mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@35067 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			775 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			775 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the common interface used by the various execution engine
 | |
| // subclasses.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "jit"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/ModuleProvider.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ExecutionEngine/ExecutionEngine.h"
 | |
| #include "llvm/ExecutionEngine/GenericValue.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/MutexGuard.h"
 | |
| #include "llvm/System/DynamicLibrary.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include <math.h>
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
 | |
| STATISTIC(NumGlobals  , "Number of global vars initialized");
 | |
| 
 | |
| ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0;
 | |
| ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0;
 | |
| 
 | |
| ExecutionEngine::ExecutionEngine(ModuleProvider *P) {
 | |
|   LazyCompilationDisabled = false;
 | |
|   Modules.push_back(P);
 | |
|   assert(P && "ModuleProvider is null?");
 | |
| }
 | |
| 
 | |
| ExecutionEngine::ExecutionEngine(Module *M) {
 | |
|   LazyCompilationDisabled = false;
 | |
|   assert(M && "Module is null?");
 | |
|   Modules.push_back(new ExistingModuleProvider(M));
 | |
| }
 | |
| 
 | |
| ExecutionEngine::~ExecutionEngine() {
 | |
|   clearAllGlobalMappings();
 | |
|   for (unsigned i = 0, e = Modules.size(); i != e; ++i)
 | |
|     delete Modules[i];
 | |
| }
 | |
| 
 | |
| /// FindFunctionNamed - Search all of the active modules to find the one that
 | |
| /// defines FnName.  This is very slow operation and shouldn't be used for
 | |
| /// general code.
 | |
| Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
 | |
|   for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
 | |
|     if (Function *F = Modules[i]->getModule()->getFunction(FnName))
 | |
|       return F;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// addGlobalMapping - Tell the execution engine that the specified global is
 | |
| /// at the specified location.  This is used internally as functions are JIT'd
 | |
| /// and as global variables are laid out in memory.  It can and should also be
 | |
| /// used by clients of the EE that want to have an LLVM global overlay
 | |
| /// existing data in memory.
 | |
| void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
 | |
|   MutexGuard locked(lock);
 | |
|   
 | |
|   void *&CurVal = state.getGlobalAddressMap(locked)[GV];
 | |
|   assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
 | |
|   CurVal = Addr;
 | |
|   
 | |
|   // If we are using the reverse mapping, add it too
 | |
|   if (!state.getGlobalAddressReverseMap(locked).empty()) {
 | |
|     const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
 | |
|     assert((V == 0 || GV == 0) && "GlobalMapping already established!");
 | |
|     V = GV;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// clearAllGlobalMappings - Clear all global mappings and start over again
 | |
| /// use in dynamic compilation scenarios when you want to move globals
 | |
| void ExecutionEngine::clearAllGlobalMappings() {
 | |
|   MutexGuard locked(lock);
 | |
|   
 | |
|   state.getGlobalAddressMap(locked).clear();
 | |
|   state.getGlobalAddressReverseMap(locked).clear();
 | |
| }
 | |
| 
 | |
| /// updateGlobalMapping - Replace an existing mapping for GV with a new
 | |
| /// address.  This updates both maps as required.  If "Addr" is null, the
 | |
| /// entry for the global is removed from the mappings.
 | |
| void ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
 | |
|   MutexGuard locked(lock);
 | |
|   
 | |
|   // Deleting from the mapping?
 | |
|   if (Addr == 0) {
 | |
|     state.getGlobalAddressMap(locked).erase(GV);
 | |
|     if (!state.getGlobalAddressReverseMap(locked).empty())
 | |
|       state.getGlobalAddressReverseMap(locked).erase(Addr);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   void *&CurVal = state.getGlobalAddressMap(locked)[GV];
 | |
|   if (CurVal && !state.getGlobalAddressReverseMap(locked).empty())
 | |
|     state.getGlobalAddressReverseMap(locked).erase(CurVal);
 | |
|   CurVal = Addr;
 | |
|   
 | |
|   // If we are using the reverse mapping, add it too
 | |
|   if (!state.getGlobalAddressReverseMap(locked).empty()) {
 | |
|     const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
 | |
|     assert((V == 0 || GV == 0) && "GlobalMapping already established!");
 | |
|     V = GV;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getPointerToGlobalIfAvailable - This returns the address of the specified
 | |
| /// global value if it is has already been codegen'd, otherwise it returns null.
