also has the effect of removing duplicates in the original
 | 
						|
  // llvm::Value input list as well.  This is a useful optimization for
 | 
						|
  // reducing the size of the StackMap section.  It has no other impact.
 | 
						|
  removeDuplicatesGCPtrs(Bases, Ptrs, Relocs, Builder);
 | 
						|
 | 
						|
  assert(Bases.size() == Ptrs.size() && Ptrs.size() == Relocs.size());
 | 
						|
}
 | 
						|
 | 
						|
/// Spill a value incoming to the statepoint. It might be either part of
 | 
						|
/// vmstate
 | 
						|
/// or gcstate. In both cases unconditionally spill it on the stack unless it
 | 
						|
/// is a null constant. Return pair with first element being frame index
 | 
						|
/// containing saved value and second element with outgoing chain from the
 | 
						|
/// emitted store
 | 
						|
static std::pair<SDValue, SDValue>
 | 
						|
spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
 | 
						|
                             SelectionDAGBuilder &Builder) {
 | 
						|
  SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
 | 
						|
 | 
						|
  // Emit new store if we didn't do it for this ptr before
 | 
						|
  if (!Loc.getNode()) {
 | 
						|
    Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
 | 
						|
                                                       Builder);
 | 
						|
    assert(isa<FrameIndexSDNode>(Loc));
 | 
						|
    int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
 | 
						|
    // We use TargetFrameIndex so that isel will not select it into LEA
 | 
						|
    Loc = Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType());
 | 
						|
 | 
						|
    // TODO: We can create TokenFactor node instead of
 | 
						|
    //       chaining stores one after another, this may allow
 | 
						|
    //       a bit more optimal scheduling for them
 | 
						|
    Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
 | 
						|
                                 MachinePointerInfo::getFixedStack(Index),
 | 
						|
                                 false, false, 0);
 | 
						|
 | 
						|
    Builder.StatepointLowering.setLocation(Incoming, Loc);
 | 
						|
  }
 | 
						|
 | 
						|
  assert(Loc.getNode());
 | 
						|
  return std::make_pair(Loc, Chain);
 | 
						|
}
 | 
						|
 | 
						|
/// Lower a single value incoming to a statepoint node.  This value can be
 | 
						|
/// either a deopt value or a gc value, the handling is the same.  We special
 | 
						|
/// case constants and allocas, then fall back to spilling if required.
 | 
						|
static void lowerIncomingStatepointValue(SDValue Incoming,
 | 
						|
                                         SmallVectorImpl<SDValue> &Ops,
 | 
						|
                                         SelectionDAGBuilder &Builder) {
 | 
						|
  SDValue Chain = Builder.getRoot();
 | 
						|
 | 
						|
  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
 | 
						|
    // If the original value was a constant, make sure it gets recorded as
 | 
						|
    // such in the stackmap.  This is required so that the consumer can
 | 
						|
    // parse any internal format to the deopt state.  It also handles null
 | 
						|
    // pointers and other constant pointers in GC states
 | 
						|
    Ops.push_back(
 | 
						|
        Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64));
 | 
						|
    Ops.push_back(Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64));
 | 
						|
  } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
 | 
						|
    // This handles allocas as arguments to the statepoint (this is only
 | 
						|
    // really meaningful for a deopt value.  For GC, we'd be trying to
 | 
						|
    // relocate the address of the alloca itself?)
 | 
						|
    Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 
 | 
						|
                                                  Incoming.getValueType()));
 | 
						|
  } else {
 | 
						|
    // Otherwise, locate a spill slot and explicitly spill it so it
 | 
						|
    // can be found by the runtime later.  We currently do not support
 | 
						|
    // tracking values through callee saved registers to their eventual
 | 
						|
    // spill location.  This would be a useful optimization, but would
 | 
						|
    // need to be optional since it requires a lot of complexity on the
 | 
						|
    // runtime side which not all would support.