 | |
| ///
 | |
| void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
 | |
|   MutexGuard locked(lock);
 | |
|   
 | |
|   std::map<const GlobalValue*, void*>::iterator I =
 | |
|   state.getGlobalAddressMap(locked).find(GV);
 | |
|   return I != state.getGlobalAddressMap(locked).end() ? I->second : 0;
 | |
| }
 | |
| 
 | |
| /// getGlobalValueAtAddress - Return the LLVM global value object that starts
 | |
| /// at the specified address.
 | |
| ///
 | |
| const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
 | |
|   MutexGuard locked(lock);
 | |
| 
 | |
|   // If we haven't computed the reverse mapping yet, do so first.
 | |
|   if (state.getGlobalAddressReverseMap(locked).empty()) {
 | |
|     for (std::map<const GlobalValue*, void *>::iterator
 | |
|          I = state.getGlobalAddressMap(locked).begin(),
 | |
|          E = state.getGlobalAddressMap(locked).end(); I != E; ++I)
 | |
|       state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second,
 | |
|                                                                      I->first));
 | |
|   }
 | |
| 
 | |
|   std::map<void *, const GlobalValue*>::iterator I =
 | |
|     state.getGlobalAddressReverseMap(locked).find(Addr);
 | |
|   return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
 | |
| }
 | |
| 
 | |
| // CreateArgv - Turn a vector of strings into a nice argv style array of
 | |
| // pointers to null terminated strings.
 | |
| //
 | |
| static void *CreateArgv(ExecutionEngine *EE,
 | |
|                         const std::vector<std::string> &InputArgv) {
 | |
|   unsigned PtrSize = EE->getTargetData()->getPointerSize();
 | |
|   char *Result = new char[(InputArgv.size()+1)*PtrSize];
 | |
| 
 | |
|   DOUT << "ARGV = " << (void*)Result << "\n";
 | |
|   const Type *SBytePtr = PointerType::get(Type::Int8Ty);
 | |
| 
 | |
|   for (unsigned i = 0; i != InputArgv.size(); ++i) {
 | |
|     unsigned Size = InputArgv[i].size()+1;
 | |
|     char *Dest = new char[Size];
 | |
|     DOUT << "ARGV[" << i << "] = " << (void*)Dest << "\n";
 | |
| 
 | |
|     std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
 | |
|     Dest[Size-1] = 0;
 | |
| 
 | |
|     // Endian safe: Result[i] = (PointerTy)Dest;
 | |
|     EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize),
 | |
|                            SBytePtr);
 | |
|   }
 | |
| 
 | |
|   // Null terminate it
 | |
|   EE->StoreValueToMemory(PTOGV(0),
 | |
|                          (GenericValue*)(Result+InputArgv.size()*PtrSize),
 | |
|                          SBytePtr);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// runStaticConstructorsDestructors - This method is used to execute all of
 | |
| /// the static constructors or destructors for a program, depending on the
 | |
| /// value of isDtors.
 | |
| void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
 | |
|   const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
 | |
|   
 | |
|   // Execute global ctors/dtors for each module in the program.
 | |
|   for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
 | |
|     GlobalVariable *GV = Modules[m]->getModule()->getNamedGlobal(Name);
 | |
| 
 | |
|     // If this global has internal linkage, or if it has a use, then it must be
 | |
|     // an old-style (llvmgcc3) static ctor with __main linked in and in use.  If
 | |
|     // this is the case, don't execute any of the global ctors, __main will do
 | |
|     // it.
 | |
|     if (!GV || GV->isDeclaration() || GV->hasInternalLinkage()) continue;
 | |
|   
 | |
|     // Should be an array of '{ int, void ()* }' structs.  The first value is
 | |
|     // the init priority, which we ignore.