 | 
						|
    std::pair<SDValue, SDValue> Res =
 | 
						|
        spillIncomingStatepointValue(Incoming, Chain, Builder);
 | 
						|
    Ops.push_back(Res.first);
 | 
						|
    Chain = Res.second;
 | 
						|
  }
 | 
						|
 | 
						|
  Builder.DAG.setRoot(Chain);
 | 
						|
}
 | 
						|
 | 
						|
/// Lower deopt state and gc pointer arguments of the statepoint.  The actual
 | 
						|
/// lowering is described in lowerIncomingStatepointValue.  This function is
 | 
						|
/// responsible for lowering everything in the right position and playing some
 | 
						|
/// tricks to avoid redundant stack manipulation where possible.  On
 | 
						|
/// completion, 'Ops' will contain ready to use operands for machine code
 | 
						|
/// statepoint. The chain nodes will have already been created and the DAG root
 | 
						|
/// will be set to the last value spilled (if any were).
 | 
						|
static void lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
 | 
						|
                                    ImmutableStatepoint StatepointSite,
 | 
						|
                                    SelectionDAGBuilder &Builder) {
 | 
						|
 | 
						|
  // Lower the deopt and gc arguments for this statepoint.  Layout will
 | 
						|
  // be: deopt argument length, deopt arguments.., gc arguments...
 | 
						|
 | 
						|
  SmallVector<const Value *, 64> Bases, Ptrs, Relocations;
 | 
						|
  getIncomingStatepointGCValues(Bases, Ptrs, Relocations,
 | 
						|
                                StatepointSite, Builder);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Check that each of the gc pointer and bases we've gotten out of the
 | 
						|
  // safepoint is something the strategy thinks might be a pointer into the GC
 | 
						|
  // heap.  This is basically just here to help catch errors during statepoint
 | 
						|
  // insertion. TODO: This should actually be in the Verifier, but we can't get
 | 
						|
  // to the GCStrategy from there (yet).
 | 
						|
  GCStrategy &S = Builder.GFI->getStrategy();
 | 
						|
  for (const Value *V : Bases) {
 | 
						|
    auto Opt = S.isGCManagedPointer(V);
 | 
						|
    if (Opt.hasValue()) {
 | 
						|
      assert(Opt.getValue() &&
 | 
						|
             "non gc managed base pointer found in statepoint");
 | 
						|
    }
 | 
						|
  }
 | 
						|
  for (const Value *V : Ptrs) {
 | 
						|
    auto Opt = S.isGCManagedPointer(V);
 | 
						|
    if (Opt.hasValue()) {
 | 
						|
      assert(Opt.getValue() &&
 | 
						|
             "non gc managed derived pointer found in statepoint");
 | 
						|
    }
 | 
						|
  }
 | 
						|
  for (const Value *V : Relocations) {
 | 
						|
    auto Opt = S.isGCManagedPointer(V);
 | 
						|
    if (Opt.hasValue()) {
 | 
						|
      assert(Opt.getValue() && "non gc managed pointer relocated");
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
 | 
						|
  // Before we actually start lowering (and allocating spill slots for values),
 | 
						|
  // reserve any stack slots which we judge to be profitable to reuse for a
 | 
						|
  // particular value.  This is purely an optimization over the code below and
 | 
						|
  // doesn't change semantics at all.  It is important for performance that we
 | 
						|
  // reserve slots for both deopt and gc values before lowering either.
 | 
						|
  for (auto I = StatepointSite.vm_state_begin() + 1,
 | 
						|
            E = StatepointSite.vm_state_end();
 | 
						|
       I != E; ++I) {
 | 
						|
    Value *V = *I;
 | 
						|
    SDValue Incoming = Builder.getValue(V);
 | 
						|
    reservePreviousStackSlotForValue(Incoming, Builder);
 | 
						|
  }
 | 
						|
  for (unsigned i = 0; i < Bases.size() * 2; ++i) {
 | 
						|
    // Even elements will contain base, odd elements - derived ptr
 | 
						|
    const Value *V = i % 2 ? Bases[i / 2] : Ptrs[i / 2];
 | 
						|
    SDValue Incoming = Builder.getValue(V);
 | 
						|
    reservePreviousStackSlotForValue(Incoming, Builder);
 | 
						|
  }
 | 
						|
 | 
						|
  // First, prefix the list with the number of unique values to be
 | 
						|
  // lowered.  Note that this is the number of *Values* not the
 | 
						|
  // number of SDValues required to lower them.