 | |
|     ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
 | |
|     if (!InitList) continue;
 | |
|     for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
 | |
|       if (ConstantStruct *CS = 
 | |
|           dyn_cast<ConstantStruct>(InitList->getOperand(i))) {
 | |
|         if (CS->getNumOperands() != 2) break; // Not array of 2-element structs.
 | |
|       
 | |
|         Constant *FP = CS->getOperand(1);
 | |
|         if (FP->isNullValue())
 | |
|           break;  // Found a null terminator, exit.
 | |
|       
 | |
|         if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
 | |
|           if (CE->isCast())
 | |
|             FP = CE->getOperand(0);
 | |
|         if (Function *F = dyn_cast<Function>(FP)) {
 | |
|           // Execute the ctor/dtor function!
 | |
|           runFunction(F, std::vector<GenericValue>());
 | |
|         }
 | |
|       }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// runFunctionAsMain - This is a helper function which wraps runFunction to
 | |
| /// handle the common task of starting up main with the specified argc, argv,
 | |
| /// and envp parameters.
 | |
| int ExecutionEngine::runFunctionAsMain(Function *Fn,
 | |
|                                        const std::vector<std::string> &argv,
 | |
|                                        const char * const * envp) {
 | |
|   std::vector<GenericValue> GVArgs;
 | |
|   GenericValue GVArgc;
 | |
|   GVArgc.IntVal = APInt(32, argv.size());
 | |
|   unsigned NumArgs = Fn->getFunctionType()->getNumParams();
 | |
|   if (NumArgs) {
 | |
|     GVArgs.push_back(GVArgc); // Arg #0 = argc.
 | |
|     if (NumArgs > 1) {
 | |
|       GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv.
 | |
|       assert(((char **)GVTOP(GVArgs[1]))[0] &&
 | |
|              "argv[0] was null after CreateArgv");
 | |
|       if (NumArgs > 2) {
 | |
|         std::vector<std::string> EnvVars;
 | |
|         for (unsigned i = 0; envp[i]; ++i)
 | |
|           EnvVars.push_back(envp[i]);
 | |
|         GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp.
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return runFunction(Fn, GVArgs).IntVal.getZExtValue();
 | |
| }
 | |
| 
 | |
| /// If possible, create a JIT, unless the caller specifically requests an
 | |
| /// Interpreter or there's an error. If even an Interpreter cannot be created,
 | |
| /// NULL is returned.
 | |
| ///
 | |
| ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP,
 | |
|                                          bool ForceInterpreter,
 | |
|                                          std::string *ErrorStr) {
 | |
|   ExecutionEngine *EE = 0;
 | |
| 
 | |
|   // Unless the interpreter was explicitly selected, try making a JIT.
 | |
|   if (!ForceInterpreter && JITCtor)
 | |
|     EE = JITCtor(MP, ErrorStr);
 | |
| 
 | |
|   // If we can't make a JIT, make an interpreter instead.
 | |
|   if (EE == 0 && InterpCtor)
 | |
|     EE = InterpCtor(MP, ErrorStr);
 | |
| 
 | |
|   if (EE) {
 | |
|     // Make sure we can resolve symbols in the program as well. The zero arg
 | |
|     // to the function tells DynamicLibrary to load the program, not a library.
 | |
|     try {
 | |
|       sys::DynamicLibrary::LoadLibraryPermanently(0);
 | |
|     } catch (...) {
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return EE;
 | |
| }
 | |
| 
 | |
| /// getPointerToGlobal - This returns the address of the specified global
 | |
| /// value.  This may involve code generation if it's a function.
 | |
| ///
 | |
| void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
 | |
|   if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
 | |
|     return getPointerToFunction(F);
 | |
| 
 | |
|   MutexGuard locked(lock);
 | |
|   void *p = state.getGlobalAddressMap(locked)[GV];
 | |
|   if (p)
 | |
|     return p;
 | |
| 
 | |
|   // Global variable might have been added since interpreter started.
 | |
|   if (GlobalVariable *GVar =
 | |
|           const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
 | |
|     EmitGlobalVariable(GVar);
 | |
|   else
 | |
|     assert(0 && "Global hasn't had an address allocated yet!");
 | |
|   return state.getGlobalAddressMap(locked)[GV];
 | |
| }
 | |
| 
 | |
| /// This function converts a Constant* into a GenericValue. The interesting 
 | |
| /// part is if C is a ConstantExpr.
 | |
| /// @brief Get a GenericValue for a Constnat*
 | |
| GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
 | |
|   // If its undefined, return the garbage.
 | |
|   if (isa<UndefValue>(C)) 
 | |
|     return GenericValue();
 | |
| 
 | |
|   // If the value is a ConstantExpr
 | |
|   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | |
|     Constant *Op0 = CE->getOperand(0);
 | |
|     switch (CE->getOpcode()) {
 | |
|     case Instruction::GetElementPtr: {
 | |
|       // Compute the index 
 | |
|       GenericValue Result = getConstantValue(Op0);
 | |
|       SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
 | |
|       uint64_t Offset =
 | |
|         TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size());
 | |
| 
 | |
|       char* tmp = (char*) Result.PointerVal;
 | |
|       Result = PTOGV(tmp + Offset);
 | |
|       return Result;
 | |
|     }
 | |
|     case Instruction::Trunc: {
 | |
|       GenericValue GV = getConstantValue(Op0);
 | |
|       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
 | |
|       GV.IntVal = GV.IntVal.trunc(BitWidth);
 | |
|       return GV;
 | |
|     }
 | |
|     case Instruction::ZExt: {
 | |
|       GenericValue GV = getConstantValue(Op0);
 | |
|       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
 | |
|       GV.IntVal = GV.IntVal.zext(BitWidth);
 | |
|       return GV;
 | |
|     }
 | |
|     case Instruction::SExt: {
 | |
|       GenericValue GV = getConstantValue(Op0);
 | |
|       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
 | |
|       GV.IntVal = GV.IntVal.sext(BitWidth);
 | |
|       return GV;
 | |
|     }
 | |
|     case Instruction::FPTrunc: {
 | |
|       GenericValue GV = getConstantValue(Op0);
 | |
|       GV.FloatVal = float(GV.DoubleVal);
 | |
|       return GV;
 | |
|     }
 | |
|     case Instruction::FPExt:{
 | |
|       GenericValue GV = getConstantValue(Op0);
 | |
|       GV.DoubleVal = double(GV.FloatVal);
 | |
|       return GV;
 | |
|     }
 | |
|     case Instruction::UIToFP: {
 | |
|       GenericValue GV = getConstantValue(Op0);
 | |
|       if (CE->getType() == Type::FloatTy)
 | |
|         GV.FloatVal = float(GV.IntVal.roundToDouble());
 | |
|       else
 | |
|         GV.DoubleVal = GV.IntVal.roundToDouble();
 | |
|       return GV;
 | |
|     }
 | |
|     case Instruction::SIToFP: {
 | |
|       GenericValue GV = getConstantValue(Op0);
 | |
|       if (CE->getType() == Type::FloatTy)
 | |
|         GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
 | |
|       else
 | |
|         GV.DoubleVal = GV.IntVal.signedRoundToDouble();
 | |
|       return GV;
 | |
|     }
 | |
|     case Instruction::FPToUI: // double->APInt conversion handles sign
 | |
|     case Instruction::FPToSI: {
 | |
|       GenericValue GV = getConstantValue(Op0);
 | |
|       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
 | |
|       if (Op0->getType() == Type::FloatTy)
 | |
|         GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
 | |
|       else
 | |
|         GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
 | |
|       return GV;
 | |
|     }
 | |
|     case Instruction::PtrToInt: {
 | |
|       GenericValue GV = getConstantValue(Op0);
 | |
|       uint32_t PtrWidth = TD->getPointerSizeInBits();
 | |
|       GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
 | |
|       return GV;
 | |
|     }
 | |
|     case Instruction::IntToPtr: {
 | |
|       GenericValue GV = getConstantValue(Op0);
 | |
|       uint32_t PtrWidth = TD->getPointerSizeInBits();
 | |
|       if (PtrWidth != GV.IntVal.getBitWidth())
 | |
|         GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
 | |
|       assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
 | |
|       GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
 | |
|       return GV;
 | |
|     }
 | |
|     case Instruction::BitCast: {