 | 
						|
  const int NumVMSArgs = StatepointSite.numTotalVMSArgs();
 | 
						|
  Ops.push_back(
 | 
						|
      Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64));
 | 
						|
  Ops.push_back(Builder.DAG.getTargetConstant(NumVMSArgs, MVT::i64));
 | 
						|
 | 
						|
  assert(NumVMSArgs + 1 == std::distance(StatepointSite.vm_state_begin(),
 | 
						|
                                         StatepointSite.vm_state_end()));
 | 
						|
 | 
						|
  // The vm state arguments are lowered in an opaque manner.  We do
 | 
						|
  // not know what type of values are contained within.  We skip the
 | 
						|
  // first one since that happens to be the total number we lowered
 | 
						|
  // explicitly just above.  We could have left it in the loop and
 | 
						|
  // not done it explicitly, but it's far easier to understand this
 | 
						|
  // way.
 | 
						|
  for (auto I = StatepointSite.vm_state_begin() + 1,
 | 
						|
            E = StatepointSite.vm_state_end();
 | 
						|
       I != E; ++I) {
 | 
						|
    const Value *V = *I;
 | 
						|
    SDValue Incoming = Builder.getValue(V);
 | 
						|
    lowerIncomingStatepointValue(Incoming, Ops, Builder);
 | 
						|
  }
 | 
						|
 | 
						|
  // Finally, go ahead and lower all the gc arguments.  There's no prefixed
 | 
						|
  // length for this one.  After lowering, we'll have the base and pointer
 | 
						|
  // arrays interwoven with each (lowered) base pointer immediately followed by
 | 
						|
  // it's (lowered) derived pointer.  i.e
 | 
						|
  // (base[0], ptr[0], base[1], ptr[1], ...)
 | 
						|
  for (unsigned i = 0; i < Bases.size() * 2; ++i) {
 | 
						|
    // Even elements will contain base, odd elements - derived ptr
 | 
						|
    const Value *V = i % 2 ? Bases[i / 2] : Ptrs[i / 2];
 | 
						|
    SDValue Incoming = Builder.getValue(V);
 | 
						|
    lowerIncomingStatepointValue(Incoming, Ops, Builder);
 | 
						|
  }
 | 
						|
 | 
						|
  // If there are any explicit spill slots passed to the statepoint, record 
 | 
						|
  // them, but otherwise do not do anything special.  These are user provided
 | 
						|
  // allocas and give control over placement to the consumer.  In this case, 
 | 
						|
  // it is the contents of the slot which may get updated, not the pointer to
 | 
						|
  // the alloca
 | 
						|
  for (Value *V : StatepointSite.gc_args()) {
 | 
						|
    SDValue Incoming = Builder.getValue(V);
 | 
						|
    if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
 | 
						|
      // This handles allocas as arguments to the statepoint
 | 
						|
      Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), 
 | 
						|
                                                    Incoming.getValueType()));
 | 
						|
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGBuilder::visitStatepoint(const CallInst &CI) {
 | 
						|
  // Check some preconditions for sanity
 | 
						|
  assert(isStatepoint(&CI) &&
 | 
						|
         "function called must be the statepoint function");
 | 
						|
 | 
						|
  LowerStatepoint(ImmutableStatepoint(&CI));
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP,
 | 
						|
                                     MachineBasicBlock *LandingPad/*=nullptr*/) {
 | 
						|
  // The basic scheme here is that information about both the original call and
 | 
						|
  // the safepoint is encoded in the CallInst.  We create a temporary call and
 | 
						|
  // lower it, then reverse engineer the calling sequence.
 | 
						|
 | 
						|
  NumOfStatepoints++;
 | 
						|
  // Clear state
 | 
						|
  StatepointLowering.startNewStatepoint(*this);
 | 
						|
 | 
						|
  ImmutableCallSite CS(ISP.getCallSite());
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Consistency check
 | 
						|
  for (const User *U : CS->users()) {
 | 
						|
    const CallInst *Call = cast<CallInst>(U);
 | 
						|
    if (isGCRelocate(Call))
 | 
						|
      StatepointLowering.scheduleRelocCall(*Call);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // If this is a malformed statepoint, report it early to simplify debugging.
 | 
						|
  // This should catch any IR level mistake that's made when constructing or
 | 
						|
  // transforming statepoints.