 | |
|       GenericValue GV = getConstantValue(Op0);
 | |
|       const Type* DestTy = CE->getType();
 | |
|       switch (Op0->getType()->getTypeID()) {
 | |
|         default: assert(0 && "Invalid bitcast operand");
 | |
|         case Type::IntegerTyID:
 | |
|           assert(DestTy->isFloatingPoint() && "invalid bitcast");
 | |
|           if (DestTy == Type::FloatTy)
 | |
|             GV.FloatVal = GV.IntVal.bitsToFloat();
 | |
|           else if (DestTy == Type::DoubleTy)
 | |
|             GV.DoubleVal = GV.IntVal.bitsToDouble();
 | |
|           break;
 | |
|         case Type::FloatTyID: 
 | |
|           assert(DestTy == Type::Int32Ty && "Invalid bitcast");
 | |
|           GV.IntVal.floatToBits(GV.FloatVal);
 | |
|           break;
 | |
|         case Type::DoubleTyID:
 | |
|           assert(DestTy == Type::Int64Ty && "Invalid bitcast");
 | |
|           GV.IntVal.doubleToBits(GV.DoubleVal);
 | |
|           break;
 | |
|         case Type::PointerTyID:
 | |
|           assert(isa<PointerType>(DestTy) && "Invalid bitcast");
 | |
|           break; // getConstantValue(Op0)  above already converted it
 | |
|       }
 | |
|       return GV;
 | |
|     }
 | |
|     case Instruction::Add:
 | |
|     case Instruction::Sub:
 | |
|     case Instruction::Mul:
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::SDiv:
 | |
|     case Instruction::URem:
 | |
|     case Instruction::SRem:
 | |
|     case Instruction::And:
 | |
|     case Instruction::Or:
 | |
|     case Instruction::Xor: {
 | |
|       GenericValue LHS = getConstantValue(Op0);
 | |
|       GenericValue RHS = getConstantValue(CE->getOperand(1));
 | |
|       GenericValue GV;
 | |
|       switch (CE->getOperand(0)->getType()->getTypeID()) {
 | |
|       default: assert(0 && "Bad add type!"); abort();
 | |
|       case Type::IntegerTyID:
 | |
|         switch (CE->getOpcode()) {
 | |
|           default: assert(0 && "Invalid integer opcode");
 | |
|           case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
 | |
|           case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
 | |
|           case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
 | |
|           case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
 | |
|           case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
 | |
|           case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
 | |
|           case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
 | |
|           case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
 | |
|           case Instruction::Or:  GV.IntVal = LHS.IntVal | RHS.IntVal; break;
 | |
|           case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
 | |
|         }
 | |
|         break;
 | |
|       case Type::FloatTyID:
 | |
|         switch (CE->getOpcode()) {
 | |
|           default: assert(0 && "Invalid float opcode"); abort();
 | |
|           case Instruction::Add:  
 | |
|             GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
 | |
|           case Instruction::Sub:  
 | |
|             GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
 | |
|           case Instruction::Mul:  
 | |
|             GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
 | |
|           case Instruction::FDiv: 
 | |
|             GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
 | |
|           case Instruction::FRem: 
 | |
|             GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break;
 | |
|         }
 | |
|         break;
 | |
|       case Type::DoubleTyID:
 | |
|         switch (CE->getOpcode()) {
 | |
|           default: assert(0 && "Invalid double opcode"); abort();
 | |
|           case Instruction::Add:  
 | |
|             GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
 | |
|           case Instruction::Sub:  
 | |
|             GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
 | |
|           case Instruction::Mul:  
 | |
|             GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
 | |
|           case Instruction::FDiv: 
 | |
|             GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
 | |
|           case Instruction::FRem: 
 | |
|             GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       return GV;
 | |
|     }
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|     cerr << "ConstantExpr not handled: " << *CE << "\n";
 | |
|     abort();
 | |
|   }
 | |
| 
 | |
|   GenericValue Result;
 | |
|   switch (C->getType()->getTypeID()) {
 | |
|   case Type::FloatTyID: 
 | |
|     Result.FloatVal = (float)cast<ConstantFP>(C)->getValue(); 
 | |
|     break;
 | |
|   case Type::DoubleTyID:
 | |
|     Result.DoubleVal = (double)cast<ConstantFP>(C)->getValue(); 
 | |
|     break;
 | |
|   case Type::IntegerTyID:
 | |
|     Result.IntVal = cast<ConstantInt>(C)->getValue();
 | |
|     break;
 | |
|   case Type::PointerTyID:
 | |
|     if (isa<ConstantPointerNull>(C))
 | |
|       Result.PointerVal = 0;
 | |
|     else if (const Function *F = dyn_cast<Function>(C))
 | |
|       Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
 | |
|     else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
 | |
|       Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
 | |
|     else
 | |
|       assert(0 && "Unknown constant pointer type!");
 | |
|     break;
 | |
|   default:
 | |
|     cerr << "ERROR: Constant unimplemented for type: " << *C->getType() << "\n";
 | |
|     abort();
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.  Ptr
 | |
| /// is the address of the memory at which to store Val, cast to GenericValue *.
 | |
| /// It is not a pointer to a GenericValue containing the address at which to
 | |
| /// store Val.
 | |
| ///
 | |
| void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
 | |
|                                          const Type *Ty) {
 | |
|   switch (Ty->getTypeID()) {
 | |
|   case Type::IntegerTyID: {
 | |
|     unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
 | |
|     GenericValue TmpVal = Val;
 | |
|     if (BitWidth <= 8)
 | |
|       *((uint8_t*)Ptr) = uint8_t(Val.IntVal.getZExtValue());
 | |
|     else if (BitWidth <= 16) {
 | |
|       *((uint16_t*)Ptr) = uint16_t(Val.IntVal.getZExtValue());
 | |
|     } else if (BitWidth <= 32) {
 | |
|       *((uint32_t*)Ptr) = uint32_t(Val.IntVal.getZExtValue());
 | |
|     } else if (BitWidth <= 64) {
 | |
|       *((uint64_t*)Ptr) = uint64_t(Val.IntVal.getZExtValue());
 | |
|     } else {
 | |
|       uint64_t *Dest = (uint64_t*)Ptr;
 | |
|       const uint64_t *Src = Val.IntVal.getRawData();
 | |
|       for (uint32_t i = 0; i < Val.IntVal.getNumWords(); ++i)
 | |
|         Dest[i] = Src[i];
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Type::FloatTyID:
 | |
|     *((float*)Ptr) = Val.FloatVal;
 | |
|     break;
 | |
|   case Type::DoubleTyID:
 | |
|     *((double*)Ptr) = Val.DoubleVal;
 | |
|     break;
 | |
|   case Type::PointerTyID: 
 | |
|     *((PointerTy*)Ptr) = Val.PointerVal;
 | |
|     break;
 | |
|   default:
 | |
|     cerr << "Cannot store value of type " << *Ty << "!\n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// FIXME: document
 | |
| ///
 | |
| void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 
 | |
|                                                   GenericValue *Ptr,
 | |
|                                                   const Type *Ty) {
 | |
|   switch (Ty->getTypeID()) {
 | |
|   case Type::IntegerTyID: {
 | |
|     unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
 | |
|     if (BitWidth <= 8)
 | |
|       Result.IntVal = APInt(BitWidth, *((uint8_t*)Ptr));
 | |
|     else if (BitWidth <= 16) {
 | |
|       Result.IntVal = APInt(BitWidth, *((uint16_t*)Ptr));
 | |
|     } else if (BitWidth <= 32) {
 | |
|       Result.IntVal = APInt(BitWidth, *((uint32_t*)Ptr));
 | |
|     } else if (BitWidth <= 64) {
 | |
|       Result.IntVal = APInt(BitWidth, *((uint64_t*)Ptr));
 | |
|     } else
 | |
|       Result.IntVal = APInt(BitWidth, BitWidth/64, (uint64_t*)Ptr);
 | |
|     break;
 | |
|   }
 | |
|   case Type::FloatTyID:
 | |
|     Result.FloatVal = *((float*)Ptr);
 | |
|     break;
 | |
|   case Type::DoubleTyID:
 | |
|     Result.DoubleVal = *((double*)Ptr); 
 | |
|     break;
 | |
|   case Type::PointerTyID: 
 | |
|     Result.PointerVal = *((PointerTy*)Ptr);
 | |
|     break;
 | |
|   default:
 | |
|     cerr << "Cannot load value of type " << *Ty << "!\n";
 | |
|     abort();
 | |
|   }
 | |
| }
 | |
| 
 | |
| // InitializeMemory - Recursive function to apply a Constant value into the
 | |
| // specified memory location...