 | 
						|
  ISP.verify();
 | 
						|
 | 
						|
  // Check that the associated GCStrategy expects to encounter statepoints.
 | 
						|
  // TODO: This if should become an assert.  For now, we allow the GCStrategy
 | 
						|
  // to be optional for backwards compatibility.  This will only last a short
 | 
						|
  // period (i.e. a couple of weeks).
 | 
						|
  assert(GFI->getStrategy().useStatepoints() &&
 | 
						|
         "GCStrategy does not expect to encounter statepoints");
 | 
						|
#endif
 | 
						|
 | 
						|
  // Lower statepoint vmstate and gcstate arguments
 | 
						|
  SmallVector<SDValue, 10> LoweredArgs;
 | 
						|
  lowerStatepointMetaArgs(LoweredArgs, ISP, *this);
 | 
						|
 | 
						|
  // Get call node, we will replace it later with statepoint
 | 
						|
  SDNode *CallNode = lowerCallFromStatepoint(ISP, LandingPad, *this);
 | 
						|
 | 
						|
  // Construct the actual STATEPOINT node with all the appropriate arguments
 | 
						|
  // and return values.
 | 
						|
 | 
						|
  // TODO: Currently, all of these operands are being marked as read/write in
 | 
						|
  // PrologEpilougeInserter.cpp, we should special case the VMState arguments
 | 
						|
  // and flags to be read-only.
 | 
						|
  SmallVector<SDValue, 40> Ops;
 | 
						|
 | 
						|
  // Calculate and push starting position of vmstate arguments
 | 
						|
  // Call Node: Chain, Target, {Args}, RegMask, [Glue]
 | 
						|
  SDValue Glue;
 | 
						|
  if (CallNode->getGluedNode()) {
 | 
						|
    // Glue is always last operand
 | 
						|
    Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
 | 
						|
  }
 | 
						|
  // Get number of arguments incoming directly into call node
 | 
						|
  unsigned NumCallRegArgs =
 | 
						|
      CallNode->getNumOperands() - (Glue.getNode() ? 4 : 3);
 | 
						|
  Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32));
 | 
						|
 | 
						|
  // Add call target
 | 
						|
  SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
 | 
						|
  Ops.push_back(CallTarget);
 | 
						|
 | 
						|
  // Add call arguments
 | 
						|
  // Get position of register mask in the call
 | 
						|
  SDNode::op_iterator RegMaskIt;
 | 
						|
  if (Glue.getNode())
 | 
						|
    RegMaskIt = CallNode->op_end() - 2;
 | 
						|
  else
 | 
						|
    RegMaskIt = CallNode->op_end() - 1;
 | 
						|
  Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);
 | 
						|
 | 
						|
  // Add a leading constant argument with the Flags and the calling convention
 | 
						|
  // masked together
 | 
						|
  CallingConv::ID CallConv = CS.getCallingConv();
 | 
						|
  int Flags = dyn_cast<ConstantInt>(CS.getArgument(2))->getZExtValue();
 | 
						|
  assert(Flags == 0 && "not expected to be used");
 | 
						|
  Ops.push_back(DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64));
 | 
						|
  Ops.push_back(
 | 
						|
      DAG.getTargetConstant(Flags | ((unsigned)CallConv << 1), MVT::i64));
 | 
						|
 | 
						|
  // Insert all vmstate and gcstate arguments
 | 
						|
  Ops.insert(Ops.end(), LoweredArgs.begin(), LoweredArgs.end());
 | 
						|
 | 
						|
  // Add register mask from call node
 | 
						|
  Ops.push_back(*RegMaskIt);
 | 
						|
 | 
						|
  // Add chain
 | 
						|
  Ops.push_back(CallNode->getOperand(0));
 | 
						|
 | 
						|
  // Same for the glue, but we add it only if original call had it
 | 
						|
  if (Glue.getNode())
 | 
						|
    Ops.push_back(Glue);
 | 
						|
 | 
						|
  // Compute return values.  Provide a glue output since we consume one as
 | 
						|
  // input.  This allows someone else to chain off us as needed.