 | |
| //
 | |
| void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
 | |
|   if (isa<UndefValue>(Init)) {
 | |
|     return;
 | |
|   } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
 | |
|     unsigned ElementSize =
 | |
|       getTargetData()->getTypeSize(CP->getType()->getElementType());
 | |
|     for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
 | |
|       InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
 | |
|     return;
 | |
|   } else if (Init->getType()->isFirstClassType()) {
 | |
|     GenericValue Val = getConstantValue(Init);
 | |
|     StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
 | |
|     return;
 | |
|   } else if (isa<ConstantAggregateZero>(Init)) {
 | |
|     memset(Addr, 0, (size_t)getTargetData()->getTypeSize(Init->getType()));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   switch (Init->getType()->getTypeID()) {
 | |
|   case Type::ArrayTyID: {
 | |
|     const ConstantArray *CPA = cast<ConstantArray>(Init);
 | |
|     unsigned ElementSize =
 | |
|       getTargetData()->getTypeSize(CPA->getType()->getElementType());
 | |
|     for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
 | |
|       InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case Type::StructTyID: {
 | |
|     const ConstantStruct *CPS = cast<ConstantStruct>(Init);
 | |
|     const StructLayout *SL =
 | |
|       getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
 | |
|     for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
 | |
|       InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   default:
 | |
|     cerr << "Bad Type: " << *Init->getType() << "\n";
 | |
|     assert(0 && "Unknown constant type to initialize memory with!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// EmitGlobals - Emit all of the global variables to memory, storing their
 | |
| /// addresses into GlobalAddress.  This must make sure to copy the contents of
 | |
| /// their initializers into the memory.
 | |
| ///
 | |
| void ExecutionEngine::emitGlobals() {
 | |
|   const TargetData *TD = getTargetData();
 | |
| 
 | |
|   // Loop over all of the global variables in the program, allocating the memory
 | |
|   // to hold them.  If there is more than one module, do a prepass over globals
 | |
|   // to figure out how the different modules should link together.
 | |
|   //
 | |
|   std::map<std::pair<std::string, const Type*>,
 | |
|            const GlobalValue*> LinkedGlobalsMap;
 | |
| 
 | |
|   if (Modules.size() != 1) {
 | |
|     for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
 | |
|       Module &M = *Modules[m]->getModule();
 | |
|       for (Module::const_global_iterator I = M.global_begin(),
 | |
|            E = M.global_end(); I != E; ++I) {
 | |
|         const GlobalValue *GV = I;
 | |
|         if (GV->hasInternalLinkage() || GV->isDeclaration() ||
 | |
|             GV->hasAppendingLinkage() || !GV->hasName())
 | |
|           continue;// Ignore external globals and globals with internal linkage.
 | |
|           
 | |
|         const GlobalValue *&GVEntry = 
 | |
|           LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
 | |
| 
 | |
|         // If this is the first time we've seen this global, it is the canonical
 | |
|         // version.