 | 
						|
  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
 | 
						|
 | 
						|
  SDNode *StatepointMCNode = DAG.getMachineNode(TargetOpcode::STATEPOINT,
 | 
						|
                                                getCurSDLoc(), NodeTys, Ops);
 | 
						|
 | 
						|
  // Replace original call
 | 
						|
  DAG.ReplaceAllUsesWith(CallNode, StatepointMCNode); // This may update Root
 | 
						|
  // Remove originall call node
 | 
						|
  DAG.DeleteNode(CallNode);
 | 
						|
 | 
						|
  // DON'T set the root - under the assumption that it's already set past the
 | 
						|
  // inserted node we created.
 | 
						|
 | 
						|
  // TODO: A better future implementation would be to emit a single variable
 | 
						|
  // argument, variable return value STATEPOINT node here and then hookup the
 | 
						|
  // return value of each gc.relocate to the respective output of the
 | 
						|
  // previously emitted STATEPOINT value.  Unfortunately, this doesn't appear
 | 
						|
  // to actually be possible today.
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGBuilder::visitGCResult(const CallInst &CI) {
 | 
						|
  // The result value of the gc_result is simply the result of the actual
 | 
						|
  // call.  We've already emitted this, so just grab the value.
 | 
						|
  Instruction *I = cast<Instruction>(CI.getArgOperand(0));
 | 
						|
  assert(isStatepoint(I) &&
 | 
						|
         "first argument must be a statepoint token");
 | 
						|
 | 
						|
  if (isa<InvokeInst>(I)) {
 | 
						|
    // For invokes we should have stored call result in a virtual register.
 | 
						|
    // We can not use default getValue() functionality to copy value from this
 | 
						|
    // register because statepoint and actuall call return types can be
 | 
						|
    // different, and getValue() will use CopyFromReg of the wrong type,
 | 
						|
    // which is always i32 in our case.
 | 
						|
    PointerType *CalleeType = cast<PointerType>(
 | 
						|
                                ImmutableStatepoint(I).actualCallee()->getType());
 | 
						|
    Type *RetTy = cast<FunctionType>(
 | 
						|
                                CalleeType->getElementType())->getReturnType();
 | 
						|
    SDValue CopyFromReg = getCopyFromRegs(I, RetTy);
 | 
						|
 | 
						|
    assert(CopyFromReg.getNode());
 | 
						|
    setValue(&CI, CopyFromReg);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    setValue(&CI, getValue(I));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SelectionDAGBuilder::visitGCRelocate(const CallInst &CI) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Consistency check
 | 
						|
  StatepointLowering.relocCallVisited(CI);
 | 
						|
#endif
 | 
						|
 | 
						|
  GCRelocateOperands relocateOpers(&CI);
 | 
						|
  SDValue SD = getValue(relocateOpers.derivedPtr());
 | 
						|
 | 
						|
  if (isa<ConstantSDNode>(SD) || isa<FrameIndexSDNode>(SD)) {
 | 
						|
    // We didn't need to spill these special cases (constants and allocas).
 | 
						|
    // See the handling in spillIncomingValueForStatepoint for detail.
 | 
						|
    setValue(&CI, SD);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue Loc = StatepointLowering.getRelocLocation(SD);
 | 
						|
  // Emit new load if we did not emit it before
 | 
						|
  if (!Loc.getNode()) {
 | 
						|
    SDValue SpillSlot = StatepointLowering.getLocation(SD);
 | 
						|
    int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
 | 
						|
 | 
						|
    // Be conservative: flush all pending loads
 | 
						|
    // TODO: Probably we can be less restrictive on this,
 | 
						|
    // it may allow more scheduling opprtunities
 | 
						|
    SDValue Chain = getRoot();
 | 
						|
 | 
						|
    Loc = DAG.getLoad(SpillSlot.getValueType(), getCurSDLoc(), Chain,
 | 
						|
                      SpillSlot, MachinePointerInfo::getFixedStack(FI), false,
 | 
						|
                      false, false, 0);
 | 
						|
 | 
						|
    StatepointLowering.setRelocLocation(SD, Loc);
 | 
						|
 | 
						|
    // Again, be conservative, don't emit pending loads
 | 
						|
    DAG.setRoot(Loc.getValue(1));
 | 
						|
  }
 | 
						|
 | 
						|
  assert(Loc.getNode());
 | 
						|
  setValue(&CI, Loc);
 | 
						|
}
 |