 | |
|         if (!GVEntry) {
 | |
|           GVEntry = GV;
 | |
|           continue;
 | |
|         }
 | |
|         
 | |
|         // If the existing global is strong, never replace it.
 | |
|         if (GVEntry->hasExternalLinkage() ||
 | |
|             GVEntry->hasDLLImportLinkage() ||
 | |
|             GVEntry->hasDLLExportLinkage())
 | |
|           continue;
 | |
|         
 | |
|         // Otherwise, we know it's linkonce/weak, replace it if this is a strong
 | |
|         // symbol.
 | |
|         if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
 | |
|           GVEntry = GV;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   std::vector<const GlobalValue*> NonCanonicalGlobals;
 | |
|   for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
 | |
|     Module &M = *Modules[m]->getModule();
 | |
|     for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
 | |
|          I != E; ++I) {
 | |
|       // In the multi-module case, see what this global maps to.
 | |
|       if (!LinkedGlobalsMap.empty()) {
 | |
|         if (const GlobalValue *GVEntry = 
 | |
|               LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
 | |
|           // If something else is the canonical global, ignore this one.
 | |
|           if (GVEntry != &*I) {
 | |
|             NonCanonicalGlobals.push_back(I);
 | |
|             continue;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       if (!I->isDeclaration()) {
 | |
|         // Get the type of the global.
 | |
|         const Type *Ty = I->getType()->getElementType();
 | |
| 
 | |
|         // Allocate some memory for it!
 | |
|         unsigned Size = TD->getTypeSize(Ty);
 | |
|         addGlobalMapping(I, new char[Size]);
 | |
|       } else {
 | |
|         // External variable reference. Try to use the dynamic loader to
 | |
|         // get a pointer to it.
 | |
|         if (void *SymAddr =
 | |
|             sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str()))
 | |
|           addGlobalMapping(I, SymAddr);
 | |
|         else {
 | |
|           cerr << "Could not resolve external global address: "
 | |
|                << I->getName() << "\n";
 | |
|           abort();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // If there are multiple modules, map the non-canonical globals to their
 | |
|     // canonical location.
 | |
|     if (!NonCanonicalGlobals.empty()) {
 | |
|       for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
 | |
|         const GlobalValue *GV = NonCanonicalGlobals[i];
 | |
|         const GlobalValue *CGV =
 | |
|           LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
 | |
|         void *Ptr = getPointerToGlobalIfAvailable(CGV);
 | |
|         assert(Ptr && "Canonical global wasn't codegen'd!");
 | |
|         addGlobalMapping(GV, getPointerToGlobalIfAvailable(CGV));
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // Now that all of the globals are set up in memory, loop through them all 
 | |
|     // and initialize their contents.
 | |
|     for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
 | |
|          I != E; ++I) {
 | |
|       if (!I->isDeclaration()) {
 | |
|         if (!LinkedGlobalsMap.empty()) {
 | |
|           if (const GlobalValue *GVEntry = 
 | |
|                 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
 | |
|             if (GVEntry != &*I)  // Not the canonical variable.
 | |
|               continue;
 | |
|         }
 | |
|         EmitGlobalVariable(I);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // EmitGlobalVariable - This method emits the specified global variable to the
 | |
| // address specified in GlobalAddresses, or allocates new memory if it's not
 | |
| // already in the map.
 | |
| void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
 | |
|   void *GA = getPointerToGlobalIfAvailable(GV);
 | |
|   DOUT << "Global '" << GV->getName() << "' -> " << GA << "\n";
 | |
| 
 | |
|   const Type *ElTy = GV->getType()->getElementType();
 | |
|   size_t GVSize = (size_t)getTargetData()->getTypeSize(ElTy);
 | |
|   if (GA == 0) {
 | |
|     // If it's not already specified, allocate memory for the global.
 | |
|     GA = new char[GVSize];
 | |
|     addGlobalMapping(GV, GA);
 | |
|   }
 | |
| 
 | |
|   InitializeMemory(GV->getInitializer(), GA);
 | |
|   NumInitBytes += (unsigned)GVSize;
 | |
|   ++NumGlobals;
 | |
| }
 |